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Department of Physics

Oliver Lodge Laboratory

University of Liverpool

June 16, 2023





Abstract

The neutral-current Drell-Yan production is a process for which precise predictions are
currently available, offering a benchmark upon which these state-of-the-art predictions
can be tested, both as a way to improve our understanding of Standard Model physics
and explore theories that expand on the foundations it establishes. This thesis provides an
overview of two analyses focusing on the Drell-Yan production using LHC Run 2 pp collision
data collected by the ATLAS experiment during the years 2015 to 2018 at

√
s = 13 TeV.

First, a measurement of the single- and double-differential production cross-section in an
invariant mass region of 116 to 5000 GeV is presented, using Z/γ∗ decays into lepton
pairs in the electron and muon channels. The measurement is performed as a function
of invariant mass, absolute rapidity of the lepton pair and their angle separation in the
Z-boson rest frame. The results obtained are used to perform for the first time tests on
lepton flavour universality (LFU) as well as set limits on Effective Field Theory (EFT)
coefficients that modify the Drell-Yan production cross-section. Second, a novel search for
Lorentz-invariance violating (LIV) signatures using Z-decays into electron and muon pairs
is presented. Using the methodology for a luminosity measurement based on the counting
of Z-bosons detected, the time-dependence of the Drell-Yan production can be monitored.
While the Standard Model predicts no time-dependence on this process, deviations from
this behaviour can be interpreted as the effects of LIV-inducing operators in the Standard
Model Extension EFT. The results presented in this thesis include an overview of the
Z-counting measurement methodology transfer to a flexible analysis framework, as well as
the development of new time-dependent simulation tools to estimate expected sensitivities.
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habéis apoyado todas mis decisiones, que esta tesis sea la prueba de que valió la pena.
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Chapter 1

Introduction

The developments over the last century in particle physics, trying to understand the build-
ing blocks of the Universe and the mechanisms ruling their interactions, have led to what
is now known as the Standard Model (SM) of particle physics. This framework unites
the elementary particles known to date with the electromagnetic, weak and strong forces.
Despite being able to predict many results long before their discovery with a high level
of accuracy, the SM is known to be an incomplete theory in view of the open questions
it fails to answer. These questions have led to the development of a plethora of Beyond
Standard Model (BSM) theories, which experiments have been trying to discover for many
years with no clear indications of their presence found yet.

The Large Hadron Collider (LHC) has produced an immense amount of proton-proton
(pp) collision data since it began operating in 2008, recorded by various experiments situ-
ated in different points of the collider. This thesis presents several analyses based on the
data recorded by the ATLAS experiment, one of the general purpose detectors located at
the LHC. These analyses focus on the measurement of the neutral-current Drell-Yan pro-
duction at LHC in different regions of the kinematic phase space, both providing a precise
measurement of its cross-section and novel interpretations in the context of two different
extensions of the SM. The thesis is structured as follows:

Part I: Theory overview Chapter 2 covers the relevant theory foundations for the
presented analyses. Chapter 3 provides an overview of the frameworks and tools used to
generate predictions of the studied processes.

Part II: Experimental setup Chapter 4 presents an overview of the Large Hadron
Collider and the ATLAS experiment in Chapter 5. Chapter 6 covers the reconstruction of
the physics objects used in the analyses, as well as the calibration and correction procedures
used for the measurement of their properties.
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1 Introduction

Part III: High-mass Drell-Yan cross-section The measurement of the neutral-current
Drell-Yan cross-section at invariant masses above 116 GeV is presented in this part. Chap-
ter 7 presents a general motivation for the measurement, also introducing the existing
results for the measurement and how the analysis here presented aims to improve them.
The methodology of the measurement is discussed in Chapter 8, covering the simulation,
event selection and background estimation used in the analysis, as well as an estimate on
the experimental and theory uncertainties. The results of the cross-section measurement
are shown in Chapter 9, while Chapter 10 includes an overview of the the Lepton Flavour
Universality tests performed with said results and the measurement’s Effective Field The-
ory interpretation. The part concludes with a summary of the results in Chapter 11.

Part IV: Search for Lorentz-invariance violating signatures This part covers the
search for Lorentz-invariance violating (LIV) signatures in the dilepton final state, using
the Z-boson decays into electron and muon pairs to look for time-dependent features that
could arise from the effect of operators in the Standard Model Extension EFT. The part
begins in Chapter 12, introducing the motivation for this search. Chapter 13 contains an
overview of the methodology used to monitor the production of the Z-boson at the ATLAS
experiment in a time-dependent manner and Chapter 14 describes the analysis methodol-
ogy used to search for Lorentz-invariance violation using these results. Sensitivity studies
on LIV signatures are presented in Chapter 15, as well as a methodology for signal blind-
ing in data. The part concludes in Chapter 16 with a summary of the results of the analysis.

Personal Contributions

As part of the research carried out throughout the development of my PhD I was an ac-
tive member of the high-mass Drell-Yan cross-section measurement team, with significant
contributions to its upcoming publication. In Chapter 8 the estimation of the fake electron
background (including thorough cross-checks using different methodologies), as well as the
development of alternative theory predictions and uncertainties using Sherpa, were per-
formed by myself. The Effective Field theory interpretation presented in Chapter 10 was
also developed by myself, including signal generation, fitting and assessment of the impact
of experimental systematics. The results presented in this thesis include the EFT inter-
pretation of the double-differential cross-section measurement, which for technical reasons
is not part of the measurement publication, improving the limits set on different Wilson
coefficients with respect to the single-differential measurement interpretation (which will
be included in the upcoming publication).

Furthermore, I was part of the search for Lorentz-invariance violating signatures in
dilepton final states. This is a unique search, built by the team from ground up, in which
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I took part in most analysis stages. Chapter 13 presents the transfer of the Z-counting
methodology to a standard ATLAS analysis framework and the results obtained with it,
which was developed by myself. The novel methodologies to simulate time-dependence in
Monte Carlo presented in Chapter 15 were also work of my own.

All figures shown in the thesis were created by myself, unless specifically referenced to
another source.
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Theory

4



Chapter 2

Theory foundations

The first part of this chapter covers an introduction to the Standard Model of particle
physics, giving an overview of the theory as a whole and its current status. An insight
into the limitations of Standard Model and certain theories that try to overcome it are
presented next, introducing the Effective Field Theory formalisms on which the measure-
ments’ interpretations presented in Parts III and IV will be based upon.

Details on the tools used for theoretical predictions, as well as the basics of proton-
proton collision description and simulation, are presented in Chapter 3.

2.1 The Standard Model of Particle Physics

The Standard Model of particle physics is the theory that describes the fundamental in-
teractions between particles and the key properties and characterise said particles [1–4].
It is the culmination of years of theoretical and experimental efforts in order to identify
the fundamental particles and test the theories describing the force fields that reign their
interactions.

2.1.1 Fundamental particles

The Standard Model includes two types of matter particles: leptons and quarks. Both
have spin-1

2 (in units of ~) and behave point-like, showing no internal structure at dis-
tances probed by our current accelerators. For all matter particles described in Standard
Model there is an anti-particle, with the same mass as their corresponding particle. The
quantum numbers of each antiparticle are the opposite values of those of their respective
particle.

Charged leptons are a generalization of the electron, with muons and tau leptons car-
rying identical values in most of the properties of their lightest partner, with the exception
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2 Theory foundations

of lepton flavour charge (Lf , where f represents the three different families). This quan-
tum number differs between lepton generations and is conserved in all Standard Model
interactions. For each charged lepton there is a neutral partner of the same generation, the
neutrino. Leptons, if charged, interact weakly and electromagnetically, though if neutral,
interact weakly exclusively. A summary of the known leptons and their properties can be
found in Table 2.1.

Lepton Symbol Q T3 Le Lµ Lτ Mass [GeV]†

Electron e -1 −1
2 1 0 0 0.51·10−3

Electron neutrino νe 0 +1
2 1 0 0 < 1.0 · 10−9

Muon µ -1 −1
2 0 1 0 0.11

Muon neutrino νµ 0 +1
2 0 1 0 < 0.2 · 10−3

Tau τ -1 −1
2 0 0 1 1.78

Tau neutrino ντ 0 +1
2 0 0 1 < 18.2 · 10−3

Table 2.1: Summary of some properties of the Standard Model leptons. Antiparticles are not
shown, their quantum numbers correspond to the opposite of those of their corresponding particle.
Q corresponds to the electromagnetic charge in units of e, T3 is the weak isospin and Lf are the
different lepton flavour charges. From Ref. [5].

Quarks are the fundamental constituents of hadrons and they experience all three forces
comprised in the Standard Model: electromagnetic, weak and strong. They were proposed
in 1964 by Gell-Mann and Zweig [6, 7] to explain the structure that hadrons exhibit, or-
ganizing in SU(3) singlets, octets, nonets and decimets. Quarks organize in an analogous
way to leptons, finding three families in the Standard Model: up-down, charm-beauty and
top-bottom. A summary of the known quarks and some of their properties can be found in
Table 2.2.

One of the main properties of quarks is the colour charge, the key feature that rules
strong interactions. It was first proposed to explain the existence of quarks in seemingly
same states [8], which would violate the Pauli exclusion principle. The theory required
hadrons to be indistinguishable from each other, imposing the requirement on all hadrons
to be colourless. The combination of all colour charges gives rise to a colourless state,
so does a colour-anticolour combination, as observed in qq̄ states. The condition for all
hadrons to be colourless determined that no more than three colours could exist, meaning
that three was the exact number of colours that quarks could take, namely red, green and
blue.

†Note that all variables in this thesis will be expressed in natural units, assuming that the speed of
light and the Planck constant are equal to unity, c = ~ = 1.
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2.1 The Standard Model of Particle Physics

Quark Symbol Q T3 Mass [GeV]

Up u +2
3 +1

2 2.16·10−3

Down d −1
3 −1

2 4.63·10−3

Charm c +2
3 +1

2 1.27
Strange s −1

3 −1
2 0.093

Top t +2
3 +1

2 172.9
Bottom b −1

3 −1
2 4.18

Table 2.2: Summary of some properties of the Standard Model quarks. Antiparticles are not
shown, their quantum numbers correspond to the opposite of those of their corresponding particle.
Q corresponds to the electromagnetic charge in units of e and T3 is the weak isospin. From Ref. [5].

Another key characteristic of quarks behaviour is asymptotic freedom and colour con-
finement. Both can be inferred by studying the running of the strong coupling constant
as explained in Section 2.1.2. Asymptotic freedom results into a quasi-free behaviour of
quarks present in bound states at small distances, while quark confinement derives into
the lack of observation of free quarks and the process called hadronization.

2.1.2 Fundamental interactions

Interactions between elementary particles are represented in the Standard Model as the
exchange of virtual quanta, which act as mediators of the force involved in the interaction,
an idea first proposed by Yukawa in 1935 [9], with each type of interaction being the con-
sequence of a specific gauge symmetry.

In these theories, the dynamics involved in an interaction are closely related to sym-
metry principles. These symmetries express the invariance of the studied processes under
different transformations. While most invariances appear naturally when considering global
transformations, applied on all space-time points, local invariances are achieved by intro-
ducing additional fields into our theory, which ultimately involve the appearance of force
mediators and associated charges.

Electromagnetic interaction

The electromagnetic interaction arises from a local U(1) invariance, as described in quan-
tum electrodynamics or QED. Considering the following local transformation of a given
wavefunction ψ(x),

ψ(x)→ ψ′(x) = eiα(x)ψ(x), (2.1)

the derivatives of said wave function present in many observables, as well as in the
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2 Theory foundations

kinetic terms of the Lagrangian, would transform as:

∂µψ(x)→ ∂µψ
′(x) = eiα(x)[∂µψ(x) + i(∂µα(x))ψ(x)]. (2.2)

This derivative includes a term involving the gradient of phase, ∂µα(x), breaking the
invariance. One can overcome this problem by introducing an additional field, Aµ, while
promoting the derivative to introduce invariance under U(1) local transformations,

∂µ → Dµ = ∂µ + iqAµ. (2.3)

Aµ here can be identified as the electromagnetic field, giving raise to an electromagnetic
current and an electromagnetic charge, q. This field will transform under U(1) transfor-
mations as

Aµ(x)→ A′
µ(x) ≡ Aµ(x)− 1

q
∂µα(x), (2.4)

in such way that the term Dµψ(x) is invariant under U(1) local transformations. This
leads to the possibility of introducing a gauge-invariant modification of the free particle
Lagrangian,

Lfree = ψ̄(iγµ∂µ −m)ψ, (2.5)

into an expression that introduces the conserved electromagnetic current:

L = ψ̄(iγµDµ −m)ψ = ψ̄(iγµ∂µ −m)ψ − qAµψ̄γ
µψ. (2.6)

When adding the kinetic term for the gauge field describing the propagation of photons,
1
4F

µνFµν with Fµν ≡ ∂µAµ−∂νAµ, one finds the usual expression for the QED Lagrangian.

Electroweak interaction and spontaneous symmetry breaking

The weak theory is built in a similar manner to the electromagnetism gauge theory pre-
sented above, assuming a SU(2) symmetry instead. However, the Standard Model actually
comprises a unification of the SU(2) and U(1) symmetries, presenting a unified electroweak
theory built upon a SU(2)L⊗U(1)Y symmetry. The SU(2)L involves a weak-isospin sym-
metry, while the U(1)Y involves a weak-hypercharge symmetry, both corresponding to
different quantum numbers characteristic of all matter particles. The gauge-covariant
derivative of this group takes the form:

Dµ = ∂µ + ig′

2 AµY + ig

2 τ · bµ, (2.7)

where g and g′ are the coupling constants to each of the emerging fields, Aµ and bµ

(note that the latter is a vector, bµ = (b1
µ, b

2
µ, b

3
µ)). Y represents the weak hypercharge,
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2.1 The Standard Model of Particle Physics

defined as a function of the electric charge, Q, and the third isospin component, T3, as
Y = 2(Q− T 3). τ are the SU(2) group generators, the Pauli matrices.

The gauge fields bµ and Aµ do not exactly represent the gauge bosons observed in
nature, namely the W± and Z bosons and the photon. Instead, these correspond to a
linear combination of the gauge fields:

W±
µ ≡

b1
µ ∓ ib2

µ√
2

(2.8)

and

Aµ

Zµ

 =

 cos θW sin θW

− sin θW cos θW

 ·
Aµ

b3
µ

 , (2.9)

where the Weinberg or weak mixing angle, θW , is introduced to control the mixing of
the gauge fields. This parameter can also be expressed in terms of the coupling constants:

cos θW = g√
g2 + g′2 , sin θW = g′√

g2 + g′2 . (2.10)

Fermion fields can be separated into right- and left-handed helicity doublets as:

ψR,L = 1
2(1± γ5)ψ, ψ = ψR + ψL, (2.11)

where negative (positive) terms denote right-handed (left-handed) components. The
matrix γ5 is constructed using the Dirac matrices as γ5 = iγ0γ1γ2γ3. When the covariant
derivative defined in Eq. 2.8 acts on fermion fields, this results in different couplings between
gauge fields and fermions:

DµψL =
(
∂µ + ig′

2 AµY + ig

2 τ · bµ

)
ψL, DµψR =

(
∂µ + ig′

2 AµY

)
ψR, (2.12)

since the gauge fields bµ only act on the left-handed component and Aµ acts on both
components.

However, by simply considering in the Lagrangian the kinetic terms of these gauge
fields and the fermions they interact with, one does not retrieve any mass terms for the
emerging fields, just as the QED Lagrangian involved the appearance of a massless field.
This would give rise to four massless bosons rather than the gauge bosons present in the
Standard Model. Moreover, the different coupling of the gauge fields to left- and right-
handed components means that, for instance, the electron mass term,
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2 Theory foundations

eē = 1
2(1− γ5)e+ 1

2(1 + γ5)e = ēReL + ēLeR, (2.13)

breaks the gauge invariance (and so would all fermion mass terms) and therefore cannot
be included. This feature of the SU(2)L⊗U(1)Y gauge symmetry requires an additional
mechanism to be added to Standard Model, granting mass to those particles that are known
to be massive.

In the SM this mechanism is referred to as the Brout-Englert-Higgs mechanism [10–14],
and introduces mass terms through the concept of spontaneous symmetry breaking. The
mechanism introduces a doublet Φ of complex scalar fields,

Φ =

φ+

φ0

 , (2.14)

defined with four degrees of freedom, corresponding to different scalar fields φ1, φ2, φ3

and φ4, which are related to the original complex scalar fields as,

φ+ = φ1 + iφ2√
2

, φ0 = φ3 + iφ4√
2

. (2.15)

The scalar doublet Φ is used to define the Higgs sector Lagrangian:

LHiggs = (Dµφ)†(Dµφ)− V (φ); V (φ) = µ2(φ†φ) + |λ|(φ†φ)2. (2.16)

The covariant derivative Dµ maintains the electroweak definition presented in Equa-
tion 2.7 and the term V (φ) is the Higgs potential. The potential introduces two free
parameters, µ and λ, often referred to as the mass and self-coupling parameters respec-
tively.

If one sets the mass parameter to be defined positively, µ2 > 0, one finds the minimum
of the Higgs potential at

|Φmin| =

√
µ2

2λ = ν√
2
, (2.17)

where a new term ν has been introduced, the vacuum expectation value (VEV). Thus,
the ground state of the Higgs field Φ can be expressed as

Φ0 =

 0
ν√
2

 . (2.18)

If one expands the field around the minimum and applies the unitary gauge [15], fixing
the VEVs of three of the scalar fields to zero, the scalar doublet can be rewritten as
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2.1 The Standard Model of Particle Physics

Φ′ =

 0
ν+H√

2

 , (2.19)

where H corresponds to a neutral scalar field, namely the Higgs boson. The introduc-
tion of this re-defined scalar doublet into the Higgs Lagrangian gives rise to the mass terms
that could not be directly introduced due to gauge symmetry breaking in the electroweak
theory. Thus, the masses of the fermion and boson fields are expressed via their coupling
to the Higgs boson:

mW = 1
2νg, mZ = 1

2ν
√
g2 + g′2, mA = 0, mf = λfν√

2
, (2.20)

where λf represents the Yukawa coupling between a fermion f and the Higgs field,
further explained in Section 2.1.3. One can also find the term for the mass of the Higgs
field emerging from its self-interacting nature: mH =

√
2ν2λ.

Strong interaction

The strong interaction is described by quantum chromodynamics, or QCD, which depicts
the interactions between particles carrying colour charge, as explained in Section 2.1.1.
The theory is described by the gauge group SU(3)C , introducing a new gauge-covariant
derivative,

Dµ = ∂µ + igsBµ, (2.21)

where gs is the coupling constant to the emerging fields and Bµ is a 3 × 3 matrix
composed by the eight colour gauge fields, bl

µ, and the generators of the SU(3) group, the
λl matrices [16]:

Bµ = 1
2λ · bµ = 1

2λ
lbl

µ. (2.22)

These give rise to eight massless bosons which will mediate the strong interaction, the
gluons.

The QCD coupling constant is commonly redefined to a “fine-structure constant”-like
coupling:

αs = g2
s

4π . (2.23)

An important feature of quantum field theories is the running of the coupling constant,
meaning that the coupling strength will change with the energy scale of the interaction.
For QCD at lowest order, the effective coupling above can be expressed in terms of the
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2 Theory foundations

energy scale, µ, as [17]:

αs(µ2) = αs(µ2
0)

1 + (β1/12π) · αs(µ2
0) · ln(µ2/µ2

0)
, (2.24)

where αs(µ2
0) is the boundary condition for the coupling at a given energy scale µ0

and β1 is the first term in the expansion of the β function. This function measures the
growth of the coupling following the renormalization group equation (RGE). It depends
on the number of colours, nc = 3, and the number of quark flavours, nf = 6, taking the
expression β1 = 11nc − 2nf .

The energy dependence leads to a decrease of the coupling at high values of µ2, mean-
ing that at close distances quarks will behave quasi-freely, what is commonly referred to
as asymptotic freedom. However, when µ2 decreases, the coupling exponentially increases,
meaning that perturbation theory approximations used in its calculation do not hold in
this regime. This results into another key characteristic of QCD called colour confinement,
which explains why there has been no observation of free coloured particles. If two quarks
are to be separated from each other, the energy required to overcome the coupling increase
when reaching long distances would greatly exceed that needed to form a quark-antiquark
pair in the vacuum. This behaviour makes energetically favourable the appearance of
hadrons made from qq̄ pairs in colourless bound states, in a process called hadronization,
which is of great importance when studying hadronic final states at particle colliders.

The value of αs is conventionally considered at the energy scale of the mass of the
Z-boson (MZ = 91.18 GeV), at which the world average is [5]: αs(M2

Z) = 0.1179± 0.0010.
A comparison of the running of the strong coupling constant, considering the previously
mentioned value as the αs(µ2

0) input for Equation 2.24, with different measurements can
be found in Figure 2.1.

2.1.3 The Standard Model Lagrangian

When adding all the different elements previously presented into a single theory that
encapsulates our current understanding of elementary particles and their interactions, the
Standard Model Lagrangian takes the form:

LSM = Lgauge + Lint + LYukawa + LHiggs (2.25)

• Lgauge = −1
4FµνF

µν

This term introduces the field strength tensor, Fµν , which encodes the dynamics of the
interaction mediators of the Standard Model, namely gluons, photons, W± and Z0.
The tensor is defined as Fµν = i [Dµ, Dν ] /g, where Dµ corresponds to the covariant
derivatives introduced in the previous sections for the SU(2)L⊗U(1)Y and SU(3)C
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Figure 2.1: Summary of measurements of αs as a function of the energy scale Q. From Ref. [5].

symmetries introduced in the previous Sections and g are the corresponding couplings
to these interactions. The dynamics of the gauge bosons vary across the different
mediators: while photons do not interact with themselves, meaning their kinematic
term simply describes their free propagation, weak and strong force mediators do
interact with each other, which is accounted for in the field strength tensor.

• Lint = iψ̄��Dψ

This term was introduced when explaining how one could obtain an electromagnetic
interaction invariant under local gauge transformations. The covariant derivative,
��D, introduces the interaction between the particle fields ψ, representing all fermions
in SM, and the interaction bosons. The covariant derivative in Standard Model
accounts for the unification of all symmetry groups aforementioned into a single
SU(3)C⊗SU(2)L⊗U(1)Y symmetry.

• LYukawa = ψiλijψjΦ
The field Φ corresponds to the Higgs field, as presented in Section 2.1.2. When
coupling to fermions via the Yukawa term in the Lagrangian, the Higgs field makes
their corresponding mass terms emerge. The strength of the interaction between a
fermion, ψi and the Higgs field is measured by the Yukawa coupling, λii, which is
directly related to the mass of the corresponding fermion: the stronger the coupling
of that said particle to the Higgs field, the higher its mass will be.

13
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The off-diagonal terms, λij with i 6= j, represent the coupling between different
fermion flavours. The unitary matrix representing the coupling between different
quark fermions is of particular relevance, known as the CKM matrix.

• LHiggs = (Dµφ)†(Dµφ)− V (φ); V (φ) = µ2(φ†φ) + |λ|(φ†φ)2

This is the Higgs sector Lagrangian, as presented in Section 2.1.2, responsible for
the spontaneous symmetry breaking mechanism that grants mass to particles in the
Standard Model.

2.2 Physics Beyond the Standard Model

Although the Standard Model has been an incredibly successful theory, tested experimen-
tally to very high precision for more than half a century, there are certain phenomena it
fails to describe. These observations make apparent the need for a theory that complements
and expands the foundations set by the Standard Model, while offering an explanation to
those findings it cannot explain. This Section provides an overview of the evidence for the
need of Beyond Standard Model (BSM) theories, as well as a brief description of some of
their most common proposals.

2.2.1 Unsolved questions

Matter-antimatter asymmetry

The observation of visible matter around us, and the lack of antimatter, indicate that
are differences between the behaviour of matter with respect to that of the antimatter,
assuming they were produced equally at the Big Bang. However, no mechanism in Standard
Model could produce such asymmetry as observed. The baryon asymmetry in the Universe
is the name which refers to the excess in the number of observed baryons (NB) over the
observed antibaryons (NB̄). Since the end products of matter-antimatter annihilation
are mainly photons, and considering there are no antibaryons in the universe today, the
asymmetry can be measured using the baryon to photon ratio, η = NB/Nγ , which is
found to be ∼ 6 · 10−10 [18]. This asymmetry can only be observed if three conditions
are met, known as Sakharov conditions [19]: (1) baryon number violation, (2) C and CP
(charge conjugation and parity) violation and (3) a deviation from thermal equilibrium.
(1) is necessary for a system to evolve from B = 0 to B 6= 0. With a theory that allows
for a process to produce matter asymmetry, C and CP violation denies the possibility of
conjugate processes to generate an oppositely signed asymmetry occurring with the same
probability, which would restore the original symmetry. Finally, since thermal equilibrium
is a state that fulfils time translation invariance, a deviation from it is needed to produce
a B 6= 0 state starting from B = 0.
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Neutrino masses

As introduced in Section 2.1.2, neutrinos in the common Standard Model formulation are
assumed to be massless, which subsequently means that all neutrinos in SM are consid-
ered to be left-handed, while anti-neutrinos are right-handed. Observations from many
different experiments of neutrino oscillations, first observed in 1968 in the Homestake
experiment [20], require massive neutrinos for a flavour change to be possible. Current
experiments are trying to obtain the exact value of the neutrino masses, which would help
determine whether they have an associated fermion with opposite chirality (as all massive
fermions do in SM), meaning they are Dirac particles and that a right-handed neutrino
spinor needs to be included within the Standard Model. Another theory proposes that
neutrinos are in fact Majorana particles, meaning that they are their own antiparticle and
that what has been described as an anti-neutrino in the Standard Model was actually refer-
ring to the same particle. Neutrino physicists keep looking for the answer to this enigma,
as well as for an explanation on why would the mass of the neutrino, currently expected
to be found in the meV range [5], be orders of magnitude smaller than that of any other
fermion.

Grand unification

The development of theories such as electromagnetism or the electroweak theory, which
unify different forces into a single theory at a given energy scale, have led to the idea
that all forces observed in nature may be different expressions of a single, unified force.
The simplest group that could contain all Standard Model forces is the SU(5) group [21]
however, as shown in Figure 2.2, the Standard Model predicts no unification of its gauge
couplings at any energy scale, requiring for BSM phenomena to alter these couplings and
generate a unification scale.

Dark matter and dark energy

Upon contrasting the observed rotation velocity of galaxies with respect to their galactic
center with the expected values, scientists found a behaviour that could not be explained
with the existence of only the luminous matter in said galaxy [22]. While a lower velocity
was expected at greater distances, caused by a decrease in the strength of the gravitational
pull from the galactic center, the observations indicated that the velocity was approxi-
mately constant, remaining unchanged by the distance to the center. The explanation
that emerged to justify this behaviour was the existence of non-luminous (dark) matter,
which could not be directly observed but increased the gravitational effect observed in the
galaxy’s halo. The existence of dark matter has further been supported by the observa-
tion of gravitational lensing [23] and by cosmic microwave background measurements [24].
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Figure 2.2: Running of all gauge couplings in the Standard Model. From Ref. [5].

The lack of observation of any dark matter candidate that fulfils all necessary conditions
strongly constraints its properties, for instance its candidates only being able to interact
weakly and gravitationally.

Alternative observations also show that the universe expansion takes place at a rate
that our current cosmological theories fail to predict. This acceleration needs for some
sort of energy not observed yet, which is analogously referred to as dark energy. Little is
known about what physics may be behind this phenomena, although observations in the
cosmic microwave background have constraint the luminous matter content of the Universe
to a 5% [25], with a 27% content being dark matter and the remaining 68% dark energy,
further stressing the point of how little is known about the content of the Universe and
how important it is to find an explanation to it.

2.2.2 Beyond Standard Model theories

This Section will provide an overview of a selection of Beyond Standard Model theories,
with a particular focus on those involving new heavy gauge bosons phenomena.

Sequential Standard Model

The Sequential Standard Model (SSM) [26], assumes the appearance of two charged bosons
and a neutral boson which, in analogy to those found in the Standard Model are referred
to as W ′± and Z ′ bosons. These new bosons share the same quantum numbers than their
SM partners, although they are assumed to have a much larger mass, with current limits
set in the range beyond the TeV scale [27–29]. Although this model is not believed to
be realistic, it provides a common ground to compare constraints coming from different
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sources and allow for more complex reinterpretations.

Left-right symmetric models

One of the simplest extensions of the Standard Model involving additional gauge bosons
(while providing an explicit description of the gauge theory behind it) is the SU(2)L ×
SU(2)R×U(1) model [30]. This theory expands the parity violating left-handed symmetry
present in electroweak theory with the addition of right-handed doublets of a SU(2)R

theory. The addition of this group leads to the appearance of three additional bosons,
W ′±

R and Z ′. Considering that there is experimental evidence of parity violation in weak
interactions, this new symmetry must be broken:

SU(2)L × SU(2)R × U(1)→ SU(2)L × U(1)Y (2.26)

In this process, the additional gauge bosons that emerge from the SU(2)R group can
gain mass via spontaneous symmetry breaking, in a similar manner to the Higgs mechanism
with which the Standard Model W and Z bosons obtain mass. As stated before, parity
violation has been observed at the energy scales probed so far by colliders, meaning that
the emerging W ′±

R must be very heavy and the interaction mediated by them heavily
suppressed at low energies.

Extra dimensional models

Other theories predicting the appearance of additional gauge bosons assume the hypo-
thetical heavy partners to be the Kaluza-Klein (KK) excitations of the Standard Model
bosons [31]. In these theories, the usual (3+1) structure of space-time dimensions is ex-
panded to a (3+δ+1) structure. The main (3+1)-dimensional space time is here known
as the brane, the main structure on which the Standard Model sits upon, to which δ ad-
ditional spatial dimensions are added, generating excitations associated to the appearance
of new gauge bosons [32]. An interesting aspect of these theories is that they also provide
an explanation for the hierarchy problem. The graviton (hypothetical mediator of the
gravitational force) propagating through extra dimensions, not accessible at the energy
range probed by our current experiments, would be the reason for gravity being so weak
compared to the other interactions present in the Standard Model, as proposed in the
Randall-Sundrum model [33].

Supersymmetry

Within the Standard Model, corrections to the Higgs boson mass emerging from higher
order calculations need for fine-tuning to avoid divergent behaviour. The cancellation of
those contributions can be naturally achieved by adding a new symmetry relating fermions
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and bosons, widely known as supersymmetry (SUSY) [34]. This symmetry is achieved
introducing a new operator Q, that operates on the Standard Model particles as:

Q |Boson〉 = |Fermion〉 ; Q |Fermion〉 = |Boson〉 (2.27)

The resulting new particles when applying said operator are called super-partners. If
this transformation operated under an exact symmetry, the resulting superpartners would
mimic the mass and quantum numbers of their corresponding SM particle, however no
integer spin particle has been found at the mass range of the SM particles, an energy range
that particle physics experiments have been able to study for decades, from which can
be inferred that supersymmetry must be a broken symmetry. This introduces a myriad
of free parameters in the theory, with each mass and coupling of any given superpartner
being a free variable. This feature incentivised the development of theories like the Min-
imal Supersymmetric Standard Model (MSSM) [35], where the number of new particles
and interactions is minimized, resulting in a reduced numbers of free parameters, while
still offering the benefits that all supersymmetric theories bring. These include providing a
solution to gauge unification, absorbing divergences in Higgs mass corrections and offering
potential candidates for dark matter, since neutrally-charged superpartners fulfil all con-
ditions dark matter candidates need. Unfortunately, no sign of supersymmetry have been
found yet [36–39], meaning that the energy scale of said phenomena is likely beyond the
TeV frontier.

2.3 Effective Field Theory interpretations

As presented in the previous Section, indications of deviations from SM hint at high en-
ergy scales of new physics. One of the approaches to describe phenomena beyond that
comprised in the Standard Model is by introducing higher-dimensional operators, whose
effects are suppressed by powers of the new physics energy scale (Λ). Effective field theo-
ries (EFTs) are the theoretical tools to describe low-energy physics, where the definition of
“low” depends on the energy scale Λ. In these theories, heavy states (those with M � Λ)
are integrated out of the action while only the relevant degrees of freedom (m � Λ) are
taken into account. Thus, the information on the heavier states is encoded in the couplings
of the resulting low-energy Lagrangian, in which the interactions between light states are
organized as an expansion in powers of 1/Λ.

This Section presents the EFT frameworks used for the interpretation of the data
presented in Parts III and IV.
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2.3.1 Standard Model as an Effective Field Theory

The Standard Model Effective Field Theory (SMEFT) [40] is a generalization of the Stan-
dard Model where the low-energy regime corresponds to the Standard Model Lagrangian,
as presented in Section 2.1.3, assuming that any extension to it does not involve new parti-
cles lighter than the measured vaccuum expectation value. The Lagrangian of this theory
is defined as:

LSMEFT = LSM +
∑
d>4
L(d) = LSM +

∑
i

c
(d)
i

Λd−4O
(d)
i (2.28)

where:

• LSM is the EFT description of the Standard Model operators (containing all valid
operators with dimension 2† and 4).

• Oi are the different operators of dimension d.

• ci are the Wilson coefficients, constant terms that measure the impact of the different
operators.

An overview of the calculation of the cross-section of any given process (which is the
initial basis for Standard Model simulation) can be found in Section 3.1. When introducing
a set of additional operators, Oi, in the Standard Model Lagrangian the corresponding
amplitude of a given process (A) and hence its cross section, will be modified as follows:

|ASM +
∑

i

ciAi|2 = |ASM|2︸ ︷︷ ︸
SM

+
∑

i

ci2Re(A∗
SMAi)︸ ︷︷ ︸

Linear

+
∑

i

c2
i |Ai|2︸ ︷︷ ︸

Quadratic

+
∑
i 6=j

cicj2Re(A∗
iAj)

︸ ︷︷ ︸
Cross

(2.29)

In the right hand side of Equation 2.29 different contributions can be distinguished:
the first term corresponds to the SM cross section. The second term is the SM-BSM in-
terference, usually referred to as the linear term. The third term represents the pure EFT
contribution from the operator Oi, namely the quadratic term. Lastly, the fourth term is
the interference between different EFT operators, known as the cross term.

Flavour symmetry assumptions

The SMEFT interpretation carries one main drawback, similar to such present in most
SUSY models: in its most accepted formulation, the Warsaw basis [41], SMEFT has nearly
2500 free parameters [40, 42], most of them coming from flavour indices running over the

†The only dimension-2 term in the SM Lagrangian is φ†φ, the Higgs mass term.
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three fermion generations. To reduce this number there are several symmetry assumptions
that can be adopted. Flavour symmetry assumptions are well motivated by observations
from low energy scale experiments, leading to one of the most commonly used assumptions,
the U(3)5 limit [42], which reduces the number of free parameters in the theory down to 93.

This global symmetry is defined by a relation between the weak (unprimed) and mass
(primed) basis of the Standard Model SU(2) doublets and singlets:

q = Uqq
′; u = Uuu

′; d = Udd
′; ` = U``

′; ν = Uνν
′. (2.30)

Each rotation defines a U(3) flavour group, creating a SM U(3)5 group defined as:

U(3)5 = Uq × Uu × Ud × U` × Uν . (2.31)

Note how the rotations in the neutrino and quark sectors define the existing PMNS
and CKM matrices in Standard Model.

By imposing symmetry under this U(3)5 group the flavour structure of the EFT oper-
ators can be factored out, transforming their corresponding Wilson coefficients into scalar
quantities and thus significantly reducing the number of free parameters in the theory.

2.3.2 Breaking Lorentz-invariance in SM: Standard Model Extension

One of the fundamental principles of the Standard Model is Lorentz invariance, stating
that physical laws should be independent of the relative orientation and velocity of an
experiment in spacetime. Lorentz transformations connect observables from experiments
oriented or boosted relative to one another and are position independent, meaning that
Lorentz invariance applies globally. A consequence of this is the invariance of any process
under the combined operation of charge conjugation C, parity P, and time reversal T, as
stated in the CPT theorem. The assumption of the invariance of the theory under Lorentz
transformations is strongly motivated theoretically and is accompanied by experimental
measurements indicating no significant Lorentz invariance violation in a broad range of en-
ergies and systems [43]. However, early work in string theory demonstrated that Lorentz
invariance could be spontaneously broken by nonzero VEVs of tensor fields [44], meaning
that experiments sensitive to the coupling between said fields and SM particles could in-
directly probe string interactions through the spontaneous breaking of Lorentz invariance.

In absence of experimental hints, the most conservative approach to test for Lorentz
invariance is using a model-independent framework based in Effective Field Theory, com-
monly known as the Standard Model Extension (SME) [45,46]. A general SME lagrangian
can be expressed as
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LSME = LSM + LLV (2.32)

where the action of the Lorentz invariance-violating term, LLV, must fulfil

|SLV| =
∣∣∣∣∫ LLV d4x

∣∣∣∣� |SSM| (2.33)

The terms introduced in the SME Lagrangian transform in an unconventional manner,
best understood by example. Consider a term in the QED sector,

Lb = −bµψ̄γ5γ
µψ, (2.34)

where bµ = (b0, bi) is a SME coefficient consisting of an array of four numbers. Since
the Lorentz index µ is contracted, Lb is invariant under transformations of the coordinate
system, known as observer transformations [45]. However, if the physical system ψ is
rotated or boosted, while leaving the coordinates unaffected (performing a particle trans-
formation), this SME term would vary, since the coefficients bµ remain the same under the
transformation, but the physical system ψ does not. The term bµ can be understood as a
background vector field sitting at every point in the vacuum. A schematic diagram of this
process can be found in Figure 2.3.

Figure 2.3: Schematics of the (top) observer (bottom) and particle transformations of a given Lb

term in the SME. The presence of a background vector field (red) results into a different interaction
with the particle (blue) under each transformation, changing the observation made in the reference
plane (black).

Drell-Yan production under SME

The calculation of the Standard Model Drell-Yan production of dilepton pairs from proton-
proton collision is presented in-depth in Section 3.1.2. In SME, additional interactions are
considered between the quark sector of the Standard Model and the background vector
fields, cµν

f , which can be represented as [47]:
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LLV = 1
2 ic

µν
q q̄γµDνq + 1

2 ic
µν
u ūγµDνu

1
2 ic

µν
d d̄γµDνd, (2.35)

where Dν is the gauge-covariant derivative and the fields correspond to the SU(2) quark
singlets and doublets in the SM:

q =

u
d


L

, u = (u)R, d = (d)R. (2.36)

New coefficients can be defined using those present in Equation 2.35:

cµν
U ≡ (cµν

q + cµν
u )/2, cµν

D ≡ (cµν
q + cµν

d )/2,

dµν
U ≡ (cµν

q − cµν
u )/2, dµν

D ≡ (cµν
q − c

µν
d )/2,

(2.37)

in such way that cµν
U −c

µν
D = dµν

U −d
µν
D . These coefficients are of particular relevance for

electroweak-mediated processes, since left- and right-handed fields will couple differently
to the SM gauge bosons [47]. The effect of the contributions coming from said operators
on the Z-boson production cross-section, calculated at LO and in the full fiducial phase
space, can be found in Figure 2.4. All contributions have a decreasing cross-section from
low interaction energies until approaching the Z-pole (Q = 91 GeV), where parity-violating
effects are maximal and d coefficients show the biggest sensitivity, with cross-section in-
creases of up to ∼ 3 pb for illustrative values of d33

U = 10−5.

When the relative position of the experiment a measurement takes place in changes with
respect to the orientation of the SME background fields, the cross-section of the processes
involved in the interaction with said fields will change, meaning that the cross-section will
become a time-dependent observable. See Section 14.1 for further explanations on the
implications of SME on neutral-current Drell-Yan production at the ATLAS experiment.

Figure 2.4: Evolution of the Lorentz-invariance violating contributions to the Z-boson production
cross section, σLV, against the energy scale Q. From Ref. [47].
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Chapter 3

Modelling of proton-proton
interactions

This Chapter provides a description of the phenomenological models used in the descrip-
tion of proton-proton interactions, as well as the steps involved in generating theoretical
predictions to compare our data to. Special emphasis is given to the phenomenology of
the Drell-Yan process, including an overview of the commonly used kinematic variables to
describe the process. Also presented is a summary of the main Monte Carlo generators of
relevance for this thesis.

3.1 Phenomenology of proton interactions

Protons are baryons with a complex structure, meaning that hadron-hadron collisions are
more complex to describe than lepton-lepton collisions in previous experiments like LEP,
as leptons are point-like particles.

The theories used to describe proton-proton interactions are the parton model and the
factorisation theorem. Partons, quarks and gluons found inside the proton, are considered
to interact individually, rather than both hadrons taking part in the collision interacting
as a whole. Thus, the probability of two protons colliding to produce a certain final state
X will be given by the probability of certain partons i and j, each found in each of the
interacting protons and carrying a fraction of said proton’s momentum, xi and xj , to
interact times the cross section σij→X . The cross-section measures the probability of a
given process ij → X to happen, which is calculated from the transition amplitude Aij→X

following Standard Model calculations [48]. The probability of finding a parton i inside
a proton carrying a momentum fraction x is given by the Parton Distribution Functions
(PDFs), fi(x). The total cross section for any given process can be then expressed through
the factorisation theorem:
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σpp→X =
∑
i,j

∫ 1

0

∫ 1

0
σij→X(xi, xj)fi(xi)fj(xj)dxidxj , (3.1)

where i and j loop through all possible parton combinations that can produce the final
state X. PDFs must fulfil the momentum sum rule imposed by momentum conservation,

∫ 1

0
dx
∑

i

xfi(x) = 1. (3.2)

The considerations presented so far do not include processes like those where a parton
emits or splits into a different one, which depend on the energy scale considered in the
process. When taken into account, the expression above results into:

σpp→X =
∑
i,j

∫ 1

0

∫ 1

0
[ σ̂0︸︷︷︸

LO

+ σ̂1αs(µ2
R)︸ ︷︷ ︸

NLO

+ σ̂2α
2
s(µ2

R)︸ ︷︷ ︸
NNLO

...](xi, xj , µ
2
F )×fi(xi, µ

2
F )fj(xj , µ

2
F )dxidxj ,

(3.3)
where µF is the factorization scale, which separates the QCD calculations into short-

and long-distance pieces [49] and µR is the renormalization scale, which defines the scaling
of αs that the partonic cross section σ̂ depends on. Note that the latter has been expressed
as an expansion in αs. The first term expansion is known as the leading order (LO)
contribution, with the following terms being referred to as next-to-leading order (NLO),
next-to-next-to-leading order (NNLO), and so on.

3.1.1 Measurement of the parton distribution function

While Standard Model predictions for the partonic cross-sections in Equation 3.3 can be
obtained, there is no way to obtain the non-perturbative PDF shapes in x and their per-
turbative evolution in Q2, which must be determined from data. Leading measurements
to this day still come from deep inelastic scattering (DIS) experiments, which use a lepton
to probe the inner structure of the proton. Most notably, we find the results of the H1
and ZEUS experiments [50] at the HERA ep accelerator. These experiments can be com-
plemented by fixed-target experiments or with the addition of LHC data to achieve higher
accuracy.

Recent determinations of PDFs, including up to NNLO QCD corrections, have been led
by different groups: MSHT [51], NNPDF [52], CT(EQ) [53] and HERAPDF [50], among
others. Most groups use the following input PDFs: xf = xa(...)(1− x)b, with as many as
28 free parameters. These are fit on the different available datasets, expanding the free
parameters around their best fit values and obtaining orthogonal eigenvector sets of PDFs
from linear combinations of different parameter variations. An example of the results ob-
tained by the MSHT group is shown in Figure 3.1, where the probability of finding each
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parton within the proton is shown against the proton momentum fraction x it carries.

Figure 3.1: Parton Distribution Functions of all proton constituents for the MSHT20 NNLO
PDFs [51] at Q2 = µ2

F = 10 GeV2 (left) and µ2
F = 104 GeV2 (right).

3.1.2 Dilepton production in proton-proton collisions

One of the cleanest reactions one can study as a product of proton-proton interactions,
which is also of particular importance for the work presented in this thesis, is the pro-
duction of lepton pairs emerging from the collision. This reaction is called the Drell-Yan
process (DY) [54], involving a qq̄ interaction, which produces a vector boson that decays
into two leptons, as displayed in Figure 3.2. Depending on the quarks involved in the
interaction the process can be mediated by a Z-boson, resulting into neutral-current (NC)
Drell-Yan, or a W±- boson, a process analogously named charged-current (CC) DY. The
processes can also be mediated by off-mass shell bosons which do not satisfy the usual
energy-momentum relationship (E2

V ∗ 6= p2
V ∗ +m2

V ∗). This is of particular relevance in the
case of neutral-current Drell-Yan since the quantum numbers of virtual photons (γ∗) are
indistinguishable from those of a Z-boson. The decay products of each process will differ
due to charge conservation, neutral-current DY resulting into a lepton-antilepton pair of
leptons (e, µ, τ) and charged-current DY decaying into a (anti)lepton-(anti)neutrino pair.

Neutral-current Drell-Yan kinematics

The measurement of the Drell-Yan process relies on the reconstruction of the dilepton
system produced in the vector boson’s decay, combining each of the leptons’ four-vectors,
pµ

`,1 and pµ
`,2, into the dilepton four-vector pµ

``. As shown in Section 3.1, each of the partons
that interact to produce the vector boson carries a fraction xi of the proton’s momentum,
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qi

q̄j

W±

p
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ν̄`/ν`

`−/`+
q
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p

p
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`+

Figure 3.2: Feynman diagram showing the leading order representation of charged- (left) and
neutral-current (right) Drell-Yan process.

pµ
p,i. The squared transferred momentum in the interaction, Q2, is expressed as:

Q2 =
(
x1p

µ
p,1 + x2p

µ
p,2

)2
= x1x2s, (3.4)

where s is the squared centre-of-mass energy of the proton-proton collision. In di-lepton
final states Q is equal to the dilepton invariant mass, m``, which expressed in terms of the
lepton’s four-vectors takes the form:

m`` =
√(

pµ
`,1 + pµ

`,2

)2
. (3.5)

If we define the rapidity y of a particle by:

y = 1
2 ln

(
E + pz

E − pz

)
, (3.6)

where pz is the component of the momentum along the beam axis, one finds that the
rapidity of the dilepton system is related to the momentum fraction carried by the initial
partons. At LO this relation can be expressed as:

x1,2 = m`` · e±y``

√
s

. (3.7)

A variable of particular relevance for the description of the Drell-Yan cross-section is the
decay angle of the lepton pair. It is useful to define the angles of the outgoing leptons with
respect to the incoming partons, but the latter may not necessarily align with the incident
proton directions. At leading order, the transverse momentum

(
pT =

√
p2

x + p2
y

)
of the

dilepton system is zero, matching that of the incoming protons. However, when introducing
higher order corrections (and therefore the presence of initial state radiation) this is no
longer true, making the laboratory frame a poor choice for most angular measurements. A
common approach to angular measurements in dilepton final states is to adopt the Collins-
Soper frame [55]. In this frame, the angles are defined with respect to the negatively
charged lepton’s momenta and a longitudinal axis that bisects the momentum vectors of
the incoming partons (defining the Z-boson rest frame), as shown in Figure 3.3. The z-axis
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3.1 Phenomenology of proton interactions

is defined by the direction of positive longitudinal Z-boson momentum in the laboratory
frame, the y-axis as the normal vector to the plane spanned by the parton’s momenta, and
the x-axis completes a right-handed Cartesian coordinate system with the aforementioned
axes. Of particular importance is the polar angle defined in the Collins-Soper frame, θ∗

CS,
which takes the expression:

cos(θ∗
CS) = p``

z

|p``
z |

2
(
p+

1 p
−
2 − p

−
1 p

+
2

)
m``

√
m2

`` +
(
p``

T
)2 , (3.8)

where

p±
i = 1√

2 (Ei ± pz,i)
(3.9)

and i = 1, 2 refers to the negatively- and positively-charged lepton respectively.

Figure 3.3: Illustration of the Collins-Soper reference frame. Angles defined with respect to the
negatively-charged lepton, `. See text for detailed definitions of the axes and angles. From Ref [56].

To increase the information extracted from data, measurements of the Drell-Yan cross-
section are usually performed in different kinematic variables, i.e. differentially, as pre-
sented in the measurement covered in Part III. At leading order, the Drell-Yan differential
cross-section in the previously presented kinematic variables, m``, y`` and cos(θ∗

CS), is given
by [57]:

d3σ

dm``dy``d cos(θ∗
CS) = πα2

3m``s

∑
q

Pq

[
fq(x1, Q

2)fq̄(x2, Q
2) + (q ↔ q̄)

]
, (3.10)

where α is the QED fine structure constant, s is the squared proton-proton centre-of-
mass energy, xi are the incoming parton momentum fractions, and fq (fq̄) are the PDFs
for each parton flavour q (anti-flavour q̄). The symmetry q ↔ q̄ term accounts for the
exchange of the parent protons of the quark and antiquark taking part in the interaction.
The rapidity dependence arises from the dependence of xi on m``, y`` and

√
s, as shown
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3 Modelling of proton-proton interactions

in Equation 3.7. The function Pq is given by:

Pq = e2
`e

2
q︸︷︷︸

γ∗ exchange

(1 + cos2 θ∗
CS)

+ e`eq
2m2

``(m2
`` −m2

Z)
sin2 θW cos2 θW

[
(m2

`` −m2
Z)2 + Γ2

Zm
2
Z

]︸ ︷︷ ︸
Z/γ∗ interference

[
v`vq(1 + cos2 θ∗

CS)2a`aq cos θ∗
CS

]

+ m4
``

sin4 θW cos4 θW

[
(m2

`` −m2
Z)2 + Γ2

Zm
2
Z

]︸ ︷︷ ︸
Z exchange

[
(a2

` + v2
` )(a2

q + v2
q )(1 + cos2 θ∗

CS) + 8a`v`aqvq cos θ∗
CS

]
.

(3.11)
The first term in the expression corresponds to pure virtual photon (γ∗) exchange, the

second arises from the interference of γ∗ and Z exchange and the third term corresponds
to pure Z boson exchange. The function depends on some of the fundamental parameters
of the particles involved in the interaction: mZ and ΓZ are the Z boson mass and decay
width respectively; ef are the fermion (leptons, `, and quarks, q) electric charges and af

and νf are the fermion axial and vector couplings:

af = T 3

vf = T 3 − 2ef sin2 θW ,
(3.12)

where T 3 is the fermion weak isospin (see Tables 2.1 and 2.2).

The DY invariant mass spectrum is characterized by a 1/m2
`` falling dependence from

the γ∗ term contribution and a Breit-Wigner peak resonance with center at mZ and width
ΓZ . The Z/γ∗ interference is negative at m`` < mZ and changes sign at m`` = mZ , value
above which the contribution is positive. Figure 3.4 shows the relative contribution of each
term as a function of m``.

Photon-induced dilepton production

The calculations presented so far have only taken into consideration the dilepton produc-
tion via qq̄ interactions. However, the quarks in the protons can radiate photons since they
are electrically charged, producing a photonic structure within the proton, besides the par-
tonic structure previously discussed. This creates an additional mechanism for dilepton
production, namely the photon-induced production mechanism, in which two photons scat-
ter to produce a lepton pair. The leading-order Feynman diagrams of the process can be
found in Figure 3.5. The contribution from this process becomes larger at high invariant
dilepton masses, resulting into an additional background for searches looking for heavy
resonances decaying into lepton pairs. Further details can be found in Part III.
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3.2 Monte Carlo simulation

Figure 3.4: Neutral-current Drell-Yan cross-section at N3LO, ΣN3LO, dependence in m`` at
√
s =

13 TeV. Shown also is the cross-section decomposition into the absolute value of contributions from
γ∗ and Z boson exchange and their interference. From Ref [58].
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Figure 3.5: Leading-order Feynman diagrams showing the photon-induced dilepton production.

The photon contribution in the proton is usually not accounted for in most PDFs used
at LHC. However, the increased importance of photon-induced processes at high energies
revived the interest in describing the photon contribution in the proton. Few examples
of PDFs taking into account this contribution are the MRST2004qed PDF set [59], the
NNPDF2.3qed PDF set [60] and the LUXqed17 PDF set [61].

3.2 Monte Carlo simulation

The complexity involved in proton-proton collisions makes the precise description of the fi-
nal states produced after the collision a very challenging task. Monte Carlo generators split
the processes between the initial and final states in different steps, as shown in Figure 3.6.
This Section provides an overview of the most relevant parts of these steps. In-depth
descriptions of the calculations involved in these processes can be found in Ref. [62].
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3 Modelling of proton-proton interactions

Figure 3.6: Schematic representation of a tt̄h event as simulated by an event generator. After
the hard interaction (big red circle), top and Higgs decays are simulated (small red circles). QCD
radiation emerges from the different products (red), and a secondary interaction takes place between
both protons (purple blob). The final state partons hadronize (light green blobs) and the resulting
hadrons decay (dark green circles). QED radiation is produced at all stages of the process (yellow).
From Ref [63].

3.2.1 Simulation steps

Matrix element calculation

The partonic cross section of the production of any final state ij can be calculated using
the matrix element (M), summing over all possible Feynman diagrams (F) participating
in the process. For example, the matrix element of a quark-antiquark interaction decaying
into a final state ij will be given by:

Mqq̄→ij =
∑

a

Fa
qq̄→ij (3.13)

This calculation, as presented in Section 3.1, can be performed with different levels
of precision. At leading order, Feynman diagrams like those presented in Figure 3.2 are
relatively simple and do not allow for many combinations, meaning that they can be
quickly calculated by most MC generators. Higher order calculations involving emission of
QED and QCD radiation, as well as the appearance of loops in the Feynman diagram (as
shown in Figure 3.7) are more challenging. Not only there are more diagrams that need
to be accounted for, but higher order effects lead to the appearance of divergences in the
calculations, which need to be correct for.
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3.2 Monte Carlo simulation

Figure 3.7: Feynman diagrams showing the neutral-current Drell-Yan production at NLO QED
(left) and NNLO QCD (right).

Parton showering

The matrix elements only account for interactions involving partons above some hard scale.
These can produce QED or QCD radiation (photons and gluons), which can further split
or radiate more particles. The modelling of the evolution of the partons, as well as all
their subsequent emissions is performed by parton shower algorithms. These calculations
are done in a step-by-step manner, calculating the probability of a parton to split using
the DGLAP equations [64], evolving the momentum transfer from the energy scale of the
hard process to the energy scale where the theory breaks down (ΛQCD). In each step, the
probability of evolving the process to a lower energy scale without radiating a gluon or
splitting is given by the Sudakov form factor, which accounts for virtual effects (coming
from quantum loops in the Feynman diagrams) and keep the probability of branching to
unity, which removes divergences from the calculation. Once the showering evolves to
the energy cut-off, all branching probabilities reach zero and partons become confined to
hadrons. Simulation also takes into account the decays of those hadrons produced which
are not stable, meaning they have a lifetime cτ < 10 mm.

Additional products from proton-proton collisions

In the previous discussion only the products from the main interaction between the colliding
protons have been presented. However, there processes in pp collisions that may produce
additional particles that can be detected in the final state together with the hard scatter
products. Some of those additional processes are listed below.

• Final state radiation: as explained in Section 3.1 the parton model assumes con-
stituents in the colliding protons to behave as free particles. However, gluon emissions
generate a large quantity of radiation by further splitting into qq̄ pairs. Analogously,
particles interacting electromagnetically may emit photons, which can further split
into electron-positron pairs which can contribute to the radiation detected together
with the hard scatter products. Radiation produced in this manner from particles
emerging in the showering and hadronisation processes is known as final state radi-
ation (FSR).
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3 Modelling of proton-proton interactions

• Initial shower radiation: while contributions from FSR can be estimated from
the evolution of the particles taking part in parton showering, initial state radiation
(ISR) must preserve the conservation of the momenta in the hard-scatter. Thus, the
development of ISR is calculated by evolving backwards from the scale of the hard
process to the initial partons [65,66].

• Underlying event: the matrix element calculated from the hard scatter of both
colliding protons only considers the interaction between one pair of partons for each
pp interaction. However, additional parton interactions typically take place alongside
the hard scatter. These additional parton interactions will undergo the same process
the main interaction, usually at a lower energy scale, producing what is known as
underlying event.

• Pile-up: all interactions considered so far were consider to originate from the colli-
sion of the same proton-proton pair. However, to achieve the highest instantaneous
luminosity as possible and produce a more efficient data-taking, LHC collides bunches
of protons (see Chapter 4). Due to the density of these proton bunches, it is likely
that more than one proton-proton collision occurs upon the bunches crossing. Back-
ground particles coming from additional proton collisions other than that producing
the hard scatter of interest are referred to as pile-up. This behaviour is modelled
in Monte-Carlo by overlaying multiple inelastic pp collisions obtained with Pythia
8 [67]. The changing pile-up conditions observed at LHC due to different bunch den-
sities used in different data-taking periods is accounted for by reweighing the events,
using pile-up profiles measured in the observed data.

Detector simulation

All products obtained in the steps previously explained are considered to be an ideal repre-
sentation of the behaviour of particles produced in the proton-proton collisions, referred to
as truth-level. These are in contrast with what are known as reconstructed-level particles.
The latter are the result of the outgoing particles interacting with our detector, which
smears their properties such as momentum or energy, due to the detector’s resolution ef-
fects. This is simulated using a toolkit called Geant4 [68, 69], which uses a complete
description of the detector and models the particles’ trajectories through it and all their
subsequent interactions.

3.2.2 Event generators

There is a plethora of Monte-Carlo generators available to describe the processes taking
place in LHC collisions. This Section provides a description of those used in the results
presented in this thesis.
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Herwig [70, 71] is a general-purpose generator which can compute hard processes at
LO and NLO with a special emphasis on providing an accurate simulation of QCD radia-
tion. This generator focuses on providing a full description of the showering, hadronization
and decay processes that take place after the hard scatter.

Pythia [67] is another generator with a focus on a precise modelling of QCD and QED
radiation and showering processes, where approximations used are most accurate when
describing small angle radiation. Additionally, Pythia uses a model for hard and soft
processes which allows for the simulation of underlying activity. Together with Herwig, it
establishes the benchmarks for describing LHC final states, usually interfaced with event
generators that allow for higher order matrix element generation such as Madgraph or
Powheg.

Madgraph [72] is an event generator used to compute hard scattering processes at
LO and NLO in QCD perturbation theory. The introduction of one loop corrections, as
well as the need to remove double-counting with the parton shower emissions, causes the
appearance of MC events which can be positive or negatively weighted, although final dis-
tributions will always be positive. The output from this tool are ASCII files containing
the 4-vectors of the particles involved in the hard scatter, which can then be processed by
other tools such as Herwig or Pythia.

Powheg [73, 74], rather than an event generator, is a prescription used to interface
NLO calculations with parton shower generators. However, the name usually refers to a
framework that implements this methodology, PowhegBox [75]. This framework is, sim-
ilarly to Madgraph, an event generator capable of computing NLO processes which can
be later on interfaced with showering and hadronization algorithms. The main difference
between both generators resides in the event weights they produce, stemming from the way
they treat sub-leading terms in the calculations. Unlike Madgraph, Powheg (POsitive
Weight Hardest Emission Generator) tends to veto those events corresponding to emissions
that are not allowed, instead of removing the overlap between matrix element generation
and showering by assigning negative weights to the events.

Sherpa [63,76] is a generator which unifies all components needed for the description of
scattering events taking place at LHC, from matrix element calculation to the subsequent
steps. This framework focuses on the best description of final states with large num-
ber of isolated jets thanks to the implementation of the MEPS@NLO [77–79] prescription,
allowing for matching and merging multiple NLO matrix elements to showering algorithms.

EvtGen [80] is a framework used for an accurate description of bottom and charm

33
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hadrons, allowing for interfacing with other parton showers such as Pythia or Herwig.

3.3 Fixed-order calculations

This Section introduces the tools used for accurate theoretical prediction of the Drell-Yan
production cross-section, which is of special interest for this thesis.

FEWZ [81–83] (Fully Exclusive W and Z production) is a framework that allows for
the calculation of the fully-differential production cross section of the charged- and neutral-
current Drell-Yan processes. It can include corrections at NNLO QCD perturbation theory
and, in the case of neutral-current DY, it also allows for NLO electroweak corrections,
where calculations can be performed with fiducial kinematic requirements. FEWZ is used
to produce the theory predictions used in Part III.

VRAP [84] is another simulation code providing predictions for double-differential
cross sections of DY processes at NNLO QCD as a function of dilepton invariant mass and
rapidity, with the drawback of not having NLO electroweak corrections available. VRAP
was used to calculate the correction k-factors, used to correct to NNLO QCD the Monte-
Carlo simulations, initially calculated at NLO, used in Part III.

Fixed order predictions exist at N3LO for the neutral-current Drell-Yan production [85],
showing a ∼ 2.5% difference with respect to NNLO predictions at m`` = 150 GeV and < 1%
differences at higher dilepton invariant masses. However, a consistent application of such
predictions would require N3LO PDF sets. Such sets are in early stages of development [86],
limiting the predictions at NNLO accuracy.
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Experimental setup
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Chapter 4

The Large Hadron Collider

The Large Hadron Collider (LHC) [87] is a hadron synchrotron located at the European
Organisation for Nuclear Research (CERN) in Geneva, Switzerland. It was designed to
be the leading particle accelerator in the world, producing proton-proton collisions with a
center of mass energy (

√
s) of up to 14 TeV to probe regions of the kinematic phase space

previously inaccessible, thus enabling discoveries of new physics phenomena. The accelera-
tor operates mainly in two regimes, depending on what particles are used in the collisions:
proton-proton (pp) collisions and lead-lead (Pb-Pb) collisions, as well as a combination of
both types of particles. Lead ion collisions are used to study the deposition of large energies
in what, in terms of QCD scales, are considered as large spatial regions, providing a unique
environment to analyze emerging QCD properties such as the production of quark-gluon
plasma [88]. The results presented in this thesis will exclusively focus on the analysis of
proton-proton collision data.

Section 4.1 provides an overview about particle acceleration at CERN, explaining how
the LHC center of mass energy is achieved. The main characteristics of the collisions taking
place at the facility are presented in Section 4.2 and a brief summary of the experiments
studying LHC collision is discussed in Section 4.3.

4.1 Accelerator complex

The world-leading energies achieved at the LHC are the result of an acceleration process
that takes place in a chain of pre-accelerators, as well as the LHC itself. Some of the
pre-accelerators previously served for beam delivery to older experiments. A schematic
view of the acceleration process is shown in Figure 4.1.

The proton beam preparation begins by accelerating negative hydrogen ions (H−, hy-
drogen atoms with an additional electron) in the linear accelerator 4 (Linac4). These are
fed to the Proton Synchrotron Booster (PSB), in a process where the atoms are ionized,
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4.1 Accelerator complex

Figure 4.1: Schematic view of the CERN accelerator complex, showing the different accelerators
used for proton beam production, as well as the location of the various experiments in the facility.
From Ref. [89].

stripping the two electrons and leaving a beam of protons. The Booster accelerates the
protons to 2 GeV and injects them into the next accelerator, the Proton Synchrotron
(PS), which ramps up the energy and splits the beams into packets known as bunches,
which are fed into the Super Proton Synchrotron (SPS). This accelerator brings the beam
bunches to energies of up to 450 GeV and transfers them into the two main pipes within the
LHC ring, one circulating clockwise and the other anti-clockwise. Protons in the bunches
are guided through the 27 km circumference by 1232 super-conducting niobium-titanium
(NbTi) dipole magnets, and are accelerated up to 6.5 TeV using 8 radio-frequency cavities
per ring. Quadrupole magnets are used to focus the bunches and keep the protons within
them as confined as possible before injecting the bunches at the collision points inside the
main detectors (see Section 4.3) with a total center of mass energy of 13 TeV in Run 2.
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4.2 LHC collision conditions

The main two conditions that define the quality of the physics produced by a particle
collider are the beam energy it can reach and the amount of produced collisions. Up to
2022, the LHC accelerated proton beams up to 6.5 TeV which set a world-high center of
mass energy for proton-proton collisions. The number of collisions is measured by the
instantaneous luminosity, L, which is directly related to the event rate (R) of a certain
physics process depending on its cross section, R = L · σ. The instantaneous luminosity
delivered in a collider is parametrized by a series of values which can be accurately measured
in the accelerator:

L =
N2

pnbfrγ

4πεnβ∗ F , (4.1)

where Np is the number of protons per bunch, nb is the number of bunches per beam,
fr is the revolution frequency of the synchrotron (∼ 11.2 kHz [90] in the case of the LHC),
γ is the relativistic factor, εn is the transverse beam emittance and β∗ is the beta function,
which describes the beam profiles upon colliding. The factor F is a geometric luminosity
reduction which takes into account the angle in which bunches cross when interacting at
the crossing point.

The total number of events for a certain process X will be given by the total integrated
luminosity, Lint, recorded over the total time of data taking:

Npp→X = σpp→X · Lint = σpp→X ·
∫
L · dt. (4.2)

Considering that the total number of events of a given process is a unit-less quantity,
the integrated luminosity is measured in units of inverse cross section, typically fb−1 in
Run 2 of LHC. The methodology used to measure the luminosity recorded at the ATLAS
experiment is further explained in Section 5.6.

Another key factor at high luminosity values at the LHC is the number of simultaneous
collisions taking place in each bunch crossing, also known as pile-up. It is determined by
the center of mass energy of the beam that the total pp inelastic cross-section depends
on, together with other beam characteristics such as size, profile or number of protons
per bunch and time bunch spacing, which may increase the likelihood of multiple proton
collisions to occur.

Table 4.1 summarizes some of the key beam parameters recorded during Run 2 oper-
ation of the LHC, compared to the design values of such. A full detailed breakdown of
the LHC operation during Run 2, including all alterations to beam conditions across the
different years of data-taking, can be found in Ref. [90].
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Parameter Design 2015 2016 2017 2018

Energy [TeV] 7 6.5 6.5 6.5 6.5
Bunches per ring 2808 2244 2556∗ 1916∗ 2556∗

Bunch spacing [ns] 25 25 25 25 25
Bunch population Nb [1011 p/b] 1.15 1.15 1.2 1.25∗ 1.1

Transverse emmittance εn [mm·mrad] 3.75 3.5 2.1∗ 2.3∗ 2
β-function β∗ [m] 0.55 0.8 0.4 0.4∗ 0.3∗

Half crossing angle [µrad] 142.5 145 150∗ 150∗ 160∗

Peak instantaneous luminosity [1034 cm−2s−1] 1 0.55 1.74∗ 1.9∗ 2.1
Maximum pile-up µ ∼20 15 45 80 60

Number days of physics operation n.a. 88 146 140 145
Integrated luminosity delivered [fb−1] n.a. 4.2 39.7 50.6 66

Integrated luminosity recorded by ATLAS [fb−1] n.a. 3.2 33.0 44.3 58.4

Table 4.1: Overview of the LHC beam conditions for Run 2, from Ref. [90]. Variables labelled with
a star (∗) changed across data-taking over the year, see Ref. [90] for more details. Further details
on the ATLAS luminosity measurements can be found in Section 5.6.

4.3 LHC experiments

The LHC creates an exciting environment for particle physics analyses, with many ex-
periments investigating different processes taking place at the collider. Out of these, four
experiments stand out, each of them located at one of the main underground interaction
points (IP) of the LHC where bunch collisions actually take place. ATLAS (full overview
provided in Chapter 5) and CMS (Compact Muon Solenoid) [91] are general purpose detec-
tors, aiming to study the largest range of physics possible, with each of them independently
working and serving as a confirmation of each other’s possible discoveries. The ALICE [92]
and LHCb [93] collaborations have detectors specialised in studying specific phenomena of
the collisions taking place at the LHC, with the former focusing on the analysis of heavy
ion collisions and the latter focusing on physics involving heavy quarks in the forward
region.

However, the physics programme at the LHC goes beyond the main experiments afore-
mentioned. The TOTEM experiment [94] consists of a series of detectors spread across
half a kilometre around the CMS interaction point, measuring protons staying intact and
scattered at small angles in the forward region of the CMS detector. The LHC-forward
(LHCf) experiment [95] is divided in two parts, each sitting at either side of the ATLAS
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collision point. Similarly to TOTEM, LHCf studies neutral particles produced at nearly
zero degrees to the proton beam direction, in the case of LHCf escaping the ATLAS ex-
periment instead of CMS. This offers a way to access the energy region of cosmic ray
interactions under a controlled laboratory environment. The MoEDAL detector [96] is an
extension to the LHCb detector and focuses on the search for magnetic monopoles as well
as highly ionizing Stable Massive Particles (SMPs). The FASER experiment [97] is the
most recent one in the LHC physics programme and it focuses on the detection of light
and weakly interacting particles produced in the collisions taking place at ATLAS.
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Chapter 5

The ATLAS experiment

The ATLAS (A Toroidal Lhc ApparatuS) experiment [98] is one of the four main experi-
ments at the facility. The experiment consists of a series of sub-detector systems arranged
in symmetrical cylindrical layers around the beam axis. Figure 5.1 shows a schematic view
of the ATLAS detector.

Figure 5.1: Cut-away view of the sub-detectors in the ATLAS experiment. See text for further
details. From Ref. [98].

The ATLAS coordinate system as well as a description of some commonly used variables
are presented in Section 5.1. Sections 5.2 to 5.4 describe each of the sub-detectors found
in the experiment. The trigger system that rules ATLAS data-taking is presented in
Section 5.5 and Section 5.6 describes the luminosity monitoring systems the experiment
uses to analyze the amount of data recorded by the detector, as well as the methodology
followed to measure this quantity.
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5 The ATLAS experiment

5.1 ATLAS coordinate system

ATLAS uses a right-handed coordinate system where the z-axis is oriented along the beam
pipe, the positive x direction pointing towards the center of the LHC and the positive
y-direction pointing to the surface. The origin of all axes is set at the nominal interaction
point at the center of the detector.

The spherical coordinates in the experiment are defined with the angles φ and θ, where
φ is the azimuthal angle around the beam pipe and θ is the polar angle between a particle’s
three-momentum, −→p , and the positive direction of the z-axis, as shown in Figure 5.2. The
polar angle, ranging θ ∈ [0, π], is commonly transformed into the pseudorapidity, η:

η = − ln
(

tan θ2

)
, (5.1)

which is zero when θ is perpendicular to the beam-axis. The angular separation between
objects in ATLAS, ∆R, is usually expressed in the φ− η-plane as:

∆R =
√

(∆φ)2 + (∆η)2. (5.2)

The transverse component of any vector, i.e. −→pT, is defined as its projection in the x-y-
plane, transverse to the beam axis. Given the high boost along the z-axis that most LHC
collison products have, the energies and momenta of final states are often more conveniently
expressed in terms of their transverse component and their pseudorapidity.

(a) (b)

Figure 5.2: Diagram of the ATLAS coordinate system showing (a) the x-y-plane and (b) the y-z-
plane. The illustration includes the definitions of the azimuthal and polar angles, φ and θ, as well
as some sample values of the pseudorapidity η.
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5.2 Tracking system

The ATLAS detection of charged particle tracks occurs at the Inner Detector [99], the
subsystem closest to the interaction point consisting of three separate sub-detectors: the
Pixel detector, the Semiconductor Tracker (SCT) and the Transition Radiation Tracker
(TRT). The subsystem is immersed in a 2 T magnetic field, generated by a supercon-
ducting solenoid magnet that bends the particles trajectories, allowing to determine their
momentum by measuring the radius of curvature of the trajectory, ρ. The transverse mo-
mentum (pT) of a particle with electric charge q travelling through a magnetic field B can
be calculated as:

pT = B · q · ρ. (5.3)

A precise measurement of the particle’s trajectory and its bending radius results in a
better momentum resolution. Figure 5.3 shows the schematics of the ATLAS Inner Detec-
tor.

(a) (b)

Figure 5.3: Illustration of the ATLAS Inner Detector. (a) Cut-away (longitudinal) view of the
subsystem. (b) Close-up (cross-sectional) view of the three sub-detectors used for particle tracking
in the barrel region. From Ref. [98].

The Pixel and SCT detectors are silicon-based, meaning that tracking is performed by
measuring the charge deposited in the depletion zone created by the junction of a p-doped
and n-doped silicon. Such junction creates a zone free of holes and free electrons, expanded
by the application of a bias voltage. Upon a charged particle passing through the depletion
zone, electron-hole pairs are created, drifting in different directions due to the bias voltage
applied on the sensor. This drift then creates a measurable pulse on the electrodes of the
detector with which we can locate the passing of a particle.

The Pixel detector is the closest detector to the proton beam. It is made of 1744 mod-
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ules, 1456 located in three barrel layers and 288 in three disks on each end, as displayed
in Figure 5.3a. Each module contains 46080 pixels, each of them with a typical size of
50× 400 µm2 and thickness of 250 µm. In Run 2 an additional system was integrated into
the sub-detector, the Insertable B-Layer (IBL) [100]. The IBL consisted of an additional
224 modules placed between the innermost layer of the barrel and the beampipe, made of
pixels of a reduced pitch size of 50 × 250 µm2 and a thickness of 200 µm. The increased
spatial resolution helps the tracking at increased particle fluences and improves the quality
of the track measurements.

The SCT is the sub-detector surrounding the Pixel detector, providing further mea-
surements that improve the precision of the track’s momentum and path determination. It
comprises 4088 modules arranged in four cylindrical layers in the barrel and two endcaps,
each containing nine disks. The modules consist of pairs of strip silicon sensors, measuring
along the R − φ direction in the barrel modules or radially in the end-cap modules. The
mean pitch of the strips in all modules is approximately 80 µm. Together with the Pixel
detector, they cover the region |η| < 2.5 with a precision of up to 10 µm (R − φ plane)
and 115 µm (z-axis) in the barrel region, and 10 µm (R−φ) and 115 µm (R) in the end-caps.

In the outermost region of the Inner Detector lies the TRT, a straw tube tracker con-
sisting of 4 mm drift tubes. The inner layer of each tube is made of transition radiation
material and gold-plated tungsten wire runs through the core of the tube, acting as an
anode. The tubes are filled with Xenon- or Argon-based gas mixtures, which is ionised
by the transition radiation emitted when a charged particle crosses the dielectric bound-
aries of the straw. Since the probability of emission of transition radiation depends on the
particle’s Lorentz factor γ = E/m, this sub-detector provides additional information to
distinguish electrons from pions.

Tracks detected in the ATLAS Inner Detector are characterized by a set of parameters
that are also used as criteria for particle identification, as well as information on the track’s
quality, helping to distinguish tracks originating from cosmic rays or secondary vertices.
These parameters are known as perigee parameters and include:

• The charge/momentum ratio of the particle, q/p.

• The z-coordinate of the track at the point of closest approach to the beam-axis, z0.

• The impact parameter, d0, the distance of closest approach to the beam-axis in the
x-y-plane. This measurement is usually used to filter low-quality or non-prompt
tracks, using the uncertainty on the impact parameter, σ(d0), to construct the d0

significance: dsig
0 = |d0|/σ(d0).
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• The polar angle between the particle’s momentum and the z-axis in the x-z-plane,
θ0.

• The azimuthal angle between the particle’s pT and the x-axis, φ0.

5.3 Calorimeter systems

The ATLAS calorimeter system [101–103] measures the energy of any interacting parti-
cles by absorbing them. A schematic view of this subsystem is shown in Figure 5.4. The
calorimeters cover a region of |η| < 4.9 for the full φ range [0, 2π]. The depth of the system
is optimised to best contain all showers, covering 20-30 electromagnetic radiation lengths
(X0), defined as the average distance a particle has to travel through the material to re-
duce its energy by a factor 1/e, and 11 λ hadronic interaction lengths. The principle of
detection is the alternation of layers of high-density material, which will prompt particle
showers upon interaction with the material, and layers of active material, which measures
the deposited energy from said showers. Calorimetry at ATLAS is divided mainly into
two subsystems, depending on the particle type each system is optimized to detect: the
Electromagnetic (EM) Calorimeter and the Hadronic Calorimeter.

Figure 5.4: Schematic layout of the ATLAS calorimeter system. See text for further details. From
Ref. [98].

The EM calorimeter (ECAL) uses Liquid Argon (LAr) for its active layers and is di-
vided into different parts: one covering the range |η| < 1.475, the barrel region and two
end-cap components which cover the 1.375 < |η| < 3.2 region. Over the η region match-
ing the inner detector, the EM calorimeter presents a finer granularity aimed at precision
measurements of electrons and photons. Moreover, this region of the calorimeter is divided
into three sections in depth, while the rest of the regions only include two sections in depth.
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Upon interacting with the ECAL, incoming electrons and photons will create electromag-
netic showers via bremsstrahlung (photon radiation from electrons) and pair production
(photon conversion into e+e− pairs). These showers then ionise the liquid argon layers
such that the energy of the original particles can be reconstructed.

The hadronic calorimeters use a mix of liquid argon and iron and scintillator tile
technologies. The system itself is divided into three different parts: the tile calorimeter
(HCAL), the LAr hadronic endcap calorimeter (HEC) and the LAr forward calorimeter
(FCal). The tile calorimeter is located directly outside the EM calorimeter, in the region
|η| < 1.7, further divided into a central barrel and two extended barrel, as seen in Fig-
ure 5.4. Charged shower particles in the scintillating tiles release photons that are guided
through optic fibres and are read by photomultiplier tubes. Both the HEC and the FCal
use LAr as their detection technology, working in a similar manner to the ECAL. They
cover the 1.5 < |η| < 3 and 3.1 < |η| < 4.9 regions respectively.

The energy resolution, σ(E), of the calorimeter systems is given by the formula:

σ(E)
E

= a√
E [GeV]

⊕ b, (5.4)

where a is a stochastic factor that parametrizes the shower evolution and the constant
term b quantifies the calorimeter response. The energy resolution of each of the different
subsystems can be found in Table 5.1.

Calorimeter Energy resolution

ECAL 10.1√
E
⊕ 0.2 %

HCAL Barrel 52.0√
E
⊕ 3.0 %

HCAL Endcap 94.2√
E
⊕ 7.5 %

Table 5.1: Energy resolution of the different ATLAS calorimeter systems. HCAL Barrel refers to
the combined performance of the tile and LAr calorimeters in the region. From [98].

5.4 Muon system

While the ATLAS calorimeters capture most particles produced in proton-proton collisions,
muons are the only interacting particles that pass, leaving only a small amount of energy
due to ionisation. The ATLAS Muon Spectrometer (MS) [104] is the sub-detector respon-
sible for the detection of the muons and precisely measure their momenta. An overview of
the system can be found in Figure 5.5. It is based on four different detection technologies:
Monitored Drift Tubes (MDTs), Cathode Strip Chambers (CSCs), Resistive Plate Cham-
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bers (RPCs) and Thin Gap Chambers (TGCs).

Figure 5.5: Schematic layout of the ATLAS muon detection system. See text for further details.
From Ref. [98].

The reconstruction is based on the detection of muon tracks deflected in the toroid
magnets allowing to measure their momentum independently of the inner detector track
reconstruction. In the barrel region, these tracks are measured in chambers arranged in
three cylindrical layers around the beam axis, while the transition and end-cap regions
host their chambers in three planes perpendicular to the beam. MDTs and CSCs provide
the precision tracking measurements with a combined resolution of 35 µm in the z-axis,
40 µm in R and 5 mm in φ, covering a combined range of |η| < 2.7. RPCs and TGCs are
optimised for time resolution over spatial resolution, to provide fast inputs to the trigger
system. RPCs measure the φ and z components of the tracks with a spatial resolution of
1 cm and a temporal resolution of 1 ns, while TGCs provide a spatial resolution of 2-3 mm
in R and 3-7 mm in φ with a temporal resolution of 4 ns.

The magnetic field that bends the muon tracks is provided by the toroidal magnet
system, composed of three subsystems of eight coils which turns are assembled radially
and symmetrically around the beam-axis. The barrel toroid provides a 0.5 T magnetic
field in the range |η| < 1.4, while the end-cap toroids provide 1 T in the 1.6 < |η| < 2.7.
The bending power is lower in the transition region between both magnets (1.4 < |η| < 1.6),
where the fringe field of one magnet cancels the bending power of the other.
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5.5 Trigger and data acquisition system

As presented in Section 4.2, collisions at LHC took place every 25 ns during Run 2, at a
rate of 40 million collisions per second, which makes the storage of every event not possible
considering the bandwidth and storage limitations. Moreover, most proton-proton colli-
sions only result into low pT final states with a rate many orders of magnitude higher than
the rarer high pT processes of greater interest. The ATLAS Trigger and Data Acquisition
system [105, 106] is therefore optimised to identify events containing high pT objects typ-
ically selected in physics analyses, while maintaining a sustainable data acquisition rate
that abides by bandwidth constraints. The trigger system has different levels, each of them
refining the decisions made at the previous level and, if necessary, applying additional se-
lection criteria. An overview of the trigger system used in Run 2 at ATLAS can be found
in Figure 5.6.

Figure 5.6: Schematic overview of the ATLAS Trigger and Data Acquisition system in Run 2. See
text for further details. From Ref. [105].

The first level of the trigger system consists of a hardware-based trigger (Level-1 or
L1), using custom electronics to analyse coarse data of the calorimeter (L1-Calo) and
muon (L1-Muon) systems. The information provided by both systems is used to construct
Regions of Interest (ROIs) in the η − φ plane containing potential physics objects. The
calorimeter data is used to identify leptons, photons, jets or transverse missing energy,
Emiss

T , while the MS provides information on muon candidates. The decisions made by the
L1 trigger take place less than 2.5 µs and lowers the event recording rate down to ∼100 kHz.
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Once an event is accepted by the L1 system, a full detector readout is performed and
the data is temporarily buffered before being passed to the next trigger system, the High-
Level Trigger (HLT). This software-based level combines the coarse ROIs provided by the
L1 system with the readout containing the information recorded by ATLAS in full gran-
ularity to make an improved event selection. This improved selection determines whether
the event is stored, at an even further reduced recording rate of 1.2 kHz, after which the
data readouts are sent to CERN’s storage facilities and processed to allow for offline anal-
ysis.

5.6 Luminosity determination

The determination of the number of events of a given process that take place at ATLAS
requires for a precise measurement of the integrated luminosity recorded by the experiment.
The number of events of a certain process, Npp→X , can be expressed as:

Npp→X = Lint · σpp→X , (5.5)

where σpp→X is the process cross-section (see Section 3.1 for more details) and Lint is
the integrated luminosity, the time integral of the instantaneous luminosity registered at
the experiment. A precise measurement of this quantity directly translates to the precise
measurement of production cross-sections at the experiment and is of great importance for
the normalisation of background processes in searches for new physics.

Instantaneous luminosity is usually expressed at the LHC in units of cm−2s−1, while
units for integrated luminosity remove the time dimension. However, the latter is com-
monly expressed instead in inverse barn, b−1, with 1 b=1028 m2. Thus, it is common for
integrated luminosities at the LHC to be discussed in units of pb−1 and fb−1.

5.6.1 Luminosity from collider parameters

The instantaneous luminosity delivered to ATLAS upon two bunches colliding, Lb, is re-
lated to the collision parameters by

Lb = frn1n2
2π
∑

x

∑
y

, (5.6)

where fr is the LHC revolution frequency (∼ 11.2 kHz [90]) and n1 and n2 are the
number of protons in each of the bunches. The width and length of the bunches in the
x− y plane is given by the parameters

∑
x and

∑
y. The value of Lb can also be expressed

as:
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Lb = fr · µb

σinel.
, (5.7)

where µb is the mean number of inelastic proton collisions per bunch crossing and σinel.

is the pp inelastic cross-section. When summed over all colliding bunches, one retrieves
the expression for the total instantaneous luminosity, L:

L =
nb∑

b=1
Lb = nbfrµ

σinel.
, (5.8)

where µ = 〈µb〉 is the mean number of interactions per bunch crossing, averaged across
all bunch pairs. Since the measurement of σinel. has a relative uncertainty up to 3.7% [107]
and µ cannot be directly measured, it is useful to re-define the value of µ to be proportional
to an arbitrary quantity µvis that represents the mean rate of production of some observable
quantity. The two will relate as,

µ = σinel.
σvis

· µvis, (5.9)

such that Equation 5.8 can be rewritten as:

L = nbfrµvis
σvis

. (5.10)

The quantity σvis represents the cross-section of the production of the observable of
choice, which will generally be unknown and will require calibration to obtain its value.

5.6.2 ATLAS baseline luminosity measurement

The baseline luminosity measurement at ATLAS is performed using the Cherenkov In-
tegrating Detector (LUCID) [108]. LUCID consists of two detectors sitting close to the
beam at z = ±17 m from the interaction point, covering 5.6 < |η| < 6. Each of the
detectors is comprised by 20 aluminium pipes filled with gas arranged around the beam
line. Inelastic pp collisions produce forward particles which interact with the gas inside the
pipes to produce Cherenkov radiation. The Cherenkov light is read by PMTs and will be
directly proportional to the number of pp collisions taking place in ATLAS, representing
the quantity µvis in Equation 5.10.

The calibration of σvis for LUCID [109] is obtained in special LHC runs every year
using van der Meer (vdM) scans [110]. In these runs the beam conditions are changed
with respect to nominal operation, displacing the beams through each other so that the
overlap between both beams varies through the scan. This allows to accurately measure
the beam’s spatial spread (

∑
x and

∑
y). Combined with additional measurements of the

bunch populations (n1 and n2), σvis is calculated as
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σvis = µmax
vis

2π
∑

x

∑
y

n1n2
, (5.11)

where µmax
vis is the interaction rate when the overlap between both bunches is maxi-

mal. Since the vdM scans are performed under beam conditions that do not represent the
nominal ATLAS data-taking conditions, additional corrections to the luminosity recorded
by LUCID are obtained using other luminometers to transfer the calibration to standard
beam conditions. These alternative luminometers include: track-counting, which uses the
number of inner detector tracks to obtain µvis; TILE, measuring µvis from PMT signals in
the scintillating layers of the hadronic calorimeter; and EMEC and FCal, which retrieve
µvis from LAr gap currents in the calorimeter systems.

The total ATLAS luminosity recorded during Run 2, provided by correcting the mea-
surements by LUCID for the aforementioned effects, was found to be 140 fb−1 [109] with a
total uncertainty of 0.83%. A summary of some luminosity related parameters is provided
in Table 5.2.

Data period No. of ATLAS runs Typical µ Lint [fb−1] Total Unc. [%]

Run 2 582 33.7 140.1 0.83

2015 64 13.4 3.24 1.13
2016 144 25.1 33.4 0.89
2017 183 37.8 44.3 1.13
2018 191 36.1 58.5 1.10

Table 5.2: Summary of the ATLAS luminosity estimate results for pp collision data-taking at√
s = 13 TeV during Run 2, from [109]. The grouping of the 2015 and 2016 data periods is

shown as the corresponding uncertainty is calculated for both periods combined. The number of
ATLAS runs containing at least one data-taking segment passing the quality criteria for physics
analysis [111] is also presented.
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Chapter 6

Particle reconstruction and
calibration

Particles produced as a result of the pp collisions taking place at the LHC are observed as
signals detected by the different subsystems described in Chapter 5. These signals must be
processed to identify the physics objects which analyses seek to study. The reconstructed
particles will consist of a four-vector comprising the particle’s momentum and energy and
certain criteria that allow for the correct identification of the physics object, distinguishing
the genuine particles from those that leave similar signatures in our detector. The work
described in this thesis focuses on the analysis of charged leptons, electrons and muons.
This Chapter provides an overview of the methods employed to reconstruct and identify
charged leptons at the ATLAS experiment.

6.1 Particle tracks and Primary Vertices

Charged particles are identified by reconstructing their tracks from the hits produced in
the ID. As described in Section 5.2, tracks in ATLAS are characterized using five param-
eters: q/p, z0, d0, θ and φ. Tracks are built by joining space-points in the Pixel, SCT
and TRT detectors, starting from seeds based on three unique space points with which an
initial trajectory is estimated. If the trajectory is compatible with additional space points,
it is extrapolated through the pixel and SCT detectors to form a track candidate. These
are assigned a score based on quality criteria (such as the presence of clusters in detector
layers, shared clusters with other tracks or quality of the extrapolation fit) and fed to a
neural network to distinguish between tracks belonging to a same cluster [112]. Once a
track has been identified in the silicon detectors it is then extended to matching clusters
in the TRT and then refit for an improvement on the resolution of the track parameters.
More details on the track reconstruction can be found in Ref. [113].

Once all tracks in an event have been reconstructed, one can identify common intersec-
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tion points (vertices) which correspond to proton-proton interactions (primary) or decays
of long-lived particles (secondary). The identification of primary vertices is performed us-
ing an iterative reconstruction algorithm [114], starting from the identification of an initial
seed as the mode of the z0 value of all tracks in the event. Using this seed as a starting
estimate, the best vertex position is found by down-weighting tracks less compatible with
the vertex and re-computing its position. Once the position of the vertex converges, the
tracks that have not been used in its computation are used to identify additional vertices
until no tracks are left in the event.

An event of interest is typically defined as that originating in the primary vertex in
the event with the highest sum of squared transverse momentum of its associated tracks,∑N track

i p2
T,i, containing a minimum of two tracks with pT > 500 MeV. Any additional

vertex passing the requirement of two tracks above the momentum threshold is considered
to be an additional primary vertex, originating from simultaneous pp collisions (pileup).
Events may also contain secondary vertices, displaced from primary vertices, meaning that
they originated from the decays of long-lived particles.

6.2 Electrons

6.2.1 Electron reconstruction

Electrons are identified as a clustered energy deposit matched to a charged-particle inner
detector track, as shown in Figure 6.1. Due to the coverage of the inner detector, electrons
can only be reconstructed if found in the range |η| < 2.47†. Moreover, as described in
Section 5.2, the calorimeter presents a transition region (1.37 < |η| < 1.52) between the
barrel and end-cap modules commonly referred to as the “crack region”, in which resolution
worsens. Electrons found in this region are typically not used for precision physics analysis.

The matching between ECAL clusters and inner detector tracks presents a major issue,
since ATLAS contains a lot of material between both subsystems which, when being tra-
versed by an incoming electron, lead to the production of photons from bremsstrahlung.
Since photons and electrons undergo similar processes in the EM calorimeter (photon radi-
ation, pair-production), the showers produced by both present similar features and require
careful matching to the ID tracks. Moreover, electron reconstruction algorithms must be
designed to account for energy losses coming from the radiation production.

Electron reconstruction at ATLAS [115] starts with the identification of energy deposits
(clusters) in the electromagnetic calorimeter. The η × φ phase space of the calorimeter is

†So-called forward electrons in the range |η| > 2.5 can be identified by using information of the FCal
exclusively, although with a higher misidentification rate. Such objects are not used in the work described
in this thesis.
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Figure 6.1: Schematic view of an electron’s path through the ATLAS detector, shown in red. The
dashed line represents the path of a photon produced by the interaction of the electron with the
tracking system material. See text for further details. From Ref. [115].

divided into a grid of 200×256 segments (towers), each covering a size of ∆η×∆φ = 0.025×
0.025, given by the granularity of the ECAL. Within each tower, the energy deposits are
summed and fed into a sliding-window algorithm [116] that will locate cluster candidates.
The algorithm identifies any 3×5 window in η×φ in the ECAL exceeding a total transverse
energy (ET) of 2.5 GeV as a cluster candidate. If two cluster candidates are found in
proximity, the candidate with the higher ET is retained.

6.2.2 Electron identification

Once tracks and energy clusters have been matched, electrons are selected using a likelihood-
based (LH) identification (ID). The electron likelihood is based on the products for signal
(LS , consisting of prompt electrons) and background (LB, containing a combination of
jets and non-prompt electrons produced in other particle’s decays) of n probability density
functions, P :

LS(B)(x) =
∏n

i=1 PS(B),i(xi), (6.1)

where x is a vector containing different quality measurements derived from the tracks
and energy deposits used to construct the electron candidate (see Ref. [115] for a full de-
scription). PS,i(xi) is the value of the signal probability distribution for the quantity i

at the value xi and PB,i(xi) represents the equivalent value for the background proba-
bility distribution. Using both likelihoods, a discriminant dL is formed for each electron
candidate:

dL = LS

LS + LB
. (6.2)
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The distribution of this discriminant peaks at unity (zero) for signal (background)
candidates. To simplify the selection of different operating points, a modified discriminant
is defined by taking the inverse sigmoid transform of dL:

d′
L = −τ−1 ln

(
d−1

L − 1
)
, (6.3)

where τ is a parameter optimised to 15.

Setting thresholds on the d′
L discriminant, three working points (WPs) are defined:

Loose, Medium and Tight. These offer different compromises between identification effi-
ciency and background electron contamination: looser selections have high efficiencies at
the cost of higher contaminations, while tighter selections reduce the selection efficiency
while offering a higher signal purity. The identification efficiency as a function of ET and
η, are shown in Figure 6.2. The efficiencies increase as a function of the electron’s ET,
peaking at ∼ 93% in the case of the Medium working point at high ET. The agreement
between the efficiencies measured in data and MC samples also improves as a function
of the electron ET, reaching an agreement better than 2% at high ET. The agreement
between data and MC is found to be stable across the η spectrum, with the exception of
the crack region measurement, where up to 10% differences are observed.

0.5

0.6

0.7

0.8

0.9

1

D
at

a 
ef

fic
ie

nc
y

 Loose
 Medium
 Tight

ATLAS
-1 = 13 TeV, 81 fbs

Electrons

20 40 60 80 100 120 140

 [GeV]TE

0.9

1

1.1

D
at

a 
/ M

C
 

0.5

0.6

0.7

0.8

0.9

1

D
at

a 
ef

fic
ie

nc
y

 Loose
 Medium
 Tight

ATLAS
-1 = 13 TeV, 81 fbs

 > 4.5 GeV
T

Electrons, E

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

η

0.9

1

1.1

D
at

a 
/ M

C
 

Figure 6.2: Measured LH-based electron ID efficiencies for the Loose (blue dots), Medium (red
squares) and Tight (black traingles) working points as a function of transverse energy, ET (left)
and pseudorapidity, η (right). From Ref. [115].

6.2.3 Electron isolation

Isolation cuts are used to further improve the purity, distinguishing the production of
prompt electrons in signal processes from backgorund processes such as semileptonic de-
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cays of heavy quarks or misidentified hadrons. Variables are constructed, quantifying the
amount of activity in the vicinity of the object in a cone of radius ∆R =

√
(∆η)2 + (∆φ)2

around the direction of the electron candidate. These quantities can be based on the sum
of the transverse energies of clusters in the calorimeter (ie. calorimeter-based isolation) or
the sum of the transverse momenta of tracks (track-based isolation). Thus, one can define
the quantity pconeXX

T , as the sum of momenta within a cone of radius ∆R < XX around
the electron candidate, excluding the momentum of the candidate itself (and similarly for
ET using calorimetry-based isolation).

In the case of track isolation, the high granularity of the inner detector allows for very
narrow cone sizes. This is of particular interest in the study of boosted final states, where
jets and other objects tend to be produced close to the signal lepton. With these events
in mind, a variable cone-size track isolation is commonly used, where the cone radius used
to define pconeXX

T progressively decreases in size as a function of the pT of the electron
candidate:

∆R = min
( 10 GeV
pT [GeV] , Rmax

)
, (6.4)

where Rmax is the maximum cone size, typically 0.2 to 0.4.

6.2.4 Electron energy scale and resolution correction

The electron reconstruction performance in data is not perfectly modelled by our simu-
lation. Discrepancies may emerge from degradation of detector components that is not
taken into account in simulation or pileup mismodelling, which results in a mismatch of
reconstruction efficiencies between data and simulation. A series of calibration techniques
are introduced to improve the agreement between simulation and data, including lepton
energy and momentum scale calibrations and corrections for identification and isolation
efficiencies.

The correction of the energy response to electrons in ATLAS [117,118] combines a series
of data- and simulation-based steps. The first step optimises the estimation of the energy
of the electron from the “raw” energy deposits in the calorimeter with a multivariate model
trained on simulation.

Further corrections improve the non-uniform response of the EM calorimeter. Firstly,
adjusted relative energy scales of the different layers in the EM calorimeter are estimated
by comparing the deposited energy in each layer using Z → µµ events. Secondly, cor-
rections for other non-uniform effects (geometric effects at boundaries between modules,
corrections for the usage of non-nominal voltage settings...) are evaluated using the ratio
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of the measured calorimeter energy to the estimated momentum of electrons and positrons
coming from Z decays in the inner detector.

Once these corrections have been applied, the difference in energy scale between data
and MC, αi (where i corresponds to different regions of η), is extracted using the expression:

Edata,corr
i = Edata,raw

i

1− αi
' EMC

i . (6.5)

Similarly, the corrections to the energy resolution simulation are parametrised as a
constant term ci that will be added in quadrature to the original modelled resolution:

(
σE

E

)MC,corr

i
=
(
σE

E

)MC,raw

i
⊕ ci. (6.6)

The values of αi and ci are retrieved from samples of Z → ee decays, optimising the
agreement of the invariant mass of the dilepton system between the simulated and ob-
served values in different η regions. The resulting αi and ci distributions can be found in
Ref. [118], showing sub-percent level corrections in the precision regions of the detector.

Several systematic uncertainties impact the measurement of these corrections, such as
pile-up, layer calibration uncertainties, scintillator calibration or uncertainties arising from
electromagnetic shower mismodelling. The impact of these uncertainties on the measure-
ment presented in this thesis is further explained in Section 8.5.

6.3 Muons

6.3.1 Muon reconstruction

Muons are generally reconstructed by matching tracks in the inner detector and the muon
spectrometer. Tracks observed in the latter are a clear indicator of a muon, since all other
particles (with the exception of the neutrino) are entirely absorbed by the calorimeters.
Track reconstruction in the inner detector is performed as explained in Section 6.1. An
independent track reconstruction is performed in the MS [119], built upon the construction
of straight-line track segments within an individual MS station (see Figure 5.5). Different
segments across multiple MS stations are combined accounting for the influence of the
magnetic field, adding additional hits from trigger detectors to create three-dimensional
track candidates. A global χ2 fit is performed on the candidates taking into account inter-
actions in the detector material and possible misalignment effects between stations. Once
a trajectory has been obtained, outlier hits are removed from the track and unused hits
along the trajectory are added. The fit is performed using this updated hit collection.
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Different reconstruction strategies to combine inner detector and MS tracks are used
in ATLAS [119]. All muon objects used in the physics analyses presented in this thesis
consist of combined muons, which are the results of a combined fit using hits from MS
and inner detector tracks. The energy loss of the muon in the calorimeters is accounted
in this fitting procedure. To allow for a better acceptance, tracks found in the |η| > 2.5
MS region are allowed to be combined with short track segments in the pixel and SCT
detectors, rather than requiring the reconstruction of a full inner detector track.

6.3.2 Muon identification

Once a muon track has been reconstructed, different selections on the track properties
(number of hits, fit quality, variables indicating the compatibility between inner detector
and MS tracks...) improve the selection of signal (prompt) muons over background muons,
such as those originated from heavy-flavour hadron decays. Thus, different working points
are defined, namely Loose, Medium, Tight and High-pT. The muon selection criteria in
the physics analysis presented in this thesis use the Medium and High-pT working points.
These WPs are optimised to provide an efficiency and purity suitable for most physics
analysis, with an emphasis of minimising the systematic uncertainties associated to signal
selection. The reconstruction and identification efficiency for the Medium WP is shown
in Figure 6.3, reaching efficiencies above 99% at pT > 20 GeV. The measurement of the
identification efficiency shows a very good agreement between data and MC, with and
agreement of < 0.5% observed across all pT and η spectra. Efficiencies and their corre-
sponding data/MC agreement for the High-pT WP can be found in Ref. [119].
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Figure 6.3: Left: muon reconstruction and identification efficiency for the Medium WP, shown as a
function of the transverse momentum, pT. Right: muon reconstruction as a function of the different
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Tight (blue). From Ref. [119].

Muons passing the Medium WP are required to contain at least two so-called precision
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6.3 Muons

stations, referring to those stations in the MS in which at least three hits have been
detected. To suppress contamination from non-prompt muons, further cuts are placed on
the q/p compatibility:

q/p compatibility = |(q/p)ID − (q/p)MS|√
σ2(q/p)ID + σ2(q/p)MS

, (6.7)

where (q/p)ID and (q/p)MS are the corresponding values to the tracks in the inner detec-
tor and MS respectively and σ2(q/p)ID, σ2(q/p)MS are their corresponding uncertainties.
Muons passing the Medium WP criteria are required to have a q/p compatibility lower
than 7.

Muons passing the high-pT WP are required to pass the same cuts as placed on Medium
candidates, and additionally contain at least three precision stations to overcome the chal-
lenge of reconstructing muons with almost straight trajectories. Moreover, a selection is
placed on the relative q/p uncertainty, σrel(q/p) = σ(q/p)/|q/p| to reject low-quality mea-
surements. A pT-dependent threshold is placed on σrel(q/p), lowering the threshold for
muons with lower momenta. Further details on the selection of this WP can be found in
Ref. [119].

6.3.3 Muon isolation

The muons purity is further improved by applying isolation cuts in a very similar manner
as defined for electrons. A variable pconeXX

T is defined, adding the momenta of all particles
found within a cone of radius ∆R around the muon candidate. Moreover, a varying cut
is placed as a function of the muon’s pT, as shown in Equation 6.4, exploiting the high
granularity of the inner detector in the study of boosted final states. Typically, Rmax also
takes values of 0.2 or 0.4 in the case of muons depending on each analysis needs.

6.3.4 Muon calibration

The momentum scale and resolution of muons at ATLAS is studied using J/ψ → µµ and
Z → µµ decays [120]. The correction for muon momentum is performed independently in
the ID and MS, using the pT of combined muons for this purpose (see Section 6.3.1). A
corrected transverse momentum pcorr,Det

T , where Det represents either ID or MS, is retrieved
as:

pcorr,Det
T = pMC,Det

T + sDet
0 + sDet

1 · pMC,Det
T

1 + ∆rDet
1 · g1 + ∆rDet

2 · pMC,Det
T · g2

, (6.8)

where pMC,Det
T is the uncorrected pT as measured in simulation, gi are normally dis-

tributed random numbers with zero mean and unit width and ∆rDet
i and sDet

i are the
momentum resolution and scale corrections applied. The latter are described as a function
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6 Particle reconstruction and calibration

of η and φ, allowing for a non-uniform correction throughout the detector.

Each term in the numerator on Eq. 6.8 describes a different correction to the muon
momentum scale that needs to be accounted for: sDet

1 corrects for inaccuracies in the de-
scription of the muons trajectory along the magnetic field in the ID and MS while sMS

0
accounts for the energy loss in the calorimeter and material layers. Since this loss is mini-
mal between the interaction point and the ID, sID

0 is set to zero.

The denominator in Eq. 6.8 describes the momentum smearing, assuming that the
relative pT resolution can be parametrized as:

σ(pT)
pT

= ∆r1 ⊕∆r2 · pT. (6.9)

The first term accounts for inaccuracies in the muons’ trajectory (scattering in the
material, magnetic field inhomogeneities, displacement of the track hits) and the second
factor describes the intrinsic resolution effects emerging from the spatial resolution of the
hit measurements. A summary of the results of the measurements of the si and ∆ri

parameters can be found in Ref. [120].

60



Part III

Measurement of the high-mass
Drell-Yan cross section
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Chapter 7

Motivation

As first presented in Section 3.1.1, a good understanding of the proton content is essential
to obtain precise Standard Model predictions. Our knowledge of the parton distribution
functions of the proton plays a key role in many predictions and PDF uncertainties are
among the leading uncertainties for electroweak measurements such as WW [121], Zγ [122]
or Zγ+jets [123] production. Measuring the cross section of the neutral-current Drell-Yan
process probing different invariant masses (m``) and dilepton rapidities (y``) allows to ex-
plore a wide range of x values, as shown in Equation 3.7 and in Figure 7.1. Values of up
to x ' 0.91 can be achieved at high-m`` and high rapidity regions of the measurement,
while low m`` measurements allow to probe down to x ∼ 10−3. Thus, measurements of
this process in different regions of the kinematic phase space can provide crucial input for
PDF fits, helping constrain regions in x that other experiments cannot probe. Moreover,
as shown in Section 3.1.2, the cross section of dilepton production in pp collisions is also
sensitive to the photon content of the proton. The measurement of the γγ initiated dilep-
ton pair production, which has a significant contribution at high invariant masses, can help
provide better constraints on the photon content of the proton.

The results of the most recent ATLAS measurement of the Drell-Yan process [124] cross-
section at high dilepton invariant masses are shown in Figure 7.2. The measurement was
performed single- (measured against m``) and double-differentially (measured against m``

and y``, as well as m`` and absolute pseudorapidity separation between leptons, ∆η``) using
ATLAS data collected at 8 TeV with an integrated luminosity of 20.1 fb−1, in the range
116 < m`` < 1500 TeV. The measurement was later expanded with a triple-differential
cross section measurement [57] against m``, y`` and cos θ∗

CS in a reduced invariant mass
range of 46 < m`` < 200 GeV.

The following chapters present the analysis of the Drell-Yan cross-section pp→ Z/γ∗ →
``, where ` represents the light leptons (` = e, µ), in the range m`` > 116 GeV. The analysis
covers three cross-section measurements, one single-differential measurement as a function
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Figure 7.1: Proton momentum fraction x carried by each of the incoming partons, x1 (left) and
x2 (right), producing a neutral-current Drell-Yan event at dilepton invariant masses beyond the
Z -boson resonance at a center of mass energy of

√
s = 13 TeV. Values obtained using Equation 3.7.

Figure 7.2: Single-differential Drell-Yan cross-section at
√
s = 8 TeV as a function of invariant mass,

m``, using ATLAS Run 1 data. The measured distribution is compared to combined NNLO QCD
and NLO EW calculations using different PDFs. From Ref. [124].

of m``, and two double-differential measurements: one as a function of invariant mass (m``)
and dilepton rapidity (y``) and another as a function of invariant mass and cos θ∗

CS (see
Section 3.1.2 for a detailed explanation on this variable). The results presented in this
thesis focus on the single-differential measurement against m`` and the double-differential
measurement against m`` and cos θ∗

CS, which are used for the Effective Field Theory in-
terpretation. The data used for this analysis was collected by the ATLAS experiment
during the LHC Run 2 and amounts to an integrated luminosity of 139 fb−1. The high
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7 Motivation

dilepton invariant mass phase space of the ATLAS Run 2 dataset was previously probed
in the context of searches for BSM resonant [27] and non-resonant phenomena [125] in the
dilepton final states, where no deviations from Standard Model where found, placing limits
on the masses of potential Z ′ candidates of mZ′ > 5 TeV and contact interaction energy
scales higher than 35.8 TeV. With respect to the previous ATLAS Drell-Yan cross-section
measurements, the one presented in this thesis offers several key differences:

• The increase to
√
s = 13 TeV data allows for the analysis to probe a wider range in

x compared to the
√
s = 8 TeV results, which probed a maximum x of ' 0.88.

• The substantial increase in integrated luminosity used in the analyses results into
reduced statistical uncertainties, allowing for a finer binning in the distributions
used for the measurement. This increases the amount of information that can be
extracted from the measurement, resulting into a better input for PDF fits. The
increase in integrated luminosity also allows to expand the range of the measurement
against dilepton invariant mass, adding an additional bin covering the range 1500 <
m`` < 5000 GeV.

• New measurement interpretations have been included, as presented in Chapter 10.

• The addition of the double-differential measurement in m`` and cos θ∗
CS enhances the

sensitivity to the photon-induced process and provides a crucial input for Effective
Field Theory interpretations.

The following chapters present the different elements involved in the measurement and
interpretation of the neutral-current Drell-Yan cross-section at ATLAS. Chapter 8 presents
an overview of the analysis strategy, covering the dataset and MC samples used, event
selection and background estimation techniques, as well as a summary of the systematic
uncertainties of the measurement. In Chapter 9 the cross-section measurement results
are shown, including a brief explanation on how electron and muon channel results are
combined for a reduction of the total uncertainty of the measurement. These results are
used as an input for Effective Field Theory and Lepton Flavour Universality interpretations,
as explained in Chapter 10. This part of the thesis concludes with a summary and outlook
of the measurement in Chapter 11.
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Chapter 8

Measurement overview

This chapter describes the measurement of the cross-section of the Drell-Yan process with
the ATLAS experiment. Section 8.1 presents all Monte Carlo samples used for the analysis.
The data, as well as the event selection criteria, used in the analysis are explained in Sec-
tion 8.2. Section 8.3 presents the methodology used to extract the cross-section from the
data. The estimation of the different irreducible background processes is discussed in Sec-
tion 8.4. Finally, Sections 8.5 and 8.6 provide an overview of the different uncertainties on
the measurement, explaining the contributions of experimental and theoretical systematic
uncertainties respectively. See Chapter 1 for a breakdown of my personal contributions to
the analysis.

8.1 Monte Carlo simulation

Several Monte Carlo samples are used in this analysis to model the signal and background
processes of interest. These have been centrally provided by the ATLAS Collaboration
and were processed through a simulation of the detector geometry and response [126] using
Geant4 [69]. The framework used for reconstruction is the same for both simulation and
real data. The effect of multiple interactions in the same and neighbouring bunch crossings
(pile-up) was modelled by overlaying the simulated hard-scattering event with inelastic pp
events generated with Pythia 8.186 [67] using the NNPDF2.3lo set of PDFs [127] and the
A3 set of tuned parameters [128]. Correction factors are applied to account for differences
between the observed and simulated detector response, as explained in Chapter 6.

8.1.1 Signal processes

Drell-Yan process

The PowhegBox v1 generator [73–75] was used for the simulation at NLO accuracy of
the hard-scattering processes of Z-boson production and decay in the electron and muon
channels. It was interfaced to Pythia 8.186 [67] for the modelling of the parton shower,
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8 Measurement overview

hadronisation, and underlying event, with parameters set according to the ATLAS AZNLO
tune [129]. The CT10 NLO PDF set [130] was used for the hard-scattering processes,
whereas the CTEQ6L1 PDF set [131] was used for the parton shower. The effect of QED
final-state radiation was simulated with Photos++3.52 [132, 133]. The EvtGen1.2.0
program [80] was used to decay bottom and charm hadrons. To ensure that enough events
are simulated at high invariant masses, such that the MC statistical uncertainty is not a
limiting factor for the analysis, the samples are generated in 18 bins of dilepton invariant
mass between 120 and 5000 GeV. In addition, one sample is generated simulating all the
mass spectrum above m`` > 60 GeV, usually referred to as the inclusive sample. To avoid
an overlap in event generation with the mass-binned samples, a cut of m`` < 120 GeV is
used on the true dilepton invariant mass of the inclusive sample.

While the DY cross-section is calculated at NLO with PowhegBox, the prediction
is further corrected to NNLO QCD using mass-dependent k-factors [134]. The factors
are calculated using the VRAP 0.9 simulation code [84], offering different k-factors that
representing various NNLO PDFs. The baseline prediction used in the analysis uses the
CT18Annlo [135] PDF set. Additional corrections, accounting for NLO EW effects (mi-
nus the QED FSR corrections) are calculated with FEWZ 3.1.b2 [81–83] and Mcsanc [136].
The impact of these corrections can be found in Figure 8.1, against both m`` and y``. The
combination of the EW and QCD higher-order corrections are performed using the additive
approach. Further details on the combination of these corrections, as well as an assessment
of the impact of the combination approach, can be found in Section 8.6.
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Figure 8.1: Higher-order corrections to the neutral-current Drell-Yan cross-section as a function of
dilepton invariant mass (left) and rapidity (right). Corrections account for NNLO QCD differences
with respect to NLO QCD (red) and NLO EW (+LO QCD) with respect to LO EW+QCD (blue).
From Ref [137].

An alternative sample simulating the Drell-Yan process was obtained using the Sherpa
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8.1 Monte Carlo simulation

2.2.11 [138] generator using next-to-leading-order (NLO) matrix elements (ME) for up to
two partons, and leading-order (LO) matrix elements for up to four partons calculated with
the Comix [139] and OpenLoops [140–142] libraries. They were matched with the Sherpa
parton shower [143] using the MEPSatNLO prescription [77–79,144] using the set of tuned
parameters developed by the Sherpa authors. The NNPDF3.0nnlo set of PDFs [145] was
used as the baseline choice, but the sample offers several re-weighing options accounting
for the difference between various PDF sets. This sample is used for systematic checks, as
well as the assessment of theory uncertainties presented in Section 8.6.

Photon-induced process

The photon-induced process, which will be considered part of the signal in this analysis, is
simulated at leading-order using Pythia 8 and the NNPDF3.1nlo LUX PDF set [146]
for the matrix element, and the NNPDF2.3lo PDF set [127] for the showering and hadro-
nisation. The contribution of the sample is below 1% to the total number of events in the
lower invariant mass region of the analysis, but can account for ∼ 5% of the events at high
mass (m`` > 1 TeV) and high values of cos θ∗

CS (| cos θ∗
CS| >0.8).

8.1.2 Background processes

Top-quark processes

Top quarks decay into b quarks and a W -boson, which can decay leptonically as W → `ν.
Therefore, background to the high-mass Drell-Yan can arise from processes involving top-
quark decays. Two main contributions can arise from these processes: the production of
top-antitop pairs (pp→ tt̄+X →W+bW−b̄+X) and the associated production of a single
(anti)top quark with a W -boson (pp→ tW +X →WbW +X).

The production of tt̄ and Wt events was modelled using the Powheg Box v2 [73–75]
generator at NLO with the NNPDF3.0nlo [145] PDF set. The events were interfaced
to Pythia 8.230 [147] to model the parton shower, hadronisation, and underlying event,
with parameters set according to the A14 tune [148] and using the NNPDF2.3lo set
of PDFs [127]. The decays of bottom and charm hadrons were performed by EvtGen
1.6.0 [149]. The diagram removal scheme [150] was used to remove interference and over-
lap between tt̄ and Wt production. The events were interfaced to Pythia 8.230 [147] using
the A14 tune [148] and the NNPDF2.3lo set of PDFs [127].

Higher-order NNLO QCD calculations of the top quark processes were made using
Top++ 2.0 [151], deriving a corrected tt̄ and single-top cross-section which results in global
k-factors of 1.1949 and 1.054 respectively. These samples are used as part of the data-driven
background estimation of the top-quark contributions, as explained in Section 8.4.
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Diboson processes

Another background contribution stems from the combined production of two vector bosons
(WW , WZ and ZZ), namely the diboson production. When the bosons undergo leptonic
decays they produce a final state similar to that of Drell-Yan. Though the contribution
of this background can be reduced by imposing a cut on the number of leptons present in
the events used in the analysis (see Section 8.2), the remaining contributions need to be
accounted for.

Samples of diboson final states (V V ) were simulated with the Sherpa 2.2.2 [138] gen-
erator. Fully leptonic final states and semileptonic final states, where one boson decays
leptonically and the other hadronically, were generated using matrix elements at NLO
accuracy in QCD for up to one additional parton and at LO accuracy for up to three addi-
tional parton emissions. The matrix element calculations were matched and merged with
the Sherpa parton shower in the same way as the Drell-Yan signal sample as explained
above. The NNPDF3.0nnlo PDF set was used [145], along with the dedicated set of
tuned parton-shower parameters developed by the Sherpa authors.

τ-channel Drell-Yan

Additional sources of background include the Drell-Yan τ decay channel, where the Z/γ∗

decays into a pair of τ leptons, not included in the signal of this analysis, which may decay
leptonically: τ → ντν``. If both tau leptons in the pair produced via Drell-Yan decay into
the same lepton flavour the signature left in the detector is very similar to that of the Drell-
Yan production of light leptons. A key difference is that due to the three-body decay of the
τ lepton, the resulting light lepton is produced with a lower momentum than that of the
original decay product, resulting in a much lower contribution than the electron and muon
decay channels at the same energy range. The Z/γ∗ → τ+τ− background is simulated
in the same way as for the Drell-Yan signal and accordingly corrected for higher-order
corrections.
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8.2 Data and event selection

8.2 Data and event selection

8.2.1 Data samples

The data used in the analysis was recorded by the ATLAS experiment in the LHC Run
2 at

√
s = 13 TeV, accounting for a total integrated luminosity of 139.0 fb−1. Note

that the luminosity measurement used as reference for the results presented in this thesis
corresponds to the Run 2 preliminary results [152]. The luminosity used in the final results
in the published analysis will correspond to the results reported in Ref. [109]. Further
details on the data-taking conditions in this period can be found in Section 4.2. Figure 8.2
shows the sum of the integrated luminosity delivered by the LHC and recorded by ATLAS
in the data taking period covered by the analysis. Data shown in blue corresponds to
that passing a series of Data Quality checks that ensure that all sub-detectors operated
optimally.
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Figure 8.2: Cumulative integrated luminosity delivered to ATLAS (green), recorded by ATLAS
(yellow) and determined to be good quality data (blue) during LHC Run 2. From Ref [153].

8.2.2 Event selection

Events used in the analysis are required to belong to a luminosity block passing the good
quality selection criteria. They are also required to contain at least one primary vertex
with more than two tracks. The events have to fulfil a trigger that requires the presence
of at least one or two electrons or muons. A breakdown of the triggers used in the analysis
can be found in Table 8.1. Di-electron trigger efficiencies are at least 90% for electrons
with pT > 30 GeV, rising to > 95% for electrons with pT > 60 GeV. Single-muon trigger ef-
ficiencies are around 70% and 85% in the barrel and endcap regions respectively for muons
with pT > 30 GeV, while di-muon efficiencies increase to 75 to 87% in the same kinematic
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phase space. More information about the electron and muon ATLAS Run 2 triggers, as
well as their efficiencies, can be found in Refs. [154] and [155].

Year Trigger Requirement

2015

HLT 2e12 lhloose L12EM10VH 2 tracks with pT >12 and Loose ID
HLT mu20 iloose L1MU15 1 CB muon, pT >20

HLT mu50 1 CB muon, pT >50
HLT 2mu10 2 CB muons, pT >10

2016

2e17 lhvloose nod0 2 tracks with pT >17 and Very Loose ID
HLT mu26 ivarmedium 1 CB muon, pT >26 and Medium iso

HLT mu50 See above
HLT 2mu14 2 CB muons, pT >14

2017-18

2e24 lhvloose nod0 2 tracks, pT >24 and Very Loose ID
HLT mu26 ivarmedium See above

HLT mu50 See above
HLT 2mu14 See above

Table 8.1: Summary of the single- and di-lepton triggers used. CB muons refer to combined muons,
see Section 5.2 for more details. Triggers containing the “nod0” chain do not include the transverse
impact parameter and its significance in the online trigger particle ID (see Sections 5.2 and 6.1).

The event selection requires the presence of two same-flavour good quality leptons
(selection criteria for these are shown in Table 8.2) with opposite charges. If a pair of
same-flavour leptons is found in the event, another cut is placed vetoing the presence of a
different flavour lepton, meaning that if two good quality electrons are found in an event
together with a good quality muon (or viceversa), the event is discarded. Finally, the
lepton pair is required to have a minimum invariant mass of 66 GeV.

8.2.3 Lepton objects selection

Lepton pair candidates are further selected to reduce the background from other processes
while retaining a high signal selection efficiency. The lepton pair will consist of a so-
called leading and subleading lepton, referring to the candidates with higher and lower
pT respectively. Table 8.2 summarises the lepton selection criteria used in the analysis.
A detailed description of the methodology for lepton reconstruction and identification is
found in Chapter 6.

8.2.4 Binning

The one dimensional binning for the single-differential cross section measurement is:
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Selection criteria Electron channel Muon channel

Transverse momentum
plead

T > 40 GeV
psublead

T > 30 GeV
plead

T > 40 GeV
psublead

T > 30 GeV

Pseudorapidity 0 < |ηe| < 1.37 or 1.52 < |ηe| < 2.4 0 < |ηµ| < 2.4

Identification Medium High-pT, combined muon

Isolation
Etopo,cone20

T /pT < 0.06
and pcone20

T /pT < 0.06
pcone20

T /pT < 0.06

Track-vertex association
|z0 sin θ| < 0.5 mm |z0 sin θ| < 0.5 mm
|d0|/σ(d0) < 5 |d0|/σ(d0) < 3

Invariant mass me+e− > 66 GeV mµ+µ− > 66 GeV

Table 8.2: Overview of the lepton selection criteria, where each criterion is applied to a single
lepton. The fiducial phase space is determined by the invariant-mass, |η`| and p`

T requirements.

m`` = [116, 130, 150, 175, 200, 230, 260, 300, 380, 500, 700, 1000, 1500, 5000] GeV (8.1)

The binning for the two-dimensional binning of the double-differential measurement in
m`` and y`` is:

m`` = [116, 150, 200, 300, 500] GeV

× |y``| = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4];

m`` = [500, 1500] GeV

× |y``| = [0.0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4]

(8.2)

while the two-dimensional binning for the measurement of the cross-section against m``

and cos θ∗
CS is:

m`` = [116, 150, 200, 300, 500] GeV

× cos θ∗
CS = [−1,−0.8,−0.6,−0.4,−0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1]

m`` = [500, 1500] GeV× cos θ∗
CS = [−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1]

(8.3)

The binning was chosen to optimise the bin purity, while keeping a fine granular-
ity [137]. The invariant mass binning is extended with respect to the previous

√
s = 8 TeV

measurement by adding a high-mass bin covering the range 1500 < m`` < 5000 GeV.
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8.3 Measurement methodology

The fiducial single-differential cross-section within the kinematic cuts previously presented
is given by:

dσfid
dm``

= Nsig(m``)
CDY(m``) · Ldata

, (8.4)

where Nsig is the number of signal events in data, Ldata is the integrated luminosity
used in the analysis and CDY is the correction for efficiency and migration effects calculated
from simulation as

CDY = N rec(m``)
Ngen

fid (m``)
. (8.5)

Here N rec(m``) is the sum of weights of Monte Carlo events after simulation of the event
reconstruction and selection in data and Ngen

fid (m``) is the sum of weights at generator level
after some common fiducial cuts that will define the phase space of the measurement. In
the case of this analysis these cuts are:

|η`| < 2.5, plead
T > 40 GeV, psublead

T > 30 GeV. (8.6)

The cross-section can be measured at different levels of QED FSR corrections corre-
sponding to various truth level definitions of Ngen

fid :

• Born level: leptons used at this level are simulated before QED FSR. Using these
leptons fully corrects the distributions for QED FSR effects.

• Bare level: leptons in this level include QED FSR, resulting in a measurement which
is not corrected for QED effects.

• Dressed level: hybrid between both levels, where the 4-vectors of the born leptons
and all photons produced via QED FSR found within a ∆R =

√
(∆η)2 + (∆φ)2 < 0.1

radius of the lepton are resummed. Using this level performs a partial QED FSR
correction, removing the effects of for the collinear emissions but not of the wide
angle part.

Figure 8.3 shows a diagram of each of the definitions, while Figure 8.4 shows the impact
of each definition on the dilepton invariant mass distribution at the Z-boson mass peak.
In the context of this analysis, truth-level leptons will refer to those at Born level. The
methodology shown in Equation 8.4 can be expanded to double-differential distributions
accounting for the changes in N rec(m``, ...) and CDY(m``, ...).

As opposed to the bin-bin-bin unfolding previously presented, an iterative unfolding
method based on Bayes’ theorem is used [156], offering more robustness against underlying
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Figure 8.3: Illustration of the different truth-level lepton definitions. Born-level (blue) leptons
radiate photons (FSR), resulting in bare-level (red) leptons with lower energy. Dressed-level leptons
(green) are defined combining the bare-lepton 4-vector with all radiation found within ∆R < 0.1.
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Figure 8.4: Dielectron invariant-mass distribution around mZ for born-level (black), bare-level
(red) and dressed-level (blue) lepton definitions. The bottom panel shows the ratio of the bare-
and dressed-level distributions with respect to born-level.

generator distributions. The yield of truth events in each bin of a given distribution are
iteratively reproduced starting from a detector response matrix and a simulated truth
prior. Thus, the conditional probability for an event in the Rj bin of the distribution at
reconstructed level to have originated from an event generated in the Ti bin of the truth
distribution is given by:

P (Ti|Rj) = P (Rj |Ti)P0(Ti)∑Nbins
l=1 P (Rj |Tl)P0(Tl)

, (8.7)

where P (Rj |Ti) is the conditional probability of an event generated in the bin i of the
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8 Measurement overview

truth-level distribution to be detected in the bin j in the reconstructed distribution and
P0(Ti) is the probability for an event to be generated in the i bin at truth-level. The
distribution P (Rj |Ti) is obtained from Monte-Carlo samples, simulating the detector re-
sponse and constructing said probability by normalising each column in the distribution,
as shown in Figure 8.5. The distribution is mostly diagonal, which corresponds to the
measurement of the same value of m`` at reconstructed-level as the original truth-level
value. Small migrations (< 10%) can be observed across the distribution, but probabilities
in the neighbouring bins outside of the diagonal terms are orders of magnitude smaller.
Additional response matrices in the muon channel and two-dimensional distributions can
be found in Ref. [137].
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Figure 8.5: Response matrix for the invariant mass for the dielectron channel at born level. The
distribution is normalised per column, showing the probability of a reconstructed dilepton invariant
mass to originate from each truth-level value.

Starting from a prior truth-level distribution P0(Ti) one can calculate P (Ti|Rj) in a first
iteration using Equation 8.7. This probability can then be used to compute the number of
events in the bin i of the truth-level distribution, n̂(Ti), using the number of events in the
bin j of the reconstructed distribution, n(Rj):

n̂(Ti) =
Nbins∑
j=1

n(Rj)P (Ti|Rj). (8.8)

One can then re-calculate the probability distribution P0(Ci) by normalising the sum
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8.4 Background estimation

of n̂(Ti) to unity, which can be used again as input for an updated calculation of the
probability in Equation 8.7. The procedure is iterated until a stable spectrum is obtained.
In the case of the analysis presented in this thesis the number of iterations required to
ensure stability in the unfolding procedure was 5 [137].

8.4 Background estimation

For most background processes, the Monte-Carlo samples introduced in Section 8.1 are
used. However, two outstanding contributions benefit from the use of data-driven tech-
niques in their estimation. This Section provides an overview of the procedure used to
estimate those backgrounds.

8.4.1 Top quark background

The top-quark processes are the leading background in the Drell-Yan measurement, mean-
ing that theoretical uncertainties on the estimation of this background results in a signifi-
cant contribution to the total uncertainty in the cross-section measurement. An alternative
method to obtain the top quark background is to derive the dilepton (ee and µµ) distri-
butions from a mixed-flavour (eµ) control-region. The event selection mimics that used
in the nominal analysis (first presented in Section 8.2), changing the requirement of the
presence of a same-flavour lepton pair to require events with the presence of exactly one
electron and one muon. Thus, the Drell-Yan contribution is not the main source of events,
but rather tt̄ and single-top processes, where the eµ events have at truth-level the same
properties as ee or µµ, as the W → `ν decays are independent. Once the eµ distribution
(single- and double-differentially) has been obtained, one can derive a transfer factor to
convert the eµ kinematic distribution into that obtained with the nominal same-flavour
selection. The transfer factor as a function of invariant mass obtained for both lepton
flavours can be found in Ref. [137]. This transfer factor is applied on the eµ distribution
observed in data in the opposite-flavour control region, subtracting all contributions from
other SM processes to the final state. The transfer factor corrects for the different detector
response to ee, eµ and µµ final states. By calculating the top-quark background taking
the ratio between the eµ and ee/µµ distributions, theoretical uncertainties largely cancel,
resulting in a reduction on the total uncertainty of the cross-section measurement.

8.4.2 Multijet background

Background leptons from misidentified jets passing the lepton candidate selection are es-
timated using the matrix method, as described in Ref. [124]. In this method, the identi-
fication criteria for leptons is loosened and the rate with which these looser objects are
reconstructed as signal-like electrons is measured separately. Thus, two categories of lepton
candidates are defined depending on whether they pass the signal criteria (as described in
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Sec. 8.2) or the looser one. The former are referred to as Tight leptons, and the latter as
Loose leptons. Given that we apply a more restrictive set of cuts on this category, NTight

has to be a subset of the loose selection NLoose.

The Tight selection corresponds to the nominal signal selection in the analysis, as de-
scribed in Sec. 8.2. All objects in the Loose selection have to fulfil the kinematic cuts of
the signal selection, but in the case of the electrons they are required to pass the Medium
ID criteria and no cut on isolation is applied, while Loose muons are required to fail the
isolation cut or the high-pT muon quality cut, while still passing the Medium quality cuts.

Since only lepton pairs are considered in the analysis, one can denote them as Nij ,
with i, j ∈ T,L and thus having four possible event categories: NT T , NT L, NLT , NLL,
the measurable quantities. These can be related to the “true” quantities, that is, the
classification of events depending on whether an object was a real (R) or fake (F ) lepton,
Nab, with a, b ∈ R,F . Both quantities are connected using an efficiency matrix M as
follows:



NT T

NT L

NLT

NLL


= M



NRR

NRF

NF R

NF F


. (8.9)

The index T refers to signal-like (tight) objects, while more background-like objects are
labelled as L for loose. Both left- and right-hand side quantities are defined exclusively,
meaning that NRR cannot include other components like NRF , NF R or NF F and similarly
NT T does not contain components like NT L, NLT or NLL. This leads to the definition of L
to be “pass the loose selection but fail the tight selection”, in contrast to the base selection
NLoose, which contains all objects included in NTight.

The matrix M connecting both sides of Equation 8.9 takes the form:

M =



r1r2 r1f2 f1r2 f1f2

r1(1− r2) r1(1− f2) f1(1− r2) f1(1− f2)

(1− r1)r2 (1− r1)f2 (1− f1)r2 (1− f1)f2

(1− r1)(1− r2) (1− r1)(1− f2) (1− f1)(1− r2) (1− f1)(1− f2)


. (8.10)

The coefficients f represent the probability that a fake lepton passing the loose selection
is reconstructed as a signal-like lepton. The coefficients r represent the probability of a real
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lepton passing the loose selection to be reconstructed as a tight one. Note that all objects
that pass the signal requirements (tight candidates) must fulfil the loose selection too and
therefore both must comply with 0 ≤ r, f ≤ 1. The first index in Equation 8.9 corresponds
to the leading electron, while the second index refers to the subleading one. Similarly,
subindex 1 in the efficiencies in Equation 8.10 will refer to the leading electron candidate
and 2 stands for the subleading one. The real and fake efficiencies can be expressed as:

r =
N real

Tight
N real

Loose
, f =

N fake
Tight

N fake
Loose

. (8.11)

The real efficiency r is calculated from MC samples, where all objects are true leptons,
while the fake efficiency f is measured from data in background-enriched control regions.
The number of misidentified signal events corresponds to the number of events in which
both leptons pass the signal selection, NT T , while containing at least one fake object. These
events can come from events where one of the leptons gets misidentified (RF or FR) or
where both leptons are misidentified (FF). The total number of fake leptons is obtained
with the addition of these two contributions:

N `+fake
T T = r1f2NRF + f1r2NF R

Nmultijet
T T = f1f2NF F

N fakes
T T = N `+fake

T T +Nmultijet
T T = r1f2NRF + f1r2NF R + f1f2NF F .

(8.12)

However, the true quantities NRF , NF R and NF F cannot be directly measured so they
need to be expressed in terms of events passing the loosened or signal criteria by inverting
the matrix shown in Eq. 8.10. Thus, the number of misidentified events in the signal
selection containing at least one fake object can be written as:

N fake
T T = α[r1f2(f1 − 1)(1− r2) + f1r2(r1 − 1)(1− f2) + f1f2(1− r1)(1− r2)]NT T

+ αf2r2[r1(1− f1) + f1(1− r1) + f1(r1 − 1)]NT L

+ αf1r1[f2(1− r2) + r2(1− f2) + f2(r2 − 1)]NLT

− αf1f2r1r2NLL, (8.13)

where:

α = 1
(r1 − f1)(r2 − f2) . (8.14)

Using Eq. 8.13 the number of background events contained in our signal can be calcu-
lated by applying the corresponding weight depending on whether the event was labelled
as TT (both leptons classified as Tight), TL (Tight leading lepton, Loose subleading one),
LT (Loose leading lepton, Tight subleading one) or LL (both leptons Loose). The real
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and fake efficiencies, r and f , are calculated (in MC and data, respectively) depending
on the transverse momentum and pseudo-rapidity of the electron, as explained next. The
determination of the efficiencies will only be shown in the electron channel in this thesis.
The calculation of the efficiencies in the muon channel can be found in Ref. [137].

Real electron efficiency

The measurement of the real efficiency, r, of the electrons is obtained from high statistics
Drell-Yan MC samples. To ensure that only real electrons are chosen for this study a truth-
matching is applied, requiring all electrons to be reconstructed within a cone of ∆R < 0.2
around the truth leptons in the MC sample. Measuring the ratio described in Eq. 8.11
the distribution shown in Figure 8.6 (top) is obtained. The efficiency distribution shows
a certain independence with respect to η, but there is a substantial difference depending
on the pT of the electron, where an increase in the real efficiency can be observed as the
electron momentum increases, reaching values compatible with r = 1 at pe

T > 1000 GeV.

To study the drop in the efficiency in the low-pT range (< 60 GeV), the real efficiency
was re-assessed applying only the ID selection to the Tight electrons, separating in this way
the effects on the efficiency coming from the ID and the isolation selections. The results
can be found in Figure 8.6 (bottom). The rate in the low-momentum range increases in
this way up to ∼ 95%, showing a good agreement with previous ATLAS results [157].
The change in efficiency when applying the isolation cut matches the expected behaviour,
since the chosen operating point for the isolation selection changed between the previous
analysis and the one currently applied resulting in lower efficiencies at low-pT.

Fake electron efficiency

The fake efficiency, f , is measured using samples of single fake electrons in data. For this
measurement the events are required to pass one of the triggers in a given set of pre-scaled
single-electron triggers, as shown in Table 8.3, requiring each trigger to fire in the mo-
mentum range specified in the Table. These triggers require the application of a prescale
factor as taking the full luminosity would have exceeded the capabilities of the ATLAS
data acquisition system.

Real electron contamination is further reduced imposing the requirements listed in
Table 8.4. The kinematic cuts used in this selection matches that used in the nominal
analysis, as listed in Table 8.2.

Once the events have been selected according to these criteria, the ratio f , can be
computed requiring at least one of electron to pass the Loose ID criteria. However, despite
the previously explained cuts, the contribution from real electrons cannot be neglected, so it
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Figure 8.6: Real electron efficiency measured as a function of pT and η. Signal electron candidates
selected with cuts applied on ID and isolation (top) and on ID only (bottom).

must be estimated by MC samples of SM processes that can produce electron pairs, namely
Drell-Yan, top quark, diboson and triboson processes. The samples used to simulate these
processes are presented in Section 8.1. Thus, the fake efficiency f can be re-written as:

f =
N fake,data

Tight −N fake,MC
Tight

N fake,data
Loose −N fake,MC

Loose
(8.15)

where N fake,MC refers to real electrons produced in the different MC samples that we
consider passing the fake-enrichment criteria. The electron pT and η distributions of the
Tight and Loose electrons after applying the fake selection can be found in Figures 8.7
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Year Trigger Average prescale factor pT range [GeV]

2015
e26 lhvloose nod0 L1EM20VH 125.0 30-65

e60 lhvloose nod0 12.0 65-315
e200 etcut 1.0 >315

2016

e26 lhvloose nod0 L1EM20VH 110.02 30-65
e60 lhvloose nod0 28.50 65-126
e120 lhvloose nod0 15.27 126-147
e140 lhvloose nod0 1.90 147-315

e300 etcut 1.0 >315

2017

e26 lhvloose nod0 L1EM20VH 472.64 30-65
e60 lhvloose nod0 30.82 65-147
e140 lhvloose nod0 2.44 147-315

e300 etcut 1.0 >315

2018

e26 lhvloose nod0 L1EM20VH 494.32 30-65
e60 lhvloose nod0 43.07 65-147
e140 lhvloose nod0 2.81 147-315

e300 etcut 1.0 >315

Table 8.3: Trigger scheme used for the selection of a fake-enriched sample for the full Run 2 dataset.
Average prescale factor calculated as the luminosity ratio between the total luminosity registered in
a given period and the luminosity recorded with the application of the considered trigger. Trigger
naming (and selection) convention follows that presented in Table 8.1.

Cut label Selection criteria Targeted process

A Emiss
T < 25 GeV W decays

B < 2 Medium electrons Drell-Yan dilepton production
C |mZ −mee| > 20 GeV Z-mass resonance

Table 8.4: Overview of the selection criteria used for the derivation of the fake electron efficiency.
The transverse missing energy, Emiss

T , is calculated as the opposite of the vector sum of the transverse
momenta of all reconstructed particles, using

∑
reco
−→pT +−→ET

miss = 0.

and 8.8. The data excess observed with respect to the MC distributions corresponds to
the fake electrons with which f will be estimated. At pT ∼ 300 GeV in the Loose selection
a bump can be inferred, corresponding to the application of the “e300 etcut” trigger, see
Table 8.3. While the prescale normalisation for this trigger works as expected for good
quality (Tight) objects, showing a smoothly falling distribution in pT, the Loose selection
criteria is passed by lower quality objects, likely corresponding to hadron activity faking
electrons which would not match the objects that originally passed the required trigger.
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This increases the number of candidates passing the criteria, causing the bump observed in
the distribution. The results of the fake efficiency measurement can be found in Figure 8.9.
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Figure 8.7: Transverse momentum, pT, distribtution of the electrons passing the fake-enrichment
criteria and complying with the Tight (top) and Loose (bottom) selection criteria.

Some of the criteria used in the assessment of the real and fake efficiencies can be varied,
therefore several systematic uncertainties are considered for the fake electron background:

• Statistics: uncertainties on fake and real efficiencies from the limited number of
candidate electrons. Note that this differs from the statistical uncertainty on the
background estimation, but rather a systematic variation modifying the efficiencies
used in the computation.
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Figure 8.8: η distribution of the electrons passing the fake-enrichment criteria and complying with
the Tight (top) and Loose (bottom) selection criteria.

• Prompt lepton subtraction: this source of uncertainty accounts for the prompt lepton
subtraction carried out in the fake efficiency estimation when subtracting the MC
from data (see Equation 8.15). A flat variation of ±30% was applied in each sample,
which is larger than the modelling systematics.

• Composition of control and signal regions: the fake efficiency is calculated in a
fake-enriched control region defined by 3 different cuts, as explained in the previ-
ous section. This source of uncertainty accounts for the effect of the different cuts,
re-calculating the efficiency in the case where each of them is not applied.

The uncertainties due to each of the sources listed above can be found in Figure 8.10,
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Figure 8.9: Fake electron efficiency measured with the Run 2 ATLAS dataset.

where it can be inferred that the leading contribution to the uncertainty comes from
the background subtraction re-scaling, specially in the region pT ∼ 100 GeV, where the
presence of fake electrons is diminished and MC contributions are more substantial (see
Figure 8.7). The total systematic uncertainty on the fake electron efficiency, computed as
the quadratic sum of all contributions listed above, is shown in Figure 8.11. Large uncer-
tainties, up to 90% of the fake efficiency, are observed across the distribution. The leading
contribution is the modification of the prompt lepton subtraction.

Fake electron background estimation results

Once the real and fake efficiencies have been computed one can retrieve the fake electron
background by classifying events as TT , TL, LT or LL according to the criteria passed by
the leading and subleading electrons in the event and applying the corresponding weight
retrieved using Equation 8.13. The final result of the estimation of the fake electron back-
ground can be found in Figure 8.12, expressed as a % of the total number of signal events
found in data in each bin. The final background estimation was found to correspond to
less than 1% with respect to the signal events in data in most of the mass range cov-
ered by the analysis, therefore the large uncertainty in its determination will have a small
impact in the total uncertainty of the cross-section measurement. The background was
retrieved both with a custom implementation of the matrix method estimation and with
a framework provided by the ATLAS Isolation and Fake Forum [158] (IFF), showing good
agreement between both estimations. Additional studies were carried out using an alter-
native methodology for the fake electron background estimation, the template method.
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8 Measurement overview

The results of these studies are shown in Appendix A. The template method was found to
provide a lower background estimation at high dielectron invariant masses than the matrix
method, in agreement with findings by other ATLAS analyses studying similar final states.
Therefore, the final results of the analysis use the fake electron background estimation ob-
tained with the matrix method, using the implementation of the Isolation and Fake Forum
since it allows for an easier interfacing with other analysis tools. Results on the fake muon
background estimation can be found in Ref. [137].
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Figure 8.10: Different systematic uncertainty sources considered for the fake electron background:
(a) Prompt lepton subtraction scaled up (+30%) (b) Prompt lepton subtraction scaled down
(−30%) (c) Effect of removing the W (MET) cut from the fake-enriched CR (d) Effect of re-
moving the DY cut from the fake-enriched CR (e) Effect of removing the Z mass cut from the
fake-enriched CR (f) Statistical uncertainty on the fake efficiency. Uncertainties expressed as a
percentage of the fake efficiency in every η − pT bin.
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Figure 8.11: Total systematic uncertainty on the fake electron efficiency, calculated as the quadratic
sum of values shown in Figure 8.10. Uncertainty expressed as a percentage of the fake efficiency in
every η − pT bin.
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Figure 8.12: Fake electron background, shown as the fraction with respect to events passing the
nominal selection in each mass bin. The background is calculated both with a custom analysis
framework developed to retrieve the real and fake efficiencies (black) and the framework provided
by the Isolation and Fake Forum (IFF, blue), showing good agreement between both estimations.
Uncertainties on the IFF background only correspond to the statistical component, systematic
uncertainties are equal to those shown for the ones derived with a custom framework.
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8.5 Systematic uncertainties

8.5 Systematic uncertainties

Lepton efficiency and calibration uncertainties

The uncertainty on the efficiencies are generally split into multiple correlated and uncor-
related sources as determined from the performance analyses. The recommendations for
the energy scale calibrations are applied to data, which include a total of 60 sources (as
described in Ref. [117]). The effects of the uncertainties on the muon scale and resolution
corrections (further described in Ref. [120]) are calculated by applying the variations of
the corrections.

Background estimation systematic uncertainties

Uncertainties on the top background cover both experimental and theoretical systematic
effects. The former include lepton reconstruction, identification and isolation corrections,
such as those previously explained, which are correlated to those uncertainties in the sig-
nal events. Theoretical uncertainties include the variation of different parameters in the
simulation of the process (showering parametrisation, QCD scales, mtop) as well as varia-
tions on the modelling of the hard scatter estimated using alternative top samples using
Madgraph.

The uncertainty on the diboson background is given by its cross-section uncertainty,
scaling the contributions up and down by 6% [159]. No uncertainty is considered for the
Z → ττ background given its negligible contribution to the total number of events. For an
overview on the uncertainty estimation on the fake lepton background see Section 8.4.2.

Systematic uncertainties related to the unfolding procedure

There are several choices in the unfolding procedure explained in Section 8.3 that may vary
among different analyses. The effect of varying these choices is estimated and introduced
as an uncertainty in the measurement, including:

• Data-reweighting: the prior of the nominal Monte Carlo sample, P0(Ti) is reweighted
to match the distribution found in data P0(Ri) to account for possible mismodelling
effects affecting the unfolding procedure. The difference between the distribution
obtained unfolding this pseudo-data distribution with respect to the nominal result
is taken as a contribution to the unfolding systematic uncertainty.

• MC generator variation: the prior used in unfolding P0(Ti) is changed to that ob-
tained at truth-level with an alternative MC generator, Sherpa, resulting into a
different unfolded distribution.
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• Additional sources: other effects tested in the unfolding procedure included the ap-
plication of the different PDF variations available in the nominal MC sample to
construct alternative response matrices P (Rj |Ti) used to unfold the truth-level prior.
Differences with respect to the basic bin-by-bin unfolding first presented in Section 8.3
were also assessed. The impact of these differences was found to be much smaller
than the statistical uncertainty of the measurement.

Summary

A summary of these uncertainty contributions is shown in Figures 8.13 to 8.15. Uncertain-
ties on the top background estimation are the dominant source in both channels, highlight-
ing the importance of the data-driven estimation to reduce these uncertainties compared
to a full top cross-section modelling uncertainty. Energy scale and identification uncertain-
ties are the dominant experimentally-driven sources in the electron channel, increasing as
a function of invariant mass, while muon identification corrections are the dominant source
in the muon channel. A similar dependence of the systematic uncertainties can be seen in
the two-dimensional distributions, with the top-quark background estimation dominating
more prominently the uncertainty at the edge of the cos θ∗

CS distribution.

Total systematic uncertainties as low as 1% are achieved in the m`` < 200 GeV range,
region in which the systematic uncertainties are greater than the statistical ones. The
uncertainties remain at the ≤ 3% level across all distributions with m`` < 500 GeV.
The small number of events above this threshold drives the uncertainty, either as direct
statistical uncertainty or reflected in the top quark background systematic uncertainty.
Total uncertainties below 5% are obtained at m`` ≤ 1 TeV. The last bin of the single-
differential distribution, m`` > 1.5 TeV, first explored in this analysis, shows a 7% (10%)
statistical uncertainty in the electron (muon) channel, while systematic uncertainties are
7.5% (8%).
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Figure 8.13: Systematic uncertainties against m`` for the dielectron (top) and dimuon (bottom)
final states after the unfolding procedure. From Ref. [137].
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Figure 8.14: Systematic uncertainties on the double-differential cross-section measurement as a
function of cos θ∗

CS for the dielectron (left) and dimuon (right) final states after the unfolding
procedure for 116 < m`` < 300 GeV. From Ref. [137].
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Figure 8.15: Systematic uncertainties on the double-differential cross-section measurement as a
function of cos θ∗

CS for the dielectron (left) and dimuon (right) final states after the unfolding
procedure for m`` > 300 GeV. From Ref. [137].

91



8 Measurement overview

8.6 Theoretical prediction and uncertainties

The nominal theoretical prediction for the Drell-Yan dilepton production in the analysis is
given by the Powheg Z → `` Monte Carlo, details of which can be found in Section 8.1.
The samples are generated at NLO QCD and LO EW and reweighed to state-of-art pre-
dictions including NNLO QCD and NLO EW corrections. Both corrections are calculated
independently and are combined using the additive approach [134]:

σNNLO QCD+NLO EW = σNNLO QCD ·
(

1 + ∆σLO QCD+NLO EW
σNNLO QCD

)
. (8.16)

This approach assumes that the same NLO EW correction term (with the exception
of QED FSR) needs to be applied for all orders of QCD, i.e. that the relative higher-
order correction changes at each order of QCD. Alternatively, one may follow the so-called
multiplicative approach:

σNNLO QCD,NLO EW = σLO ×
σNNLO QCD

σLO
× σNLO EW+LO QCD

σLO
, (8.17)

assuming that the higher-order EW corrections are the same for all orders of QCD
and can be determined based on LO QCD and then transferred to higher-order QCD. The
additive approach will be taken as the nominal choice in the analysis, taking the differences
between both approaches as an estimate of the uncertainty on the size of the electroweak
correction.

Further theoretical uncertainties in the prediction arise from PDF uncertainties, the
renormalisation and factorisation scale choices and the value of the strong coupling con-
stant used to simulate the process. The nominal PDF choice used in the analysis is
CT18annlo [135], for which the leading seven 90% CL variations were evaluated, as
well as differences with respect to other modern PDFs such as NNPDF3.0 [145]. Results
on the nominal theory prediction and uncertainties can be found in Ref. [137].

Although the nominal theoretical prediction includes state-of-art predictions and a
careful assessment of uncertainties, the calculations were only performed against m`` and
y``. Moreover, it was observed that the Powheg Monte Carlo offers a poor modelling
of the cos θ∗

CS distribution in certain regions of the kinematic phase space, severely limit-
ing the EFT interpretation of the double-differential cross-section measurement presented
in Section 10.2. For the purpose of using this distribution for an EFT interpretation,
a second theoretical prediction was obtained from the Sherpa sample first presented in
Section 8.1. Differences between the nominal prediction and this alternative are shown
in Figure 8.16. An invariant mass-dependent difference is observed between both predic-
tions. The first significant difference is in the first invariant mass bin. However the range
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116 < mee < 120 GeV is simply missing from the Sherpa sample due to technical rea-
sons, causing the difference shown in the Figure. Additional mass-dependent differences
arise from the application of NNLO QCD reweighting to the Powheg prediction, while
Sherpa sample only includes effects up to NLO QCD (and NLO EW, also using the addi-
tive approach). For this reason, the mass dependence of the Powheg is transferred to the
Sherpa sample as a bin-by-bin correction based on the ratio of the corresponding predic-
tions in each mass range. The resulting double-differential distribution comparison can be
found in Figure 8.17. A difference in the modelling of the cos θ∗

CS distribution between both
generators is observed in this figure, highlighting the need for an updated prediction with
respect to the nominal if EFT fits are going to be performed using the double-differential
measurement.
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Figure 8.16: Theory predictions available for the single- (left) and double-differential (right) Drell-
Yan cross-section against dilepton invariant mass and cos θ∗

CS.

The nominal distribution obtained in Sherpa uses the NNPDF3.0nnlo PDF set [145]
with αs = 0.118, however different assumptions are available in the sample via event
reweighing. Some of the available variations include the usage of different modern PDF
sets, the 100 eigenvector variations of the NNPDF3.0 PDF set and modification of the αs,
renormalisation and factorization scale parameters, as well as the impact of different ap-
proaches to combine NLO EW corrections with higher-order QCD corrections. Figures 8.18
to 8.22 show the distributions obtained varying different theory assumptions, showing the
ratio as an estimate of the uncertainty associated to each assumption.

Uncertainties associated to the variation of αs are found to be 1% across most of the
invariant mass spectrum, with little dependence against cos θ∗

CS. Similarly, the sum in
quadrature of all eigenvector variations is found to be rather flat in most of the spectrum,
though individual variations show dependence against either of the variables. When used in
the interpretation presented in Section 10.2, differences with respect to each eigenvector are
introduced as nuisance parameter, allowing to account for all possible distribution shape
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Figure 8.17: Theory predictions available for the double-differential Drell-Yan cross-section against
dilepton invariant mass and cos θ∗

CS. The Sherpa distribution is reweighed to Powheg using the
ratio between both generators in the corresponding mass range for each bin.

differences described in each PDF variations. Different PDF sets are found to show vari-
ations within 3% of the nominal set across all the dilepton invariant mass spectrum, with
some of the PDF sets such as MSHT20nnlo introducing shape changes in the distribu-
tion across cos θ∗

CS, as shown in Figure 8.19. Uncertainties arising from the variation of the
renormalisation and factorization scales are found to be the biggest effects in the sample,
reaching up to ∼ 5% at high invariant mass ranges. These show little dependence with re-
spect to cos θ∗

CS with the exception of the edge bins in the mass range 116 < m`` < 150 GeV,
where the phase space is most restricted. It is worth noting that, since the Sherpa Monte
Carlo generator includes both matrix element generation and parton shower simulation,
modifications of QCD scales tend to have substantial impact in the distributions, as re-
flected in the results shown in Figure 8.21.

To study the effects of the combination of EW and QCD higher-order corrections
an additional approach is included in the sample, namely the exponentiated approach. It
consists of an intermediate assumption between the additive and multiplicative approaches,
with higher order corrections being parametrised as:

σNNLO QCD+NLO EW = σNNLO QCD · exp(∆σLO QCD+NLO EW). (8.18)

As shown in Figure 8.22, uncertainties associated to the variation of the higher-order
combination procedure are rather small, with < 0.5% effects in most of the kinematic phase
space.
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Figure 8.18: Cross-section predictions obtained varying αs in the mass-rescaled Sherpa sample for
the single- (top) and double-differential (bottom) Drell-Yan cross-section against dilepton invariant
mass and cos θ∗

CS. Ratio shown corresponds to an estimate of the uncertainty associated to this
variation.
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Figure 8.19: Cross-section predictions obtained varying the PDF set used in the mass-rescaled
Sherpa sample for the single- (top) and double-differential (bottom) Drell-Yan cross-section against
dilepton invariant mass and cos θ∗

CS. Ratio shown corresponds to an estimate of the uncertainty
associated to this variation.
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Figure 8.20: Cross-section predictions obtained varying the 100 eigenvectors in the NNPDF3.0 PDF
set in the mass-rescaled Sherpa sample for the single- (top) and double-differential (bottom) Drell-
Yan cross-section against dilepton invariant mass and cos θ∗

CS. Distribution shown corresponds to
the sum in quadrature of the differences between each eigenvector and the nominal PDF set. Ratio
shown corresponds to an estimate of the uncertainty associated to this variation.
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Figure 8.21: Cross-section predictions obtained varying the renormalisation (µR) and factorization
(µF ) scales in the mass-rescaled Sherpa sample for the single- (top) and double-differential (bot-
tom) Drell-Yan cross-section against dilepton invariant mass and cos θ∗

CS. Ratio shown corresponds
to an estimate of the uncertainty associated to this variation.
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Figure 8.22: Cross-section predictions obtained using different higher-order correction combination
schemes in the mass-rescaled Sherpa sample for the single- (top) and double-differential (bottom)
Drell-Yan cross-section against dilepton invariant mass and cos θ∗

CS. Ratio shown corresponds to an
estimate of the uncertainty associated to this variation, using the additive approach as the nominal
choice. The LO1 and LO1LO2 terms include subleading born corrections.
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Chapter 9

Results

This Chapter presents the results on the unfolded Drell-Yan cross section, as well as an
overview of the combination procedure of the electron and muon channel results. Addi-
tionally, the combined results of the cross-section are compared to different predictions to
test the PDF sensitivity of the measurement at high dilepton invariant masses.

9.1 Combination procedure

The result of the cross section measurement in the electron and muon channels can be
combined to reduce the statistical and systematic uncertainties on the measurement. This
combination is performed using the HERAverager tool [160], first developed for the
combination of deep inelastic scattering data [161]. The procedure combines the cross
section in each bin i of each channel considered k (here k = e, µ) introducing systematic
uncertainties that are correlated between bins and an uncorrelated uncertainty, arising
from the statistical uncertainty in data (δstat) and the uncorrelated components of the
systematic uncertainties (δunc). Thus, a χ2 function is defined by

χ2
tot(σ̄,θ) =

Nchan∑
k

Nbins∑
i

(
σ̄i −

∑Nsys
j=1 Γi

j,kθj − σi
k

)2

δ2
i,stat + δ2

i,unc
+

Nsys∑
j=1

θ2
j , (9.1)

where σ̄ is the averaged cross section between both channels, σk is the cross section in
each channel and θj are the shifts of the correlated uncertainty source j. A shift of θj = 1
corresponds to a shift of the source j by 1σ. The factor Γi

j,k represents the relative uncer-
tainty of the source j in the bin i of the measurement in the channel k. The averaged cross
section and the shift on each source of correlated uncertainty can be found by minimising
the χ2, fulfilling the following conditions:

∂χ2
tot(σ̄,θ)
∂σ̄

= 0, ∂χ
2
tot(σ̄,θ)
∂θ

= 0. (9.2)

The minimisation procedure is described in detail in Ref. [160]. The systematic sources
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considered are listed in Section 8.5. Due to the data-driven estimation of the top back-
ground in the eµ control region, all lepton reconstruction uncertainties are correlated be-
tween both channels.

9.2 Combined cross section results

Figure 9.1 shows the single-differential born-level cross sections in the electron, muon and
combined channel, as well as a comparison between the results. The luminosity uncertainty
is excluded from this result since it affects both channels in the same way. The pulls of the
two individual measurements with respect to their combination is also shown, defined as
the difference between the single-channel measurement and the combined result divided by
the total uncertainty. As shown in the figure, both channels are in good agreement, with
both measurements being found within 2σ of the combined result in all the invariant mass
spectrum. The measured cross section presents the expected falling shape against dilepton
invariant mass, ranging over five orders of magnitude in the mass range covered by the
analysis. At low values of m`` the result of the combined measurement is dominated by
the experimental systematic uncertainties, with a 0.52% contribution in the first mass bin,
where a 0.22% statistical uncertainty is found. For m`` ≥ 700 GeV the statistical uncer-
tainty is at the level or above of the systematic uncertainty, reaching a 9% contribution in
the last bin (m`` > 1500 GeV), where a 5% systematic uncertainty is found. Pulls on the
systematic uncertainties, as well as a detailed breakdown of all contributions in each bin
of the measurement can be found in Ref. [137]. The χ2 per degree of freedom is found to
be 9.63/13=0.74 (p = 0.276) for the single-differential cross-section.

Figure 9.2 shows the measurement of the double-differential cross-section with respect
to m`` and cos θ∗

CS in the electron, muon and combined channels. The distributions also
show good agreement in this kinematic variable, with pulls in both measurements found
within 2σ in all the spectrum except the −0.8 < cos θ∗

CS < −0.6 range within 116 <

m`` < 150 GeV, where a pull of 3.4σ is found. The distributions show the effect of the
forward-backward asymmetry in the Drell-Yan cross-section, showing an increase in the
cross-section at cos θ∗

CS > 0 with respect to cos θ∗
CS < 0 as m`` increases. A total χ2 per

degrees of freedom of 61.0/56=1.09 (p = 0.699) is observed for the cross-section measured
against m`` and cos θ∗

CS across all invariant mass bins.
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Figure 9.1: Combined born-level single-differential cross-section against m`` with statistical and
systematic uncertainties, excluding the uncertainty on the luminosity. A comparison with the
electron (red) and muon (blue) channels is also presented, including the pulls of each measurement
with respect to the combined result. From Ref. [137].
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Figure 9.2: Combined born-level double-differential cross-section against cos θ∗
CS with statistical

and systematic uncertainties, excluding the uncertainty on the luminosity. A comparison with the
electron (red) and muon (blue) channels is also presented, including the pulls of each measurement
with respect to the combined result. From Ref. [137].
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9 Results

9.3 Comparison to theoretical predictions

The combined fiducial cross-section is compared to state-of-the-art predictions, introduced
in Section 8.6. The comparison of the single-differential cross-section measurement against
m`` is shown in Figure 9.3. The prediction of the cross-section using the CT18annlo PDF
set [135] is few % below the measured distributions in most of the invariant mass spectrum,
with the exception of the last bin covering masses beyond 1500 GeV, and always compati-
ble with data within 1σ. The uncertainty of the prediction is larger than the uncertainty
on the measurement, hinting at the fact that the data should be able to further constrain
the theory prediction. When compared to different predictions using various PDF sets,
the behaviour depends on the set: when using HERAPDF2.0 [162] the prediction over-
shoots the measured distribution in the full mass range; when using MSHT20nnlo [51],
NNPDF3.1 [52], CT14nnlo [53] or ABMP16 [163] the predictions fall a few % below data
at m`` < 1000 GeV, but above this all predictions estimate a larger cross-section than the
one measured. Though not shown for visibility, all predictions are found within the 68%
CL intervals of each other, agreeing with data as well. The spread between different PDF
sets at low invariant mass is larger than the uncertainty of the measurement, highlight-
ing the sensitivity of this measurement to PDFs and the potential to further constrain them.

104



9.3 Comparison to theoretical predictions

0.9

1

1.1

T
h

e
o

ry
/D

a
ta CT18ANNLO w/o PI

3
10 [GeV]

ll
M

0.9

1

1.1

T
h

e
o

ry
/D

a
ta ABMP16 CT14nnlo HERAPDF20

MSHT20nnlo NNPDF31

6−
10

5−
10

4−10

3−
10

2−10

1−10

[p
b

/G
e

V
]

ll
/d

M
σ

d

Data
Total uncertainty
Syst. uncertainty

 PI ⊕ 
S

α ⊕CT18ANNLO PDF 

ATLAS Internal
1=13 TeV, 139 fbs

Figure 9.3: Combined born-level single-differential cross-section against m`` with statistical and
systematic uncertainties, excluding the uncertainty on the luminosity. A comparison with NNLO
QCD+NLO EW predictions using the CT18annlo PDF, where the uncertainty band corresponds
to the combined 68% CL PDF, αs, and photon-induced (PI) uncertainties. The middle ratio panel
shows the ratio between said prediction and data, both including (solid line) and not including
(dashed line) the PI contribution. The bottom panel shows the ratio with respect to predictions
using different modern PDFs. From Ref. [137].
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Chapter 10

Interpretation

This Chapter contains an overview of the different interpretations of the results presented
in Chapter 9, both in the context of Lepton Flavour Universality (LFU) tests and Effec-
tive Field Theory (EFT) interpretations. See Chapter 1 for a breakdown of my personal
contributions to the analysis.

10.1 Lepton Flavour Universality tests

Although the Standard Model predicts all lepton generations to couple equally to all SM
particles, findings by the LHCb [164] and g-2 [165] collaborations suggest deviations in the
lepton sector. As first suggested in Ref. [166] one way to search for SM deviations is to
measure the LFU ratio, defined as:

Rµµ/ee = dσµµ/dX
dσee/dX

, (10.1)

where X is the observable of interest. The Standard Model predicts this ratio to be
exactly unity for any value of the dilepton invariant mass, since both muons and electrons
couple equally to the Z and γ∗ bosons. Measurements at LEP [167] reported excellent
agreement between both channels at the Z-pole, with a measured ratio of the leptonic
partial widths of 1.0009 ± 0.0028, however the measurement by CMS of the ratio showed
a slight excess in the electron channel at m`` > 1.5 TeV [29]. Figure 10.1 shows the
measurement of Rµµ/ee as a function of m``, showing good agreement with Standard Model
in most of the spectrum with the exception of the range 1500 < m`` < 5000 GeV, where
a 2.3σ deviation is found. Though not statistically significant in itself, the observation
is consistent with the results published by CMS. For the results on the tests using the
double-differential cross-section measurements see Ref. [137].
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Figure 10.1: Measurement of Rµµ/ee as a function of m``. From Ref. [137].
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10 Interpretation

10.2 Effective Field Theory interpretation

As introduced in Section 2.3.1, the Standard Model Effective Field Theory (SMEFT) frame-
work is a generalization of the Standard Model which adds higher-dimensional operators
acting at a high energy scale Λ. When adding these contributions, the Drell-Yan cross-
section would change, meaning that the measured cross-section can be used to constrain
the Wilson coefficients that parametrise the effects of these operators.

10.2.1 Operator sensitivity

This interpretation uses the U(3)5 flavour symmetry assumption (as explained in Sec-
tion 2.3.1) reduce the number of free parameters in the theory. The first step in the
interpretation was to study which operators change the pp → `` cross-section and should
be further studied. To do so, the processes pp → e+e− and pp → µ+µ− were generated
with MadGraph (interfaced with Pythia for parton shower simulation) in the SMEFT
framework [42], enabling one of the higher-dimensional operators at a time and rejecting
those for which no contribution was found. The size of the EFT effects for the remaining
operators was estimated both on-shell (82< m`` <102 GeV) and off-shell (m`` >2 TeV).
Figure 10.2 shows the relative effect on the fiducial cross section of the operators we found
our final state to be sensitive to in both the dielectron and dimuon decay channels. Some
of these effects greatly exceed the SM expectations (e.g. ×1000 cross-section introduced
by the quadratic terms of some operators off-shell). This is due to the coupling chosen for
this test, ci/Λ=1 TeV−2, and indicates that limits set on these operators will be several
orders smaller than unity.
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Figure 10.2: Relative effect on the SM fiducial cross-section with respect to the SM pp → e+e−

cross-section of the considered EFT operators. The effect of each operator is separated into the
contribution of its corresponding linear and quadratic terms.
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10.2 Effective Field Theory interpretation

The dilepton final state is found to be sensitive to the EFT operators shown in Ta-
bles 10.1 and 10.2. The operators have been broadly divided between those affecting
fermion couplings, namely 4-fermion operators, and those modifying the couplings involv-
ing vector bosons, referred to as V ff operators. The effects of the 4-fermion operators
over different kinematic distributions can be found in Figures 10.3 and 10.4, evaluated at
m`` > 60 GeV and m`` > 300 GeV respectively. Several features can be inferred from
these figures: the effect of the SMEFT operators enhances the Drell-Yan cross-section at
high invariant masses; the effects of different operators at high (> 300 GeV) invariant
masses modify the shape of the cos θ∗

CS distribution in different ways; and the effects on y``

distribution result in an enhancement of the central rapidity cross-section at high dilep-
ton invariant masses. The EFT interpretation presented in following sections will use the
single- and double-differential cross-section against m`` and cos θ∗

CS. Figures 10.5 and 10.6
show the effects induced by the linear and quadratic terms of all operators with respect
to the SM cross-section in each bin of the measurement kinematic phase space. 4-fermion
operators introduce a large increase in cross-section at high m``. The shape differences
in the cos θ∗

CS spectra introduced by each operator are shown in Figure 10.6. The effect
of V ff operators is found to be smaller than the one induced by 4-fermion operators,
although shape differences are also observed in the cos θ∗

CS distribution.

Wilson coefficient Operator

cll1 (lγµl)(lγµl)
clq1 (lγµl)(qγµq)
clq3 (lγµτ

I l)(qγµτ Iq)
ceu (eγµe)(uγµu)
ced (eγµe)(dγµd)
clu (lγµl)(uγµu)
cld (lγµl)(dγµd)
cqe (qγµq)(eγµe)

Table 10.1: Wilson coefficients and corresponding 4-fermion operators considered in this analysis.
The fields {q, `} are the SM quark and lepton left-handed fields respectively, and {e, u, d} are the
right-handed fields. τ I are the SU(2)L SM generators, the Pauli matrices. For further information
see Ref. [42].
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Wilson coefficient Operator

cHD (H†DµH)∗(H†DµH)
cHWB H†τ IHW I

µνB
µν

cHl1 (H†i
←→
D µH)(lγµl)

cHl3 (H†i
←→
D I

µH)(lτ Iγµl)
cHe (H†i

←→
D µH)(eγµe)

cHq1 (H†i
←→
D µH)(qγµq)

cHq3 (H†i
←→
D I

µH)(qτ Iγµq)
cHu (H†i

←→
D µH)(dγµd)

cHd (H†i
←→
D µH)(uγµu)

Table 10.2: Wilson coefficients and corresponding V ff operators considered in this analysis. The
fields {q, `} are the SM quark and lepton left-handed fields respectively, and {e, u, d} are the right-
handed fields. Wµν and Bµν are the SM gauge fields. τ I are the SU(2)L SM generators, the Pauli
matrices. H corresponds to the SM Higgs scalar doublet. H†i

←→
D µH = H†iDµH − (iDµH†)H. For

further information see Ref. [42].
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Figure 10.3: Different kinematic distributions in the dielectron channel obtained by adding different
4-fermion contributions (both linear and quadratic terms) to the SM prediction. All couplings are
set to ci/Λ=1 TeV−2. The dielectron mass cut is set at 60 GeV.
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Figure 10.4: Different kinematic distributions in the dielectron channel obtained by adding different
4-fermion contributions (both linear and quadratic terms) to the SM prediction. All couplings are
set to ci/Λ=1 TeV−2. The dielectron mass cut is set at 300 GeV.
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Figure 10.6: Ratio between EFT and SM LO distributions for 4-fermion (top) and V ff (bottom)
operators against m`` and cos θ∗

CS. All couplings are set to ci/Λ=1 TeV−2.
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10 Interpretation

10.2.2 Fitting framework

The EFT fitting framework used here was adapted from a standard ATLAS EFT fitting
tool [168]. The framework uses ROOFit to compare a combination of SM prediction and
EFT signal (linear and quadratic terms) with unfolded measurements to extract limits
on the Wilson coefficients of the operators considered. The statistical model that the
framework uses is a multivariate Gaussian that represents the measurement’s uncertainties.
The likelihood used by the model can be written as:

L = 1√
(2π)Nbins |Σ|

exp
{
−1

2
[
~x− ~µ(~θ)

]T
Σ−1

[
~x− ~µ(~θ)

]}
×
∏

i

θi, (10.2)

where Σ represents the covariance matrix of the measurement (built from the bin-by-
bin correlation of the different uncertainty sources), ~x is the measured distribution and ~µ
is the predicted distribution. The theoretical uncertainties on the prediction are included
as nuisance parameters ~θ, where a shift of θi = 1 corresponds to a shift of the source j
by 1σ, following the procedure used in other ATLAS analyses [169–171]. The prediction
in each bin is the combination of both the SM expected contribution (bi), plus the linear
(slin) and quadratic (squad) terms of the EFT parameters under study:

µi = bi + c · slin,i + c2 · squad,i, (10.3)

where c represents the Wilson coefficient of the operator being considered. However,
EFT signals are computed only at LO QCD+EW level, so the prediction is modified to
account for higher order corrections in the following manner:

µi = bbest
i ·

(
1 + c

slin,i

bLO
i

+ c2 squad,i

bLO
i

)
, (10.4)

where bbest represents the best available SM prediction for the process being studied,
including all higher-order corrections available (as presented in Section 8.6), and bLO is a
SM prediction computed at leading-order, using the same generator used to simulate the
EFT signal. The ratio between the LO SM prediction and the prediction including higher
order corrections (namely, the bLO/bbest ratio), is shown in Figure 10.7, found to be ∼ 30%.

The covariance matrix (Σ) used in Equation 10.2 is built adding the different uncer-
tainty sources in the following way:

Σik =
Nsys∑

j

Γj
i Γj

k + δik∆2
i , (10.5)

where j goes through the different uncertainty sources and i, k represent the different
bins in the measurement. Γj

i therefore represents the systematic uncertainty in bin i
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10.2 Effective Field Theory interpretation
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Figure 10.7: Dilepton invariant mass SM predictions calculated at LO and including higher order
corrections (top). Ratio plot (bottom) corresponds to the correction factor applied in Equation 10.4.

arising from the source j. ∆i represents the statistical uncertainty in bin i, assumed to
be uncorrelated (hence δik, statistical contribution only affects the diagonal terms). In the
case of asymmetric systematic uncertainties, the contributions are symmetrised as:

Γi = ulow
i − uup

i

2 (10.6)

where ulow
i (uup

i ) represents the lower (upper) limit of the uncertainty in bin i. Fig-
ures 10.8 and 10.9 show the correlation matrices Σ in each of the channels studied in the
analysis for the single-differential and double-differential measurements respectively. Large
correlations between bins are found in the m`` < 300 GeV region of the analysis, where
statistical uncertainties are very small, causing the diagonal term ∆2

i in Equation 10.5 to
have a much smaller contribution than the correlated sources. High correlations are partic-
ularly prominent in the muon channel, where they’re observed up to the m`` ∼ 1 TeV range.

Experimental systematic uncertainties used in the fits are as described in Section 8.5,
including a global 1.7% uncertainty corresponding to the luminosity measurement. Theo-
retical uncertainties on the fully corrected SM prediction are taken as shown in Section 8.6,
including PDF, scale and αS uncertainties. Moreover, if the relative statistical uncertainty
in a bin of a template corresponding to an EFT effect is above 10%, a nuisance parameter
is added that parametrizes this uncertainty in the fit.

Limits on the Wilson coefficients can be found by varying their values and computing
the expression in Equation 10.2, obtaining the best-fit value, ĉi, at the maximum of L and
a set of lower and upper limits on it, given by a difference of 2(3.84) · logL with respect to
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10 Interpretation

the maximum likelihood, at 68% (95%) confidence level.
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(c) Combined channel

Figure 10.8: Correlation matrix, Σ, for the single-differential cross-section measurement against
m`` in the different channels studied in the analysis.
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Figure 10.9: Correlation matrix, Σ, for the double-differential cross-section measurement against
m`` and cos θ∗

CS in the different channels studied in the analysis. The binning corresponds to that
presented in Equation 8.3.
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10 Interpretation

10.2.3 Single-differential measurement interpretation

Before performing the EFT fits, a fit to the measured distribution using only the Standard
Model prediction fit is performed to ensure the fit methodology is robust. The results of
the SM-only fits can be found in Figure 10.10. The fit behaves as expected, with pulls
from the theory systematics bringing the prediction to a better agreement with data and
reducing the uncertainties after the fit.
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Figure 10.10: Single-differential Drell-Yan cross-section against m`` as measured in data and pre-
dicted by Powheg (including NNLO QCD+NLO EW corrections). Predictions are shown before
(red) and after (blue) the fit to the measured distribution has been performed.

The measurement, the SM predictions and the simulated EFT effects are then fitted
jointly to extract best fit values and limits on the Wilson coefficients. The fits are performed
in two setups: once using both linear and quadratic EFT contributions and a second time
using only linear terms. Dimension-eight operators in the EFT expansion not considered
in this analysis are at the same order in an expansion in 1/Λ as the quadratic terms of
the dimension-six operators, so large differences between both fits would indicate that the
neglected dimension-eight operators may play a non-negligible role. Expected limits on the
coefficients are found by using the Standard Model prediction as pseudo-data while using
experimental and theoretical systematic uncertainties observed in the measurement.

Expected and observed limits on the Wilson coefficients can be found in Figures 10.11
and 10.12 respectively. Detailed results can be found in Appendix B. All operators are
compatible with the ci = 0 assumption at 95%CL, but several features stand out from
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10.2 Effective Field Theory interpretation

these results:

• As expected, stronger constraints can be placed on 4-fermion operators than V ff ,
since the effects of the former have a bigger impact on the Drell-Yan cross-section.
Limits placed on most 4-fermion operators correspond to the strongest limits provided
by any ATLAS measurement [169,172,173].

• The results using combined electron and muon measurements provide the strongest
limits in all operators as expected from the experimental uncertainty reduction.

• When comparing the limits obtained with or without considering quadratic terms
tighter limits can be placed on operators such as ced, cld or cHe when considering
quadratic terms. Here quadratic terms enhance the contribution of the linear term,
resulting into bigger effects on the DY cross-section and therefore stronger sensitivity.
In the case of cHu, c(1)

lq or ceu the linear term provides a negative contribution which,
at certain values of the coefficient, can incur in cancellation with the quadratic term,
resulting in a second minimum in the likelihood distribution.
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Figure 10.11: 95% CL expected (top) and observed (bottom) limits on the Wilson coefficients
corresponding to the operators shown in Table 10.1. Fits are performed using the single-differential
measurement of the Drell-Yan cross section against m``. Black lines correspond to results obtained
using the electron channel data, blue to muon channel and red to the combined channel. Solid
lines correspond to limits obtained only using linear EFT effects, while dotted lines show results
combining linear and quadratic effects.
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Figure 10.12: 95% CL expected (top) and observed (bottom) limits on the Wilson coefficients
corresponding to the operators shown in Table 10.2. Fits are performed using the single-differential
measurement of the Drell-Yan cross section against m``. Black lines correspond to results obtained
using the electron channel data, blue to muon channel and red to the combined channel. Solid
lines correspond to limits obtained only using linear EFT effects, while dotted lines show results
combining linear and quadratic effects.
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10.2.4 Double-differential measurement interpretation

This section presents the results of the EFT interpretation of the double-differential mea-
surement of the Drell-Yan cross-section against m`` and cos θ∗

CS. To enhance the sensitivity
of the measurement to EFT effects, the last bin in invariant mass, 1500 < m`` < 5000 GeV,
is added as the effects induced by most operators increase with the dilepton invariant mass.
The resulting distribution, including all the kinematic phase space shown in Equation 8.3
and the last invariant mass in the single-differential measurement, will be further referred
to as the 2D(+1) distribution. Following the same procedure as previously explained, a
consistency check is performed by fitting a SM-only prediction. As discussed in Section 8.6,
the prediction used for the double-differential distribution is based on the Sherpa Monte-
Carlo generator, applying a mass-dependent correction to Powheg. The results of the fit
consistency check on the 2D(+1) distribution are shown in Figure 10.13. The fit behaves
as expected: the fitting procedure brings the prediction to a good agreement with data
and reduces the uncertainties after the fit.
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Figure 10.13: Double-differential Drell-Yan cross-section againstm`` and cos θ∗
CS as measured in data

and predicted by Sherpa (including mass-dependent corrections based on the Powheg prediction).
Predictions are shown before (red) and after (blue) the fit to the measured distribution has been
performed.

Fits are performed in the same way as discussed for the single-differential measurement.
Expected and observed limits on the Wilson coefficients using the 2D(+1) distribution can
be found in Figures 10.14 and 10.15 respectively. Detailed results can be found in Ap-
pendix B. Most operators are compatible with the ci = 0 assumption at 95%CL, with the
exception of the cqe, c(1)

lq , ceu and clu which show up to 3.1σ deviation from ci = 0 in the
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10.2 Effective Field Theory interpretation

linear fits using the results obtained in the muon channel. The sensitivity to V ff opera-
tors is enhanced with respect to the single-differential distribution by exploiting the shape
dependence of the EFT-induced effects as shown in Figure 10.2. A comparison between fits
performed with 1D and 2D(+1) distributions is shown in Table B.5. When comparing the
limits obtained with or without considering quadratic terms, similar trends are found as
when using the single-differential measurement. In some cases, the tighter limits obtained
using the double-differential measurement result in second minima disappearing from the
95% CL interval, as observed in the cHu operator.
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Figure 10.14: 95% CL expected (top) and observed (bottom) limits on the Wilson coefficients
corresponding to the operators shown in Table 10.1. Fits performed using the double-differential
measurement of the Drell-Yan cross section against m`` and cos θ∗

CS. Black lines correspond to
results obtained using the electron channel data, blue to the muon channel and red to the combined
channel. Solid lines correspond to limits obtained only using linear EFT effects, while dotted lines
show results combining linear and quadratic effects.
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10.2 Effective Field Theory interpretation
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Figure 10.15: 95% CL expected (top) and observed (bottom) limits on the Wilson coefficients
corresponding to the operators shown in Table 10.2 (b). Fits performed using the double-differential
measurement of the Drell-Yan cross section against m`` and cos θ∗

CS. Black lines correspond to
results obtained using the electron channel data, blue to the muon channel and red to the combined
channel. Solid lines correspond to limits obtained only using linear EFT effects, while dotted lines
show results combining linear and quadratic effects.
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10 Interpretation

10.2.5 Principal component analysis

All results shown in the previous Sections correspond to individual fits of one SMEFT
operator at a time, which may not encapsulate all the physics effects this interpretation can
provide. However, the results presented in Chapter 9 do not contain sufficient information
to perform a simultaneous fit of all operators that the studied final state is sensitive to.
Following the methodology presented in Ref. [172], a Principal Component Analysis (PCA)
is performed to construct a modified basis consisting of linear combinations of operators in
the Warsaw basis. This can be achieved by re-parametrising the Hessian matrix, calculated
as the inverse of the measurement’s covariance matrix [174], in such way that it is expressed
in terms of Wilson coefficients. In the Gaussian limit, the measurement of the eigenvectors
of the re-parametrised Hessian matrix are uncorrelated and the expected uncertainty σ of
the measurement in the direction of the eigenvectors is related to their eigenvalues, λ:

σ = 1√
λ
. (10.7)

In order to improve the interpretability of the measurement, following the procedure
used in Ref. [172], EFT operator groups are defined containing Wilson coefficients with sim-
ilar physics impact. These groups are those corresponding to 4-fermion and V ff operators
respectively. The leading eigenvectors (EVs) of the Hessian matrix in the single-differential
measurement are shown in Figure 10.16. Out of all 17 resulting eigenvectors, fits are per-
formed on the most sensitive EVs (those fulfilling σ < 1) from each category while having
very uncorrelated effects, as shown in Figure 10.17. The selected operators are c0, c1, c2,
c3, c7 and c8, for which Warsaw basis combinations and sensitivities are shown in Table 10.3.

Individual fits on these combinations of parameters were performed using the single-
differential measurement, considering only linear EFT contributions. The consistent addi-
tion of quadratic terms would require the computation of all cross-terms of the parameters
included in the fit, which due to the variety of sensitive operators leads to a huge number
of samples that would need to be processed. Considering that these terms are sub-leading
contributions (scaling with Λ−4 or higher orders), it was decided to perform the PCA fits
using only the linear effects of the operators. The fits are also performed allowing all 6 cho-
sen parameters to float, while profiling the likelihood with respect to a single one of them.
The expected limits on the coefficients can be found in Figure 10.18. Very little difference
is observed between individual and profiled limits, as expected when considering effects of
very uncorrelated operators. The observed limits obtained using the single-differential DY
cross-section measurement can be found in Figure 10.19. All coefficient combinations are
found to be compatible with the ci = 0 assumption at 95% CL.
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10.2 Effective Field Theory interpretation
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Figure 10.16: Graphical representation of the eigenvectors of the Hessian matrix of the single-
differential measurement in the combined channel. Each row corresponds to an eigenvector (ci),
expressed as combinations of the EFT operators. The components of the eigenvectors are rounded
to the second decimal place. The expected uncertainty σ (see Equation 10.7) of a measurement in
the direction of each eigenvector is also included.
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Figure 10.17: Correlation between the effects of the leading PCA eigenvectors included in the
likelihood fit.
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10 Interpretation

Operator Re-redefinition σ Warsaw-basis combination

c0 c
′[1]
4f 0.002

-0.33c(1)
lq +0.81c(3)

lq -0.39ceu+0.10ced

-0.20clu+0.05cld-0.15cqe

c1 c
′[2]
4f 0.031

0.87c(1)
lq +0.39c(3)

lq +0.10ceu+0.23ced

+0.11clu+0.10cld-0.05cqe

c2 c
′[3]
4f 0.257

-0.32c(1)
lq +0.32c(3)

lq +0.73ceu+0.05ced

+0.48clu+0.15cld-0.04cqe

c3 c
′[4]
4f 0.706

0.09c(1)
lq +0.15c(3)

lq -0.28ceu-0.56ced

+0.60clu-0.47cld+0.03cqe

c7 c
′[1]
V ff 0.090

-0.14c(1)
ll +0.33cHD+0.85cHW B+0.07c(1)

Hl+0.33c(3)
Hl

-0.14cHe+0.02c(1)
Hq+0.11c(3)

Hq+0.03cHu-0.02cHd

c8 c
′[2]
V ff 0.158

0.46c(1)
ll +0.09cHW B+0.51c(1)

Hl -0.44c(3)
Hl

-0.29cHe+0.03c(1)
Hq+0.48c(3)

Hq+0.08cHu-0.04cHd

Table 10.3: Main eigenvectors of the Hessian matrix of the single-differential measurement in the
combined channel. The expected uncertainty σ of a measurement in the direction of each eigenvector
is also included, ranking the eigenvectors from best constraint (smallest σ) to least constraint. The
components of the eigenvectors are rounded to the second decimal place.
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Figure 10.18: 95% CL expected limits on the re-parametrized operators shown in Table 10.3, ex-
tracted using the single-differential measurement in the combined channel. Limits are extracted
using an Asimov fit, interpreting SM prediction as pseudo-data, while introducing experimental
and theoretical systematic uncertainties observed in the measurement (and prediction) on it. All
results correspond to limits obtained only using linear EFT effects.
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Figure 10.19: 95% CL observed limits on the re-parametrized operators shown in Table 10.3, ex-
tracted using the single-differential measurement in the combined channel. All results correspond
to limits obtained only using linear EFT effects.
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Chapter 11

Conclusion

The measurement of the single- and double-differential neutral-current Drell-Yan cross sec-
tion was performed, using the data collected by the ATLAS experiment during the years
2015 to 2018. The center of mass energy of the proton-proton collisions recorded was
√
s = 13 TeV. The only available measurement of the Drell-Yan differential cross-section

at the energy range explored in this measurement corresponds to early Run 2 results pub-
lished by CMS [175], for which the smallest uncertainties were about 5%. The results are
sensitive to the parton content of the protons, allowing to probe regions of x for which no
experimental information was available with the level of precision provided in this measure-
ment. The analysis covered dilepton invariant masses of up to m`` = 5000 GeV, expanding
the kinematic range of the measurement with respect to previous ATLAS results. With the
inclusion of the photon-induced dilepton pair production as part of the measured signal,
the results can also help to constrain the photon content of the proton.

A precision below 1% has been achieved in the phase space of low m`` (<230 GeV).
The measurement is mostly limited by systematic uncertainties. The measured cross-
section was compared with theoretical predictions using different PDFs, demonstrating
good agreements overall but revealing the potential for better constraints using the data
here presented.

The measurement was used for tests on Lepton Flavour Universality and Effective Field
Theory interpretations. No significant deviations from the Standard Model were found,
but small tensions were found in LFU tests at m`` > 1500 GeV. Limits placed on EFT
operators correspond to leading constraints in some of the operators. The measurement
will be used as part of the global ATLAS EFT fit that will combine measurements from
different processes to enhance the sensitivity to different EFT operators.
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Search for Lorentz-invariance
violating signatures in the dilepton

final state
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Chapter 12

Motivation

The Standard Model Extension (SME) provides a model-independent approach to the
parametrization of Lorentz-invariance violating (LIV) effects that induce a time-dependent
variation on the production of the Z-boson at the ATLAS experiment, as first presented in
Section 2.3.2. The search for LIV signals has never been done in any LHC experiment, with
some of the most recent searches dating back to the ZEUS experiment at HERA [176] and
D0 at Fermilab [177,178]. Using the methodology first developed for luminosity measure-
ments [179], the Z-boson production can be precisely monitored at the ATLAS experiment
in a time-dependent manner. Using the dataset collected during the years 2015 and 2018,
time modulations in the Z-boson production can be searched for and interpreted in the
context of Standard Model Extension (SME) operators. The analysis of the Drell-Yan pro-
duction at LHC offers sensitivity to the quark sector of SME which has not been explored
yet thanks to the difference between vector and axial couplings of fermions to the Z-boson.

The following chapters will present the different elements involved in the time-dependent
measurement of the Z-boson production at ATLAS and its interpretation in the SME
framework. The structure is as follows: Chapter 13 presents an overview of the method-
ology for luminosity measurement using Z-counting. Chapter 14 describes the analysis
methodology used to search for Lorentz-invariance violation using these results. In Chap-
ter 15 the novel methodology for Monte-Carlo sensitivity studies is introduced, including
an overview on how to model time dependence in the simulated samples. These results are
used as an input for fits of SME-induced effects, setting the expected limits on the opera-
tors this measurement is sensitive to. This part concludes with a summary and outlook of
the analysis in Chapter 16.
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Chapter 13

Time-dependent Z-boson
production measurement

This Chapter contains an overview of the methodology for a time-dependent measurement
of the Z-boson production at the ATLAS experiment. Although the methodology follows
that presented in the Z-counting luminosity measurement [179], it has been adapted to a
newly developed analysis framework which runs on fully calibrated data, as opposed to the
original analysis code, which ran on primary data output from the experiment. The transfer
of the methodology to a common ATLAS analysis framework allows for systematic checks
that the search for Lorentz-invariance violating signals may require, as well as a cross-check
for the methodology and a proof of concept for time-dependent analyses in the experiment
that may be expanded further to a variety of final states.

13.1 Measurement methodology

The Drell-Yan production of dilepton pairs is a well understood process, with the clean
Z-boson signature of two high-transverse momentum, oppositely charged leptons† provid-
ing robustness against varying data-taking conditions. A luminosity measurement can be
obtained by measuring the number of produced Z-bosons, NZ , using the formula:

LZ = NZ

σZ
, (13.1)

where σZ is the Z-boson production cross section. Experimentally, precise measure-
ments of σZ→e+e− (σZ→µ+µ−) have been obtained with systematic uncertainties (excluding
luminosity) of about 1.0% (1.5%) [180]. The value of the Z → `+`− cross-section is pre-
dicted by calculations at NNLO QCD with a total uncertainty of 3-4% at 90% CL, where
the uncertainty is driven by the current knowledge of the proton parton distribution func-

†Z-boson decays to τ leptons or quarks are not considered here, as they are much more difficult to
reconstruct and prone to very high background levels.
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13.1 Measurement methodology

tions (PDFs). As the final Run 2 uncertainties in the baseline ATLAS luminosity are
about 0.83% [109], the Z-counting luminosity is not yet competitive as an absolute mea-
surement using the predicted σZ , but has many powerful features as a relative luminometer.

The Z-counting procedure is performed as a function of time, in units of “luminosity
blocks” (LBs), the smallest time interval for which luminosities are measured in ATLAS,
typically corresponding to 60 seconds intervals. For each lepton flavour the raw rate of
detected Z-bosons is measured and corrected to account for the trigger and reconstruction
efficiencies which are derived in-situ from the same data. The data-driven efficiencies are
further corrected using Monte Carlo simulations. A small background subtraction is also
applied to remove dilepton pairs originating from diboson and t̄t events.

Thus, the general form for calculating the Z-counting based instantaneous luminosity
as shown in Eq 13.1 is modified as follows [179]:

LZ→`+`−(LB) = NZ→`+`−(LB) · (1− fbkg)
σtheo ×AMC

Z→`+`− · εT&P
Z→`+`−(LB) · FMC

Z→`+`−(〈µ〉) · t(LB)
, (13.2)

where:

• NZ→`+`−(LB) is the number of selected Z-boson candidates per LB, as defined in
the previous section.

• fbkg is the fraction of background events in the signal region. The value is taken as
fbkg = 0.005 in both the electron and muon channels, determined from Monte Carlo
studies [180].

• σtheo is the inclusive Z → `+`− cross-section determined for the range m`` > 60 GeV
to select the inclusive invariant mass range of the simulated Z events. The value
used is σtheo = 1970 pb, with a PDF uncertainty of 3.5% at 90% CL, obtained at
NNLO QCD theory with the FEWZ 3.1.b2 framework [81–83] using the CT18annlo
proton PDF [135]. All results presented are either based on LZ→e+e−/LZ→µ+µ−

ratios, or normalised to the integrated baseline ATLAS luminosity values, cancelling
the dependence on this value and its uncertainty.

• AMC
Z→`+`− is an acceptance factor correcting the inclusive cross-section σtheo to the

phase space defined in Table 13.1.

• εT&P
Z→`+`−(LB) is the event trigger and reconstruction efficiency obtained per LB from

the data-driven tag-and-probe procedure discussed in Section 13.3.

• FMC
Z→`+`−(〈µ〉) is a correction factor for efficiency effects beyond the ones determined
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13 Time-dependent Z-boson production measurement

in the tag-and-probe procedure, derived from Monte Carlo as a function of the average
pileup, 〈µ〉. See Section 13.4 for further details.

• t(LB) is the live time of typically about 60 seconds per LB. The live time is corrected
for detector dead time effects.

13.2 Data samples and event selection

The analysis presents the results for the full high-luminosity ATLAS Run 2 dataset,
recorded between 2015 and 2018 for pp collisions at

√
s = 13 TeV, amounting to a to-

tal integrated luminosity of 139.0 fb−1. Note that the luminosity measurement used as
reference for the results presented in this thesis corresponds to the Run 2 preliminary
results [152]. The luminosity used in the final results in the published analysis will corre-
spond to the results reported in Ref. [109]. The dataset is divided within ATLAS into 595
runs, where one run typically corresponds to one LHC fill.

Events are recorded by the unprescaled single-lepton triggers with a transverse energy
(momentum) threshold of 24 GeV (20 GeV) for electron (muon) candidates for 2015 data
and of 26 GeV for 2016-18 data, within the pseudorapidity range of |η| < 2.4. Events with
at least two well-identified and isolated leptons with the same flavour and opposite charge
are selected, where either (or both) of the leptons pass the single-lepton trigger require-
ments. A likelihood based identification criterion is applied to the electron candidates,
using the Medium working point. The muon candidates are required to be reconstructed
from a combination of inner detector (ID) and muon spectrometer (MS) tracks and pass
Medium identification criteria. Both electrons and muons are required to satisfy lepton
isolation cuts found in Table 13.1. For more information on lepton identification and iso-
lation at ATLAS see Chapter 6.

The full list of lepton selection requirements are found in Table 13.1, where the phase-
space boundaries are determined by the transverse momentum (pT) and pseudorapidity (η)
ranges. All leptons passing these requirements will be referred to as “good” leptons, with a
same-flavour, oppositely-charged pair of these required to form a Z-boson candidate, with
an additional requirement on their invariant mass of 66 < m`` < 116 GeV.

13.3 Data-driven efficiency estimation

An important aspect of the Z-counting method is that electron and muon reconstruction
and trigger efficiencies can be calculated using the Z events themselves, correcting for
time-dependent detector inefficiencies affecting the detection rate. The efficiency to select
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Selection criteria Electron channel Muon channel

Transverse momentum pe
T > 27 GeV pµ

T > 27 GeV
Pseudorapidity 0 < |ηe| < 1.37 or 1.52 < |ηe| < 2.4 0. < |ηµ| < 2.4
Identification LHMedium Medium, combined muon

Isolation
Etopo,cone20

T /pT < 0.2
and pcone30

T /pT < 0.15
Etopo,cone20

T /pT < 0.3
and pcone30

T /pT < 0.15

Track-vertex association
|z0 sin θ| < 0.5 mm |z0 sin θ| < 0.5 mm
|d0|/σ(d0) < 5 |d0|/σ(d0) < 3

Invariant mass 66 < me+e− < 116 GeV 66 < mµ+µ− < 116 GeV

Table 13.1: Overview of selection criteria, where each criterion is applied to a single lepton and
two oppositely charged leptons of the same flavour are required to form a Z-boson candidate, with
invariant mass in the range 66 to 116 GeV.

a Z event is factorised into single-lepton trigger and reconstruction efficiencies, which are
measured independently for each lepton flavour. The combination of these factors results
in the Z-boson event-level selection efficiency as a function of time (in units of LBs).

13.3.1 Single-lepton trigger efficiency

The single-lepton trigger efficiency is defined with respect to the “good” lepton criteria
and determined using events with two “good” leptons passing the selection detailed in
Table 13.1. The single-lepton trigger efficiency, εtrig,1` can be derived by counting the
number of events where exactly 1 lepton passed the trigger requirement (N1) and the
number of events where both leptons passed the trigger (N2) as follows:

εtrig,1` = 1
N1
2N2

+ 1
. (13.3)

The statistical uncertainty on this efficiency is calculated by propagating the Poisson
counting uncertainties on N1 and N2. Due to the requirements of two isolated and well
identified leptons with a dilepton mass close to the Z-boson mass range, the background
contribution is well below 0.1% and neglected. In the approximation that the trigger
efficiencies of the two leptons are independent, the event-level trigger efficiency is defined
as:

εtrig,event = 1− (1− εtrig,1`)2. (13.4)

13.3.2 Single-lepton reconstruction efficiency

For both electrons and muons, the single-lepton reconstruction efficiency is calculated in
a tag-and-probe procedure (T&P) similar to that routinely done for ATLAS performance
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13 Time-dependent Z-boson production measurement

analyses [118, 120]. A high-quality “tag lepton” is selected along with a loose “probe lep-
ton” candidate with the extra requirement that the invariant mass of the tag-and-probe
pair be close to the Z-boson mass. Here, the reconstruction efficiency is defined as the
efficiency of the “good” lepton selection with respect to the loose object, and is determined
from the fraction of probes that pass the “good” lepton selection. The efficiency εreco,1`

is not the full efficiency to select a “good” lepton. Specifically, it does not include the
efficiency to reconstruct the loose “probe” leptons. Any missing components are estimated
entirely from simulation and form part of the correction factors discussed in Section 13.4.

The tag lepton is required to pass the single-lepton trigger to avoid a trigger bias,
and is also required to pass tight selection criteria to ensure it has a low probability of
being a mis-identified lepton. As the probe object has much looser selection criteria, mis-
identified leptons and combinatorial backgrounds can be significant, so unlike for the trigger
efficiency determination the background needs to be taken into account. The single-lepton
reconstruction efficiency (indicated with the subscript “reco,1`”) is calculated according
to:

εreco,1` =
NOS

pass −Nbkg
pass

NOS
pass +NOS

fail −N
bkg
total

, (13.5)

where NOS
pass (NOS

fail ) is the number of opposite-charge tag-and-probe pairs where the
probe satisfies (fails) the “good” lepton selection criteria and Nbkg

total (Nbkg
pass) are estimates

for the background in the denominator (numerator). The statistical uncertainty on this
efficiency is calculated using error propagation on all factors in Equation 13.5.

The selection criteria used to select “tag” and “probe” leptons are listed in Table 13.2
and are discussed further below. The reconstruction efficiency is calculated only for leptons
within the fiducial phase space defined in the preselection criteria listed in Table 13.1, while
the “probe” selection criteria determines whether a lepton passes or fails.

Electron channel reconstruction efficiency In the electron channel, the tag electron
is required to pass tight identification criteria [115] and be matched to a single-electron
trigger object, as shown in Table 13.2. The probes are clusters of energy in the electro-
magnetic calorimeter loosely matched to an ID track with further kinematic requirements,
also detailed in Table 13.2. The efficiency for the probe-level selection with respect to true
electrons is about 98% and is well described by the simulation [115]. The probability to
measure the electron charge correctly is about 99% and is well described by the simulation.

The nominal selection for the tag-and-probe pairs to be used in Equation 13.5 are
opposite-charge pairs with an invariant mass of 75 < mee < 105 GeV, called the peak
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13.3 Data-driven efficiency estimation

Candidate Selection criteria Electron channel Muon channel

Tag
Lepton ID LHTight As in Table 13.1

Trigger object Matched Matched

Probe

Preselection criteria

Object
EM cluster matched

to ID track
ID track

pT pe
T > 27 GeV pµ

T > 27 GeV

η` 0 < |ηe| < 1.37
or 1.52 < |ηe| < 2.4

0 < |ηµ| < 2.4

Track-vertex association - |z0 sin θ| < 2 mm
Probe selection criteria

Requirement
Passes all cuts
in Table 13.1

Match to combined muon
passing cuts in Table 13.1,

with looser pµ
T > 21.6 GeV cut.

Table 13.2: Lepton selection criteria for “tag” and “probe” candidates. Tag candidates are also
required to pass all cuts in Table 13.1. Requirements for the probe selection criteria determine
whether a lepton passes or fail the reconstruction.

region, where the probe is either passing or failing the “good” electron selection criteria.
The background is estimated using a “template” method, where a background-enriched
sample with minimal signal contribution is selected from data by inverting the identification
and isolation requirements, i.e. requiring probes to fail both isolation and identification
criteria, but pass all other selection. The template is normalised to the high-mass sideband
within the range of 120 < mee < 250 GeV using the statistics of the entire ATLAS run to
obtain a smooth distribution. The background yields are obtained integrating the template
over the peak region. In the denominator, the normalisation uses probes failing the “good”
electron selection (“fail”), while in the numerator same-charge pairs (“SS”) are used to
ensure a small signal contamination. The resulting expression for the efficiency is:

εreco,1` =
NOS

pass,peak −NOS
template,peak ·

NSS
pass,tail

NSS
template,tail

NOS
pass,peak +NOS

fail,peak −NOS
template,peak ·

NOS
pass,tail

NOS
template,tail

. (13.6)

The selection and background estimation are illustrated in Figure 13.1 for an example
ATLAS run. The efficiency is calculated using the background-subtracted events between
the data points (signal) and background in the peak mass range, taking the ratio between
the numerator (left) and denominator (right).
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13 Time-dependent Z-boson production measurement

Muon channel reconstruction efficiency All muon candidates that pass the “good”
selection criteria and are matched to a single muon trigger object are considered as tags, as
shown in Table 13.2. In the muon channel, inner detector tracks passing the preselection
cuts listed in Table 13.2 are used as probes. The efficiency for the probe-level selection with
respect to true muons is stable and slightly above 99%, well described by simulation [120].
A pass or fail of the probe is determined by matching the ID track to a combined muon
passing the “good” criteria with the pT requirement loosened to 21.6 GeV, ensuring that ID
tracks at the boundary of pT = 27 GeV can be successfully matched to a combined muon of
slightly lower transverse momentum. All tag-and-probe pairs used in Equation 13.5 with
the probe passing or failing the “good” muon selection are opposite-charge pairs within a
tight invariant mass window of 86 < mµµ < 96 GeV to reduce background contamination.
Following Ref. [120], the background is estimated using a same-charge selection. The
signal and background estimation are illustrated in Figure 13.2 for the same example
ATLAS run. As explained for the electron channel, the muon reconstruction efficiency
is calculated taking the ratio between the background-subtracted signal in the numerator
(left) and denominator (right).
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Figure 13.1: Invariant dielectron mass distributions used to calculate the reconstruction efficiency
as given in Eq. 13.5, where the left (right) figure shows the contribution to the numerator (denomi-
nator). Vertical dashed lines illustrate the “peak” and “tail” mass ranges for the electron template
method. The data was recorded from pp collisions at

√
s = 13 TeV in ATLAS Run 340030 on

November 4, 2017. The error bars show statistical uncertainties only.

13.3.3 Event-level efficiency

For a Z → `+`− event there are two leptons and the single-lepton efficiencies must therefore
be combined to determine event-level efficiencies. This considers that at least one lepton
trigger the Z-candidate event and both leptons are required to pass the “good” lepton
criteria:

εT&P
Z→`` =

(
1− (1− εtrig,1`)2

)
× ε2

reco,1`. (13.7)

The event-level efficiency, εT&P
Z→``, is applied per decay channel to correct the number
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Figure 13.2: Invariant dimuon mass distributions used to calculate the reconstruction efficiency as
given in Eq. 13.5, where the left (right) figure shows the contribution to the numerator (denomina-
tor). Vertical dashed lines illustrate the “peak” mass range used in the muon channel tag-and-probe
procedure. The data was recorded from pp collisions at

√
s = 13 TeV in ATLAS Run 340030 on

November 4, 2017. The error bars show statistical uncertainties only.

of raw Z → `+`− candidates. The corresponding statistical uncertainty is calculated by
propagating the uncertainties on each component.

13.4 Correction factors from simulation

The event-level efficiency described in Equation 13.7 accounts for the trigger and recon-
struction efficiencies determined from data using a factorised ansatz based on single lepton
efficiencies. However, it does not include additional effects due to the ID track efficiency for
muons, nor the track-to-cluster matching efficiency or the electron charge mis-identification
probability for electrons. Also, non-factorising effects are not included and could lead to
a bias in the calculated event-level efficiency, if the efficiencies of the two leptons were
correlated. The factorisation is tested and a correction factor is obtained from samples of
simulated Z/γ∗ → `+`− events.

13.4.1 Samples and procedure

The Monte Carlo Z/γ∗ → `+`− signal samples used for this analysis are the same as those
used in the high-mass Drell-Yan cross-section measurement, introduced in Section 8.1.
Simulated events are required to pass the same kinematic selection criteria as for data,
shown in Table 13.1. The closure of the tag-and-probe procedure can then be tested by
comparing the full reconstruction efficiency determined in Monte Carlo to the value of
εT&P

Z→`` determined using the tag-and-probe method on the Monte Carlo events.

The Monte Carlo correction factor, first introduced in Equation 13.2, FMC
Z→`+`−(〈µ〉), is

defined as:
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13 Time-dependent Z-boson production measurement

FMC
Z→`+`−(〈µ〉) =

N reco,fid,MC
Z→`+`− (〈µ〉)

N true,nocut,MC
Z→`+`− (〈µ〉)

× 1
AMC

Z→`+`− · εT&P,MC
Z→`+`−(〈µ〉)

, (13.8)

where all quantities are evaluated with Monte Carlo events as a function of the pileup
parameter, 〈µ〉, and:

• N reco,fid,MC
Z→`+`− (〈µ〉) is the number of reconstructed events (“reco”) which pass the fidu-

cial phase space (“fid”) and event selection requirements presented in Section 13.2.

• N true,nocut,MC
Z→`+`− (〈µ〉) is the number of generated Z-boson MC events (“true”) without

any selection (“nocut”).

• AMC
Z→`+`− is the fiducial acceptance, calculated using leptons originating from a Z-boson

as described in Section 13.4.2.

• εT&P,MC
Z→`+`−(〈µ〉) is derived by repeating the tag-and-probe (T&P) procedure using re-

constructed MC events with small modifications to the background subtraction dis-
cussed in Section 13.4.3.

The luminosity calculation in Equation 13.2 depends only on the product AMC
Z→`+`− ·

FMC
Z→`+`− , and AMC

Z→`+`− appears in the denominator of the definition of FMC
Z→`+`− . Hence,

the determined luminosity is independent of the value of AMC
Z→`+`− . The separation of these

two factors is a matter of convention intended to capture the detector effects in FMC
Z→`+`− ,

but the Z-counting results do not depend on this separation.

13.4.2 Fiducial acceptance

The acceptance factor AMC
Z→`+`− is derived from the MC signal samples using true Z-boson

events as follows:

AMC
Z→`+`− =

N true,fid,MC
Z→`+`−

N true,nocut,MC
Z→`+`−

, (13.9)

where:

• N true,fid,MC
Z→`+`− is the number of generated events with a pair of opposite-sign leptons

with pT > 27 GeV, |η| < 2.4 (with the additional removal of the crack region 1.37 <
|η| < 1.52 for electrons) and 66 < m`` < 116 GeV.

• N true,nocut,MC
Z→`+`− is the number of generated events with a true mass of m`` > 60 GeV.

In order to yield residual factors, FMC
Z→`+`− , that are close to one, an appropriate def-

inition of AMC
Z→`+`− is needed. This is achieved by using bare and dressed definition† for

†Further details on those definitions can be found in Section 8.3.
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13.4 Correction factors from simulation

the generator-level lepton kinematics for muon and electron channels, respectively. The
bare momentum corresponds to the lepton after emission of QED FSR and is appropriate
for muons, where the momentum is measured from the track. The dressed momentum is
appropriate for electrons, since the energy is measured in the electromagnetic calorimeter,
where the photon and electron energy deposits overlap. The obtained acceptance values
for AMC

Z→`+`− are shown in Table 13.3 and are in perfect agreement with those found in the
original Z-counting luminosity measurement [179]. As previously mentioned, the calcula-
tion details of AMC

Z→`+`− do not impact the final luminosity determination, therefore the
uncertainties on this value are not considered for the Z-counting luminosity uncertainty
calculation.

AMC
Z→e+e− AMC

Z→µ+µ−

0.2996± 0.0002 0.3326± 0.0002

Table 13.3: Fiducial acceptance values, calculated for the electron and muon channels using the cor-
responding MC signal samples. The uncertainties reflect the statistical uncertainty of the simulated
data.

13.4.3 Tag-and-probe efficiency in Monte Carlo

The pileup-dependent correction factor, FMC
Z→`+`−(〈µ〉), and its components are derived

using Monte Carlo Z/γ∗ → `+`− signal samples. This involves the full application of the
efficiency measurement procedure detailed in Section 13.3 for the data. As opposed to the
analysis performed with data, each event contains a true Z → `` decay and there is no QCD
multijet contamination in the signal lepton pairs. However, a small amount of background
could be present in the tag-and-probe distributions when a probe candidate corresponds to
misidentified hadronic activity, non-prompt lepton production and overlaid pileup events.
This is removed by requiring the reconstructed leptons to be matched to a true generated
lepton from the Z → `` decay. The single-lepton efficiencies obtained with reconstructed
MC events according to Equations 13.3 and 13.5 are then combined in the same way as
in data using Equation 13.7 to an event-level Z-boson efficiency, εT&P,MC

Z→`+`−(〈µ〉). A detailed
comparison of the results obtained in the Monte Carlo samples with those obtained in data
can be found in Appendix C.

13.4.4 Results for the Monte Carlo correction factor

The pileup-dependent Monte Carlo correction factors, FMC
Z→`+`−(〈µ〉) are derived separately

for each data-taking periods (each individual year between 2015 and 2018).

The 〈µ〉 dependence of FMC
Z→`+`− is fitted with a second-order polynomial per decay

channel and per data-taking period, and the fit results are shown in Figure 13.3. These
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13 Time-dependent Z-boson production measurement

parametrisations are used in the determination of the Z-counting based luminosity per
data-taking period and as a function of the pileup parameter 〈µ〉. The statistical uncer-
tainties of the fits are small and are neglected.

The Z → e+e− correction factor is found to be > 10% below unity for all 〈µ〉, implying
that there are additional efficiency effects beyond those captured in the tag-and-probe
procedure. The variation between 〈µ〉 = 20 and 〈µ〉 = 50 is around 2%. The Z → µ+µ−

correction factor is few % below unity for all 〈µ〉, meaning that a smaller correction is
required in this channel. The variation across the pileup range where the majority of data-
taking took place is around 1%, with pileup-dependent effects having a smaller impact
than in the electron channel.
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Figure 13.3: Z → e+e− (left) Z → µ+µ− (right) correction factors used for each year of data
produced using the dedicated Monte Carlo campaigns. The lines show second-order polynomial fits
to the correction factor for the corresponding 〈µ〉 range per year.

13.5 Results

The following section shows detailed results illustrating the methodology of Z-counting
using data recorded for

√
s = 13 TeV pp collisions in ATLAS runs 281411, 300800, 340030

and 360373 in 2015, 2016, 2017 and 2018 respectively. As shown in Table 13.4, the pp
luminosity delivered per run, as well as the average number of interactions per bunch
crossing, increased significantly from year to year. Throughout the development of the
new analysis framework a series of limitations were found to adapt the methodology in
the muon channel, as reported in Appendix D. The results here presented will therefore
correspond to those obtained in the electron channel, which show an excellent agreement
with the original Z-counting results [179] and are an important milestone to the develop-
ment of time-dependent analyses in ATLAS. However, the final publication of the search
for Lorentz-invariance violation will be based on the original results based on the online
monitoring tool, which include both electron and muon channel.
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Data-taking period ATLAS Run Date Luminosity [pb−1] Average pileup 〈µ〉

2015 281411 11/10/15 163.5 15.1
2016 300800 03/06/16 313.0 21.8
2017 340030 04/11/17 725.3 39.9
2018 360373 09/09/18 416.8 37.5

Table 13.4: Information for the selected ATLAS runs used to illustrate the Z-counting methodology
for each of the Run 2 data-taking periods.

The single-lepton reconstruction and trigger efficiencies for each of these runs are shown
in Figure 13.4. For display purposes, the efficiencies have been obtained by a weighted av-
erage over 20 luminosity blocks to improve the statistical uncertainties. The efficiencies
track the variations across the run and reflect the time evolution of the data-taking condi-
tions. After forming the event-level efficiencies and applying the pileup-dependent Monte
Carlo correction factors per LB, Z-counting luminosities are combined for N = 20 LBs as,

LZ→`+`− =
∑N

LB LZ→`+`−(LB) · t(LB)∑N
LB t(LB)

, (13.10)

where LZ→`+`−(LB) is the individual Z-counting luminosity for each LB and t(LB) is
the duration of said luminosity block.

The absolute ratio between the Z-counting and ATLAS baseline luminosities was found
to be consistent with unity within the total uncertainty when adding the dominant the-
oretical and experimental systematic uncertainties in quadrature. The remainder of the
results here presented focus on the relative consistency of the Z-counting and baseline
ATLAS luminosity measurements as a function of time. Therefore, in all comparisons of
the Z-counting and baseline luminosities, the Z-counting luminosity is normalised to the
same integrated luminosity as the baseline ATLAS measurement. This can be done over
different time periods, for instance a single ATLAS Run, a single data-taking period (year)
or the entire Run 2 period. The Z-counting luminosity normalised to the run-integrated
baseline ATLAS luminosity is shown in Figure 13.5 for each of the example ATLAS Runs
in Table 13.4. The ratio of the normalised Z-counting and ATLAS luminosities has a
spread at or below the 2% level, indicating the excellent relative stability between both
measurements.
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Figure 13.4: Time-dependence of the single electron trigger (black circles) and reconstruction (red
squares) efficiencies. Efficiencies were determined using the methodology explained in Section 13.3.
Shown is the average of the efficiencies over 20 LBs. Error bars show statistical uncertainties.
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Figure 13.5: Time-dependence in units of LBs of the instantaneous luminosity determined from
Z-counting (open circles), the baseline ATLAS luminosity (blue lines) and their ratios (full circles),
for the electron channel. The run-integrated Z-counting luminosity is normalised to the baseline
ATLAS luminosity in the run. Error bars show the statistical uncertainty of the LZ→`+`− deter-
mination. The green band in the ratio plot contains 68% of all points centred around the mean.
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13.5 Results

13.5.1 Time-dependence of LZ/LATLAS

The ratio of the normalised Z-counting luminosity and the baseline ATLAS measure-
ment [152] is used to study their relative stability over all Run 2 data-taking periods. The
spread of the ratio around unity quantifies the relative stability for the two measurements,
shown in Figure 13.6 for each data-taking period. The results indicate that the relative
stability of the two measurements is very good.
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Figure 13.6: Ratio of the integrated Z-counting and baseline ATLAS luminosities per ATLAS run
taken from pp collisions at

√
s = 13 TeV for the Z → e+e− channel. The Z-counting luminosity is

normalised to the integrated baseline ATLAS luminosity per data-taking period [152]. The x-axis
represents the date when the run started. Only ATLAS runs with a minimum length of 40 minutes
are included. The error bars show statistical uncertainties and the green bands contain 68% of all
points centred around the mean.

The expected improvement in the statistical precision of the Z-counting method with
increasing instantaneous luminosity is observed, with the spread around unity decreasing
from 2015 to the following years. Furthermore, the year-to-year stability of the ATLAS
luminosity scale can be monitored by normalising the Z-counting luminosity such that the
total Run 2 integrated luminosity is equal to the corresponding baseline ATLAS value, as
shown in Figure 13.7. The spread of these results is approximately 0.66%. The published
Z-counting results observed a spread of 0.8% across the Run 2 dataset [179], meaning
that the use of calibrated data brings a better stability with respect to the nominal AT-
LAS luminosity measurement. The variations observed are found within the uncorrelated
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13 Time-dependent Z-boson production measurement

year-by-year uncertainties that affect the absolute scale of the baseline ATLAS luminosity,
which amount to 1.3% for 2015/16, 1.3% for 2017 and 1.0% for 2018 in the preliminary
calibration [152].
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Figure 13.7: Ratio of the integrated Z-counting and baseline ATLAS luminosities per ATLAS run
taken from pp collisions at

√
s = 13 TeV for the Z → e+e− channel for the full Run 2 data taking

period. The Z-counting luminosity is normalised to the integrated baseline ATLAS luminosity over
the Run 2 data-taking period [152]. The x-axis represents the date when the run started. Only
ATLAS runs with a minimum length of 40 minutes are included. The error bars show statistical
uncertainties and the green bands contain 68% of all points centered around the mean.

13.5.2 Statistical bias studies

The main limitation for the Z-counting methodology as compared to other luminometers
resides in the low Z-boson production rates in some of the data-taking periods. Counts
of less than 150 bosons per LB may lead to statistical biases in the tag-and-probe effi-
ciency determination. These can account to an overestimation of the luminosity of up to
2% when the number of Z candidates in a luminosity block is below 50, staying under
0.5% in those data periods with over 200 Z events per LB, as observed in previous toy
studies [181]. To minimise the effects of this feature of the measurement, the results were
re-evaluated aggregating the data through different luminosity blocks. All variables used
in Equation 13.2 (and their subsequent elements), are summed together if the luminosity
blocks being aggregated meet certain criteria:

• The total number of Z → e+e− reaches 200, at which point the effects of the statistical
bias is found to be minimal.

• A total livetime of 15 minutes is recorded among all luminosity blocks being merged.
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13.5 Results

This condition preserves the time resolution in data taking required to maintain
optimal sensitivity to Lorentz-invariance violating effects [182].

• More than 20 luminosity blocks are merged. This condition protects against gaps in
data-taking that may cause LBs being merged across large time intervals.

Figure 13.8 shows the ratio between the results obtained using the standard Z-counting
methodology and the aforementioned LB-aggregated results. The correction derived by
merging quantities across multiple luminosity blocks can be up to 2% in early 2015 runs,
while the effects become negligible in 2017 and 2018, where < 0.2% differences are observed
throughout most of the data-taking period. The impact on the aggregation of the results
across luminosity blocks is shown in Table 13.5. A 0.06% larger spread is found in the 2015
dataset, while the following years, in which the luminosity block aggregation is expected to
have a smaller impact, show an improvement in the overall spread. Across the entire Run
2 dataset, a reduction of 0.02% of the spread of the LZ→ee/LATLAS ratio is found, showing
that, although LB aggregation may have a big impact on results of individual ATLAS runs
where a low number of events were recorded, the stability improvement across the entire
dataset is relatively mild.

Data period
Methodology

Standard LB-aggregated

2015 0.98% 1.04%
2016 0.62% 0.61%
2017 0.54% 0.54%
2018 0.41% 0.39%

Full Run 2 0.66% 0.64%

Table 13.5: Summary of the spread (68% of all points centred around unity) of the LZ→ee/LATLAS
ratio for each of the considered data-taking periods, as well as the full Run 2 dataset.
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Figure 13.8: Ratio of the integrated Z-counting and baseline ATLAS luminosities per ATLAS run
taken from pp collisions at

√
s = 13 TeV for the Z → e+e− channel. The Z-counting luminosity is

normalised to the preliminary integrated baseline ATLAS luminosity per data-taking period [152].
Results are shown for the standard Z-counting (black) and the LB-aggregated (red) methodologies.
Bottom panels show the ratio between both methodologies.
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Chapter 14

Lorentz-invariance violation
analysis methodology

This chapter describes the analysis methodology used to search for Lorentz-invariance
violation using the Z-counting methodology. Section 14.1 presents an overview of how
the effects of the Standard Model Extension, introduced in Section 2.3.2, manifest in a
non-inertial frame of reference such as the ATLAS experiment. Section 14.2 presents an
overview of how the methodology from the Z-counting is adapted to search for time-
dependent LIV signals.

14.1 Lorentz-invariance violation at ATLAS

The measurement here presented is based on data collected by the ATLAS experiment,
working in an Earth-based coordinate system which, due to the rotation of the Earth,
represents a non-inertial frame. The consequences of this, such as the centrifugal force
emerging from this rotation, are many orders of magnitude weaker than the gravitational
force which, at the same time, is considerably weaker than the electroweak and strong
forces mediating the LHC collisions. Therefore, the non-inertial effects are safe to neglect
in most particle physics analyses.

However, under the presence of Lorentz-invariance violating effects, the orientation
of the laboratory with respect to the SME coefficients, representing the background fields
modifying the Drell-Yan cross-section as introduced in Section 2.3.2, will change over time.
Note that the SME coefficients presented in that Section do not present any time depen-
dence, but as Earth changes direction with respect to the directions of said operators
over time, a time dependence arises from the Earth’s rotation. Laboratory observables
are therefore expected to oscillate at harmonics of the Earth’s sidereal period, T⊕ = 23
hr 56 min 4.091 sec. As each experiment testing these effects possesses different coordi-
nates and orientation with respect to the non-isotropic background fields, it is useful to
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14 Lorentz-invariance violation analysis methodology

introduce a fixed, non-rotating inertial frame. The conventional choice for this frame is
the Sun-Centered Frame (SCF) [43,183,184], schematics of which are shown in Figure 14.1.

Figure 14.1: Illustration of the orbit of the Earth in the Sun Centered Frame. Adapted from
Ref. [184]. η is the angle of the Earth’s orbital plane with respect to the X̂-Ŷ -plane and β⊕ is the
mean orbital speed.

As the name conveys, the spatial axes of the SCF are centered on the Sun, with the Ẑ
axis chosen parallel to the Earth’s rotation axis. The X̂ axis points toward the year 2000
vernal equinox, when the Sun is exactly above the Equator and the Ŷ axis completes a
right-handed coordinate system with respect to the other two axes. The initial time T=0
of the coordinate system is precisely set by the 2000 vernal equinox, which happened on
March 20th, 2000 at 7:35am in the Universal Coordinated Time (UTC).

A translation is needed to express the coefficients, originally given in SCF coordinates
(X̂, Ŷ , Ẑ), to the ATLAS coordinate system (x̂, ŷ, ẑ). This can be achieved by a series
of rotations, each parametrizing the change required in a given axis. Firstly, one needs
to assess the rotations needed to transform the coordinates of any laboratory frame on
Earth to the SCF. These include the inherent movement caused by the Earth’s rotation,
parametrized by the sidereal period (T⊕), and the time of measurement in the SCF frame,
tSCF. The time transformation from ATLAS timestamps to the SCF time frame is given
by the time shift between the origin of both frames. The time origin in the SCF is set at
the 2000 vernal equinox, while ATLAS timestamps are given in Unix time, which takes as
time reference January 1st, 1970 at 0:00:00 UTC. Therefore, in order to express ATLAS
timestamps in the time frame of the SCF, a correction is applied:

t(tSCF = 0)− t(tUnix = 0) = 953552124 s. (14.1)
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14.1 Lorentz-invariance violation at ATLAS

Once a timestamp has been retrieved with respect to the SCF time frame it can be
expressed as a sidereal phase Φ⊕, expressed as an angle Φ ∈ [0, 2π] with respect to T⊕ as:

Φ⊕(tSCF, T⊕) = 2π ·mod(tSCF, T⊕)
T⊕

, (14.2)

where mod represents the modulo operation.

A rotation is needed to make ẑ · Ẑ = cosχ, where χ represents the colatitude of the
laboratory. For a generic laboratory located at a given colatitude χ this rotation takes the
form [185]:

RLAB(Φ⊕) =


cosχ cos Φ⊕ cosχ sin Φ⊕ − sinχ

− sin Φ⊕ cos Φ⊕ 0

sinχ cos Φ⊕ sinχ sin Φ⊕ cosχ

 . (14.3)

Additional rotations are needed to connect the generalized expression to the ATLAS
coordinate system. While the aforementioned ŷ axis is defined as perfectly point east, the
ATLAS beam line is oriented at an angle ψ north of east, so a rotation needs to be included
to align both axes. Moreover, the ATLAS detector is slightly inclined along the ẑ direction
by an angle δ, which needs to be corrected for. Thus, the net rotation to transform the
ATLAS coordinates to the SCF can be expressed as:

RATLAS(Φ⊕) =


1 0 0

0 cos δ − sin δ

0 sin δ cos δ




+1 0 0

0 0 1

0 −1 0




cosψ sinψ 0

− sinψ cosψ 0

0 0 1

×RLAB(Φ⊕)

(14.4)
The second matrix in the previous expression swaps the ẑ and ŷ directions, as required

by the difference in the definitions of the axes between the ATLAS and SCF coordinate
systems. The values of the angles† that define the rotation RATLAS are:

χ = 43.764◦, ψ = 168.7◦, δ = −0.704◦. (14.5)

As presented in Equation 2.34, a simple LIV lagrangian can be expressed as a non-
isotropic background field fixed under the SCF, bµ

SCF =
(
bX̂ , bŶ , bẐ , btSCF

)
. This field, as

observed from the ATLAS experiment, as:

bµ = [RATLAS(Φ⊕)]µν b
ν
SCF (14.6)

†Information provided by the Tomography and Geomatics team of the Site and Civil Engineering group
of CERN.

153



14 Lorentz-invariance violation analysis methodology

The Drell-Yan production cross-section under LIV-inducing effects as parametrized in
the SME involves combinations of coefficients as those presented in Equation 2.37. When
calculating the production cross-section in the ATLAS laboratory frame, the only time-
dependent coefficients are c33

f and d33
f , since the collision between protons happens along

the z-axis of the ATLAS laboratory frame. The index f refers to the different quark
flavours involved in the process [47]. When expressed in terms of the SCF coefficients
using Equation 14.6, the time-dependent components of the coefficients take the form [47]:

c33
f =− 2cX̂Ẑ

f sinχ sinψ [cosχ sinψ cos(Φ⊕) + cosψ sin(Φ⊕)]

− 2cŶ Ẑ
f sinχ sinψ [cosχ sinψ cos(Φ⊕) + cosψ sin(Φ⊕)]

+ cX̂Ŷ
f

[
(cos2 χ sin2 ψ − cos2 χ) sin(2Φ⊕)− cosχ sin(2ψ) cos(2Φ⊕)

]
+ 1

2(cX̂X̂
f − cŶ Ŷ

f )
[
(cos2 χ sin2 ψ − cos2 χ) cos(2Φ⊕)− cosχ sin(2ψ) sin(2Φ⊕)

]
,

(14.7)
and similarly for d33

f . The effect of each of these coefficients on the Drell-Yan production
cross-section under the SME, as a function of sidereal time, can be expressed as:

σSME(Φ⊕)
σSM

= 1 + cµν
f · fµν(Φ⊕), (14.8)

where cµν
f are the different SME coefficients appearing on the right hand side of Equa-

tion 14.7 and fµν are the corresponding sinusoidal functions depending on the ATLAS
coordinates and sidereal time. The effect of these coefficients when replacing all angles for
their corresponding ATLAS coordinates, as a function of sidereal phase (Φ⊕) can be found
in Figure 14.2. The plot uses an assumption of cµν

f = dµν
f = 10−5 for every coefficient,

considering the effects of each coefficient at a time. The increased sensitivity of those
coefficients involving u-quarks with respect of those involving d-quarks is derived from
the dependence of the cross section on the quark charge [47], as well as the dominance of
u-quarks in the proton’s PDF (see Section 3.1.1).

14.2 LIV search methodology

For the purpose of searching for Lorentz-invariance violating signals, the number of Z-bosons
detected by the ATLAS detector, as well as the baseline ATLAS luminosity, are used to
construct a simplified cross-section, σ, as introduced in Equation 8.4. This cross section
is measured following the Z-counting methodology in each luminosity block passing the
data-quality criteria. The quantities measured in each LB are associated to a unique
Unix timestamp, which is converted to a sidereal phase using Equation 14.2. Using these
variables, the following observable is defined:
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Figure 14.2: Z-boson production cross section change as a function of sidereal phase under the
effects of Lorentz-invariance violating effects induced by different SME coefficients. Coefficients are
assumed to be cµν

f = dµν
f = 10−5, considering the effects of each coefficient at a time.

Ri(t) = σi(t)
σT

=
Ni

LATLAS,i
(t)∑N bins

i

(
Ni

LATLAS,i

) , (14.9)

where Ni corresponds to the number of Z-bosons observed in the i-th bin of the side-
real phase distribution, and LATLAS,i is the baseline ATLAS luminosity registered in said
bin. By normalising the ratio to the total number of measured Z-bosons and luminosity
time-independent systematic uncertainties such as energy calibration or overall luminosity
uncertainties will cancel. The analysis covers 100 phase bins, each covering ∼0.063 radians
in phase and approximately 15 minutes in time, value chosen to optimise the sensitivity of
the analysis [182].

An example of the effect of the sensitive Standard Model Extension operators on the
defined observable as a function of sidereal phase is shown in Figure 14.2. All signal shapes
introduced by these operators correspond to sinusoidal functions taking the sidereal phase
Φ⊕ (and 2 · Φ⊕) as an argument, as shown in Equation 14.7. To generalise the limits
extracted from the fits on the observable under study, the following functions are used for
signal fitting:

f1 = 1 + pc
1 · cos (Φ⊕) + ps

1 · sin (Φ⊕) (14.10)

f2 = 1 + pc
2 · cos (2Φ⊕) + ps

2 · sin (2Φ⊕) (14.11)

f3 = 1 + pc
3 · cos (3Φ⊕) + ps

3 · sin (3Φ⊕) . (14.12)
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The limits extracted on the pi
1,2,3 (i = c, s) coefficients can thus be re-interpreted to set

limits on the SME coefficients cµν
f on which the Lorentz-invariance violating signals depend

on. These functions parametrise the sinusoidal shapes induced by the SME coefficients,
probing the frequencies they depend on (Φ⊕, 2Φ⊕) and an additional frequency (3Φ⊕)
where no SME signal is expected, but can be used for systematic checks, as well as signal
tests when using different probing periods. See Section 15.3 for further details.
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Chapter 15

Signal sensitivity studies

This Chapter describes novel time-dependent sensitivity studies developed using the Z →
e+e− Monte-Carlo samples. Section 15.1 includes an overview of the methodology, includ-
ing a description of the samples used, the selection, and observable definitions. Section 15.2
describes the studies using data-driven time simulation to test a null signal scenario, pre-
senting two different methodologies to do so. A study on the sensitivity to signal-like
signatures, as well as data blinding strategy studies, are presented in Section 15.3.

15.1 Methodology overview

Monte-Carlo simulation of the Z → e+e− production allows to perform SM-only tests,
where the sensitivity of the measurement to Lorentz-invariance violating effects can be
tested while ensuring that no other BSM effects are in place. The MC samples used in-
clude the modelling of particle reconstruction effects in the ATLAS detector, testing the
effects that these may have on the measurement. However, Monte-Carlo samples consist
of event-by-event simulations, where no time-dependence is introduced. To overcome this
issue different approaches have been developed, further explained in Section 15.2.

The Monte-Carlo samples used in these studies are the Powheg+Pythia samples de-
scribed in detail in Section 13.4. The object and event selection follow that used in the
Z-counting luminosity measurement, as presented in Section 13.2. As a proof of concept,
only MC samples corresponding to the 2018 dataset are used, equivalent to L = 58.5 fb−1.

The ratio defined in Equation 14.9 can be transferred to the weighted MC sample as
follows:

Ri = σ̃i

σ̃T
=

∑
ω�

i∑
LMC,i∑

i

( ∑
ω�

i∑
LMC,i

) , (15.1)
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where:

•
∑
ω�

i corresponds to the sum of weights in the bin i of those events passing the
Z-counting selection.

• LMC,i corresponds to the Monte-Carlo luminosity delivered in each phase bin i. It is
defied as the total sum of weights delivered in the bin.

• σ̃i is a pseudo-cross-section built using the ratio between the sum of weights delivered
to each bin i passing the event selection and the MC luminosity, used to construct
the double-ratio.

However, one more effect needs to be accounted for in order to perform studies with
Monte-Carlo samples at reconstructed level, since particle reconstruction effects may induce
a phase dependence that needs to be corrected for. When correcting for these effects, an
“unfolded” reconstructed double-ratio can be defined as follows:

σ̃reco,unf
i = σ̃reco

i × σ̃truth
i

σ̃reco
i

=
∑
ωreco

i∑
LMC,i

×

∑
ωtruth

i∑
LMC,i∑
ωreco

i∑
LMC,i

, (15.2)

in such way that the ratio σ̃truth
i /σ̃reco

i corrects for the effects that particle reconstruc-
tion may have on the phase dependence of our observable in each bin of the distribution,
performing a so-called bin-by-bin unfolding. This way, the central values of the unfolded
reconstructed distribution will exactly match those of the truth-level distribution, but will
have a bigger statistical uncertainty due to the reduced amount of events passing the re-
construction cuts.

Alternatively, the correction for particle reconstruction effects can be applied follow-
ing the methodology used in the Z-counting luminosity measurement, where corrections
are introduced via event-level lepton efficiencies, εT&P,MC

Z→`+`− , and a Monte-Carlo correction
factor, FMC

Z→`+`− . These have previously been calculated as a function of 〈µ〉, as shown in
Figures C.3 and 13.3 respectively, and are therefore assigned to each MC event at recon-
structed level depending on its simulated pileup value.

When accounting for the effects of the lepton efficiencies and MC correction factors,
a pseudo-cross-section unfolded following the Z-counting methodology can be defined as
follows:

σ̃reco
i =

∑
ω�

i∑
LMC,i

−→ σ̃reco,unf
i =

∑ ω�
i

εT&P
i ·F MC

i∑
LMC,i

. (15.3)
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Here, εT&P
i and FMC

i are respectively the event-level efficiency and MC correction
factor, calculated as a function of 〈µ〉 as described above, which correct for particle recon-
struction effects that each MC event weight assigned.

15.2 Null hypothesis sensitivity studies

This Section presents an overview of the sensitivity studies performed under the assumption
of no Lorentz-invariance violating signal, i.e. a null hypothesis, where only SM processes
are included in the simulation. To perform this analysis, a methodology was developed
to introduce time dependence in the Monte-Carlo Drell-Yan samples. Initial studies have
been carried out to establish the methodology assigning a uniformly distributed random
phase to each MC event. The initial studies were successful, establishing a framework for
phase simulation in MC samples and obtaining an initial estimate of the expected limits on
the coefficients parametrising the impact of the LIV signals, p ∼ O(10−4). Further details
of the studies can be found in Appendix E. However, the assumption used in the initial
studies does not accurately represent the conditions at which data-taking took place, so a
data-driven sidereal phase assignment has been developed to represent the time profile at
which data was recorded. To achieve this, the modelling of the pileup profile in the ATLAS
Monte-Carlo samples is exploited. Since the number of colliding protons per bunch changed
across every year of data-taking, the simulated profile of the pileup parameter can be used
to introduce time-dependence in the MC. Two approaches have been developed to introduce
time simulation: one based on the mapping of the pileup dependence to the sidereal phase
in the ATLAS Run 2 dataset, namely the phase-based approach; and one based on the
mapping of the timestamps recorded for each pileup value in the Run 2 dataset, namely
the timestamp-based approach. Both approaches are used to test the sensitivity of the
analysis under the null hypothesis assumption.

15.2.1 Phase-based simulation

One way time-dependent effects can be reproduced in our Monte-Carlo simulations is by
studying the way pileup and sidereal phase are related in our data. The distribution that
these two variables follow can be measured to transform the pileup values, as modelled in
MC, into a sidereal phase distribution that corresponds to the mapping observed in data.
Figure 15.1 shows the pileup-to-phase mapping observed in the ATLAS Run 2 dataset,
obtained by registering each pileup and sidereal phase (retrieved from the ATLAS times-
tamp) entry recorded in each LB in the dataset. Each entry in the distribution is weighted
by the integrated luminosity registered in the LB, meaning that the plot represents how
much data was recorded for every pileup value at each sidereal phase. The figure displays
non-uniform shapes, from which it can be inferred that data-taking did not take place in
uniform time intervals, but instead there is an inherent phase structure that simulation
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needs to account for.
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Figure 15.1: Pileup and sidereal phase profile as observed in the ATLAS Run 2 dataset. z-axis
shows the total integrated luminosity registered in a given pileup-phase combination. The profile
(black dots) shows the average pileup observed in each sidereal phase bin.

The distribution shown in Figure 15.1 can be used to extract the probability of finding
each sidereal phase for a given pileup value, P(Φ|µ). Normalising each row in the distribu-
tion to unity, as shown in Figure 15.2, we obtain P(Φ|µ) for every pileup value registered
in data. An example of a phase probability distribution is also shown in the figure, for
a reference value of 〈µ〉 = 30. Using this distribution, one can assign a sidereal phase to
every MC event that follows the pileup-to-phase mapping observed in data in the following
manner:

1. Obtain the µ value simulated in the MC event.

2. Read the data phase-pileup mapping, P(Φ|µ), from Figure 15.2 for said µ value.

3. Generate a uniformly distributed random number between 0 and 2π, the probing
random phase X.

4. Generate a uniformly distributed random number between 0 and 1, the probing
random probability Y .

5. If P(X|µ)> Y , X is the sidereal phase that the MC event gets assigned.

6. If P(X|µ)< Y , X is discarded and the process is repeated from step 3 until a valid
phase is assigned.
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Figure 15.2: (Left) Row-normalised probability distribution of the pileup-phase mapping from the
full Run 2 dataset (Figure 15.1). (Right) Phase probability distribution for an example pileup value
of 30, P(Φ|µ = 30).

Results

When using the assignment of phase-based time simulation to each MC event, one obtains
the pileup-phase distribution found in Figure 15.3, showing the same patterns as observed
in data (Figure 15.1) which indicates the mapping of both variables is successfully sim-
ulated. Figure 15.4 shows the dependence of the distribution of the pseudo-cross-section
(defined in Equation 15.2) against sidereal phase. The ratio shown in Figure 15.4 corre-
sponds to the bin-by-bin correction applied to unfold the reconstructed-level distribution
to truth-level. These are found to vary across different phase bins at a ∼ 1% level, stressing
the importance of this correction in the analysis.

Figure 15.5 shows the double-ratio obtained when using the phase-based time sim-
ulation in the MC samples, where both the truth-level and unfolded distributions are
displayed. By definition, the central points of the bin-by-bin unfolded distribution ex-
actly match the truth-level ones, the key difference between both distributions being the
increased error bars observed in the unfolded distribution. This is due to the lower num-
ber of events passing the reconstruction requirements with respect to the total number
of generated events passing the kinematic requirements. The distribution obtained when
unfolding following the Z-counting methodology displays a larger spread than the other
distributions, but all three distributions are compatible with the fit of a straight line, cor-
responding to the assumption of lack of LIV effects.

The assignment of a sidereal phase to each MC event depending on the simulated
pileup parameter is a randomised process. Therefore, processing the same MC samples
under different initial random seed choices ruling the randomised phase assignment leads
to different distributions. To minimize the impact of this random seed choice the process
is repeated multiple times. The final best fit on the coefficients is taken as the mean of the
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Figure 15.3: Pileup and sidereal phase profile obtained using the phase-based time simulation. The
z-axis shows the sum of weights registered in a given pileup-phase combination. Results correspond
to MC samples describing the 2018 data profile.
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Figure 15.4: Monte-Carlo pseudo-cross-section distribution per sidereal bin obtained using the
phase-based time simulation. Distributions are shown at truth (red) and reconstructed (black)
level. Results correspond to MC samples describing the 2018 data profile.

results obtained using 100 different random seeds, while the limits set on the parameters
correspond to the standard deviation of the distribution of the fit results.

With this simulated observable, and repeating the randomisation process as stated
above, bounds on the pi

1,2,3 (i = c, s) coefficients can be obtained by performing χ2 fits
(details of which can be found in Ref. [182]) on the signal distributions shown in Equa-
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Figure 15.5: Double-ratio obtained using a phase-based time simulation. Figure shows truth-level
(black circle) and unfolded distributions. Unfolding performed in a bin-by-bin basis (red square)
and following the Z-counting methodology (blue triangle). The fits (dashed lines) correspond to a
straight line fit on each of the distributions.

tion 14.10, fitting one function at a time. Figure 15.6 shows the results corresponding
to the signal fitting on the truth and reconstructed level distributions from phase-based
time simulation. All coefficient limits are compatible with a null hypothesis, with limits at
the O(10−4) level. Bounds obtained with the distribution unfolded using the Z-counting
methodology, see Equation 15.3, are slightly bigger than those unfolded with the bin-by-bin
methodology. A deviation from 0 is observed for the ps

2 coefficient. Though not statistically
significant, this deviation may hint at spurious signals induced by systematic effects in the
methodology that have to be further studied by the team. One of the possible reasons
may be the use of MC corresponding only to the 2018 dataset. The pileup profile varies
across each year of data-taking, meaning that a complete sensitivity study will require
the application of MC samples describing the entirety of the Run 2 dataset for a correct
application of the mapping presented in Figure 15.1. Previous bounds on SME coefficients
using ZEUS data [176] translate to limits on p-parameters of the order of p ∼ 2 · 10−3,
meaning that the constraints placed via Drell-Yan production at ATLAS could improve
the existing limits by almost an order of magnitude, besides exploring sensitivities to many
new coefficients due to the difference in initial states.

15.2.2 Timestamp-based simulation

An alternative to simulate time profile in our Monte-Carlo simulations lies in the mapping
of all timestamps associated to each pileup value in the Run 2 ATLAS dataset. To account
for the differences in data acquisition across the dataset, the timestamp of each luminosity
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Figure 15.6: 68% CL coefficient bounds extracted using the double-ratio distributions at truth-
level (left), bin-by-bin unfolded (middle) and Z-counting unfolded (right), with phase-based time
simulation. Bounds are obtained using the distributions produced with 100 different random seeds.
Limits on the parameters (“pars”) are shown for the cosine (“par1”, black) and sine (“par2”, red)
terms of the signal parametrisation. Plots provided by Dr. Yiming Abulaiti†.

block ti(µ) is associated to a weight that corrects for the luminosity that was registered in
the luminosity block corresponding to said timestamp, Li. The timestamp of a luminosity
block is defined as the mean between its start and end times. The weight applied takes
the expression:

ωi(µ) = Li∑N
i=0 Li

·N(µ), (15.4)

where N(µ) is the number of timestamps corresponding to each pileup value, µ. Thus,
the time-profile observed in data can be reproduced by using an approximation of the
Inverse Probability Transformation (IPT) method [186]:

1. Obtain the µ value simulated in the MC event.

2. Generate a uniformly distributed random integer number, X, between 0 and N(µ).

3. The timestamp associated to the MC event will be the X-th entry in the timestamp
list of the pileup value µ, tX(µ).

4. Weight the MC event by the corresponding probability weight ωX(µ) in addition to
all original MC event weights.

Results

When using the assignment of timestamp-based time simulation to each MC event, one
obtains the pileup-phase distribution found in Figure 15.7, showing excellent agreement

†Contact: yiming.abulaiti@cern.ch
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with the phase-based approach as shown in Figure 15.8. The same dependence is also ob-
served for the correction of reconstructed- to truth-level distributions across phase, shown
in Figure 15.4.
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Figure 15.7: Pileup vs sidereal phase profile obtained using the timestamp-based time simulation.
The z-axis shows the sum of weights registered in a given pileup-phase combination. Results
correspond to MC samples describing the 2018 data profile.
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Figure 15.8: Ratio per bin of the phase-pileup profiles obtained using the phase- and timestamp-
based time simulation.

Figure 15.9 shows the double-ratio that one obtains when using the timestamp-based
time simulation on the MC samples. Both the truth-level and unfolded distributions are
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displayed on the Figure. Similar trends are observed as shown for the phase-based results.
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Figure 15.9: Double-ratio obtained using the timestamp-based time simulation. Figure shows truth-
level (black circle) and unfolded distributions. Unfolding is performed in a bin-by-bin basis (red
square) and following the Z-counting methodology (blue triangle). The fits (dashed lines) corre-
spond to a straight line fit on each of the distributions.

With this simulated observable, bounds on the coefficients are obtained in the same
manner as previously described. Figure 15.10 shows the results corresponding to the signal
fitting on the truth and reconstructed level distributions using the timestamp-based time
simulation. A summary of the fits obtained with both time simulation methodologies can
be found in Table 15.1. Although the fits performed on the distributions obtained using
the timestamp-based time simulation result into slightly bigger limits (∼ 10%), the results
obtained with both simulation techniques are in good agreement.
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Figure 15.10: 68% CL coefficient bounds extracted using the double-ratio distributions at truth-
level (left), bin-by-bin unfolded (middle) and Z-counting unfolded (right), with timestamp-based
time simulation. Bounds are obtained using the distributions produced with 100 different random
seeds. Limits on the parameters (“pars”) are shown for the cosine (“par1”, black) and sine (“par2”,
red) terms of the signal parametrisation. Plots provided by Dr. Yiming Abulaiti.

Parameters
(·10−4)

Simulation

Phase-based Timestamp-based

Truth Binned unfold Z-count. unfold Truth Binned unfold Z-count. unfold

pc
1 0.08± 1.03 0.08± 1.03 0.19± 1.4 0.07± 1.11 0.07± 1.11 0.10± 1.50
ps

1 −0.03± 1.16 −0.03± 1.16 0.58± 1.6 0.03± 1.34 0.03± 1.34 0.58± 1.62
pc

2 0.18± 1.00 0.18± 1.00 −0.06± 1.4 0.06± 1.14 0.06± 1.14 −0.03± 1.55
ps

2 0.05± 1.13 0.05± 1.13 −1.70± 1.50 −0.18± 1.18 −0.18± 1.18 −1.80± 1.60
pc

3 −0.17± 1.16 −0.17± 1.16 0.53± 1.48 −0.22± 1.4 −0.22± 1.4 0.55± 1.67
ps

3 −0.01± 1.20 −0.01± 1.20 0.58± 1.47 0.10± 1.28 0.10± 1.28 0.74± 1.57

Table 15.1: Summary of the best fit and 68% CL expected limits on the coefficients parametrising
the Lorentz-invariance violating signals for both time-simulation methodologies presented in this
thesis. Results are shown for fits using distributions at truth- and unfolded reconstructed-level.
Note that a factor 10−4 precedes all results in the table, not shown for display purposes.
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15 Signal sensitivity studies

15.3 Signal injection tests

The methodologies established to simulate time-dependence in our MC samples can be
used to test the sensitivity to signal-like signatures. They also allow to investigate ways to
blind the presence of possible signal in data, in such way that the team can develop the data
analysis methodology without biases towards signal-like shapes. All results presented in
the following section correspond to timestamp-based time simulation, for reasons presented
below. Under the presence of Lorentz-invariance violating (LIV) effects, the total number
of Z-bosons detected per sidereal phase, NT(Φ⊕), accounts for those generated via SM
processes (NSM) and those generated via LIV interactions (NLIV), which can be expressed
as:

NT(Φ⊕) = NSM +NLIV = L(Φ⊕) · σSM ·
[
1 + cµν

f · fµν(Φ⊕)
]
, (15.5)

where L(Φ⊕) is the luminosity recorded (or sum of weights generated in the MC sam-
ple) in said sidereal phase, σSM is the Standard Model Z-boson production cross-section
(1970 pb, see Section 13.1) and cµν

f · fµν(Φ⊕) are the different SME coefficients and associ-
ated sinusoidal functions, introduced in Equation 14.7. In the case of the signal injection
studies here presented, the four d-type coefficients are considered as a benchmark signal
to test the methodology, since they produce the biggest oscillations:

dXZ
u : fXZ = 6.28 · cos (Φ⊕)− 41.05 · sin (Φ⊕) (15.6)

dY Z
u : fY Z = 41.05 · cos (Φ⊕) + 6.28 · sin (Φ⊕) (15.7)(

dXX
u − dY Y

u

)
: fXX−Y Y = 77.61 · cos (2Φ⊕) + 24.31 · sin (2Φ⊕) (15.8)

dXY
u : fXY = −48.63 · cos (2Φ⊕) + 155.21 · sin (2Φ⊕) . (15.9)

The effects of said operators, using dµν
u = 10−3 as a benchmark signal strength, on

the observable under study are shown in Figure 15.11. The factors parametrising each
sinusoidal function differ between different coefficients due to the way rotations from SCF
and ATLAS frames affect each coefficient, as presented in Equation 14.7. Therefore, even
if all coefficients are set to the same benchmark value, dµν

u = 10−3, they result into dif-
ferent signal strengths. Note that the parameter values chosen for this test result into big
effects, with signal strengths of up to σLIV/σSM = 15.5% in the case of dXY

u . Such effects
are bigger than those expected, for they would produce fluctuations that would have been
observed by analysis such as the Z-counting luminosity measurement [179], but serve as a
hypothesis to test the methodology with.

As shown in Figure 15.11, the effects of unfolding using the Z-counting methodology
under the presence of LIV signal shapes are very small, showing excellent agreement with
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the distributions obtained at truth-level and unfolding using a bin-by-bin correction factor.
These distributions are used to set limits on the pi

1,2,3 (i = c, s) coefficients as described in
Section 15.2.1. Results on these fits can be found in Figure 15.12. The signal parametri-
sation correctly reflects the signal being injected in each of the benchmark distributions,
with those signal shapes in which the sinusoidal terms depend on Φ⊕, i.e. dXZ

u and dY Z
u ,

obtaining limits compatible with pi
1 6= 0, while the other terms fulfil pi

2,3 = 0. In the
cases where the signal injected is parametrised as a function of 2Φ⊕ the limits obtained
correspond to pi

2 6= 0, while the other terms are compatible with pi
1,3 = 0. The best fit

values obtained for each parameter match the prefactors of the sine and cosine functions
introduced by the different SME coefficients.
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Figure 15.11: Double-ratio obtained using the timestamp-based time simulation under the presence
of different SME coefficients. Figure shows truth-level (black circles) and unfolded distributions.
Unfolding is performed in a bin-by-bin basis (red squares) and following the Z-counting methodol-
ogy (blue triangles).

The development of the timestamp-based simulation allows to explore ways to blind
the results to the presence of signal-like features in data, which would allow to develop the
analysis strategy avoiding biases towards possible signal discoveries. A way to blind the
data to the effect of such signals is to transform the timestamps into phase assuming a
rotation period different than T⊕, since SME signals are expected to appear as resonances
of the sidereal phase. To implement this, the timestamp assigned to the MC event, t, can
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Figure 15.12: 68% CL coefficient bounds extracted using the signal-injected double-ratio distri-
butions using unfolding following the Z-counting methodology. Bounds are obtained using the
distributions produced with 100 different random seeds. Limits on the parameters (“pars”) are
shown for the cosine (“par1”, black) and sine (“par2”, red) terms of the signal parametrisation.
Plots provided by Dr. Yiming Abulaiti.

be transformed into an alternative phase, assuming a different rotation period than the
sidereal phase, in a generalisation of Equation 14.2 to accommodate for different rotation
period (Ti) assumptions:

Φi(t, Ti) = 2π ·mod(t, Ti)
Ti

. (15.10)

Thus, the term L(Φi) in Equation 15.5 depends on this re-defined phase, while SME-
induced signals always depend on the sidereal phase, cµν

f ·fµν(Φ⊕). The considered probing
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Earth rotation periods are as follows: Tsolar=24 hours, corresponding to the duration of a
solar day; T7=7 hours, corresponding to the average duration of an LHC run; and T1=1
hour, a fast rotation period proposed to ensure blinding to signal-like features. Note that
the assumption of different probing periods cannot be achieved in the so-called phase-based
time simulation presented in the previous Section, since the choice of period is already
fixed by assigning MC events a data-driven sidereal phase choice, Φ⊕, that cannot be
transformed into other periods. Therefore, all results presented in this Section correspond
to timestamp-based results.

The effects of the operator dXY
u = 10−3 on the observable under study for the differ-

ent rotation period assumptions are shown in Figure 15.13. It can be inferred that the
assumption of a 24-hour rotation period does not completely cancel signal oscillations,
possibly due to its similarity with the sidereal period at which signal resonances occur.
The assumption of a 7-hour rotation period dampens the induced signal effects, but a clear
oscillation can still be distinguished. The only complete blinding to signal achieved with
the considered probing periods is observed using T1 = 1 hour. These distributions are
used to set limits on the pi

1,2,3 (i = c, s) coefficients as described in the previous Section.
Results on these fits can be found in Figure 15.14. Although the assumption of different
probing periods results into smaller limits of the parameters in the cases of the Tsolar and
T7 assumptions, as a consequence of signal dampening under wrong rotation periods, the
results obtained are still compatible with signal presence. Results obtained in the case of
the T1 are compatible with a null signal hypothesis, with all parameters being compatible
with p = 0 and similar constraints to those obtained in the no-signal scenario introduced
in the previous Section. Therefore, validation studies can be safely performed on data
to test the analysis methodology under this assumption, ensuring that signal presence
would disappear and, once the analysis is known to be robust, changing the Earth rotation
period assumed to ensure signal disappearance to the sidereal period T⊕ at which LIV sig-
nals are expected to appear. However, due to time constraints on the development of this
thesis the results of the analysis on ATLAS data could not be included as part of this work.
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Figure 15.13: Double-ratio obtained using the timestamp-based time simulation under the presence
of dXY

u = 10−3 signal for different probing period assumptions: 24 hours (black triangles), 7 hours
(blue squares) and 1 hour (red circles). Figure shows unfolded distributions. Unfolding is performed
in following the Z-counting methodology.
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Figure 15.14: 68% CL coefficient bounds extracted using the dXY
u = 10−3 signal-injected double-

ratio distributions using Tsolar=24 hours (left), T7=7 hours (middle) and T1=1 hour (right), with
timestamp-based time simulation. The distributions used correspond to unfolding following the
Z-counting methodology. Bounds are obtained using the distributions produced with 100 different
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(“par2”, red) terms of the signal parametrisation. Plots provided by Dr. Yiming Abulaiti.
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Chapter 16

Conclusion

The study of the Z/γ∗ production via neutral-current Drell-Yan in pp collisions offers a
way to explore the quark sector of the Standard Model Extension that has not been probed
before. This can be achieved by measuring the production rate of this process across the
LHC Run 2 data-taking period which, under Standard Model assumptions, should not
display any time-dependence. Deviations from this behaviour can be therefore interpreted
in terms of the effect of operators inducing Lorentz-invariance violation (LIV) due to the
presence of non-isotropic background fields. Such search would correspond to the first of
its kind at an LHC experiment, demonstrating the potential of novel search techniques for
Beyond Standard Model phenomena.

The methodology developed for luminosity measurement at ATLAS by counting the
number of detected Z-bosons is suitable for such searches, monitoring the production rate
of the neutral-current Drell-Yan per time interval of an average duration of 60 seconds.
The methodology was successfully transferred to a newly developed framework, reproduc-
ing the original results [179] in the electron channel with an improved stability with respect
to the preliminary nominal ATLAS luminosity. The new framework was used to assess the
impact of statistical biases on ATLAS runs where the number of Z-boson events per lu-
minosity block was low. These luminosity blocks present a bias in the measurement of the
tag-and-probe lepton efficiencies, affecting the luminosity measurement as a whole, which
can be minimised by aggregating data from neighbouring luminosity blocks. Corrections
for this effect amount up to 2% in specific runs, but the overall correction on the results
over the Run 2 dataset were found to be small (0.02%).

To obtain an estimate on the expected limits on the coefficients parametrising the sig-
nal shapes, a methodology for time simulation in the ATLAS Monte Carlo samples was
developed. The simulation consists of a data-driven assignment of time by studying the re-
lationship between pileup, which is known to be accurately simulated in the samples, and
timestamps in the ATLAS dataset. Using this newly developed methodology, expected
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16 Conclusion

limits of O(10−4) were found, improving the best existing limits obtained with ZEUS data
by an order of magnitude. Moreover, with respect to this analysis, dilepton production at
ATLAS offers sensitivity to new coefficients in the quark sector of Standard Model Exten-
sion EFT.

Additionally, tests were performed to explore ways to blind the measured data to LIV
signal, as well as test systematic effects on the measurement. By assuming an Earth ro-
tation period (Ti) different than that in which LIV signals are expected to appear (T⊕),
a dampening of the signal strength can be achieved. This offers a way to develop the
analysis methodology in data, introducing the assumption of a rotation period in which
signals are expected to disappear (eg. T1 = 1 hour) and changing the assumption for the
rotation period in later stages of the analysis once the final results are ready to be retrieved.

The methodology here presented will be continue to be used by the analysis team
to explore additional ways to blind the measurement to signal presence, as well as to
assess the impact of time-dependent systematic effects on the measurement, such as pileup
dependence or luminosity-related uncertainties (year-by-year calibrations, use of different
luminometers...). The analysis also aims to be a proof of principle for time-dependent
analyses at the ATLAS experiment, hoping to expand the methodology for such searches
to additional final states.
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Summary

This thesis presents two analyses studying the neutral-current Drell-Yan production at the
ATLAS experiment using LHC Run 2 pp collision data collected during the years 2015 to
2018 at

√
s = 13 TeV, in the context of a precision Standard Model measurement and novel

BSM interpretations.

The measurement of the single- and double-differential neutral-current Drell-Yan cross
section was performed, reaching precisions below 1% in the phase space of low m`` (<
230 GeV), where the leading contributions to the total uncertainty correspond to system-
atic effects. The measured cross-section was compared with theoretical predictions using
different PDFs, observing good agreements overall but revealing the potential for better
constraints using the data here presented. The analysis covered dilepton invariant masses
of up to m`` = 5000 GeV, expanding the kinematic range of the measurement with re-
spect to previous ATLAS results. The measurement was used for tests on Lepton Flavour
Universality (LFU) and Effective Field Theory (EFT) interpretations. No significant de-
viations from the Standard Model were found, but small tensions were found in LFU tests
at m`` > 1500 GeV. Limits placed on EFT operators correspond to leading constraints in
some of the operators.

Additionally, the Z/γ∗ production was monitored to explore the quark sector of the
Standard Model Extension that has not been probed before, searching for the effect of
operators inducing Lorentz-invariance violation (LIV) due to the presence of non-isotropic
background fields. The methodology developed for luminosity measurement at ATLAS
by counting the number of detected Z-bosons was successfully transferred to a newly
developed framework, used to check the consistency of the measurement in a standard
ATLAS analysis framework and to assess the impact of time-dependent systematic effects.
The observed time-dependent ratio of the normalised Z-counting luminosity to the ATLAS
nominal luminosity showed a spread of 0.66% across the entire Run 2 dataset, showing
the excellent time stability of the luminosity measurement with respect to the nominal
value. Moreover, novel techniques were developed for the simulation of time-dependent
observables in the Monte-Carlo simulation, with which sensitivity studies were performed,
both in the context of a null signal hypothesis and LIV signal presence. Expected limits
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16 Conclusion

of O(10−4) on the coefficients parametrising the LIV signal were found. Tests were also
performed to explore ways to blind the measurement to LIV signals, finding ways to develop
the analysis methodology in data avoiding biases towards signal-like findings. Introducing
the assumption of certain Earth rotation periods (e.g. T1 = 1 hour) LIV signals are found
to disappear, allowing to safely develop the analysis and changing the assumption for the
rotation period in later stages once the final results are ready to be retrieved.
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Appendix A

Fake electron background
estimation using the template
method

This Appendix explains the template method used for an alternative estimation of the
fake dielectron background, following the methodology presented in Ref. [187], commonly
used for fake lepton background estimation in invariant masses close to the Z-boson mass
resonance. In this method, a data-driven approach is used, deriving a multi-jet enhanced
selection (also referred to as background template), where kinematic cuts are the same as
those used in the signal region (presented in Section 8.2), assuming that the kinematics
of the Z-boson remains unaffected, but the lepton identification is loosened. Under the
assumption that the shape of the background follows that of the signal selection, the goal
of the method is to estimate the factor that normalizes the template to the correspond-
ing number of multi-jet events passing the signal selection. Different ID requirements are
studied to build the background template, shown in Table A.1. In addition to the selec-
tion criteria shown in the table, a same-sign cut can be applied on the template selection,
suppressing the remaining signal contamination in our background. Templates containing
this cut will be labelled as “nC”.

The fit to extract the scale factor needed to derive the number of multi-jet events from
our background template has to be performed in a background-dominated distribution,
where we can properly scale our background template to the number of observed data
events, without suffering from signal contamination. Since most electron candidates com-
ing from mis-identified jets are poorly isolated, the chosen variable to extract the signal
contamination was:

Imin = min
(
Econe20

T /ET
)
, (A.1)
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Selection ID Reverse ID Isolation

Template
-

VeryLoose
Fail Loose

Fail Medium
-

Signal Medium - -

Table A.1: Selection criteria to derive the template and signal samples. The template selection with
no cut on ID will also be referred to as ”TriggerOnly”.

that is, the minimum of the isolation of the two electron candidates in the event. The
distribution has a large peak at 0, containing all signal electrons, and shows a tail at
positive values, caused by the presence of fake electrons in data, as shown in Figure A.1.
Alternative template selections are shown in the Figure, adding a same-sign charge cut
and removing the d0 cut from the selection. The latter was later found to have a small
impact on the background template and hence removed from the possible variations.
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Figure A.1: Imin distribution for signal in data and MC samples. Background template selection
(no ID cut) also shown, considering different variations by applying same-sign charge cuts (“nC”)
and dropping the d0 cut. The results correspond to a mass window of 116 < mee < 130 GeV,
matching the first bin of the analysis measurement.

Since the variable Econe20
T is used to derive the scale factor for the background tem-

plates, the isolation cut was removed from the signal selection, since the nominal signal
selection in the analysis applies a cut on this variable.

To further remove possible signal contamination from our template selection, the re-
maining events obtained after applying the same cuts on the different MC samples used in
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A Fake electron background estimation using the template method

this analysis are subtracted from the background template, as shown in Figure A.2.
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Figure A.2: Imin distribution for the template selection. (Left) Signal contamination remaining after
template selection is applied. (Right) Signal-subtracted template distributions. Different selections
shown, normalized to unit area.

The fit is performed in such way that the number of signal MC events, NMC, in addition
to the scaled background template, Nbkg, match the total number of observed signal events,
Ndata. This is performed in both the full Imin range and in a fit window chosen such that
the data is background-dominated (also referred to as tail). Thus, the fit can be approached
as a two-equation system, solved to extract the background and MC scale factors:

Ndata = Sbkg ·Nbkg + SMC ·NMC

N tail
data = Sbkg ·N tail

bkg + SMC ·N tail
MC

∴ Sbkg = N tail
data ·NMC −Ndata ·N tail

MC
N tail

bkg ·NMC −Nbkg ·N tail
MC

SMC = Ndata − Sbkg ·Nbkg
NMC

. (A.2)

The tail window was chosen such that the fit included as many observed events in
the data as possible, while keeping the signal peak out of what we considered the tail.
This process was repeated for all mass bins in the analysis. Figure A.3 shows the results
corresponding to the first (116 < m`` < 130 GeV) and last (1500 < m`` < 5000 GeV)
invariant mass bins of the high-mass Drell-Yan cross-section measurement. The low end
of the tail starts at Imin = 0.1 for the first bin and is progressively reduced to Imin = 0.03
for the last bin. To ensure the correct description of the Imin variable, additional studies
were carried out to analyse the modelling of Econe20

T in the Monte-Carlo samples used. The
variable was found to be correctly modelled, meaning that the peak observed in the Imin

MC distribution follows the same as signal electrons observed in data.

The fit procedure is repeated for all template variations and mass bins, obtaining the
distributions shown in Figure A.4. All distributions obtained with the different templates
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Figure A.3: Post-fit data to background (combination of MC background events and fake electrons
derived using the template method) comparison in the (Left) 116 < mee < 130 GeV (Right)
1500 < mee < 5000 GeV range.

seem consistent with each other, predicting a number of events that are compatible with
each other within 1σ variations. The results of the template method were compared with
alternative estimations of the fake dielectron background used in the high-mass Drell-Yan
analysis, both with a custom framework and the one provided by the ATLAS Isolation and
Fake Forum. The comparison can be found in Figure A.5, where predictions are shown as
the % of observed signal events found in each mass bin. While matrix method predicts
an increasing contribution as the dilepton invariant mass increases, the template method
predicts a rather flat contribution against m``. The matrix method predicts a bigger con-
tribution from mee > 200 GeV, although both methods are compatible within 2σ in most
of the range.

Due to the contrasted validity of the matrix method at high dilepton invariant masses,
which results have been cross-checked with other analysis teams studying the same final
state, as well as previous findings of the reverse-ID methods failing to describe the fake
electron background at high invariant masses (see Ref. [188]), the decision was to keep the
results of the matrix method as our nominal fake electron background estimation.
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A Fake electron background estimation using the template method

Work in progressATLAS
-1Ldt = 139 fb∫=13 TeV, s

Figure A.4: Number of events predicted by each template for the different mass bins in the analysis.
“TO” refers to trigger-only, meaning that the templates do not apply any cuts on ID, while templates
labelled “VL” apply VeryLoose ID cuts. “fLBL” and “fM” refer to the reverse isolation cuts,
meaning that the templates require electrons to fail the Loose and Medium ID criteria respectively.
Templates labelled “nC” apply same-sign charge cuts on the dielectron pair.
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Figure A.5: Fake dielectron background prediction given by each different estimation method, shown
as the % of observed signal events found in each mass bin. All 6 templates available in Figure A.4
have been averaged for plotting clarity purposes.
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Appendix B

Results on the Drell-Yan EFT fits

This Appendix includes a detailed display of the fit results obtained as described in Sec-
tion 10.2.

Electron Muon Combined

Operator Linear Linear+quad. Linear Linear+quad. Linear Linear+quad.

clu [-0.024, 0.0124] [-0.014, 0.031] [-0.024, 0.025] [-0.015, 0.032] [-0.019, 0.019] [-0.012, 0.027]

ceu [-0.012, 0.012] [-0.010, 0.030] [-0.012, 0.013] [-0.010, 0.019] [-0.010, 0.010] [-0.008, 0.014]

ced [-0.048, 0.047] [-0.041, 0.023] [-0.046, 0.046] [-0.042, 0.024] [-0.037, 0.036] [-0.036, 0.020]

cld [-0.096, 0.095] [-0.036, 0.027] [-0.094, 0.093] [-0.038, 0.029] [-0.075, 0.073] [-0.032, 0.023]

cqe [-0.031, 0.032] [-0.014, 0.022] [-0.032, 0.032] [-0.014, 0.024] [-0.025, 0.025] [-0.012, 0.020]

c(1)
lq [-0.014, 0.014] [-0.010, 0.030] [-0.015, 0.015] [-0.011, 0.030] [-0.011, 0.011] [-0.008, 0.027]

c(3)
lq [-0.006, 0.006] [-0.007, 0.005] [-0.006, 0.006] [-0.007, 0.006] [-0.005, 0.005] [-0.005, 0.004]

c(1)
ll [-0.630, 0.618] [-0.643, 0.607] [-0.634, 0.623] [-0.646, 0.611] [-0.577, 0.568] [-0.587, 0.559]

cHDD [-0.737, 0.746] [-0.727, 0.753] [-0.801, 0.807] [-0.793, 0.812] [-0.525, 0.534] [-0.522, 0.537]

cHW B [-0.287, 0.290] [-0.281, 0.297] [-0.312, 0.313] [-0.305, 0.321] [-0.205, 0.208] [-0.202, 0.211]

c(1)
Hl [-0.642, 0.628] [-0.663, 0.610] [-0.602, 0.587] [-0.620, 0.571] [-0.568, 0.552] [-0.585, 0.537]

c(3)
Hl [-0.496, 0.505] [-0.484, 0.518] [-0.530, 0.538] [-0.517, 0.552] [-0.418, 0.429] [-0.410, 0.439]

c(1)
Hq [-6.164, 6.109] [-5.019, 3.119] [-7.602, 7.500] [-4.796, 3.143] [-5.899, 5.791] [-4.600, 2.809]

c(3)
Hq [-0.669, 0.653] [-0.686, 0.638] [-0.621, 0.607] [-0.637, 0.594] [-0.575, 0.557] [-0.588, 0.545]

cHe [-0.944, 0.962] [-0.886, 1.042] [-0.911, 0.931] [-0.856, 1.007] [-0.749, 0.771] [-0.713, 0.818]

cHu [-3.856, 3.783] [-11.337, 2.895] [-3.540, 3.471] [-10.802, 2.716] [-3.134, 3.052] [-10.545, 2.453]

cHd [-7.249, 7.409] [-3.924, 8.371] [-6.794, 6.954] [-3.751, 8.148] [-5.870, 6.066] [-3.425, 7.965]

Table B.1: 95% CL expected limits on the Wilson coefficients. Limits correspond to fits performed
on the 1-dimensional (m``) measurement. Limits extracted using Asimov fit, interpreting SM
prediction as pseudo-data, while introducing experimental and theoretical systematic uncertainties
observed in the measurement (and prediction) on it. The effects of a single operator are considered
at a time, setting the rest to zero.
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B Results on the Drell-Yan EFT fits

Electron Muon Combined

Operator Linear Linear+quad. Linear Linear+quad. Linear Linear+quad.

clu [-0.025, 0.025] [-0.015, 0.031] [-0.002, 0.040] [-0.005, 0.020] [-0.007, 0.029] [-0.006, 0.022]

ceu [-0.013, 0.013] [-0.010, 0.024] [-0.001, 0.020] [-0.002, 0.022] [-0.004, 0.015] [-0.004, 0.021]

ced [-0.047, 0.052] [-0.039, 0.024] [-0.073, 0.008] [-0.026, 0.011] [-0.054, 0.017] [-0.027, 0.012]

cld [-0.093, 0.106] [-0.036, 0.027] [-0.150, 0.014] [-0.022, 0.014] [-0.110, 0.034] [-0.023, 0.015]

cqe [-0.034, 0.032] [-0.014, 0.022] [-0.003, 0.052] [-0.006, 0.014] [-0.010, 0.038] [-0.007, 0.015]

c(1)
lq [-0.015, 0.015] [-0.010, 0.029] [-0.000, 0.025] [-0.002, 0.020] [-0.004, 0.018] [-0.004, 0.022]

c(3)
lq [-0.006, 0.006] [-0.007, 0.006] [-0.010, 0.001] [-0.011, 0.001] [-0.007, 0.002] [-0.008, 0.002]

c(1)
ll [-0.413, 0.838] [-0.418, 0.818] [-0.432, 0.846] [-0.440, 0.830] [-0.331, 0.812] [-0.335, 0.793]

cHDD [-0.458, 1.039] [-0.460, 1.106] [-0.727, 0.952] [-0.751, 1.021] [-0.312, 0.772] [-0.313, 0.813]

cHW B [-0.152, 0.432] [-0.151, 0.451] [-0.251, 0.395] [-0.249, 0.417] [-0.098, 0.324] [-0.097, 0.336]

c(1)
Hl [-0.295, 0.984] [-0.299, 0.948] [-0.400, 0.807] [-0.409, 0.780] [-0.225, 0.902] [-0.227, 0.872]

c(3)
Hl [-0.470, 0.530] [-0.460, 0.545] [-0.603, 0.500] [-0.591, 0.518] [-0.355, 0.495] [-0.349, 0.511]

c(1)
Hq [-2.524, 9.965] [-5.978, 4.413] [-17.878, 8.313] [-5.891, 3.150] [-1.955, 8.961] [-5.902, 4.062]

c(3)
Hq [-0.228, 1.102] [-0.230, 1.060] [-0.453, 0.798] [-0.463, 0.782] [-0.168, 0.967] [-0.169, 0.937]

cHe [-1.703, 0.219] [-1.519, 0.226] [-1.203, 0.677] [-1.124, 0.724] [-1.404, 0.119] [-1.288, 0.119]

cHu [-0.613, 7.075] [-0.765, 4.591] [-3.055, 4.302]
[-12.726, -2.760]⋃

[-1.679,2.235]
[-0.375, 5.842] [-0.437, 4.069]

cHd [-12.883, 1.862] [-5.633, 9.582] [-9.429, 4.683] [-4.515, 9.411] [-11.100, 0.806] [-5.207, 3.172]

Table B.2: 95% CL observed limits on the Wilson coefficients corresponding to the operators. Limits
correspond to fits performed on the 1D (mee) measurement. The effects of a single operator are
considered at a time, setting the rest to zero.
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Electron Muon Combined

Operator Linear Linear+quad. Linear Linear+quad. Linear Linear+quad.

clu [-0.019, 0.019] [-0.013, 0.028] [-0.019, 0.019] [-0.013, 0.027] [-0.014, 0.014] [-0.011, 0.023]

ceu [-0.011, 0.011] [-0.009, 0.019] [-0.011, 0.011] [-0.010, 0.015] [-0.008, 0.008] [-0.007, 0.010]

ced [-0.042, 0.042] [-0.040, 0.022] [-0.039, 0.039] [-0.042, 0.023] [-0.030, 0.030] [-0.037, 0.018]

cld [-0.071, 0.071] [-0.035, 0.026] [-0.067, 0.067] [-0.038, 0.027] [-0.052, 0.052] [-0.032, 0.022]

cqe [-0.025, 0.025] [-0.013, 0.022] [-0.024, 0.024] [-0.013, 0.023] [-0.018, 0.018] [-0.011, 0.019]

c(1)
lq [-0.013, 0.013] [-0.009, 0.029] [-0.014, 0.014] [-0.010, 0.029] [-0.010, 0.010] [-0.008, 0.026]

c(3)
lq [-0.005, 0.005] [-0.006, 0.005] [-0.005, 0.005] [-0.006, 0.005] [-0.004, 0.004] [-0.004, 0.004]

c(1)
ll [-0.577, 0.570] [-0.588, 0.560] [-0.600, 0.593] [-0.611, 0.583] [-0.502, 0.499] [-0.510, 0.492]

cHDD [-0.394, 0.394] [-0.392, 0.396] [-0.418, 0.418] [-0.415, 0.420] [-0.297, 0.298] [-0.296, 0.299]

cHW B [-0.183, 0.183] [-0.180, 0.186] [-0.185, 0.185] [-0.181, 0.188] [-0.134, 0.134] [-0.132, 0.135]

c(1)
Hl [-0.518, 0.507] [-0.530, 0.497] [-0.514, 0.502] [-0.526, 0.492] [-0.432, 0.423] [-0.440, 0.416]

c(3)
Hl [-0.376, 0.379] [-0.368, 0.387] [-0.399, 0.401] [-0.390, 0.410] [-0.299, 0.301] [-0.294, 0.307]

c(1)
Hq [-0.947, 0.945] [-0.960, 0.929] [-1.038, 1.037] [-1.053, 1.016] [-0.735, 0.734] [-0.739, 0.728]

c(3)
Hq [-0.524, 0.514] [-0.533, 0.506] [-0.536, 0.523] [-0.545, 0.515] [-0.439, 0.429] [-0.444, 0.424]

cHe [-0.694, 0.709] [-0.663, 0.744] [-0.688, 0.705] [-0.660, 0.737] [-0.557, 0.570] [-0.540, 0.589]

cHu [-1.513, 1.500] [-1.493, 1.505] [-1.464, 1.449] [-1.444, 1.456] [-1.169, 1.159] [-1.159, 1.162]

cHd [-4.544, 4.605] [-3.318, 4.397] [-4.418, 4.490] [-3.318, 4.397] [-3.557, 3.617] [-2.868, 3.687]

Table B.3: 95% CL expected limits on the Wilson coefficients. Limits correspond to fits performed
on the 2D(+1) (mll⊗ cosθ∗

CS+mee ∈ [1500, 5000] GeV) measurement. Limits extracted using Asi-
mov fit, interpreting SM prediction as pseudo-data, while introducing experimental and theoretical
systematic uncertainties observed in the measurement (and prediction) on it. The effects of a single
operator are considered at a time, setting the rest to zero.
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B Results on the Drell-Yan EFT fits

Electron Muon Combined

Operator Linear Linear+quad. Linear Linear+quad. Linear Linear+quad.

clu [-0.025, 0.016] [-0.016, 0.031] [0.006, 0.039] [-0.001, 0.021] [-0.004, 0.024] [-0.004, 0.022]

ceu [-0.016, 0.009] [-0.012, 0.012] [0.005, 0.024] [0.004, 0.029] [-0.001, 0.015] [-0.001, 0.026]

ced [-0.031, 0.062] [-0.044, 0.028] [-0.084, -0.016] [-0.028, 0.005] [-0.054, 0.006] [-0.030, 0.008]

cld [-0.058, 0.095] [-0.041, 0.032] [-0.137, -0.017] [-0.022, 0.010] [-0.085, 0.018] [-0.025, 0.013]

cqe [-0.033, 0.021] [-0.016, 0.025] [0.006, 0.049] [-0.004, 0.015] [-0.006, 0.030] [-0.006, 0.016]

c(1)
lq [-0.018, 0.012] [-0.012, 0.033] [0.007, 0.029] [0.002, 0.023] [-1.2 · 10−4, 0.019] [2.2 · 10−4, 0.026]

c(3)
lq [-0.004, 0.008] [-0.005, 0.007] [-0.011, -0.002] [-0.013, -0.002] [-0.007, -4.8 · 10−4] [-0.008, 4.8 · 10−4]

c(1)
ll [-0.243, 0.908] [-0.245, 0.884] [-0.874, 0.310] [-0.900, 0.308] [-0.436, 0.576] [-0.442, 0.566]

cHDD [-0.593, 0.199] [-0.595, 0.200] [-0.733, 0.120] [-0.714, 0.122] [-0.563, 0.039] [-0.558, 0.039]

cHW B [-0.266, 0.103] [-0.259, 0.104] [-0.353, 0.027] [-0.344, 0.027] [-0.283, -0.012] [-0.276, -0.012]

c(1)
Hl [-0.410, 0.608] [-0.416, 0.591] [-1.139, -0.106] [-1.214, -0.112] [-0.809, 0.046] [-0.840, 0.045]

c(3)
Hl [-0.644, 0.122] [-0.625, 0.122] [-0.394, 0.413] [-0.388, 0.424] [-0.492, 0.123] [-0.481, 0.123]

c(1)
Hq [-0.248, 1.644] [-0.252, 1.577] [-0.158, 1.913] [-0.191, 1.722] [-0.006, 1.462] [-0.029, 1.368]

c(3)
Hq [-0.461, 0.572] [-0.467, 0.563] [-0.913, 0.168] [-0.940, 0.167] [-0.683, 0.185] [-0.693, 0.184]

cHe [-0.736, 0.675] [-0.706, 0.713] [-0.062, 1.415] [-0.017, 1.751] [-0.009, 1.158] [0.011, 1.310]

cHu [-1.277, 1.760] [-1.291, 1.815] [-3.562, -0.624] [-3.245, -0.546] [-2.405, -0.062] [-2.286, -0.039]

cHd [-4.126, 5.050] [-3.249, 5.103] [0.346, 9.421] [0.752, 6.733] [0.064, 7.309] [0.123, 5.756]

Table B.4: 95% CL observed limits on the Wilson coefficients. Limits correspond to fits performed
on the 2D(+1) (mll⊗ cosθ∗

CS+mee ∈ [1500, 5000] GeV) measurement. The effects of a single
operator are considered at a time, setting the rest to zero.
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1D 2D(+1) Diff. (2D-1D) [%]

Operator Linear Linear+quad. Linear Linear+quad. Linear Linear+quad.

clu [-0.007, 0.029] [-0.006, 0.022] [-0.004, 0.024] [-0.004, 0.022] -22.2 -7.1

ceu [-0.004, 0.015] [-0.004, 0.021] [-0.001, 0.015] [-0.001, 0.026] -15.8 +7.1

ced [-0.054, 0.017] [-0.027, 0.012] [-0.054, 0.006] [-0.030, 0.008] -15.5 -2.6

cld [-0.110, 0.034] [-0.023, 0.015] [-0.085, 0.018] [-0.025, 0.013] -28.5 -2.2

cqe [-0.010, 0.038] [-0.007, 0.015] [-0.006, 0.030] [-0.006, 0.016] -25.0 -1.0

c(1)
lq [-0.004, 0.018] [-0.004, 0.022] [-1 · 10−4, 0.019] [2 · 10−4, 0.026] -13.1 -3.9

c(3)
lq [-0.007, 0.002] [-0.008, 0.002] [-0.007, -5 · 10−4] [-0.008, 5 · 10−4] -27.6 -15.2

c(1)
ll [-0.331, 0.812] [-0.335, 0.793] [-0.436, 0.576] [-0.442, 0.566] -11.5 -10.6

cHD [-0.312, 0.772] [-0.313, 0.813] [-0.563, 0.039] [-0.558, 0.039] -44.5 -47.0

cHW B [-0.098, 0.324] [-0.097, 0.336] [-0.283, -0.012] [-0.276, -0.012] -35.8 -39.0

c(1)
Hl [-0.225, 0.902] [-0.227, 0.872] [-0.809, 0.046] [-0.840, 0.045] -24.1 -19.5

c(3)
Hl [-0.355, 0.495] [-0.349, 0.511] [-0.492, 0.123] [-0.481, 0.123] -27.6 -29.8

c(1)
Hq [-1.955, 8.961] [-5.902, 4.062] [-0.006, 1.462] [-0.029, 1.368] -86.6 -86.0

c(3)
Hq [-0.168, 0.967] [-0.169, 0.937] [-0.683, 0.185] [-0.693, 0.184] -23.5 -20.7

cHe [-1.404, 0.119] [-1.288, 0.119] [-0.009, 1.158] [0.011, 1.310] -23.4 -7.7

cHu [-0.375, 5.842] [-0.437, 4.069] [-2.405, -0.062] [-2.286, -0.039] -62.3 -50.1

cHd [-12.883, 1.862] [-5.633, 9.582] [0.064, 7.309] [0.123, 5.756] -50.9 -63.0

Table B.5: Observed limits difference between 1D and 2D(+1) fits in the combined channel, ex-
pressed as the difference in range from the highest to lowest operator limit. The effects of a single
operator are considered at a time, setting the rest to zero.
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Appendix C

Simulation of the Z-counting
lepton efficiencies

This Appendix includes a comparison of the single-lepton trigger and reconstruction effi-
ciencies obtained in Monte Carlo simulation and data samples, as described in Sections 13.3
and 13.4.3.

The simulated single-lepton reconstruction efficiencies agree with those found in data
within 2% in most data-taking periods, with the difference between the simulated and
observed values exhibiting very little pileup dependence. Trigger efficiencies obtained in
MC agree with those measured in data within a 2.5% level, with the exception of 2016.
In the muon channel, the agreement worsens to a 7.5% level in most years, while 2016
shows a 5% agreement. The single-lepton efficiencies are combined into an event-level
efficiency as shown in Equation 13.7. The agreement between the observed and simulated
event-level efficiency is within 5% in most data-taking periods, exhibiting very little pileup
dependence. The effect for this mis-modelling of the lepton efficiencies is corrected for by
applying the factor FMC

Z→`+`−(〈µ〉) in Equation 13.2, as explained in Section 13.4.
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Figure C.1: Single-electron (left) and muon (right) reconstruction efficiencies in data and Monte-
Carlo against average pileup.
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C Simulation of the Z-counting lepton efficiencies
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Figure C.2: Single-electron (left) and muon (right) trigger efficiencies in data and Monte-Carlo
against average pileup.
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Figure C.3: Event-level electron (left) and muon (right) efficiencies in data and Monte-Carlo against
average pileup.
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Appendix D

Muon channel limitations in
AnalysisBase Z-counting

The results shown in Section 13.5 were obtained adapting the Z-counting methodology
to a standard ATLAS analysis framework, AnalysisBase, which runs on data derivations
that include some event pre-selection. In the case of the electron channel this pre-selection
does not limit the results obtained, but for muon decays it means that reconstruction effi-
ciencies will be inherently biased towards a higher efficiency. The reconstruction efficiency
for muons is given by the expression shown in Equation 13.5 and, as shown in Table 13.2,
probe candidates consist of inner detector tracks passing some very basic pre-selection cuts.
In primary ATLAS analysis object data (AOD), these pre-selection cuts keep > 99% of
the ID tracks, allowing for a good measurement of the reconstruction efficiency. However,
in derivated data used by AnalysisBase most of the pre-selected data available includes
some track removal, since the chances of ATLAS analyses requiring access to information
on all tracks is very unlikely, allowing for the slimming of data files to reduce storage space
usage. The tracks that are slimmed away in the derivation process tend to correspond to
non-matched objects, since those muon-like candidates pass the pre-selection criteria. This
means that the denominator in Equation 13.5 is smaller (NOS

fail is reduced) when calculated
on pre-selected data, resulting in a bigger reconstruction efficiency. Table D.1 shows some
example quantities for all elements used in the determination of the reconstruction effi-
ciency for different data derivations available for a given luminosity block in the 2018 data
period. The table shows how the different pre-selection requirements applied in different
derivations tested drastically reduce the number of tracks fulfilling the NOS

fail criteria, re-
sulting in a difference in reconstruction efficiency of over 10%.

Moreover, the effects of the track slimming applied in the derivation process on the
muon channel Z-counting is dependent on the pileup of the process. The additional proton-
proton interactions result in a higher number of low-quality tracks that, although originally
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Quantity
Derivation

STDM4 MUON1 AOD

NOS
pass 212 212 206

Nbkg
pass 0 0 0

NOS
fail 21 42 57

Nbkg
fail 6 13 14

εreco,1µ [%] 93.4 87.9 82.7

Table D.1: Summary of the quantities used in the computation of the single-muon reconstruction
efficiency, as shown in Equation 13.5 for different derivations. STDM4 is the standard derivation
used in single-lepton-based analyses in ATLAS. MUON1 is a muon-specific derivation that lowers
the selection criteria on tracks included in the data files. AOD refers to the numbers corresponding
to the original results used in the Z-counting luminosity computation [179], obtained using the
WZFinder tool in the DataQuality analysis framework.

accounted for in the standard Z-counting methodology using primary ATLAS data, are re-
moved from the stored data in usual ATLAS derivations. This results in a time-dependent
effect observed in the muon channel Z-counting using AnalysisBase, since 2017 and 2018
data was taken with a higher pileup than the previous Run 2 years, resulting in a change in
efficiency behaviour that biases the luminosity obtained with the Z-counting methodology,
as shown in Figure D.1. It can be inferred from the figure that late-Run 2 data analysis
results into a Z-counting luminosity dip, stemming from a bigger effect of ID track slim-
ming in the derivation process, increasing the reconstruction efficiency measurement and
therefore decreasing the luminosity estimation (see Equation 13.2). The effect can also be
inferred from Figure D.2, where the dip in the luminosity obtained in the muon channel
results into an increase with respect to that measured in the electron channel in late-Run
2 runs, where higher pileup values where recorded and the effects of track slimming are
more severe in the luminosity determination in the muon channel.

Considering the limitations the AnalysisBase framework presents in the muon channel,
the final results of the search for Lorentz- invariance violation will be based on the origi-
nal Z-counting methodology using primary ATLAS data, updated to the final luminosity
ATLAS measurement [109].
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D Muon channel limitations in AnalysisBase Z-counting
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Figure D.1: Biased ratio of the integrated Z-counting and baseline ATLAS luminosities per LHC run
taken from pp collisions at

√
s = 13 TeV for the Z → µ+µ− channel for the full Run-2 data taking

period. The Z-counting luminosity is normalised to the integrated baseline ATLAS luminosity over
the Run-2 data-taking period [152]. The x-axis represents the date when the run started. Only
ATLAS runs with a minimum length of 40 minutes are included. The error bars show statistical
uncertainties only and the green bands contain 68% of all points centred around the mean.
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Appendix E

Random phase assignment
Monte-Carlo LIV studies

As a first step towards the simulation of time (phase) dependence one can simply assign
a random uniformly distributed phase ranging (0,2π). Although this does not accurately
represent the time-dependence of data-taking, it establishes a hypothesis to test the anal-
ysis framework on.

The pileup to phase mapping obtained when using the assignment of uniformly dis-
tributed sidereal-phases to each MC event can be found in Figure E.1. No dependence
against phase can be inferred from the distribution, following the expectations when as-
signing a uniformly distributed phase. The dependence against pileup (y-axis) follows the
pileup distribution recorded in 2018 data. The modelling of this variable (and its shape
difference across different data-taking periods) can be exploited to introduce an accurate
simulation of the phase dependence in MC, as described in Section 15.2. Figure E.2 shows
the distribution of MC weights across different phase bins at truth- and reconstructed-level.
No dependence against phase is observed for the correction factor shown in the bottom
panel, meaning that the correction of reconstructed-level distributions (as described in
Equation 15.2), introduces no dependence on the sidereal phase in the distribution.

Figure E.3 shows the double-ratio obtained when using the flat phase assignment on
MC simulation. Both the truth- and unfolded reconstructed-level distributions are dis-
played on the Figure. Due to the nature of the bin-by-bin unfolding correction, the central
points of this distribution exactly match the truth-level ones, the key difference between
both distributions being the increased error bars observed in the unfolded distribution, due
to the lower number of events passing the reconstruction cuts. The distribution obtained
when unfolding following the Z-counting methodology displays a bigger spread than the
other distributions, but all three distributions are compatible with the fit of a straight line,
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E Random phase assignment Monte-Carlo LIV studies
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Figure E.1: Pileup vs sidereal phase profile obtained using a flat phase assignment to MC events.
z-axis shows the sum of weights registered in a given pileup-phase combination. Results correspond
to MC samples describing the 2018 data profile.

0 1 2 3 4 5 6
Sidereal Phase

10

20

30

40

50

610×)
M

C
 (

S
oW

/L
M

C
σ∼

 Work in progressATLAS
ee MC 2018→Z

Flat phase assignment

0 1 2 3 4 5 6
Sidereal Phase

0.6

0.605

0.61

R
ec

o/
T

ru
th

Figure E.2: Sum of weights distribution per sidereal bin obtained using a flat phase assignment to
MC events, corrected for MC “luminosity”. Distributions shown at truth (red) and reconstructed
(black) level. Results correspond to MC samples describing the 2018 data profile.

corresponding to the assumption of lack of LIV effects. The results shown correspond to
the processing of the MC samples under one single 1 random seed. The final bounds of the
coefficients are retrieved repeating the process for 100 different random seeds, minimising
the impact of the initial randomisation.

With this simulated observable, bounds on the coefficients can be obtained by perform-
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Figure E.3: Double-ratio obtained for the assignment of uniformly distributed sidereal phases.
Figure shows truth-level (black circle) and unfolded distributions. Unfolding performed in a bin-by-
bin basis (red square) and following the Z-counting methodology (blue triangle). The fits (dashed
lines) correspond to a straight line fit on each of the distributions.

ing a χ2 fit (details of which can be found in Ref. [182]) on the signal distributions shown
in Equation 14.7. Figure E.4 shows the results corresponding to the signal fitting on the
truth and reconstructed level distributions using a flat phase assignment. All coefficient
limits seem compatible with a null hypothesis, obtaining sensitivities of the order O(10−4).
The results presented in the analysis were expanded with the addition of data-driven phase
simulation, as explained in Section 15.2.
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Figure E.4: Coefficient bounds extracted using the double ratio distributions at truth-level (left)
and bin-by-bin unfolded (right) with a uniformly distributed sidereal phase assignment. Bounds
obtained using the distributions produced with 100 different random seeds. Limits on the pa-
rameters (“pars”) shown for the cosine (“par1”, black) and sine (“par2”, red) terms of the signal
parametrisation. Plots provided by Dr. Yiming Abulaiti.
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