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Abstract 22 

In this paper, a meshfree method namely adaptive CTM-RPIM is developed for modelling 23 

geotechnical problems with large deformations. The developed adaptive CTM-RPIM is a 24 

combination of the Cartesian transformation method (CTM), the radial point interpolation method 25 

(RPIM) and the alpha shape method. To reduce the requirement of meshes, the CTM is adopted to 26 

transform domain integrals into line integrals and RPIM is applied to construct interpolation 27 

functions. The alpha shape method, which is capable of capturing the severe boundary evolution due 28 

to large deformations, is then introduced into the CTM-RPIM to form the adaptive CTM-RPIM. The 29 

accuracy of CTM-RPIM is first verified by considering a cantilever beam under small deformation, 30 

where the influence of key parameters on simulation results is explored. Afterwards, the ability of 31 

the adaptive CTM-RPIM for handling large deformation problems is demonstrated by simulating 32 

cantilever beams with large deformations for which analytical solutions are available. In addition, a 33 

slope failure problem and a footing bearing capability problem are modelled to illustrate the ability 34 

of evaluating the stability of geotechnical structures. Finally, a 2-D soil collapse experiment using 35 

small aluminum bars is simulated to test its capability of simulating geotechnical large deformation 36 

problems. These benchmark examples show that the adaptive CTM-RPIM is a numerical method of 37 

broad application prospect. 38 

 39 
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1. Introduction 51 

The occurrence of many natural disasters, such as landslides, earthquakes, debris flows and so on, 52 

are often accompanied by large and severe deformations [1-3]. Many numerical methods have been 53 

developed to solve these problems, but some of them may encounter some problems, such as mesh 54 

entanglement and inconsistency between integral domain and problem domain, etc. 55 

 When dealing with large deformation problems, to some mesh based methods such as the finite 56 

element method (FEM) [4, 5] and the finite difference method (FDM) [6, 7], remesh, a time 57 

consuming operation, is necessary to avoid mesh distortion. To overcome the reliability of mesh, 58 

various meshfree methods have been developed. However, background mesh is used in some 59 

classical meshfree method to facilitate the integration of stiffness matrix and force vector etc. Take 60 

the material point method (MPM) [8, 9] and the element free Galerkin method (EFGM) [10-12] for 61 

example, the use of background mesh will result in the inconsistency between the integral domain 62 

and the problem domain, which may cause errors when the model is rough. In addition, this may 63 

bring up a problem in MPM that may increase the computational cost, that is, at each step, you need 64 

to judge which background cell the integral point is located in. Some meshfree methods without 65 

background mesh may also have minor disvantages, such as the meshfree local Petrov-Galerkin 66 

method (MLPG) [13]. In MLPG, the weak form of governing equation is established by local 67 

Petrov-Galerkin method, which may lead to the asymmetry of stiffness matrix and increase the 68 

computational time. Summing up the above, a meshfree method without background mesh, using 69 

Galerkin method to construct its weak form and having coincident problem domain and integral 70 

domain can be developed to avoid these disadvantages. 71 

 The Cartesian transformation method (CTM) [14, 15], originating from the boundary element 72 

method (BEM) [16], is an integral method that can transform domain integration into a boundary 73 

integration and a 1-D integration. This means that mesh or background mesh will not be needed 74 

when computing the integration of stiffness matrix and force vector, and the integral domain will 75 

coincides with the problem domain, if CTM is used. The radial point interpolation method (RPIM) 76 

[17-19] is of high precision for scattered data interpolation, which can get rid of the restriction of 77 

mesh when constructing the shape functions. Moreover, RPIM has a simple theory basis, which is 78 

easy to implement with programming and extend to 3-D space. It is conceivable that the combination 79 



of CTM and RPIM in the governing equation based on Galerkin method would result in a truly 80 

meshfree method with symmetrical stiffness matrix and coincident problem domain and integral 81 

domain.  82 

 Another problem in dealing with geotechnical large deformation problems is to track the 83 

boundary of problem domain when severe deformations occur. The boundary tracking accuracy has 84 

great influence on the result, and one of the easiest ways to search the boundary (surface) of point 85 

cloud is using the alpha shape method. The reliability of alpha shape method [20] has already been 86 

proved in particle finite element method (PFEM) [21] and smooth particle finite element method 87 

(SPFEM) [22-24], in which alpha shape method is used to identify the boundary with Delaunay 88 

triangularization. The adaptive procedure can be constructed by tracking the boundary as the growth 89 

of deformation. 90 

 In this paper, to solve the geotechnical large deformation problems, an adaptive CTM-RPIM is 91 

formulated, which combines CTM, RPIM and the alpha shape method. The motivation of developing 92 

this new method, is to try to incorporate the merits of each method. RPIM basically is a meshfree 93 

method, which can model the large deformations, but the key problem is to find an appropriate support 94 

domain for each integration point to ensure the numerical stability. Mesh-based method has its 95 

advantages in dealing with the numerical integrations, however, it may encounter the mesh 96 

entanglement, or the strong rely on the background mesh, resulting in problems of the accurate capture 97 

of the material domain as shown in MPM. CTM is a way of transferring the domain integrations into 98 

the line integrals, which greatly reduce the requirements of searching for a support domain of each 99 

integration point. Thereby, by combining the two methods, it still inherits the advantages of the 100 

meshfree method for its capabilities of modelling the large deformations, more importantly, by 101 

utilizing the CTM integration algorithm, the numerical stabilities can be improved with a relatively 102 

convenient way, i.e. transferring the domain integration into the line integrals. An external algorithm, 103 

i.e. the alpha shape method, is incorporated, which allows the accurate track of the boundary for the 104 

dynamic process of large deformation. It is noted that, the boundary identification may be avoided, via 105 

the use of CTM integration in regular regions inside the object, and nodal integrations outside this 106 

region, as seen in EFGM [1].  107 

The whole paper is mainly organized in three parts. Firstly, a brief introduction of the adaptive 108 

CTM-RPIM is given first, and the formulation of CTM and RPIM as well the procedure of alpha 109 



shape method is then presented. Key parameters of CTM and RPIM, regarding to the computational 110 

accuracies, are studied, and the optimal parameters are determined and suggested. Secondly, two 111 

large deformation examples of cantilever beams are carried out to verify the advantages of this 112 

method for large deformation problems. Finally, three geotechnical examples including slope 113 

stability, foundation capability and soil flow are shown, which proves the reliability of this method.  114 

 115 

2. Formulation and implementation procedure of the adaptive CTM-RPIM 116 

A detailed introduction to the development of the adaptive CTM-RPIM is carried out in this section. 117 

The governing equation and the implementation procedure of adaptive CTM-RPIM are provided to 118 

help reads to understand how it works. After that, the computational steps for programming are 119 

presented, which include both quasi static version and dynamic version. Finally the formulations of 120 

CTM, the construction of RPIM shape functions and the procedure of alpha shape method are 121 

illustrated in detail respectively for further understanding to the reader. 122 

 123 

2.1. Implementation procedure of adaptive CTM-RPIM 124 

2.1.1 The governing equation  125 

The mechanical behavior of soil usually obeys the governing equation of continuum mechanics, 126 

which can be derived from the momentum conservation equation. 127 

   b u                                       (1) 128 

Where   is the partial differential operator;   is the stress vector; b  is the boundary condition; 129 

  is the density of material and u  is the acceleration. 130 

 To solve this partial differential equation (PDE), Galerkin method can be used to form its weak 131 

form by introducing a test function u  in to Eq. (1). 132 

: bd d d d    

   
          u u f u f u u                 (2) 133 

Where bf  is the body force and f is the surface force. The above equation is a conservation 134 

equation of virtual energy. The first term at the left-hand side is caused by internal force, the second 135 

and third term is caused by external force and the term at the right-hand side is caused by inertia 136 



force. 137 

 To solve Eq. (2), the discrete form should be constructed just like the way in standard FEM, and 138 

the adaptive procedure should be established to deal with large deformation problems. These will be 139 

given in the next three section. 140 

2.1.2 Adaptive procedure for large deformations 141 

How to combine the alpha shape method, CTM and RPIM to construct an adaptive procedure that 142 

can be automatically executed during large deformations will be explained in this section. In this 143 

procedure, the CTM-RPIM is used to establish the discrete form of momentum conservation 144 

equation and the alpha shape method is used to track the boundary when the configuration is updated. 145 

A simple schematic diagram is given in Fig.1 to help readers to understand this procedure. 146 

 147 

Fig. 1. The implementation procedure of adaptive CTM-RPIM 148 

As shown in Fig.1, the adaptive CTM-RPIM for large deformation analysis can be divided into 149 

four basic steps. 150 

(1) Search the boundary of the field nodes cloud to determine the scope of problem domain and 151 

integral domain. 152 

(2) Generate integral lines and integral points, and form the stiffness matrix, mass matrix and 153 

force vector. 154 



(3) Apply boundary conditions to establish the discretized equation to be solved. 155 

(4) Solve the equation formed in step (3), then delete the previous boundary, and the problem 156 

domain still returns to the state represented by field nodes. 157 

Repeat the above four steps until the error of displacement, force, or energy between two 158 

adjacent steps is tolerable. 159 

It is clear that remesh operation is not required in the proposed adaptive CTM-RPIM. Only 160 

boundary identification is carried out using alpha shape method, so there will be no problems caused 161 

by mesh distortion. Moreover, the integral domain is consistent with the problem domain, which is 162 

helpful to accuracy. Additionally, in contrast to the EFGM and the traditional RPIM, there is no need 163 

to check whether the integral points are in the problem domain. Furthermore, comparing with MPM, 164 

there is no need to find which background cell an integral point is in. 165 

2.1.3 Computational steps for quasi static problems 166 

For quasi static problems, the acceleration can be ignored, so that the right-hand term of Eq. (2) is 167 

eliminated. The governing equation can be rewritten as: 168 

: bd d d   

  
       u u f u f                         (3) 169 

This is a form commonly found in standard FEM, which can be discrete by assuming a relationshape 170 

between the variables of concerned point and the variables on field nodes using shape functions. 171 

Following the similar process of standard FEM, the discretized global equilibrium equation can be 172 

derived. 173 

extKU F                                          (4) 174 

Where K  is the global stiffness matrix, and extF  is the global external force vector. Using CTM 175 

integration the detailed expression of each term can be obtained. 176 

1
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  F N f N f                           (6) 178 

Where m  is the number of integral points, iB  is the matrix of partial derivative of shape functions 179 

at ith integral point, iN  is RPIM shape function matrix at ith integral point, x

iw , y

iw , x

iJ , x

iJ  are 180 



the weight and Jacobi determinant in x and y directions of ith integral point. The second term in extF  181 

has a similar meaning, except that it is in the form of a boundary integration, which can be solved 182 

using Gaussian integral method. 183 

Moreover the expression of internal force, which is another expression of KU  in Eq. (4), can also 184 

be derived from the left-hand term of Eq. (3).  185 

1

m
x y x x

int i i i i i i

i

w w J J


F B                                    (7) 186 

 To solve Eq. (4), Newton-Raphson iteration is often used. And the quasi static version of 187 

adaptive CTM-RPIM is given here for material nonlinearity example with small deformation or 188 

weightless material with large deformation. The adaptive procedure is as follow 189 

(1) Discrete the problem domain using a series of field nodes. 190 

(2) Loop over the incremental step (nth incremental step). 191 

(3) Search the boundary of problem domain based on the cloud of field nodes using the alpha shape 192 

method. 193 

(4) Generate the integral lines and integral points and form the total external force vector n

extF  for 194 

the present incremental step. 195 

(5) Loop over Newton-Raphson iteration (lth iteration step). 196 

(6) Form the global stiffness matrix n

lK  and the global internal force vector ( )

n

int lF . 197 

(7) Solve the governing equation ( )

n n n n

l l ext int l K U F F . 198 

(8) Check convergence. 199 

 If it is converged, go to step 10.  200 

(9) End looping the Newton-Raphson iteration. 201 

(10) Check the incremental step limit. 202 

 If the incremental step is more than the limit, update the configuration and go to step (12). 203 

 If the incremental step is less than the limit, update the configuration and go to step (2). 204 

(11) End looping the incremental step. 205 

(12) Post processing. 206 

2.1.4 Computational steps for dynamic problems 207 



For dynamic problems, if weight is taken into account, the acceleration can’t be ignored. The left and 208 

right hands of Eq. (2) can be swapped to make it more suitable for constructing the format of time 209 

integral. 210 

: bd d d d     

   
          u u u u f u f                 (8) 211 

In the similar way of standard FEM, the discrete momentum conservation can be derived from Eq. 212 

(8). 213 

ext int MU F F                                     (9) 214 

Where M  is the mass matrix, and U  is the acceleration vector. The lumped matrix is used here to 215 

improve the computational efficiency. 216 

Sometimes, damping force can be introduced into Eq. (9) for the convergence rate and stability of the 217 

program. 218 

ext int damp  MU F F F                                 (10) 219 

Where dampF  is the damping force vector, which can be expressed as follow, if the local damping is 220 

used. 221 

int ( )damp extf sign  F F F U                              (11) 222 

Where f  is the damping factor and U  is the velocity vector, which can be determined by central 223 

difference method. 224 

 The detailed procedures with explicit time integral are given as follow for dynamic problems 225 

with both geometric nonlinearity and material nonlinearity. 226 

(1) Discrete the problem domain using a series of field nodes. 227 

(2) Start time step n. 228 

(3) Tracking the boundary using alpha shape method. 229 

(4) Generate the integral lines and integral points 230 

 A. compute the total force vector at time nt  : n n n n

ext int damp  F F F F . 231 

 B. compute the mass matrix at time nt  : 
nM  232 

(5) Calculate the acceleration vector at time nt : 1( )n n nU M F   233 



(6) Calculate the velocity vector at time 1/2nt  : 1/2 1/2n n n nt  U U U , where 1/2 1/2n n nt t t    . 234 

(7) Calculate the displacement vector at time 1nt  : 1 1/2 1/2n n n nt   U U U , where 235 

1/2 1n n nt t t    . 236 

(8) Calculate the internal force vector at time 1nt  : n+1

intF  237 

(9) Update the configuration use the displacement vector 1nU . 238 

(10) Check converge or check limit. 239 

 If converged or reached the time step limit, end the calculation, otherwise go to the step (2) and 240 

start the n +1 time step 241 

 242 

2.2. Formulation of CTM  243 

 244 

Fig. 2. A domain integration of the function ( , )inf x y   245 

CTM is a special integration method originally applied in BEM [16]. Here, it is introduced into the 246 

meshfree method to form the stiffness matrix, mass matrix and force vector. Consider an integration 247 

inI  of a function ( , )inf x y  over a domain in  248 

( , )
in

in inI f x y dxdy


                                  (12) 249 

As shown in Fig. 2, the domain is so complex that the integration cannot carried out directly. To 250 

solve Eq. (12), a rectangular auxiliary domain all  is constructed, which contains fully the domain 251 



over which the integration must take place. The function in the rectangular auxiliary domain, 252 

( , )allf x y , can then be expressed as 253 

( , )     (  )
( , )

0        (   )

in in

all

in

f x y in
f x y

out of


 


                           (13) 254 

and the integration inI  is rewritten as 255 

( , )
all

in allI f x y dxdy


                                  (14) 256 

Assuming that the function ( , )allh x y  is the integration of ( , )allf y   257 

( , ) ( , )
x

all all
c

h x y f y d                                (15) 258 

Where   is a variable independent of x and y and c is an arbitrary constant. Adoping Green’s 259 

theorem, Eq. (14) can be expressed as 260 

( , )

     = ( ( , ) )
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                         (16) 261 

For a rectangular auxiliary domain all , dy  is zero on boundary DA and BC. By setting c to be ux, 262 

( , )
x

all
c

f y d   will be zero on boundary AB implying that the integration in Eq. (16) only needs to 263 

be caculated on boundary CD 264 
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                            (17) 265 

The above integration can be divided as following 266 

( )
y

y

v

in
u

I g y dy                                     (18) 267 

( ) ( , )
x

x

v

all
u

g y f x y dx                                  (19) 268 

To caculate these two integrations, a series of integral lines are introduced as shown in Fig. 3. 269 

Then the integration inI  can be evaluated based on some numerical integration methods, such as 270 



Gauss integration, and the value of ith integral line is ( )ig y . 271 

 272 

Fig. 3. CTM integral scheme 273 

By dividing the ith integral line into n-1 segments, ( )ig y  can be caculated as 274 

1

12

( ) ( , )

        ( ( , ) )

n

j

j

x

i all i
x

n x

all i
x

j

g y f x y dx

f x y dx








 
                               (20) 275 

Recalling the relationship between allf  and inf , ( )ig y  can also be expressed in terms of inf . If 276 

inf  is used, the integration 
5

4

( , )
x

in i
x

f x y dx vanishes in Fig. 3 and ( )ig y  is written as  277 

12

( ) ( ( , ) )      ( 5)
j

j

n x

i in i
x

j

g y f x y dx j


                            (21) 278 

Similar to the evaluation of inI , ( )ig y  can be calculated numerically. Using Gauss integration 279 

scheme, we have 280 

1

( )
ym

y y

in i i i

i

I g y w J


                                      (22) 281 

where my represents the total number of integral lines, y

iw  and y

iJ are the weight and Jacobi 282 

determinant along y direction, respectively, and   283 

1

( ) ( , )
x

x x x

x

m
x x

i in j i j j

j

g y f x y w J


                                  (23) 284 

where mx is the total number of integral points on each integral line, 
x

x

jw  and 
x

x

jJ are the weight and 285 

Jacobi determinant along x direction, respectively. 286 

 Substituting Eq. (23) into (22) leads to the final form of inI   287 



1

( , )
m

x y x y

in in k k k k k k

k

I f x y w w J J


                             (24) 288 

which is the sum of the produce of the function at integral points and the corresponding weight and 289 

Jacobi determinant in two directions. Where k is the global number of integral points, and m is the 290 

total number of integral points. As such the CTM trasforms domain integration into line integration. 291 

Consequently, only the intersections of integral lines and boundary are needed in the simulation 292 

leading to a truly meshfree method with coincident problem domain and integral domain. Eq. (24) is 293 

exactly the numerical integration version used in Section 2.1 to caculate the stiffness matrix, mass 294 

matrix and force vector. 295 

 296 

2.3. RPIM based shape functions  297 

Generally, the problem domain is represented by a series of field nodes in meshfree methods. 298 

Because of the adoption of the CTM, there is no background mesh and thus shape functions should 299 

be constructed based on the field nodes. In this paper, the RPIM is used for this purpose which is 300 

introduced as below.  301 

 302 

Fig.4. The support domain in RPIM 303 

For an arbitrary integral point, a support domain can be formed as shown in Fig. 4. The shape of 304 

the support domain can be circular or rectangular. Supposing that the support domain covers n field 305 

nodes, the field variable, ( , )F x y , at the concerned point can be approximated by  306 

( , ) ( ( , )) ( , )T TF x y r x y x y
 

    
 

A
R P

B
                        (25) 307 

where  1 2( ( , )) ( , ) ( , ) ... ( , )T

nr x y r x y r x y r x yR  is the vector consisting of the radial basis 308 

function (RBF) with ( , )ir x y  being the distance between the point at ( , )x y  and the field node at 309 



( , )i ix y  in two-dimensional cases, 2 2( , ) 1 ...T x y x y xy x y   P  is the vector of 310 

polynomial basis functions, and A  and B  are row vectors of constants to be determined. Eq. (25) 311 

has to be satisfied at all field nodes. For example, the field variable at jth field node ( , )j jx y  is 312 

( , ) ( ( , )) ( , )T T

j j j j j jF x y r x y x y
 

    
 

A
R P

B
                   (26) 313 

By assembling the above equation for all field nodes, the following matrix form is obtained 314 

0 0 0

T T F R A P B                                    (27) 315 

The detailed form of 0R , 0P  and vector 0F  are given as follow. 316 

 0 1 1 2 2( , ) ( , ) ... ( , )
T

n nF x y F x y F x yF                     (28) 317 
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n
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y y y

 
 
 
 
 
 

P                                 (30) 319 

Notice that if there are n field nodes in the support domain and an m-term polynomial basis is used, 320 

there are m+n unknowns in vectors A  and B . In order to ensure that the solution of Eq. (27) is 321 

unique, the following constraint is assumed. 322 

0  0P A                                         (31) 323 

With this constraint, Eq. (27) can be enriched as 324 

0 0 0

0

T T    
     

    0 0

F AR P

BP
                                (32) 325 

By solving A  and B  from Eq. (32) and substituting them into Eq. (25), we have the expression of 326 

( , )F x y  which is  327 

1
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The first n terms of 

1

0 0

0

( ( , )) ( , )
T T

T Tr x y x y



 
    

 0

R P
R P

P
are the RPIM shape functions for the field 329 

nodes in the support domain, which can be used to construct interpolation functions for the integral 330 

point.  331 

There are different types of RBFs such as multi-quadrics (MQ), Gaussian (EXP), thin plate spline 332 

(TPS) and Logrithmic. For simplicity, the TPS RBF  333 

( , ) ( , )R x y r x y                                    (34) 334 

is used in this paper where   is the shape parameter. 335 

 336 

2.4 Alpha shape method for tracking the boundary 337 

As indicated in Section 2.2 and 2.3, a series of field nodes whose boundary is known at the 338 

un-deformed configuration will be generated firstly, if the CTM-RPIM is used. However, when the 339 

object undergoes large deformation the boundary will evolve accordingly. Hence, an efficient 340 

boundary identification method is essential. In this paper, the alpha shape method is adopted for 341 

boundary identification. 342 

 343 

Fig. 5. Schematic diagram of alpha shape method  344 

The basic idea of the alpha shape method is to check whether there is an empty circle of radius 345 

  passing through any two field nodes. If such a circle exists, the segment connecting the two field 346 

nodes is a boundary segment. The method can be implemented as follows (see Fig. 5): 347 

(1) Calculate the length of line segment P1P2 consisting of any two field nodes P1 and P2. 348 

(2) Compare the length of P1P2 with the preset circle diameter 2 ; 349 

(3) If P1P2 is less than 2 , draw two circles 1O  and 2O  with radius   passing through P1 350 



and P2; 351 

(4) If either circle is empty or with other nodes on the circle, line P1P2 is treated as a boundary 352 

segment; 353 

(5) By repeating steps (1) – (4) for all combinations of field nodes, the boundary of the scattered 354 

field node cloud can be obtained. 355 

 The value of   sometimes has some influence on the tracking accuracy of the boundary, and 356 

some experiences can be referenced. In general, for regions of convex polygons,   can be larger, 357 

and for regions of concave polygons or with holes,   can be smaller. The boundaries of two sets of 358 

field nodes with complex boundaries have been identified using alpha shape method, as shown in Fig. 359 

6. 360 

 361 

(a) 362 

 363 

(b) 364 

Fig. 6 Results of boundary identification (a) Problem domain without hole; (b) Problem domain with 365 

holes. 366 

As can be seen from Fig. 6, the boundary identified by alpha shape method has reflect the shape 367 

of the problem domain well. Predictably, using the alpha shape method, the boundary can be 368 

recognized automatically in the simulation regardless of the large change of geometry. This enables 369 

the adaption of the method for analyzing large deformation problems. 370 

 371 



3. Numerical examples 372 

In this section, the influence of key parameters on the simulation results of the adaptive CTM-RPIM 373 

is investigated by simulating a cantilever beam subjected to small deformations. Thereafter, the 374 

precision of the adaptive CTM-RPIM for large deformation analysis is verified via modelling 375 

cantilever beams with large deformations. Moreover, the ability of evaluating the stability of 376 

geotechnical structures is tested using a slope and a foundation as benchmark examples. Finally, a 377 

2-D soil collapse experiment is simulated using this method, which further demonstrates the 378 

capability of solving practical geotechnical problems. 379 

 380 

3.1. Discussions on the selection of key parameters 381 

 382 

Fig. 7. The cantilever beam with parabolic load on the right end 383 

The first example considered is a cantilever beam with a downward load of parabolic distribution on 384 

the right end, as shown in Fig. 7 [25, 26]. The analytical solution of the vertical displacement is 385 

2
2 2(3 ( ) (4 5 ) (3 ) )

6 4
y

P W x
y L x L x x

EI
                           (35) 386 

where P  is the force on the right end, E  is the Young’s modulus,   is the Poisson’s ratio, W  is 387 

the width of the beam, L  is the length of the beam, x and y are the coordinates. The values of these 388 

parameters are illustrated in Table 1.  389 

Table 1. The parameters for the beam 390 

P  E    W  L  

-1000Pa 3×107Pa 0.3 12m 48m 

 391 



 392 

(a) 393 

 394 

(b) 395 

Fig. 8. The model of FEM and CTM-RPIM (33×9 nodes) (a) FEM model; (b) CTM-RPIM model 396 

The accuracy of the CTM-RPIM is first verified against the simulation result from FE modelling 397 

with different density levels of nodes. Then the most influential factors are investigated, which are 398 

the width between two adjacent integral lines yr , the length of sub-segment for integration xr , the 399 

radius of support domain cr  and the shape parameter of RPIM  . To measure the distance xr , yr  400 

and cr , the mean node spacing cd  is defined  401 

1
c

A
d

n



                                     (36) 402 

where A  is the area of problem domain and n  is the total number of field nodes. 403 

The vertical displacements at the right end of the beam from the FEM and CTM-RPIM 404 

modelling are shown in Fig. 9. The total number of nodes used in the FEM and CTM-RPIM 405 

simulations is the same (Fig. 8). The four-node element is used in FEM (Fig. 8 (a)) while, in the 406 

CTM-RPIM simulation, we have 5.0  , 2.0c cr d , and two integration points are used for each 407 

integral sub-segment. 408 



 409 

(a) 410 

 411 

(b) 412 

Fig. 9. Results of vertical displacement at the right end of the cantilever beam (a) The vertical 413 

displacement at the right end of the beam; (b) The relative error of the calculated vertical displacement 414 

versus the number of used nodes 415 

As seen in Fig. 9, if the parameters are chosen appropriately, the accuracy of CTM-RPIM can be 416 

much higher than that of FEM at all field nodes density level, because that RPIM shape functions are 417 

high order and have a larger support domain. Even when a cloud of field nodes with loose density is 418 

used, the relative error is still low. The maximum relative error of CTM-RPIM is only about 0.3%. 419 

Additionally, the integral points used in CTM-RPIM is less than that of FEM. The ratio between the 420 



numbers of integration points used in CTM-RPIM and the FEM is 
2( 1)

a

a
 where a is the number 421 

of nodes in y direction.  422 

 423 

(a) 424 

 425 

(b) 426 

Fig. 10. The influence of xr  and yr  (a) Results of 17×5 nodes; (b) Results of 33×9 nodes 427 

The influence of the number of integral points on the CTM-RPIM simulation is studied in this 428 

section. Two sets of field nodes, namely 17×5 and 33×9, are used in the simulation with x yr r r  . 429 

A sufficiently large radius of support domain is selected which is 4.0c cr d . The shape parameter is 430 

set to 5.0. Only one integral point is used for each integral sub-segment, which means that the 431 



number of used integral points depends on the length r . To study the influence of the integral points, 432 

the ratio /cd r  varies from 1.0 to 5.0 with an interval of 0.5. The simulation results are shown in 433 

Fig. 10. As expected, the accuracy is improved with the increase of /cd r  and the convergence rate 434 

is roughly exponential. When /cd r  is greater than or equal to 3.0, a satisfactory accuracy is 435 

obtained.  436 

 437 

Fig. 11. The influence of support domain radius cr  438 

The size of support domain is another factor influencing the CTM-RPIM simulation. A larger 439 

support domain implies that more field nodes contribute in the construction of shape functions which 440 

leads to higher accuracy. However, the computational cost also rises because of the increase in the 441 

involved field nodes. Therefore, it is essential to investigate the size of a support domain in relation 442 

to the simulation accuracy and computational cost. As a circular support domain is adopted in this 443 

work, the non-dimensional radius of the support domain /c cr d  is the indicator of its size which has 444 

been varied from 1.5 to 6.0 with an interval 0.5 in this study. The layout of field nodes is 17×5, the 445 

shape parameter   is set to 5.0, the distance xr  and yr  are set to 
1

3
cd , and one integral point is 446 

used for each sub-segment. As can be seen from Fig.11, when the radius 3.5c cr d , the relative error 447 

is less than 1.5% and nearly stable regardless of the increase of /c cr d . Thereby, the recommended 448 

range of the radius of a support domain is between 3.5 cd  and 4.0 cd . 449 



 450 

Fig. 12. The influence of shape parameter    451 

Finally, the effect of the shape parameter   of TPS RBF on the simulation is explored. To this 452 

end, the shape parameters from 1.5 to 10.5 with an interval 1.0 are adopted in the simulation, and 453 

other parameters are 
1

3
x y cr r d   and 4.0c cr d . A cloud of filed nodes 17×5 is used to discretize 454 

the problem domain and one integral point is assigned to each segment. Fig. 12 shows that the value 455 

of   in the range of [3.5, 9.5] leads to higher accuracy, and the relative error is low and stable when 456 

  is between 4.5 and 7.5.  457 

 458 

3.2. Large deformation analysis of cantilever beam 459 

In this section, the ability of the adaptive CTM-RPIM for dealing with large deformation problems is 460 

demonstrated. To this end, two linear-elastic cantilever beams undergo large deformations because of 461 

the imposed force (Fig. 13) and moment (Fig. 16) are concerned. The alpha shape method is used to 462 

identify the boundary of the problem domain, which makes the CTM-RPIM adaptive regardless of 463 

the change of geometry. 464 

 465 



Fig. 13. The cantilever beam with concentrated force on the right end 466 

The first case is a cantilever beam subjected to a downward concentrated load P as shown in Fig. 467 

13. The length and the width of the beam are 10mL   and 1mW  , respectively. The elastic 468 

constants are Young’s modulus 1.0GPaE   and Poisson’s ratio 0.0  . A total of 306 field nodes 469 

are used in the simulation. The analytical solution of this problem is available in [27]. 470 

 471 

Fig. 14. The results at different levels of force P 472 

To show the accuracy of the adaptive CTM-RPIM, a series of cases with different concentrated 473 

forces at the right-top corner are simulated with results compared to the nonlinear analytical 474 

solutions. The applied forces P are at different levels, namely 100kN, 500kN, 1000kN, 1500kN, 475 

2000kN, 2500kN and 3000kN respectively. The curves of tip deflection ratio 
L


  , where   is 476 

the deflection at the right end, versus the non-dimensional load parameter 
2PL

EI
  ,  where I  is 477 

the inertia moment of beam section, are shown in Fig. 14. The configuration of the deformed 478 

cantilever beam at the concentrated force levels 2000kNP   and 3000kNP  are presented in Fig. 479 

15. Clearly, the simulation results from the adaptive CTM-RPIM agree well with the analytical 480 

solution from [27], which demonstrates the correctness of the adaptive CTM-RPIM for analyzing 481 

large deformation problems. 482 



 483 

(a) 484 

 485 

(b)  486 

Fig. 15. The final configuration of the beam at two different force levels (a) 2000kNP  ; (b) 487 

3000kNP   488 

 489 

 490 

Fig. 16. The cantilever beam with bending moment on the right end 491 

A cantilever beam subjected to a bending moment at the right end is studied in this section. The 492 

setup of the problem is shown in Fig. 16. According to the nonlinear analytical solution given by Pai 493 



and Palazotto [28], when an appropriate bending moment is applied at the right end, the cantilever 494 

beam will bend into a perfect circular ring. The bending moment M  to make the beam achieve this 495 

state can be determined by 496 

2 EI
M

L


                                        (37) 497 

In the simulation, the moment is transformed into two uniform loads applied to the upper and 498 

lower halves of the beam end section according to [29]. A total of 405 field nodes are used to 499 

discretize the problem domain and 1000 incremental analysis steps are adopted. The deformation 500 

process of the cantilever beam obtained from the adaptive CTM-RPIM is shown in Fig. 17. A near 501 

perfect circular ring is obtained when the moment calculated from Eq. (37) is enforced at the end of 502 

the beam which verifies the proposed method for large deformation analysis. 503 

 504 

 505 

(a) 506 

 507 

(b) 508 



 509 

(c) 510 

 511 

(d) 512 

Fig. 17. The deformation process of the beam (a) 250 steps; (b) 500 steps; (c) 750 steps; (d) 1000 513 

steps 514 

 515 

3.3. Quasi static analysis of stability problem 516 

Stability analysis is of great importance in geotechnical engineering, which must be carried out to 517 

ensure the geotechnical structures won’t failure before and after they are finished. To evaluate the 518 

capability of adaptive CTM-RPIM in analyze the stability, two classical benchmark examples have 519 

been studied in this section. The first example is to evaluate the stability of a slope and the second is 520 

to calculate the bearing capacity of a foundation. These two examples fully demonstrate the 521 

reliability of this method in the stability analysis of geotechnical engineering. 522 

3.3.1 Slope stability analysis  523 

In this section, a homogeneous soil slope is studied with the strength reduction method, and the 524 

obtained safety factor is used to verify its reliability. The geometry of the slope is given in Fig. 18, 525 

and the material properties are Young’s modulus 100MPaE  , Poisson’s ratio 0.3  , cohesion 526 

10kPac  , friction angle 20   , dilatancy angle 0.001    and the unit weight 320kN/m  . 527 



The bottom of the slope is fully fixed while the lateral boundaries are fixed horizontally. The 528 

elastic-perfectly plastic constitutive model with Mohr-Coulomb yield criterion is used adopted. A 529 

total of 1881 field nodes are used in the CTM-RPIM simulation.  530 

 531 

Fig. 18. The homogeneous slope 532 

The formulation of the strength reduction method [30] can be expressed as  533 

c
c' =

SRF
                                       (38) 534 

( )
( )
tan

' = arctan
SRF


                                   (39) 535 

where c'  and '  are the material parameters after strength reduction, and SRF is the reduction 536 

factor.  537 

 538 

(a) 539 



 540 

(b) 541 

Fig. 19. The maximum displacement of the slope (a) Maximum displacement for every step; (b) Final 542 

maximum displacement after 2800 steps 543 

The reduction factor SRF ranging from 0.8 to 1.6 is used with simulation results after a large 544 

enough step (2800 steps) illustrated in Fig. 19 (a) and (b). Fig. 19 (a) shows that the deformation is 545 

negligible when 1.3SRF  . In contrast, the displacement increases continuously and convergence 546 

cannot be achieved for 1.4SRF  . In other words, when 1.3SRF   the slope is stable and when 547 

1.4SRF   the slope is unstable. The same conclusion can also be obtained by showing the curve of 548 

the displacement against SRF (see Fig. 19 (b)). Hence, it is clear that the safety factor FS of the slope 549 

is within (1.3, 1.4), which embraces the analytical solution 1.38 provided by Bishop and 550 

Morgenstern [31].  551 

 552 

(a) 553 



 554 

(b) 555 

Fig. 20. The plastic strain invariant of the slope after 2800 steps (a) SRF = 1.3; (b) SRF = 1.4 556 

Further, to insight why the slope loses stability, the counter of plastic strain invariant of the cases 557 

1.3SRF   and 1.4SRF   are given in Fig. 20. It can be seen that, when the SRF is 1.3 the plastic 558 

strain is very small, areas of plasticity are isolated from each other and have not penetrated the whole 559 

slope. However, when the SRF is 1.4, the plastic area is connected and form a clear shear band and 560 

the soil slides down along the shear band to eventually form a landslide. 561 

 562 

Fig. 21.The result of SRF = 1.6 after 10000 steps 563 

Finally, a large deformation case SRF=1.6 after 10000 steps is given in Fig. 21. It preliminarily 564 

shows the ability of this method to deal with large deformations, when large deformation occurs, the 565 

shear band is still clearly visible without numerical instability 566 

3.3.2 Bearing capacity analysis  567 

A flexible strip footing on weightless soil in semi-infinite space is studied in this section, of which 568 

the bearing capacity is analyzed to test its precision, as shown in Fig. 22 (a). The analytical solution 569 

of this classical problem was found by Prandtl in 1920 [32] 570 

(2 )failure uq c 
                                    (40) 571 

where cu is the undrained shear strength of the soil. 572 

 573 



 574 

(a) 575 

 576 

(b) 577 

Fig. 22. The flexible strip footing on weightless soil (a) Description of the problem; (b) Prandtl’s 578 

schematization [32]  579 

The simplified model is given in Fig. 23, the scale is 12m × 5m, the loaded width is 2m, and the 580 

boundary conditions are rollers at both side directions and fixed at the bottom. Elastic-perfect plastic 581 

constitutive and Mohr-Coulomb yield criterion are used in this example, and the material properties 582 

are as follows. Young’s modulus 100MPaE  , Poisson’s ratio 0.3  , the undrained cohesion 583 

100kPauc  , friction angle   and dilatancy angle   are both set to 0.001  and density   is 584 

chosen as 30.0kg / m . A model with 1029 field nodes is generated to solve this problem, and the 585 

result is given in Fig. 24. 586 



 587 

Fig. 23. Symmetry-based simplification for numerical simulation 588 

 589 

 590 

Fig. 24. Plot of maximum displacement versus bearing stress 591 

At different load levels from 200kN to 520kN, the convergence should occur with few iteration 592 

steps and small deformation if the strip footing is stable. As can be seen from Fig. 24, when the load 593 

is less than or equal to 500kPa , the convergence can be achieved quickly within 100 iteration steps, 594 

and the maximum deformation at all load levels is about 6 cm. But when the load reaches 520kPa , 595 

the convergence cannot be attained within 500 iterations, and the displacement at 500 steps shown in 596 

Fig. 24 is about 11cm, which is nearly two times of that at 500kPa . That means the failure load of 597 

the flexible strip footing is between 500kPa  and 520kPa , including Prandtl’s solution of 514kPa . 598 

That is, adaptive CTM-RPIM is reliable in the evaluation of the bearing capacity of the flexible strip 599 

footing. If a more accurate result is required, a more refined numerical model can be used. 600 

 601 



 602 

Fig. 25. The displacement at the load level of 540kPa  603 

 The deformed configuration at 540kPa  is given in Fig. 25, where the deformation reaches over 604 

0.6 m, and the failure mechanism proposed by Prandtl shown in Fig. 22 (b) can be easily seen from 605 

the deformation trend displayed by arrows with direction in Fig. 25. Again, it is verified that the 606 

adaptive CTM-RPIM has great advantages in stability evaluation and the deformation trend 607 

prediction. 608 

 609 

3.4 Dynamic analysis of post failure problem 610 

In order to further test the ability of this method for solving geotechnical large deformation problems, 611 

the soil collapse process was simulated. It is a 2-D experiment carried out by Ha H. Bui et al. [33], 612 

where the soil particles are modeled by many small aluminum bars, as shown in Fig. 26. Constrained 613 

by a movable baffle, these bars are initially stacked into a rectangular column. At the beginning of 614 

the test, the baffle was quickly removed, and the soil column collapsed rapidly under its own weight. 615 

After a long run out distance, it accumulated into an approximate triangle area. The parameters of 616 

soil are given as: Young’s Module 0.84MPaE  , Poisson’s ratio 0.3  ，cohesion 0MPac  ， 617 

friction angle 19.8   , dilatancy angle 0.001    and density 32650kg / m  . 618 

 619 

Fig. 26. 2-D experiment of soil collapse [33]. 620 

 The numerical model was discretized into 1071 field nodes, and elastic-perfect plastic 621 



constitutive and Mohr-Coulomb yield criterion are used. The boundary conditions are set as fixed at 622 

the bottom boundary and rolling at the left boundary, following the settings given in [33, 34]. 623 

Because the collapse of soil column is very fast and the deformation is extremely large, the inertia 624 

force is not negligible, the dynamic scheme is adopted here. The time step is chosen as 5.0t s  , 625 

which is small enough to ensure the stability and accuracy of calculation.  626 

 627 

(a) 628 

 629 

(b) 630 

 631 

(c) 632 

 633 

(d) 634 

 635 



(e) 636 

Fig. 27. Collapse process of soil column (a) Initial configuration; (b) Configuration at 0.1s; (c) 637 

Configuration at 0.2s; (d) Configuration at 0.3s; (e) Final configuration. 638 

The collapse process of soil column is given in Fig. 27, in which field nodes are rendered in 639 

different colors depending on the displacement to observe the deformation inside the soil column. 640 

After the baffle is removed, the soil column immediately begins to collapse, and the soil on the upper 641 

right begins to slide, while the soil on the lower left remains static. As time goes on, the static region 642 

decreases gradually. At the end of the collapse process, the soil particles stop moving, the upper 643 

surface of the accumulation is at an angle slightly less than the friction angle, and a small region 644 

remains static in the lower left corner. The interface between the static region and sliding region is 645 

what we call sliding surface. 646 

 647 

Fig. 28. Final configuration of the soil collapse example 648 

 Finally, the final upper surface and the sliding surface are compared with the experimental 649 

observations, which is presented in Fig. 28. It can be clearly seen that the numerical result agrees 650 

well with the experimental result, which can further demonstrate the ability of adaptive CTM-RPIM 651 

for simulating geotechnical large deformation problems. 652 

 653 

4. Conclusions  654 

An adaptive CTM-RPIM for solving geotechnical large deformation problems is introduced in this 655 

paper. Using CTM and RPIM, the domain integration can be transformed into line integration and 656 

the interpolation can get rid of the restraints from the background mesh. Meanwhile, to handle large 657 

deformation problems more conveniently, the alpha shape method is introduced to track the 658 

boundary automatically, with the results shown accurate and convenient. For the purpose of 659 

facilitating programming, both quasi static version and dynamic version of computational processes 660 



are given. Moreover, the influence of key parameters on precision is explored systematically, and the 661 

recommend values of these parameters are given in this paper. Then, two geotechnical examples, 662 

slope and footing, are analyzed to further demonstrate the accuracies and reliabilities of the method. 663 

Finally, by simulating the 2-D soil collapse experiment with a large run out distance, the capacity of 664 

dealing with large deformations is further proved. To sum, the adaptive CTM-RPIM is a promising 665 

method and has great potential in the application of geotechnical engineering. 666 
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