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5 Abstract—We present a method for solving two minimal problems for relative camera pose estimation from three views, which are

6 based on three view correspondences of (i) three points and one line and the novel case of (ii) three points and two lines through two of

7 the points. These problems are too difficult to be efficiently solved by the state of the art Gr€obner basis methods. Our method is based

8 on a new efficient homotopy continuation (HC) solver framework MINUS, which dramatically speeds up previous HC solving by

9 specializing HC methods to generic cases of our problems. We characterize their number of solutions and show with simulated

10 experiments that our solvers are numerically robust and stable under image noise, a key contribution given the borderline intractable

11 degree of nonlinearity of trinocular constraints. We show in real experiments that (i) SIFT feature location and orientation provide good

12 enough point-and-line correspondences for three-view reconstruction and (ii) that we can solve difficult cases with too few or too noisy

13 tentative matches, where the state of the art structure from motion initialization fails.

14 Index Terms—Multiple view geometry, homotopy continuation, structure from motion using curves, numerical algebraic geometry

Ç

151 INTRODUCTION

16SCIENTIFIC research on 3D reconstruction from multiple
17views has made an impact [1] by mostly relying on
18points in Structure from Motion (SfM) [2], [3], [4], [5]. Still,
19even production-quality SfM technology fails [1] when the
20images contain (i) large homogeneous areas with few or no
21features; (ii) repeated textures, like brick walls, giving rise
22to a large number of ambiguously correlated features; (iii)
23blurred areas, arising from moving cameras or objects; (iv)
24large scale changes where the overlap is not sufficiently sig-
25nificant; or (v) multiple and independently moving objects
26each lacking a sufficient number of features.
27The failure of bifocal pose estimation using RANSAC on
28hypothesized correspondences, e.g., using 5 points [6], is
29highlighted in a dataset of images ofmugs, Fig. 1 (similar to the
30dataset in [7] but without a calibration board), for which the
31failure rate using the standard SfM pipeline COLMAP [63] is 75%.
32The failure of just directly applying the 5-point algorithm in
33this example is even higher. A similar situation exists for
34images containing repeated patterns where there are plenty of
35features, but determining correspondences is challenging.
36Most traditional multiview pipelines estimate the relative pose
37of the two best views and then register the remaining views
38using a P3P algorithm [2], for robustness. The focus of this
39paper is to address the failure of traditional bifocal algorithms
40in such cases, while tackling strategic problems that have long-
41term potential for breakthrough for a myriad of other minimal
42problems we jointly discovered and tackled [8], [9], [10], [11],
43and in the case of curve features for SfMwhich critically depend
44on trifocal geometry [12], [13], [14], [15], [16].
45The failure of bifocal algorithms motivates the use of (i)
46more complex features, i.e., having additional attributes and
47(ii) more diverse features (partial visibilitiy also helps in
48robustness, see [17]). We propose that orientation (in the
49sense of inclination) is a key attribute to disambiguate corre-
50spondences and we show that SIFT orientation in particular
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51 is a stable feature across views for trifocal pose estimation.
52 Orientation can also arise from curve tangents [14], [15],
53 [18], and the orientation of a straight line in multiple views
54 also constrains pose. Observe, however, that orientation
55 cannot be constrained in two views alone: SIFT orientation or
56 line orientations in two views are uncorrelated, but together
57 can identify their 3D counterparts and thus can constrain
58 orientation in a third view. This motivates trinocular pose
59 estimation based on point features endowed with orientation
60 or including straight line features [12], [13], [14].
61 Camera estimation from trifocal tensors is long believed
62 to augment two-view pose estimation [19], [20]. Although no
63 significant improvements over bifocal pairwise estimation
64 have been documented [21], recent work reiterate the advan-
65 tages of well-crafted trifocal algorithms for relevant near-
66 degenerate configurations such as approximately collinear
67 camera centers [20], [22]. The calibrated trinocular relative
68 pose estimation from four points, 3V4P, is notably difficult to
69 solve [15], [23], [24], [25], and is not a minimal problem – it is
70 over-constrained. The first working solver [23] effectively
71 parametrizes the relative pose between two cameras as a
72 curve of degree ten of possible epipoles. A third view is then
73 used to select the epipole that minimizes reprojection errors.
74 In this sense, trinocular pose estimation has not truly been
75 tackled as aminimal problem.
76 Trifocal pose estimation requires the determination of 11
77 degrees of freedom: six unknowns for each pair of rotation
78 R and translation t, less one for metric ambiguity. Three
79 types of constraints arise in matching triplets of point
80 features endowed with orientation. First, the epipolar con-
81 straint provides an equation for each pair of correspond-
82 ences in two views. Second, in a triplet of correspondences,
83 each pair of correspondences are required to match scale,
84 providing another constraint; a total of three equations per
85 triplet. It is easy to see, informally, that three points are
86 insufficient to determine trifocal pose, while four points are
87 too many. Third, each triplet of oriented feature points pro-
88 vides one orientation constraint. Thus, with three points,

89only two points need to be endowed with orientation, giv-
90ing a total of 11 actual constraints for the 11 unknowns. We
91refer to this novel problem of three triplets of corresponding
92points, with two of the points having oriented features as
93“Chicago”, which evolved out of the work by Fabbri, Giblin
94and Kimia on absolute pose estimation from two points
95endowed with tangents [13], [14]. In the second scenario,
96i.e., using straight lines as features, with three points, only
97one free (unattached to a point) straight line feature is
98required. We refer to the problem of three triplets of corre-
99sponding points and one triplet of corresponding free lines
100as “Cleveland.” This paper addresses trifocal pose estimation
101for the above scenarios, shows that both are minimal prob-
102lems, and develops efficient solvers for the resulting poly-
103nomial systems.
104Specifically, each problem comprises eleven trifocal con-
105straints that in principle give systems of eleven polynomials
106in eleven unknowns. These systems are not trivial to solve
107and require techniques from numerical algebraic geome-
108try [26], [27], [28] (i) to probe whether the system is over or
109under constrained or otherwise minimal; (ii) to understand
110the range of the number of real solutions and estimate a
111tight upper bound; and (iii) to develop efficient and practical
112methods for finding solutions which are real and represent
113camera configurations. This paper shows that the Chicago
114problem is minimal and has up to 312 solutions (the area
115code of Chicago) of which typically 3-4 end up becoming
116relevant to camera configurations. Similarly, we show that
117the Cleveland problem is minimal and has up to 216 solu-
118tions (the area code of Cleveland). The minimality of combi-
119nations of points and lines for the general case [29] is a
120parallel development to the more concrete treatment pre-
121sented here.
122The numerical solution of polynomial systems with sev-
123eral hundred solutions is challenging. We devised a cus-
124tom-optimized Homotopy Continuation (HC) framework
125MINUS which iteratively tracks solutions with a guarantee
126of global convergence [27]. Our framework specializes the
127general HC approach to minimal problems typical of multi-
128ple view geometry, dramatically speeding up the imple-
129mentation. Our Chicago and Cleveland solvers are not only
130the first solvers for such high degree problems, but are
131orders of magnitude faster than solvers for such scale of
132problems: 660 ms on average on an Intel core i7-7920HQ
133processor with four threads. They share the same generic
134core procedure with plenty of room to be further optimized
135for specific applications. Most significantly, since finding
136each solution is a completely independent integration path
137from the others, the solvers are suitable for implementation
138on a GPU [90], as a batch for RANSAC, which may further
139reduce the run time by the number of tracks, i.e., by two
140orders of magnitude. We hope that our developments can
141be a template for solving other computer vision problems
142involving systems of polynomials with a large number of
143solutions; the provided C++ framework is fully templated to
144include new minimal problems seamlessly.
145Experiments are initially reported on complex synthetic
146data to demonstrate that the system is robust and stable
147under spatial and orientation noise and under a significant
148level of outliers. Experiments on real data first demonstrates
149that SIFT orientation is a remarkably stable cue over a wide

Fig. 1. A deficiency of the traditional two-view approach to bootstraping
SfM: not enough features detected (red dots) and thus a SOTASfM pipeline
COLMAP fails to reconstruct the relative camera pose. In contrast, the pro-
posed trinocular method requires only three features corresponding in
three views: two point-tangents (points with SIFT orientation, green and
cyan) and one point without orientation (purple, also SIFT). Red cameras
are computed by our approach and green is ground truth.

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE



IE
EE P

ro
of

150 variation in view. We then show that our approach is suc-
151 cessful in all cases where the traditional SfM pipeline suc-
152 ceeds, but of course at higher computational cost. What is
153 critically important is that the proposed approach succeeds
154 in many other cases where the SfM pipeline fails, e.g., on the
155 EPFL [30] and Amsterdam Teahouse datasets [31], Figs. 9
156 and 10. Those cases where the bifocal scheme fails – flagged
157 by the number of inliers, for example – can consider the
158 application of a currently more expensive but more capable
159 trifocal scheme to allow for reconstructions that would oth-
160 erwise be unsolved.

161 1.1 Literature Review

162 Trifocal Geometry. Calibrated trifocal geometry estimation is
163 a hard problem [23], [24], [25], [32]. There are no publicly
164 available solvers we are aware of. The state of the art
165 solver [23], based on four corresponding points (3V4P), has
166 not yet found many practical applications [33]. A solver for
167 a relaxed version of this problem has been recently made
168 available by our coauthors based on techniques originated
169 in the present paper [34].
170 For the projective case, 6 points are needed [35], and
171 Larsson et al. solved the longstanding trifocal minimal
172 problem using 9 lines [36]. The case of mixed points and
173 lines is less common [37], but has seen a growing interest in
174 related problems [38], [39], [40]. The calibrated cases beyond
175 3V4P are largely unsolved, spurring sophisticated theoretical
176 work [41], [42], [43], [44], [45], [46], [47]. Kileel [43] studied
177 minimal problems in this setting, such as the Cleveland
178 problem solved in the present paper, and reported studies
179 using HC. He stated that the full set of ideal generators, i.e., a
180 set of polynomial equations provably necessary and suffi-
181 cient to describe calibrated trifocal geometry, was unknown.
182 Seminal works used curves and edges in three views to
183 transfer differential geometry for matching [48], [49], and
184 for pose and trifocal tensor estimation [16], [50], beyond
185 straight lines for uncalibrated [51], [52] and calibrated [38],
186 [53] SfM. Point-tangents – not to be confused with point-
187 rays [54] – can be framed as quivers (1-quivers), or feature
188 points with attributed directions (e.g., corners), initially pro-
189 posed in the context of uncalibrated trifocal geometry but
190 de-emphasizing the connection to tangents to curves [55],
191 [56]. Point-tangent fields can be framed as vector fields, so
192 related technology applies to surface-induced correspon-
193 dence data [15]. In the calibrated setting, point-tangents
194 were first used for absolute pose estimation by Fabbri
195 et. al. [13], [14], from only two points, later relaxed for
196 unknown focal length [57]. The trifocal problem with three
197 point-tangents as a local version of trifocal pose for global
198 curves was first formulated by Fabbri [15], presented here
199 as a minimal version codenamed Chicago.
200 Homotopy Continuation. The basic theory of polynomial
201 HC [26], [58], [59] was developed in 1976, and guarantees
202 algorithms that are globally convergent with probability one
203 from given start solutions. A number of general-purpose HC

204 softwares have considerably evolved over the past
205 decade [26], [28], [60], [61]. The computer vision community
206 has used HC most notably in the nineties for 3D vision of
207 curves and surfaces for tasks such as computing 3D line
208 drawings from surface intersections, finding the stable

209singularities of a 3D line drawing under projections, com-
210puting occluding contours, stable poses, hidden line
211removal by continuation from singularitities, aspect graphs,
212self-calibration, and pose estimation [62], [63], [64], [65],
213[66], [67], [68], [69], [70], [71], [72], [73], as well as for
214MRFs [62], [74], and in more recent work [75], [76], [77]. An
215implementation of the early continuation solver of Krieg-
216man and Ponce [67] by Pollefeys is still widely available for
217low degree systems [78].
218As an early example, HC was used to find an early bound
219of 600 solutions to trifocal pose with 6 lines [64]. In the
220vision community HC is mostly used as an offline tool to
221carry out studies of a problem before crafting a symbolic
222solver. Kasten et. al. [79] recently compared a general pur-
223pose HC solver [61] against their symbolic solver. However,
224their problem is one order of magnitude lower degree than
225the ones presented here, and the HC technique chosen for
226our solver [27] is more specific than their use of polyhedral
227homotopy, in the sense that fewer paths are tracked (cf.. the
228start system hierarchy in [59]).

2292 TWO TRIFOCAL MINIMAL PROBLEMS

230We formulate a new minimal problem for points and inci-
231dent lines in three views, codenamed Chicago. We present
232its fundamental equations in explicit parametric form that
233shed light on the geometric properties relevant to vision, as
234well as a more specific set of equations with 14 unknowns
235used in our best-performing solver MINUS. While we focus
236on the Chicago problem, our formulations, analysis and
237solver framework generalize to important similar problems,
238and has lead to companion work by our coauthors [29]. To
239illustrate this, we present a second trifocal problem for
240points and a free line, codenamed Cleveland. The formula-
241tion, characterization and practical solver approach for
242Cleveland, in direct analogy to Chicago, are also a contribu-
243tion of this paper. Specific details on Cleveland are left for
244the appendix, which can be found on the Computer Society
245Digital Library at http://doi.ieeecomputersociety.org/
24610.1109/TPAMI.2022.3226165, since our focus is on Chicago
247and the analysis is analogous.

2482.1 Formulation and Notation

249We follow notational style from Hartley and Zisser-
250mann [51] with explicit projective scales. A more elaborate
251notation [14], [50] can be used to express the equations in
252terms of tangents to curves and derivatives of relevant
253quantities such as depth. Fig. 2 illustrates the notation for a
254single feature consisting of a point and an incident line in
255three views. Symbols may be given two subscripts p; v ¼
2561; 2; 3 to index multiple feature points and views, respec-
257tively; indices pmay be omitted for brevity.
258Let Rv; tv denote the rotation and translation transforming
259coordinates from camera 1 to camera v (so that R1 is identity
260and t1 ¼ 0). Symbols Xp and Yp denote inhomogeneous
261coordinates of 3D points, and xpv; ypv homogeneous coordi-
262nates of their respective projections on P2 at view v, with
263apv, bpv their respective depths. Let lpv and Lp denote column
264vectors of homogeneous coordinates of image lines and
265underlying 3D lines in ðP2Þ_ and ðP3Þ_, resp. We use both
266parametric and homogeneous equations for lines, the latter
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268 Symbol dpv represents a line direction or unit curve tangent
269 vector in homogeneous coordinates at view v (point at infin-
270 ity, i.e., third coordinate is zero); and Dp is the underlying
271 3D line direction or space curve tangent in inhomogeneous
272 world coordinates. Displacements "p along Dp correspond
273 to displacements dpv along dpv. Let ppppppppv denote the homoge-
274 neous coordinates of the backprojection plane in ðP3Þ_ of
275 lpv. For simplicity, we use concrete coordinate representa-
276 tions even in coordinate-independent statements. By
277 default, all coordinates are assumed real and without the
278 action of intrinsic parameters.

279 Definition 1 (Chicago Trifocal Problem). Given three cor-
280 responding points x1v; x2v; x3v and two lines l1v, l2v in views
281 v ¼ 1; 2; 3, such that lpv meets xpv for p ¼ 1; 2 and v ¼ 1; 2; 3,
282 compute relative pose R2; R3; t2; t3.

283 Examples of Data for Chicago: 1) Three oriented features
284 (e.g., SIFT) corresponding across three views, using feature
285 orientations; 2) General curves in three views (e.g., linked
286 subpixel edges), and three corresponding curve points (e.g.,
287 subpixel edgels), using tangent vectors; 3) Trajectories of
288 three moving points observed by three cameras, using
289 velocity vectors. While a third orientation triplet is usually
290 available and exploited in practice, we show the core pose
291 solution requires only two.

292 Definition 2 (Cleveland Trifocal Problem). Given three
293 points x1v; x2v; x3v in views v ¼ 1; 2; 3, and given a free line l1v
294 in each image, compute R2; R3; t2; t3.

295 2.2 Essential Equations

296 The essential equations of Chicago (and Cleveland) are
297 obtained by writing constraints per feature indepen-
298 dently, while keeping the pose unknowns in general
299 form. They are used for analyzing the fundamental prop-
300 erties of the new problems and as a basis for further var-
301 iable elimination and exploring other formulations.
302 See [80] for a general framework for navigating different
303 formulations. The final solver that offered the best per-
304 formance uses a formulation that further eliminates vari-
305 ables across these per-feature equations using specific
306 algebraic manipulations connecting features pairwise, as
307 described further in Section 2.3.

308Theorem 2.1 (Essential Trifocal Constraints for Points
309and Incident Lines, Parametric Form). The constraints
310on relative pose from points and incident lines observed in three
311views are given by

avxv ¼ Rva1x1 þ tv; (1)

hvxv þ mvdv ¼ Rv h1x1 þ m1d1ð Þ; (2)
313313

314for v ¼ 2; 3 (point indices omitted, R1 ¼ I and t1 ¼ 0). We
315call (1) the parametric essential trifocal point constraints,
316and (2) the parametric essential trifocal incident line con-
317straint. Moreover, (1) imposes three constraints per triplet
318point, while (2) imposes one constraint per incident line triplet:

3191) Point epipolar constraints: Solving (1) for v ¼ 2 and
320v ¼ 3.
3212) Point relative scale constraint: Enforcing depth a1 to
322be equal in (1) for v ¼ 2 and v ¼ 3.
3233) Incident line constraint: Jointly expressed by (2) for
324v ¼ 2; 3.

325Proof. Eliminate X from the projections of points avxv ¼
326RvXþ tv, v ¼ 1; 2; 3 to get (1). Lines in space through X are
327modeled here in parametric form by a displacement param-
328eter � and pointsY ¼ Xþ "D, which are projected as bvyv ¼
329RvYþ tv, v ¼ 1; 2; 3. Eliminate tv by subtracting the projec-
330tion equations of X and Y, bvyv � avxv ¼ "RvD, and elimi-
331nate "D using the equation for v ¼ 1 and yv ¼ xv þ dvdv

ðbv � avÞxv þ bvdvdv ¼ Rv ðb1 � a1Þx1 þ b1d1d1ð Þ; (3)
333333

334for v ¼ 2; 3. We set hv¼: bv � av andmv¼: bvdv, yielding (2).
335It follows that the trifocal essential point constraints in
336parametric form (1) are logically equivalent to the exis-
337tence of a triangulation X from views 1 and 2 equal that
338from views 1 and 3. In parametric form, it simply means
339that these solutions can be linked by the same depth a1.
340By construction, these imply the existence of a triangula-
341tion from views 2 and 3, also equal to X, so (2) for views
3422 and 3 does not provide an additional constraint.1

343The trifocal essential incident line constraints in paramet-
344ric form are logically equivalent to the existence of a 3D line
345direction D that, when rooted at X, projects to direction d1

346and d2, and that D also projects to d3. In the point case the
347equation from views 1 and 2 provides a constraint, i.e., (1)
348for v ¼ 2 does not always have a solution,while the incident
349line equation from views 1 and 2 does not provide a con-
350straint on pose – there is always a solutionm and h for (2) for
351v ¼ 2 that parametrizes some consistent D irrespective of R
352and the data x and d. Each triplet of oriented point features
353provides a single orientation constraint expressed as two
354coupled equations (2) in h andm in addition to pose. tu
355Corollary 2.2. The correspondence of points across three views
356constrain relative rotations and translations, while the additional
357correspondence of an incident line constrains only rotation.

358Proof. This is a direct consequence of Theorem 2.1. tu

Fig. 2. Notation illustrated for a single point with a curve tangent vector or
feature orientation, e.g., SIFT. Multiple features may be explicitly indexed
with an additional first subscript.

1. Conversely, having three pairwise epipolar constraints is not
equivalent to two pairwise epipolar constraints and a relative scale
constraint [22].

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
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359 Having an incident line thus works like an additional
360 point correspondence – in a precise sense like a third of a
361 point – yet constraining only rotations. This allows us to
362 construct Chicago as an exactly constrained trifocal problem
363 that can be applied, e.g., with conventional SIFT features. We
364 can get an expression of these constraints free of auxiliary
365 parameters by further elimination.
366 The parametric point epipolar constraints of Theo-
367 rem 2.1, in particular, state that x1, xv and the first camera
368 center tv are coplanar when written in the coordinates of
369 camera v; this is the classical Essential constraint,
370 expressed without parameters via a scalar triple product
371 trilinear in tv and the points, the standard expression that
372 is bilinear in image coordinates. Although we arrived at
373 this constraint explicitly from first principles through but
374 the simplest logic, it is a general constraint of two-view
375 geometry with recent results in trifocal geometry [20].
376 Algebraically, the classical expression for the Essential
377 constraint ammounts to eliminating depths av from (1)
378 while keeping Rv and tv. However, there are successful
379 arguments for eliminating Rv and tv first in camera pose
380 problems, writing the equations in terms of depths only
381 a [13], [14] (e.g., the classical P3P equations). Though not
382 performed here, this further motivates stating the trifocal
383 essential constraints in parametric form. Moreover, the
384 parametric form more readily lends itself to modeling
385 general curves [12] for which trifocal geometry plays a
386 pivotal role. The trifocal relative scale constraint in Theo-
387 rem 2.1 guarantees that 3D rays converge, which may not
388 be the case if we had used three pairwise epipolar con-
389 straints instead; in fact, this scale constraint is a funda-
390 mental and classical condition of photogrammetry, called
391 the scale-restraint equations, see [22] for general results. It
392 may be substituted by an additional epipolar constraint
393 between views 2 and 3, but it turns out that this is only
394 adequate for oriented points, i.e., together with the inci-
395 dent line constraint, which guarantees a consistent 3D
396 incident line. Without this, having three pairwise epipolar
397 constraints is not enough to guarantee there is a 3D point
398 X that projects to the observed points, specially near non-
399 generic configurations [22], namely 1) if the camera cen-
400 ters are far from collinear, when the corresponding rays
401 lie in or near the trifocal plane 2) if the centers are approx-
402 imately collinear, when the rays lie near any plane con-
403 taining the baseline [22]. In this sense, points with
404 incident lines are natural features in trifocal geometry.

405 Corollary 2.3 (Chicago Essential Equations, Parametric
406 Form). The Chicago problem is equivalent to finding the solu-
407 tions of

apvxpv ¼ Rvap1xp1 þ tv; p ¼ 1; 2; 3 (4)

hpvxpv þ mpvdpv ¼ Rv hp1xp1 þ mp1dp1

� �
; p ¼ 1; 2; (5)

409409

410 for v ¼ 2; 3, which are 30 scalar equations in the relative cam-
411 era pose R2, t2, R3, t3, along with 9 unknown depths (apv) and
412 12 unknown line parameters (6 each for hpv and mpv).

413 Proof. Theorem 2.1 lists all the available constraints. tu
414 That actual equations used in our solver amount to
415 an elimination of the auxiliary parameters in (4) and (5),
416 leading to vanishing minors, Section 2.3. Note that (4) are

417homogeneous in a and t, so that a multiple of a particular
418solution are also solutions, i.e., translations and depths are
419constrained up to scale, giving 11 constrainable degrees of
420freedom. By Theorem 2.1, the essential equations used in
421Chicago express 3 independent constraints per point, and 1
422per incident line, yielding 11 constraints on 11 degrees of
423freedom. Rigorous computational arguments in Section 3
424confirm that these constraints are also independent across
425points. In other words, Chicago is a minimal problem.
426One can also see the parametric trifocal essential equa-
427tions for Chicago as a square system of 30 scalar equations
428in the 30-dimensional space SOð3Þ � SOð3Þ � P14 � P5 � P5

429of unknowns

ðR2; R3; ½t2; t3;a11; . . . ;a33�; ½h11;m11; h12;m12; h13;m13�;
½h21;m21; h22;m22; h23;m23�Þ:

431431

432We model the 9 depths av and t2; t3 as a point in P14, since
433they are unknown up to a common scale. Since only the
434directions of tangents matter, we regard these solution com-
435ponents as points in two P5 factors, one per oriented feature.
436There are many ways to proceed with elimination from
437the essential parametric equations to obtain alternate formu-
438lations, as discussed above. A particular eliminated formu-
439lation based on vanishing minors, which produced the first
440working solver for Chicago, and which are used in MINUS, is
441described in Section 2.3.

4422.3 Equations Based on Minors Used in Our Solver

443Experiments show that judicious elimination of additional
444variables from the basic equations leads to faster and more
445reliable solvers, with tradeoffs, e.g., in the number of varia-
446bles versus nonlinearity and degeneracy of the resulting
447representations. This section describes a particular way to
448eliminate variables down to a 14� 14 system that has
449proven most successful and general to date.
450Futher elimination of certain variables from the basic
451equations leads to minor-based constraints, i.e., enforcing
452the determinants of certain sub-matrices to vanish. Exam-
453ples are coplanarity or multilinear constraints, e.g., the
454essential constraint. In particular, this eliminates parameters
455describing coordinates of vectors in constraints on lines
456(depths a’s) and planes (h’s and m’s). While this approach
457has long been used for describing trifocal constraints for
458points [22], in full generality it is novel and has spawned
459companion work by our coauthors [29]. Additionally, equa-
460tions based on minors are multilinear, allowing for possible
461numerical improvements, Section 4.1.
462An instance of Chicago may be described by a configura-
463tion of 5 visible lines in each view, Fig. 3. We denote each
464line by l1v; . . . ; l5v for v ¼ 1; 2; 3, where the first three
465l1v; l2v; l3v pass through all pairs of points in each view, and
466the last two l4v; l5v represent the point-tangent pairs. The
467minor-based equations split into three sets summarized as:

468Lines correspond: pppppppi;1;pppppppi;2;pppppppi;3 meet at a 3D line Li.
469Pairwise lines meet: L1;L2;L3 meet pairwise in 3D.
470Incident tangents: L1;L2;L4 and L1;L3;L5 meet at a point.
471The latter two are so-called common point constraints. Line
472correspondence constraint. These equations express that there
473must be an underlying 3D line Lj, j ¼ 1; . . . ; 5 associated to
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474 the set of backprojection planes pppppppj;v ¼ ½Rvjtv�>lj;v, v ¼ 1; 2; 3,
475 which are gathered into a 4� 3 matrix Lj¼: ½pppppppj;1 pppppppj;2 pppppppj;3�.
476 These planes define a single line if the underlying system of
477 equations has a 1D solution, leading to the rank constraint

rank Lj � 2; j ¼ 1; . . . ; 5: (6)
479479

480 Equivalently, we obtain a polynomial system by setting all
481 3� 3minors of each Lj to zero. As explained Section 4, MINUS

482 employs a heuristic to select one such minor per Lj, fixed for
483 given HC starting solutions, yielding 5 final equations for this
484 constraint. Pairwise line intersection constraint. That L1;L2;L3

485 intersect pairwise can be expressed by

rank ½Li Lj� � 3; i < j 2 f1; 2; 3g; (7)
487487

488 or that all maximal 4� 4 minors vanish. We use only
489 rank ½L2 L3� � 3 corresponding to X3, as the other pairwise
490 intersections will be implicit in the constraint of incident tan-
491 gents. For MINUS we pick only one minor equation for this
492 constraint using the aforementioned heuristics.Incident tan-
493 gents constraint. That tangents intersect at the same point
494 with two other lines can be expressed by forming matrices
495 X1¼: ½L1 L2 L4�; X2¼: ½L1 L3 L5�, and requring

rank Xj � 3; j ¼ 1; 3: (8)
497497

498 All 4� 4 minors must vanish, 5 of which are used in MINUS.
499 The final number of equations consists of 11 fixed, specific van-
500 ishing minors. The total number of minors associated with
501 the rank constraints (6),(7),(8) far exceeds the number of
502 unknowns used in our formulation of Chicago. The number
503 of unknowns, as described in the next section, is 14, and the
504 total number of equations implied by these rank constraints
505 is 287 ¼ 5 4

3

� �þ 2 9
4

� �þ 6
4

� �
. Nevertheless, these 287 equations

506 together with 3 dehomogenization equations (12) will have
507 312 solutions for almost all line configurations encoding an
508 instance of Chicago. In our HC solvers, we work with a 14�
509 14 subsystem of these equations which determine a full-
510 rank submatrix of the 290� 14 Jacobian matrix. In this
511 approach, the selection of the actual equations out of a large
512 pool of possibilities is done through computer-assisted
513 heuristics, Section 4. While these general tools aid in under-
514 standing the underlying geometry, this becomes concealed.
515 Selecting the appropriate subset of minors, e.g., that ensures
516 the 3D rays for matching points always intersect, is a known

517problem in the projective case [22]. In that scenario, a differ-
518ent subset of minors may be used depending on a priori
519assumptions on camera configuration (e.g., collinear versus
520non-collinear camera centers) [20]. An explicit set of vanish-
521ing minors for point trifocal geometry and the resulting con-
522straints is studied in a general setting by Trager et. al. [20]. A
523geometric interpretation is that four minors encode con-
524straints that are trilinear in image coordinates and express
525that 3D rays must meet at a single point. When 3D rays are
526viewed from four different appropriate image planes, each
527vanishing minor may be expressed as requiring three copla-
528nar projected lines meeting at a point [20]. We verify experi-
529mentally that our chosen set of minors provides a working
530solver.

5313 PROBLEM ANALYSIS

532A general camera pose problem is defined by a list of
533labeled features in each image, which are in correspon-
534dence. The image coordinates of each feature are given,
535and we aim to determine the relative poses of the cameras.
536The concatenated list of all the feature coordinates from
537all cameras is a point in the image space Y , while the
538concatenated list of the features’ locations and orienta-
539tions in the world frame or camera 1 is a point in the world
540feature space W . The scale of the relative translations is
541indeterminate, so relative translations are treated as in
542projective space. For N cameras, the combined poses of
543cameras 2; . . . ; N relative to camera 1 are points in
544SEð3ÞN�1. Let the pose space be X, the projectivized ver-
545sion of SEð3ÞN�1, and so dimX ¼ 6N � 7. Given the 3D fea-
546tures and the camera poses, we can compute the image
547coordinates of the features by a viewing map V : W �X !
548Y . A camera pose problem is: given y 2 Y , find ðw; xÞ 2
549W �X such that V ðw; xÞ ¼ y. The projection p : ðw; xÞ 7! x
550is the set of relative poses we seek.

551Definition 3. A camera pose problem is minimal if V :
552W �X ! Y is invertible and nonsingular at a generic y 2 Y .

553A necessary condition for a map to be invertible and non-
554singular is that the dimensions of its domain and range must
555be equal. Let us consider three kinds of features: a point, a
556point on a line (equivalently a point with tangent direction),
557and a free line (a line with no distinguished point on it). For
558each feature, say F , let CF be the number of cameras that see
559it. The contributions to dimW and dim Y of each kind of fea-
560ture are in the table below, where a point with a tangent
561counts as one point and one tangent. Thus, a point feature has
562several tangents if several lines intersect at it.

563Feature dimW dimY
564Point, P 3 2 � CP

565Tangent, T 2 1 � CT

566Free Line, L 4 2 � CL

567Summing all the contributions to dimY � dimW , we have

568Theorem 3.1. Let hxi¼: maxð0; xÞ. A necessary condition for a
569N-camera pose problem to be minimal is

X
P

h2CP � 3i þ
X
T

hCT � 2i þ
X
L

h2CL � 4i ¼ 6N � 7: 571571

572

Fig. 3. Visible line diagram for Chicago. Cleveland uses the same num-
bering for pairwise lines and l4 is a free line.
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573 For trifocal problems where all cameras see all features,
574 i.e., CP ¼ CT ¼ CL ¼ 3, a pose problem with 3 feature points
575 and 2 tangents meets the condition. A pose problem with 3
576 feature points and 1 free line also meets the condition. Add-
577 ing any new features to these problems will make them
578 overconstrained, having dimY > dimW �X.

579 Definition 4. The algebraic degree of a minimal pose problem
580 is the number of solutions ðw; xÞ 2 V �1ðyÞ for generic y 2 Y .

581 Both Gr€obner bases and HC offer probability-one meth-
582 ods for computing all solutions for a particular problem
583 instance specified by y 2 Y . Gr€obner bases also offer an
584 exact method, when working overQ. However, it is difficult
585 to say when any particular y 2 Y will satisfy the necessary
586 genericity conditions to have have this many solutions with-
587 out knowing the algebraic degree a priori. Thus, the follow-
588 ing statement has two components: that both problems are
589 minimal (rigorously proven) and that their algebraic
590 degrees are as stated (true with probability one).

591 Theorem 3.2 (Computational). The Chicago trifocal problem
592 is minimal with algebraic degree 312, and the Cleveland prob-
593 lem is minimal with algebraic degree 216.

594 Proof. To show that a N-camera pose problem is minimal,
595 find ðw; xÞ 2W �X where the Jacobian of V ðw; xÞ is full
596 rank. For exact values of ðw; xÞ 2W �X in rational arith-
597 metic, we compute the exact rank of this Jacobian. This
598 proves that the problem is minimal. To compute the alge-
599 braic degree of a given problem, we write down a system
600 of polynomial equations in unknowns ðw; xÞ 2W �X for
601 a randomly chosen y. Since the problem is minimal, we
602 expect that the ideal generated by these polynomials is 0-
603 dimensional. Gr€obner bases give standard methods [81]
604 both for checking that this ideal is 0-dimensional and
605 computing its degree. To verify that the degree of the
606 ideal is equal to degree of the minimal problem, we have
607 computed all solutions to the system of polynomials spec-
608 ified by y 2 Y and verified that they correspond to valid
609 points ðw; xÞ 2W �X. We carried out this procedure
610 with the minors equations and confirmed the degree
611 using the essential equations and HC. tu
612 Remark. The previous argument depends on the system
613 of equations chosen to model the problem. For instance,
614 if (4),(5) are used, then there exist 312 solutions correspond-
615 ing to valid points inW �X, plus a small number of degen-
616 erate solutions where certain values of the depths a equal
617 zero. Additional polynomial equations which exclude these
618 solutions may be generated using the symbolic technique
619 of saturation [81, Sec 4.4]. Such a saturation step is also nec-
620 essary if rotation matrices are modeled with the quaternion
621 parametrization in (11), since we must rule out degenerate
622 solutions with w2

i þ x2
i þ y2i þ z2i ¼ 0.

623 A companion work by our coauthors [8] provides Macau-
624 lay2 tutorial for the Gr€oner basis degree proof and other
625 general techniques presented in this section for analyzing
626 Chicago, Cleveland, and a number of related minimal prob-
627 lems using the minors approach. Since Gr€obner bases can
628 be used to compute the algebraic degrees of both minimal
629 problems, it is natural to hope that they also can be used to
630 design effective minimal solvers. However, the current

631leading methods for building minimal solvers (eg. [82], [83],
632[84]) do not scale well for problems of degree 100 or larger.
633This is our main motivation for using optimized HC.

6344 OPTIMIZED HOMOTOPY CONTINUATION SOLVER

635Like other minimal problems in vision, the Cleveland and
636Chicago problems require us to solve a system of polyno-
637mial equations. Crucially, these equations are polynomial in
638both the input data (points and lines in images) and the
639unknown quantities to be estimated (cameras and world
640features.) It is common to call these systems parametrized
641polynomial systems, as the input data parametrize the space
642of all instances of a given problem. In Section 4.1, we review
643basic facts about coefficient parameter homotopy, a very gen-
644eral framework for solving parametrized polynomial sys-
645tems based on HC methods. The parameter homotopies arising
646in this framework lie at the core of our HC solvers. To make
647this general framework concrete, Section 2.3 describes in
648precise detail one possible strategy for formulating the
649Cleveland and Chicago problems, in which the depths and
650displacements are eliminated from the essential equations
651of Section 2.2. Although these formulations are used in our
652best-performing solvers to date, we stress that the exact for-
653mulation is not essential to the underlying technique. Other
654formulations of the problem will also give rise to parameter
655homotopies which can be successfully used within general-
656purpose software [26], [28] or within our optimized C++
657framework MINUS described in Section 4.2.
658Acknowledging the promise of further speedups brought
659by experimenting with different formulations, we observe
660that our specific parameter homotopies can already be used
661to solve Chicago and Cleveland in a relatively efficient man-
662ner, Section 5. We attribute relatively good run times to two
663factors. First, the inherent specificity of parameter homoto-
664pies when compared to other HC methods; the number of
665paths to track in a parameter homotopy is precisely the alge-
666braic degree of the problem. Second, we optimize various
667aspects of HC, such as polynomial evaluation and numerical
668linear algebra, Section 4.2, along with more aggressive opti-
669mization opportunities and tradeoffs.

6704.1 Algorithm

671We assume that F ðR;AÞ is a system which is polynomial in
672both the variables R and the parameters A. One is inter-
673ested in efficiently computing the solutions for many instan-
674ces of the parameters. To compute all nonsingular complex
675isolated solutions of F ðR;AÞ ¼ 0 for any given set of target
676parameters A�, one may use the parameter homotopy

HðR; sÞ ¼ F ðR; ð1� sÞA0 þ sA�Þ; (9)
678678

679for s 2 ½0; 1Þ, Algorithm 4.1. It is assumed that solutions for
680some starting parameters A0 have already been computed
681via some offline, ab initio phase, described below, by default
682hardcoded in MINUS. This initial phase determines represen-
683tatives of nonsingular isolated solutions, making for faster,
684more efficient solves for any other parameter values
685desired, e.g., within RANSAC.
686Generically, the homotopy paths are smooth and do not
687intersect each other. To ensure this (genericity) condition
688for every homotopy path with probability 1, we may
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689 employ the so-called gamma trick. This consists in choosing a
690 (random) g 2 C so that the homotopy equation becomes

HðR; sÞ ¼ F ðR;fðsÞÞ;
692692

693 where fðsÞ parametrizes an arc, depending on g, connecting
694 A0 to A� in the parameter space. More explicitly, we define
695 fðsÞ ¼ ð1� tðsÞÞA0 þ tðsÞA�, with tðsÞ ¼ gs

1þðg�1Þs , as in

696 Algorithm 4.1. In this way, fðsÞ is a generic path in the com-

plex space without singularities, even if the endpoints are

real. However, even though the circular arc depending on g

misses the non-generic points in C with probability 1, it

might happen that the arc is close to these non-generic

points; this can cause instability, increase the error or

decrease speed in computations. If we run MINUS multiple

times with the same data but using different (random) g’s,

it results in a dispersion of run times and even occasional

failures. The slower running times and the occasional fail-

ures happen when g lands close to certain rays in C which
intersect an appropriately-defined discriminant in the track-

ing parameter s.
697 For systems which are linear in the parameters A, it is
698 possible to adapt the gamma trick to work with a simpler
699 linear segment homotopy, due to the following calculation

HðR; sÞ ¼ F ðR; ð1� tðsÞÞA0 þ tðsÞA�Þ
¼ ð1� tðsÞÞF ðR;A0Þ þ tðsÞF ðR;A�Þ
¼ 1

1þ ðg � 1Þs ð1� sÞF ðR;A0Þ þ gsF ðR;A�Þ½ �; (10)

701701

702 where the coefficient 1
1þðg�1Þs is never zero for real s 2 ½0; 1Þ

703 and can be ignored when solving HðR; sÞ ¼ 0. This one vari-
704 ant of the gamma trick may be preferable to the general one,
705 since it results in cheaper evaluation of the homotopy and its
706 derivatives, andmay also lead to better numerical stability.
707 Minor-based constraints are multilinear in the coordinates
708 of each line l suggesting that a simple variant of the afore-
709 mentioned “linear” gamma trick will work for related for-
710 mulations. This will indeed work for Cleveland, where we
711 may treat each coordinate of each line as an independent
712 parameter. However, for Chicago there is an additional sub-
713 tlety due to the fact that the associated configuration of lines
714 is not general and must satisfy

rank½l1v l2v l4v� � 2; rank½l1v l3v l5v� � 2:
716716

717 For Chicago, treating each coordinate of each line as an
718 independent parameter will not give a valid parameter
719 homotopy; even if A and A� encode valid configurations of
720 lines, points on a circular arc or linear segment connecting
721 them will not. We thus represent tangents

l4v ¼ a1vl1v þ a2vl2v; l5v ¼ b1vl1v þ b2vl3v;
723723

724 with 2 independent parameters as a pencil of lines.
725 A full accounting of the variables and parameters used
726 for Chicago in MINUS is as follows. 14 Variables. Each transla-
727 tion vector has three unknown components, and the entries
728 of matrices R2 and R3 are written as rational homogeneous
729 functions in four unknowns (homogenized Cayley)

Rv ¼
wv �zv yv
zv wv �xv

�yv xv wv

2
4

3
5

wv zv �yv
�zv wv xv
yv �xv wv

2
4

3
5
�1

: (11)

731731

73256 Parameters. 27 ¼ 3� 3� 3 parameters represent three
733independent lines l1v; l2v; l3v in each view; 12 ¼ 3� 2� 2
734parameters of the form aiv biv represent two dependendent
735lines l4v; l5v in each view; The remaining 17 ¼ 56� 39
736parameters consist of v1; v2 2 C5 and v3 2 C7 which are ran-
737dom coefficients of 3 inhomogeneous linear equations

ðr1 1Þ v1 ¼ 0; ðr2 1Þ v2 ¼ 0; ðt>2 t>3 1Þ v3 ¼ 0 (12)
739739

740that determine affine charts on homogeneous coordinates
741given by r1 ¼ ðw2; x2; y2; z2Þ, r2 ¼ ðw3; x3; y3; z3Þ, and ðt>2 t>3 Þ.
742In summary, Chicago may be formulated as a system of
743290 equations in 14 variables and 56 parameters. A similar
744accounting lets us formulate Cleveland as a system of 64
745equations in 14 variables and 53 parameters. As previously
746remarked, we may select a square subsystem F to define
747the homotopy in (9), provided that the Jacobian d F

dR ðR0;A0Þ
748has full rank for every starting solutionR0. We note that the
749276 excess equations need not be algebraic consequences of
750the 14 that are selected. Nevertheless, the fact that each ini-
751tial solutionR0 satisfies all 290 equations implies that we do
752not need to enforce these excess equations explicitly – see,
753e.g., the discussion in [85, SM Section 16], or the discussion
754of “side conditions” in [59, Section 7.4].
755For Chicago, a precomputed set of 312 starting solutions
756to the 290� 14 system for starting parameters A0 may be
757numerically continued to 312 solutions for target parame-
758ters A via (9), where F is a suitable 14� 14 square subsys-
759tem. To obtain the starting solutions, we first compute a
760single, random problem-solution pair ðR0;A0Þ, first com-
761puting R0 by fabricating a random scene and cameras, then
762A0 by projecting features in each image. From this initial
763problem-solution pair, we may then generate a complete set
764of 312 solutions by parameter continuation along random
765monodromy loops in the space of parameters. Such mono-
766dromy-based heuristics are standard in numerical algebraic
767geometry. A complete description is beyond the scope of
768this paper, see e.g., [86] or [87], where the latter work
769describes the implementation we used.
770For the minors-based formulation of Chicago, an ad-hoc
771variant of the gamma trick may be be used with the linear
772segment homotopy (10). The variant is used in the imple-
773mentation of MINUS, and is based on the following idea: pick
774g1; g2; . . . ; g12 at random from the complex unit circle, and
775consider the parameter values Ag1;g2;...g12 obtained by the
776following replacements

l1v ! g1 l1v
l2v ! g2 l2v

a1v ! g1 a1v
a2v ! g2 a2v

. . . (13)
778778

779These replacements are designed so that systems parame-
780trized by A and Ag1;g2;... have the same solution sets. Thus,
781for generic starting and target parameters A0 and A�, real or
782complex, we may numerically continue the solutions of
783F ðR;A0Þ ¼ 0 to those of F ðR;A�Þ ¼ 0 using the linear seg-
784ment connecting Ag1;g2;...g12

0 and ðA�Þg1;g2;...g12 in the space of
785parameters. In our current implementation, these random
786parameters g’s are sampled independently for start and end
787systems.
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788 We conclude this section with Algorithm 4.1, which con-
789 tains a high-level description of our HC solver in pseudocode.

790 Algorithm 1.Homotopy Continuation Solution Tracker

791 input: Square polynomial system F ðR;AÞ, where R ¼
792 ðR2; R3; t2; t3Þ, and A parametrizes the data; Start
793 parameters A0; start solutions R0 where F ðR0;A0Þ ¼
794 0; Target parameters A�; Random g1; g2; . . . ; g12 2 C
795 output Set of target solutionsR� where F ðR�;A�Þ ¼ 0
796 Setup homotopy
797 HðR; sÞ ¼ F ðR; ð1� sÞAg1 ;g2;...g12

0 þ sðA�Þg1;g2;...g12Þ.
798 for each start solution do
799 s � 0;
800 while s < 1 do
801 Select step size Ds 2 ð0; 1� s�.
802 Predict: Runge-Kutta Step from s to sþ Ds such that
803 dH=ds ¼ 0.
804 Correct:Newton step st.HðR; sþ DsÞ ¼ 0.
805 s � sþ Ds
806 return Computed solutionsR� whereHðR�; 1Þ ¼ 0.

807 4.2 Implementation

808 We devised an optimized open source package MINUS –
809 MInimal problem NUmerical Solver, available at github.
810 com/rfabbri/minus. This is an HC framework specialized
811 for minimal problems, templated in C++ enabling efficient
812 specialization for different problems, formulations, and
813 precisions. The most reliable and high-quality solver to
814 date uses a 14� 14 minors formulation in double precision
815 (64-bit). The most important optimization is exploiting
816 fixed-length C-style arrays to optimize memory layout for
817 size and locality. We also hardcoded evaluators and used
818 Eigen [88]’s LU decomposition with partial pivoting for
819 linear algebra, which proved accurate as long as double
820 precision is used. The most important compile flag is
821 –ffast-math; despite aggressive floating point optimiza-
822 tions, this only affected output within 10�10 error.
823 As shown in Section 5, MINUS runs on average at hun-
824 dreds of miliseconds and up to 100� faster than general-
825 purpose HC. It can run at a few miliseconds at the cost of
826 reduced success rate in finding the solution, due to more
827 aggressive optimization parameters. Such reduced success
828 rate might be mitigated within RANSAC, if adequately
829 assessed. For instance, we successfully devised a “lossy” HC

830 parameter to constrain the number of predictor iterations
831 per solution path, which have yielded an effective speedup
832 at negligible loss in success rates, Section 5.
833 The second most important algorithm parameter to vary
834 is the maximum number of correction steps; 4 is the current
835 safe default. Increasing it to 5–7 cuts the runtime down to
836 280ms. Another is corrector tolerance, which affects how
837 many correction iterations are performed: increasing it 104�
838 brings the runtime down to less than 200ms. The error rate
839 for these extreme cases can be as high as 50%, although test-
840 ing reprojection error to larger practical levels of 1 px preci-
841 sion may bring this figure up.
842 Like MINUS, widespread fast numerical algorithms to com-
843 pute simple functions such as sqrt solve polynomial equa-
844 tions iteratively, and the key lies in the starting point [89].

845The start system in MINUS is by default precomputed from
846random parameters; it could instead be sampled from our
847synthetic data, and the closest camera could be selected
848matching a similar configuration of correspondences. See
849also companion work by our coauthors [34]. Varying the
850problem formulations also has potential for speedup. Fur-
851ther eliminating variables to, say 6� 6, could bring improve-
852ments since linear solves could be explicitly inverted. A GPU
853implementation is explored in companion work by our
854coauthors [90].

8555 EXPERIMENTS

856Experiments are conducted first for synthetic data for a con-
857trolled study, followed by challenging real data. We present
858results for the more challenging Chicago problem, since the
859exact same core solver is used for Cleveland.
860Synthetic data experiments: The synthetic data from [12],
861[14] consists of 3D curves in a 4� 4� 4 cm3 volume pro-
862jected to 100 cameras (Fig. 4), and sampled to get 5117
863points endowed with orientations (tangents of curves) that
864are projections of the same 3D analytic points and tan-
865gents, and then degraded with noise and outliers. Camera
866centers are randomly sampled on an average sphere
867around the scene along normally distributed radii of mean
8681 m and s ¼ 10 mm. Rotations are constructed via nor-
869mally distributed look-at directions with mean along the
870sphere radius looking to the object, and s ¼ 0:01 rad such
871that the scene does not leave the viewport, followed by
872uniformly distributed roll. This sampling is filtered such
873that no two cameras are within 15	 of each other. Each
874camera encompasses a 500� 500 px viewport, where the
875entire dataset is visible at sub-pixel precision with no
876more than one sample per pixel.
877Our first experiment studies the numerical stability of the
878MINUS solver. The dataset provides veridical point corre-
879spondences, which inherit an orientation from the tangent to
880the analytic curve. For each sample set, three triplets of point
881correspondences are randomly selected with two endowed
882with the orientation of the tangent to the curve. Only real sol-
883utions that generate positive depth are retained. The unused
884tangent of the third triplet is used to verify the solution as it
885provides an unused equation. For each of the remaining sol-
886utions only one pose is determined.

Fig. 4. Sample views of our synthetic dataset. Real datasets have also
been used in our experiments. (3D curves are from [12], [14]) .
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887 The error in pose estimation is the angular error
888 between the normalized translation vectors and between
889 the quaternions. The process of generating the input to
890 pose computation is repeated 103 times and averaged. This
891 experiment demonstrates that: (i) pose estimation errors
892 are negligible, Fig. 5a; (ii) the number of actual solutions is
893 small: 35 real solutions on average, pruned down to 7 on
894 average by enforcing positive depth, and even further to
895 about 3-4 physically realizable solutions on average
896 employing the unused tangent of the third point as verifi-
897 cation, Fig. 5b; these extra solutions can be detected by RAN-

898 SAC; (iii) the solver fails in about 1% of cases, which, while
899 not a problem for RANSAC, can be eliminated by running
900 the solver for that solution path with higher accuracy or
901 more parameters at a computational cost.
902 The second experiment shows that we can reliably and
903 accurately determine camera pose with correct but noisy
904 data. Using the same dataset and a subset of the selection
905 of three triplets of points and tangents – 200 in total – zero-
906 mean Gaussian noise was added both to the feature loca-
907 tions and to the orientation of the tangents, reflecting
908 expected feature localization and orientation localization
909 error. The noise levels on points and tangents reflect those
910 found in curve extraction methods [91]. A RANSAC scheme
911 determines the feature set that generates the most inliers.
912 Experiments indicate that the translation and rotation
913 errors are reasonable. Fig. 6 (top) shows how localization
914 error affects pose under a fixed orientation perturbation of
915 0:1rad; Fig. 6 (bottom) shows how the extent of orientation
916 error affects pose under a fixed localization error of 0:5px.
917 The reprojection error, i.e., the distance of a point from the
918 location determined by the other two, is shown in Fig. 6
919 (bottom), averaged over 100 triplets.
920 The third experiment shows the system can consistently
921 estimate trifocal pose in the presence of outliers. With a fea-
922 ture localization error of 0:25 px and orientation error of
923 0:1 rad, 200 triplets of features were generated, with a frac-
924 tion having random location and orientation. The ratio of
925 outliers is varied over 10%, 25% and 40%, with the experi-
926 ment repeated 100 times each. The resulting reprojection

927error is small and extremely stable, with median 2 px and
928maximum 3:6 px for all outlier ratios.
929Computational Efficiency. Each solve with conservative
930parameters takes 440 ms (660 ms in the worst case), com-
931pared to over 1 minute on average for general purpose HC

932software [26], [28], on an Intel core i7-7920HQ with proces-
933sor, GCC 5, and four threads. More aggressive potentially
934unsafe optimizations towards microseconds are feasible,
935but require assessing failure rate.
936To assess putting a cap Nmax on the number of predic-
937tor iterations per root, we first observe that after 104 ran-
938dom solves on synthetic data, the maximum number of
939iterations for paths leading to ground-truth was close to
940103, versus about 254� 103 for the wasted paths. Given
941that the solve is 
 1� 4 ms per iteration, this leads to con-
942crete routes to optimization. Fig. 7 shows that the time for
943roots leading to ground truth versus undesired paths dif-
944fer but remain strikingly stable across 140 different ran-
945dom input configurations. For each configuration out of
946140, MINUS was run 500 times with different randomiza-
947tions to find the ground truth parameters. The minimum

Fig. 5. (a) Errors of computed pose are small showing that the solver is
numerically stable. (b) The distributions of the numbers of solutions.

Fig. 6. Pose error between views 1 and 2 (blue) and 1 and 3 (green) ver-
sus feature localization (top) and orientation noise (middle), and point
reprojection error versus localization and orientation noise (bottom).

Fig. 7. Time (1 iteration 
 1ms) spent in root paths leading to ground-
truth versus real and undesired roots is stable across 140 generic per
configuration. The distribution of the minimum number of iterations to
find a root (right) among 1000 randomizations shows the approach can
run at the microsecond scale.
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948 number of iterations for all configurations was 26 being
949 consistently less than 100.
950 SettingNmax < 103 costs a decrease in success rate, Fig. 8.
951 However, we can regain success rate by re-runingNrep times
952 with different randomizations. Fig. 8 shows that running
953 once with Nmax ¼ 500 yields a success of 92%, which is the
954 current default for MINUS, providing the average figure of
955 401 ms. Running thrice withNmax ¼ 200 yields a similar suc-
956 cess rate. For each ðNmax;NrepÞ operating point, a success is
957 counted if MINUS found the solution in anyNrep runs; the final
958 success rate is averaged by performing this procedure 7000
959 times. If all points have tangents, e.g., 3 SIFT features, as soon
960 as a root reached an HC stop condition we test for positive
961 depth and stop upon compliance with the third tangent to
962 produce a hypothesis for RANSAC, cutting down average exe-
963 cution time further with a modest decrease in success rate.
964 The run time remains on the order of 100 ms.

965Real data experiments:Much like the standard pipeline, SIFT
966features are first extracted from all images. Pairwise fea-
967tures are found by rank-ordering measured similarities and
968making sure each feature’s match in another image is not
969ambiguous and is above accepted similarity. Pairs of fea-
970tures from the first and second views are then grouped with
971the pairs of features from the second and third views into
972triplets. A cycle consistency check enforces that the triplets
973must also support a pair from the first and third views.
974Three feature triplets are then selected using RANSAC and the
975relative pose of the three cameras is determined from two
976SIFT orientations and a third point without orientation.
977Fig. 9 shows that camera pose is reliabily and accurately
978found using triplets of images from the EPFL dense multi-view
979stereo image dataset [30]. Our quantitative estimates on 150
980random triplets from this dataset give pose errors of 1:5�
98110�3 rad in translation and 3:24� 10�4rad in rotation. The
982average reprojection error is 0:31 px. These are comparable to
983or better than the interest point-based trifocal relative pose
984estimation methods reported in [21]. Our conclusion for this
985dataset, whose purpose is to validate the solver, is that our
986method is at least as good and often better than the traditional
987ones. Note that we do not advocate replacing the traditional
988method for this dataset. We simply state that our method
989works just aswell, of course at a higher cost.
990The EPFL dataset is feature-rich, typically yielding on
991the order of 103 triplet features per image triplet. As such
992it does not portray some of the typical problems faced in
993challenging situations when there are few features avail-
994able. The Amsterdam Teahouse Dataset [31], which also
995has ground-truth relative pose data, depicts scenes with

Fig. 8. Tradeoff of success rate versus number of iterations per root.

Fig. 9. Trifocal relative pose results for EPFL dataset. Each row shows
images with ground truth (green) and estimated poses (red outline).

Fig. 10. Trifocal relative pose results for Amsterdam Teahouse: a triplet
of images that COLMAP is able to tackle (top) and where it fails (bottom).
Results: COLMAP (blue outline), ours (red), and ground truth (green).

Fig. 11. Trifocal relative pose results for a dataset comprising three
mugs, which is challenging for traditional SfM. Each shows images with
ground truth (green) and estimated poses (red outline).
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997 from this dataset where there is a sufficient set of features
998 (the soup can) to support a bifocal relative pose estima-
999 tion followed by a P3P registration to a third view (using

1000 COLMAP [3]). However, when the number of features is
1001 reduced, as in Fig. 10 (bottom) where the soup can is
1002 occluded, COLMAP fails to find the relative pose between
1003 pairs of these images. In contrast, our approach, which
1004 relies on three and not five features, is able to recover the
1005 camera pose for this scene.
1006 We also created another featureless dataset similar to the
1007 one in [7] but with the calibration board manually removed.
1008 This scene lacks point features, which is extremely challeng-
1009 ing for traditional structure from motion. We built 20 trip-
1010 lets of images within this dataset. Within these 20 triplets,
1011 camera poses of only 5 triplets can be generated with COL-

1012 MAP, but with our method, 10 out of 20 camera poses can be
1013 estimated. We reached a 100% improvement over the stan-
1014 dard pipeline on image triplets. The sample successful cases
1015 are shown in Figs. 1 and 11.
1016 A quantitative comparison with the trifocal methods
1017 reported in [21] on datasets Fountain P-11 and Herz-Jesu-P8
1018 is shown in Table 1 for Chicago, illustrating that our method
1019 is comparable to or better than other trifocal methods.

1020 6 CONCLUSION

1021 We presented a new calibrated trifocal minimal problem,
1022 an analysis demonstrating its number of solutions, and a
1023 practical solver by specializing computation techniques
1024 from numerical algebraic geometry. We showed our
1025 approach generalizes to characterize and solve a similar
1026 difficult minimal problem with mixed points and lines in
1027 three views. Both problems are representative of a myriad
1028 of similar minimal problems in multiple views analyzed
1029 with the techniques initiated with the present work [8],
1030 [9], [10], [11], [29]. The increased ability to solve trifocal
1031 problems with points and lines is key to future work on
1032 broader problems appearing when observing general 3D
1033 curves, e.g., in scenes without enough point features,
1034 using differential geometry [12], [15]. As a first step, our
1035 trifocal solvers have been partially integrated into the SfM
1036 pipeline OpenMVG [92] for use with SIFT orientation, and
1037 we are working to integrate and verify their robustness
1038 advantages also with COLMAP. Our “100 lines of custom-
1039 made solution tracking code” have also already been
1040 employed to build practical, fast solvers [34] for other
1041 minimal problems which have not been efficiently solved
1042 with Gr€obner bases [84].
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