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Abstract—Reconfigurable intelligent surface (RIS) has drawn
great attention recently as a promising technology for future
wireless networks. In this letter, considering the two-timescale
transmission protocol, we investigate the joint design of the
transmit beamforming at the base station (BS) with instantaneous
channel state information (CSI) and the RIS phase shifts with
statistical CSI. Due to the large number of RIS elements, this
design issue usually suffers from high computational complexity.
To resolve the non-convexity issue with low complexity, we
propose a novel deep reinforcement learning (DRL) framework,
which contains two agents applying proximal policy optimization
(PPO) based algorithm. Experiment results demonstrate that the
proposed algorithm has comparable spectral efficiency perfor-
mance to the state-of-the-art methods with substantially reduced
computational delay.

Index Terms—Deep reinforcement learning, reconfigurable
intelligent surface, two-timescale optimization, beamforming.

I. INTRODUCTION

AS the research of sixth-generation (6G) mobile communi-
cation emerges, RIS [1]–[3] has attracted great attention

thanks to its green, cost-effective and plug-and-play charac-
teristics. By dynamically adjusting its reflection elements, RIS
has made a significant impact on energy efficiency [4], system
throughput [5], [6], to name just a few.

However, the requirement of instantaneous CSI (I-CSI) in
many previous works inevitably causes a large amount of
CSI acquisition overhead. An alternative apporach is to use
statistical CSI (S-CSI), which changes more slowly and is
easier to obtain. In [7] and [8], only S-CSI was utilized
to design BS beamforming and RIS phase shifts. However,
for a complex and time-varying environment, or the line-
of-sight (LOS) component is relatively weak, using S-CSI
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alone will cause system performance degradation. Thus, [9]–
[11] further adopted the two-timescale (TTS) transmission
protocol, which design the RIS phase shifts using S-CSI, while
design the beamforming at the BS using I-CSI. Although
effective, the computational complexity of the applied iterative
optimization algorithms is relatively high. In recent years, with
the development of artificial intelligence, attempts of DRL in
RIS-aided transmission were carried out, such as [12] and [13]
with I-CSI, leading to low computational complexity solutions.

In this letter, to improve the spectral efficiency with low
complexity, we study the joint design of the BS beam-
forming and RIS phase shifts using DRL under the TTS
transmission scheme. To deal with the non-convex issue in
the joint optimization, we propose a two-agents PPO based
algorithm, where one agent is responsible for determining RIS
phase shifts and the other is responsible for determining BS
beamforming. The simulation results show that the proposed
algorithm has comparable performance to the near-optimal
numerical algorithm with substantially reduced computation
latency.

II. SYSTEM MODEL

Consider a multi-user multiple-input single-output (MISO)
downlink communication system in Fig. 1. It consists of a BS
equipped with a uniform linear array (ULA) of M antennas
and K single-antenna users. To better serve the users in a
specific area, a RIS is employed, which is constructed as a
uniform planar array (UPA) with N (N = Nx×Ny) reflection
elements. To obtain the phase shifts configuration, the RIS is
linked to an intelligent controller which communicates with
the BS via a separate link. The signals reflected twice or more
by the RIS are omitted due to significant path loss.

Fig. 1. RIS-assisted multi-user MISO communication system.
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Assuming that all channels are quasi-static frequency flat-
fading, we denote the channels from the BS to the RIS, from
the RIS to the k-th user, and from the BS to the k-th user as
G ∈ CN×M , hr,k ∈ CN×1, and hd,k ∈ CM×1, respectively.
As both LOS and non-line-of-sight (NLOS) components can
be present, the channels are modeled as follows

G =
√
LG

(√
β1

β1 + 1
Ḡ+

√
1

β1 + 1
G̃

)
, (1)

hr,k =
√

Lr,k

(√
β2,k

β2,k + 1
h̄r,k +

√
1

β2,k + 1
h̃r,k

)
, (2)

hd,k =
√
Ld,k

(√
β3,k

β3,k + 1
h̄d,k +

√
1

β3,k + 1
h̃d,k

)
, (3)

where β1, β2,k and β3,k are the Rician factors of the corre-
sponding channels, LG, Lr,k and Ld,k are the corresponding
path-loss coefficients. Moreover, G̃, h̃r,k, and h̃d,k are the
NLOS components, each element of which is modeled as
an independent and identically distributed complex Gaussian
random variable with zero mean and unit variance, while Ḡ,
h̄r,k, and h̄d,k are the LOS components modeled as follows

Ḡ = aN
(
θAoA, ϕAoA)a

H
M (θAoD,1

)
, (4)

h̄r,k = aN (θAoD, ϕAoD) , (5)

h̄d,k = aM (θAoD,2) , (6)

where θAoA and ϕAoA are the azimuth and elevation an-
gles of arrival (AoAs) from the BS to the RIS, θAoD,1

is the azimuth angle of departure (AoD) from the BS
to the RIS, θAoD and ϕAoD are the azimuth and ele-
vation AoDs from the RIS to the k-th user, and θAoD,2

is the azimuth AoD from the BS to the k-th user.
aM (θ) = [1, · · · , ej2π

d1
λ sin(θ), · · · , ej2π(M−1)

d1
λ sin(θ)]H and

aN (θ, ϕ) = [1, · · · , ej2π
d2
λ (nx cos(θ) sin(ϕ)+ny sin(θ) sin(ϕ)), · · · ,

ej2π
d2
λ ((Nx−1) cos(θ) sin(ϕ)+(Ny−1) sin(θ) sin(ϕ))]H are the array

responses of ULA and UPA, where d1 and d2 are the antenna
spacings, and λ is the carrier wavelength.

The signal received at the k-th user can be expressed as

yk = (hH
r,kΘG+ hH

d,k)
∑K

i=1
wixi + nk, (7)

where Θ = diag(ϕ1, ϕ2, · · · , ϕN ) represents the RIS diagonal
phase shifts matrix with ϕn = ejθn , θn ∈ [0, 2π), and nk is
the complex Gaussian noise with variance σ2

k, wi ∈ CM×1

is the transmit beamforming vector for the i-th user with
the power constraint

∑K
i=1 ∥wi∥2 ≤ P , P is the maximum

transmit power at the BS, and xi represents the transmitted
signal for the i-th user satisfying E[x2

i ] = 1. Let us define
W = [w1, · · · ,wK ].

Thus, for the k-th user, we can obtain its signal-to-
interference-plus-noise ratio (SINR)

SINRk =
|(hH

r,kΘG+ hH
d,k)wk|2∑K

i=1,i̸=k |(hH
r,kΘG+ hH

d,k)wi|2 + σ2
k

, (8)

and the corresponding spectral efficiency is

rk = log2(1 + SINRk). (9)

We consider the TTS transmission scheme [11], where
the BS beamforming and the RIS phase shifts are designed
exploiting I-CSI and S-CSI, respectively. The design objective
is to maximize the average sum spectral efficiency, subject to
the transmit power constraint and the unit module constraint
of Θ. Thus, we have the following optimization problem

(P1) : max
Θ

E
{
max
wk

∑K

k=1
rk

}
,

s.t.
∑K

k=1
∥wk∥2 ≤ P ,

|ϕn| = 1.

(10)

The objective function of problem (P1) includes an inter-
nal rate-maximization problem, which optimizes the short-
term transmint beamforming at BS to maximize the spectral
efficiency of each time slot given the RIS phase shifts.
Additionally, there is an outer rate-maximization problem
that optimizes the long-term RIS phase shifts to maximize
the average spectral efficiency within the channel statistics
coherence time. However, the coupling of the BS beamforming
and the RIS phase shifts in the objective function makes it
difficult to solve. Although numerical methods such as the
stochastic successive convex approximation (SSCA) algorithm
[11] have been proposed, the computational complexity is
extremely high.

III. DRL BASED OPTIMIZATION ALGORITHM

In this section, to solve the optimization problem (P1) with
low complexity, a novel two-agents PPO based algorithm,
referred to as PPOΘ-PPOW, is proposed. Firstly, we will
provide a brief introduction of the PPO algorithm. Then, the
details of the proposed PPO based algorithm will be described.

A. PPO Description

PPO algorithm [14] is a policy based DRL algorithm
proposed by OpenAI, which can deal with the problems for
both continuous space and discrete space. The PPO agent
contains a critic network, an actor network, a replay buffer,
and an optimizer. The critic network is used to output the value
function that evaluates the current state with parameter vectors
Ωc, the actor network is used to obtain action with parameter
vectors Ωa, the replay buffer U is used to store experience,
and the optimizer is used to optimize network parameters.
During timestep t in each episode, the agent observes the
environment state st and selects action at according to the
policy πΩa(at|st). When the action is done, the environment
goes to the next state st+1, and the reward rt is provided. The
value function V π

Ωc
(s) = Eπ[Gt|st = s] is the expectation

of accumulated reward of state s under policy π, where
Gt =

∑∞
τ=0 γ

τrt+τ is the cumulative reward value with
the discount factor γ ∈ (0, 1]. Then, the agent puts the
experience {st, at, πΩa(at|st), rt, st+1} into the replay buffer.
The optimizer selects experience from the replay buffer with
minibatch B to update the network so as to maximize the
objective function

L(Ωa) = Et [min (rt(Ωa)At, clip(rt(Ωa), 1− ε, 1 + ε)At)] ,
(11)
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where rt(Ωa) =
πΩa (at|st)

πΩa,old
(at|st) denotes the probability ratio,

Ωa,old is the policy parameters before the update, clip (a, b, c)
is the function that clips the probability ratio a within the
range of [b, c], ε is a hyperparameter controlling the clip
range, At is the advantage function calculated by the general
advantage estimation (GAE) method to make the trade-off
between variance and bias, i.e.,

At =
∑∞

l=0
(γξ)

l
δVt+1, (12)

δVt = rt + γV π
Ωc

(st+1)− V π
Ωc

(st), (13)

where ξ is the GAE parameter.
To further improve the exploration ability of the algorithm,

a policy entropy with coefficient c can be added to (11), thus,
leading to the final objective function

L(Ωa) =Et[min (rt(Ωa)At, clip(rt(Ωa), 1− ε, 1 + ε)At)

+ cH(πΩa
(·|st))],

(14)
where H(πΩa

(·|st)) is the policy entropy.

B. Proposed PPO Based Algorithm

To tackle the optimization problem (P1), we propose a two-
agent PPO based algorithm to jointly optimize the beamform-
ing at the BS and RIS phase shifts, as shown in Fig. 2.

Fig. 2. The proposed PPOΘ-PPOW algorithm framework.

The proposed algorithm contains two agents named as
PPOΘ and PPOW, which are constructed based on PPO frame-
work. PPOΘ uses S-CSI to obtain RIS phase shifts, while
PPOW uses I-CSI within each channel statistics coherence
time to obtain beamforming at the BS. Both PPOΘ and PPOW
contain a critic network with parameter vectors ΩΘ

c , ΩW
c and

an actor network with parameter vectors ΩΘ
a , ΩW

a . It is worth
noting that the action at is obtained by sampling the Gaussian
distribution, which is formed by the mean and variance in the
actor network in this letter. Therefore, we also take the mean
in the actor network as action au,t for the training of another
agent. Both agents also contain an experience replay buffer of
their own named U1 and U2. The state, action, and reward
of the two agents are designed as follows, where the timestep
t corresponds to the channel statistics coherence time, and
t′ corresponds to the time slot during each channel statistics
coherence time.

1) State: The state of PPOΘ at timestep t is set as sΘt =
{
√

Lr,1(t)h̄r,1(t),
√

Ld,1(t)h̄d,1(t), · · · ,
√
Lr,K(t)h̄r,K(t),

Algorithm 1 The PPOΘ-PPOW Based Algorithm

Initialize ΩΘ
a , ΩΘ

c , ΩΘ
a,old ← ΩΘ

a , ΩΘ
c,old ← ΩΘ

c .
Initialize ΩW

a , ΩW
c , ΩW

a,old ← ΩW
a , ΩW

c,old ← ΩW
c .

1: for episode = 1, 2, · · · , L do
2: Initialize the environment and replay buffer U1 and U2;
3: for t = 1, 2, · · · , T do
4: PPOΘ observes state sΘt and selects action aΘt ;
5: for n = 1, 2, · · · , TH do
6: t′ = tTH + n
7: PPOW observes state sWt′ and selects action aWu,t′ ;
8: end for
9: Get the reward rΘt and the next state sΘt+1;

10: Store transition {sΘt , aΘt , πΩΘ
a
(aΘt |sΘt ), rΘt , sΘt+1} into

replay buffer U1;
11: end for
12: for t = T + 1, T + 2, · · · , 2T do
13: PPOΘ observes state sΘt and selects action aΘu,t;
14: for n = 1, 2, · · · , TH do
15: t′ = tTH + n;
16: PPOW observes state sWt′ and selects action aWt′ ;
17: Get the reward rWt′ and the next state sWt′+1;
18: Store transition {sWt′ , aWt′ , πΩW

a
(aWt′ |sWt′ ), rWt′ , sWt′+1}

into replay buffer U2;
19: end for
20: end for
21: Compute advantages {AΘ

t }Tt=1 , {AW
t′ }

THT
t′=1 using (12);

22: Compute {yΘt }Tt=1 , {yWt′ }
THT
t′=1 using (17);

23: for j = 1, 2, .., J do
24: Update ΩΘ

a , ΩΘ
c , ΩW

a , ΩW
c with minibatch size BΘ,

BW respectively using (15) and (18);
25: end for
26: update ΩΘ

a,old ← ΩΘ
a , ΩΘ

c,old ← ΩΘ
c , ΩW

a,old ← ΩW
a ,

ΩW
c,old ← ΩW

c ;
27: end for

√
Ld,K(t)h̄d,K(t)}. PPOW observes the equivalent

channel vector hk = hH
r,kΘG + hH

d,k, so its state at the
time slot t′ is set as sWt′ = {h1(t

′), · · · ,hK(t′)}. The
state with respect to the real and imaginary parts of CSI
is separately input into neural network.

2) Action: Set aΘt = {θ1(t), · · · , θN (t)} as the action
of PPOΘ at timestep t, the element of which is
the reflection phase shifts of the RIS. Set aWt′ =
{Re(W(t′)), Im(W(t′))} as the action of PPOW at time
slot t′, which is normalized and reformulated into the
beamforming matrix as W(t′) =

√
PW(t′)

||W(t′)||F . It is worth
noting that in this algorithm, PPOΘ and PPOW need to
output action aΘt , aWt′ , as well as action aΘu,t, a

W
u,t′ . a

Θ
u,t

is generated by PPOΘ for the training of PPOW, while
aWu,t′ is generated by PPOW for the training of PPOΘ.

3) Reward: PPOΘ takes into account the average perfor-
mance of all time slots under the same S-CSI, so the
reward at timestep t is set as rΘt = E

[∑K
k=1 rk(t

′)
]
,

which represents the expectation with respect to the I-SCI
during the channel statistical coherence time. The reward
of PPOW at time slot t′ is set as rWt′ =

∑K
k=1 rk(t

′),



4

which is the short-term sum rate.

C. Training and Online Working Process

Noting that usually the BS can obtain global channel state
information through the channel estimation method and has
strong information processing capability, we consider deploy-
ing the two agents at the BS. In this case, the agents can
obtain channel state information from the BS, take it as the
input, and output the corresponding action. Then, the action
of PPOΘ is transmitted through a separate link to the RIS
controller to adjust the RIS phase shifts. Based on the channel
state information and output actions, each agent can calculate
the its reward at the BS.

In the l-th episode, 2T sets of S-CSI are used for training,
and each S-CSI contains TH time slots. The training process
is described as follows.

The first T S-CSI is for generating PPOΘ experience: At
timestep t, PPOΘ observes the current state sΘt , inputs it to
critic network and actor network: the former outputs value
function V π

ΩΘ
c,old

(sΘt ), and the latter outputs action aΘt . Then
the RIS phase shifts of timestep t are configured using action
aΘt . At time slot t′, PPOW observes the current state sWt′ and
the actor network outputs the action aWu,t′ . Then the beam-
forming of BS is configured using the action aWu,t′ . After TH

time slots, the environment issues a reward rΘt and is updated
to the next state sΘt+1, then {sΘt , aΘt , πΩΘ

a
(aΘt |sΘt ), rΘt , sΘt+1}

is stored in the replay buffer U1.
The last T S-CSI is for generating PPOW experience: At

timestep t, PPOΘ observes the current state sΘt and the actor
network outputs the action aΘu,t. Then the RIS phase shifts
of timestep t are configured using action aΘu,t. At time slot
t′, PPOW observes the current state sWt′ , critic network and
actor network output value function V π

ΩW
c,old

(sWt′ ) and action

aWt′ respectively. Then the transmit beamforming of BS is con-
figured using the action aWt′ . After the action aWt′ is executed,
the environment issues a reward rWt′ and is updated to the
next state sWt′+1, then {sWt′ , aWt′ , πΩW

a
(aWt′ |sWt′ ), rWt′ , sWt′+1} is

stored in the replay buffer U2.
Each episode carries out J times of parameter updates. In

each time j, the optimizer randomly samples minibatches of
size B from the replay buffer. The purpose of updating actor
network is to maximize L(Ωa), with the policy gradient

∆Ωa =
1

B

∑B

i=1
∇Ωa

[min(ri(Ωa)Ai,

clip(ri(Ωa), 1− ε, 1 + ε)Ai) + cH(π(·|si))].
(15)

The loss function of the critic network is given by

J(Ωc) = Et

[
(yt − VΩc(st))

2
]
, (16)

where
yt = At + VΩc,old

(st). (17)

The update gradient of critic network is denoted as

∆Ωc =
1

B

∑B

i=1
∇Ωc

[(yi − VΩc
(si))

2]. (18)

The details of the proposed algorithm are given in Algorithm
1. In the online working stage, during the channel statistics

coherence time, PPOΘ observes the current S-CSI state and
gets actions aΘu,t to configure the RIS phase shifts. At each
time slot, PPOW observes the current I-CSI state and gets
actions aWu,t′ to configure the beamforming of the BS, which
takes a low runtime. As the RIS phase shift is discrete in
practice, it can be quantized to the closest discrete value to
meet the requirements of practical configuration.

IV. EXPERIMENT RESULTS

In this section, we evaluate the performance of our proposed
algorithm through the simulation results. The BS and the RIS
are positioned at (0m, 0m, 30m) and (100m, 20m, 10m),
respectively. Users are uniformly distributed within a circular
region centered at (150m, 0m, 1.5m) with a radius of 8m.
The large-scale fading is modeled as L = C0(

d
D0

)−α, where
C0 = −30dB is the path loss at the reference distance D0 = 1
m, α represents the path loss exponent, and d represents the
link distance. The path loss exponents for the BS-RIS, BS-
users, and RIS-users links are set to αBu = 3.8, αBR = 2.4,
αRu = 2.2 [15]. Unless otherwise specified, other system
parameters are set as follows: σ2

k = −90dBm, P = 10dBm,
TH = 10, M = 8, K = 2, β1,k = β2,k = 5dB, β3,k = 2dB.

In the proposed PPOΘ-PPOW framework, all neural net-
works are four-layered DNN, which consists of two hidden
layers of 256 and 128 neurons. We use the Adam optimizer to
update the parameters. In terms of the hyperparameter settings
of PPO, the batch sizes are set to BΘ = 64, BW = 128, and
the learning rates of the actor network and critic network are
ua = 0.0001, uc = 0.0003, respectively. We set the discount
reward factor γ = 0.9, the GAE parameter ξ = 0.95, the clip
fraction ε = 0.2, the number of parameter updates J = 10,
and the policy entropy coefficient c = 0.01. Moreover, 2200
sets of S-CSI are simulated, where 2000 are used for training
and 200 for validation.

For comparison, we consider the WMMSE-RCG algorithm
[5] and SSCA algorithm [11] as baselines, which are near-
optimal numerical optimization algorithms with only I-CSI
and under TTS transmission schemes respectively. At the same
time, we also show the performance of a so-called PPOΘ-
WMMSE algorithm, which replaces the RIS phase shift design
part of the SSCA algorithm in [11] by the PPOΘ we proposed.

Figure 3 illustrates the convergence performance of the pro-
posed PPOΘ-PPOW algorithm, where the number of reflecting
elements on RIS is N = 64. We can notice that with the
increase of episodes, the rewards of both agents rise steadily
and reach convergence at about 3000 episodes.

Figure 4 demonstrates the spectral efficiency performance
of various algorithms versus the BS maximum transmit power.
In this figure, N = 64. It shows that the deployment of RIS
and proper phase shift can significantly improve the system
performance. Notably, the difference in performance between
the SSCA algorithm and the WMMSE-RCG algorithm is
small, further confirming the feasibility of the TTS transmis-
sion scheme. Most importantly, it is evident that the spectral
efficiencies of the proposed PPOΘ-WMMSE and PPOΘ-
PPOW algorithms are close to that of the SSCA algorithm,
which can reach 95.85% and 91.82% of the SSCA respectively
when P = 10dBm, and the proposed PPOΘ-WMMSE is
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Fig. 3. Convergence performance of the proposed algorithm.

Fig. 4. Spectral efficiency vs. total power budget P .

even better than the SSCA algorithm when P = 2dBm. In
addition, to illustrate the generalization ability of the proposed
algorithm, we consider expanding the test area of users by
keeping the center of the test area unchanged and extending
the radius to 12m in the online working stage. In this case,
the spectral efficiencies of the PPOΘ-WMMSE and PPOΘ-
PPOW algorithm can still reach 93.54% and 89.82% of SSCA
algorithm respectively when P = 10dBm.

In Fig. 5, we compare the spectral efficiency under different
number of RIS elements with Nx = 8. As the number of
reflecting elements in the RIS increases, the performance of
all algorithms will become better. Meanwhile, the proposed
algorithm is stable under different number of RIS elements.

Table I compares the online running time of various algo-
rithms under different number of RIS reflecting elements. It
is evident that the time consumption of the SSCA algorithm
increases significantly with N . In contrast, the PPOΘ-PPOW
algorithm can achieve comparable performance with an ex-
tremely short time, while the PPOΘ-WMMSE algorithm has a
longer online processing time but slightly better performance.

V. CONCLUSION

In this letter, we investigated beamforming optimization of
RIS-assisted multi-user MISO system with the TTS transmis-
sion scheme. A two-agents PPO based algorithm, referred to
as PPOΘ-PPOW algorithm, was proposed to jointly optimize
short-term transmit beamforming at the BS and long-term RIS
phase shifts. Experimental results indicated that the proposed
algorithm can approximate the performance of the SSCA
algorithm with extremely low time overhead.

Fig. 5. Spectral efficiency vs. the number of elements N on RIS.

TABLE I
RUNNING TIME COMPARISON

N Running Time(ms)
SSCA PPOΘ-WMMSE PPOΘ-PPOW

48 2340.98 23.28 0.31
64 3218.56 26.47 0.42
80 3942.88 31.12 0.49
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