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Abstract

We consider an optimal regulator problem for a class of nonlinear stochas-
tic systems with a square-root nonlinearity and random coefficients, and us-
ing the quadratic-linear criterion. This represents a certain nonlinear gen-
eralisation of the stochastic linear-quadratic control problem with random
coefficients. The solution if found in an explicit closed-form as an affine
state-feedback control in terms of a Riccati and linear backward stochastic
differential equations. As an application, we give the solution to an optimal
investment problem in a market with random coefficients.

Keywords: Stochastic optimal control; Nonlinear systems; Riccati BSDEs;
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1. Introduction and problem formulation

Let (Ω,F ,P) be a given complete probability space. Also let (W`(t), t ≥
0) be a one-dimensional standard Brownian motion defined on this space.
The filtration (F`(t), t ≥ 0) is defined as the augmentation of σ{W`(s) : 0 ≤
s ≤ t} by all the P-null sets of F . Consider the linear scalar stochastic
control system with random coefficients (for t ∈ [0, T ]):
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dx`(t) = [a`(t)x`(t) + b`(t)u`(t) + c`(t)]dt

+[d`(t)x`(t) + f`(t)u`(t) + g`(t)]dW`(t),

x`(0) ∈ R, is given,

(1)

for some suitable adapted coefficient processes a`, b`, c`, d`, f`, g`, and an
adapted control process u` such that (1) has a unique strong solution. The
one-dimensional stochastic linear-quadratic (LQ) control problem is the op-
timal control problem of minimizing the quadratic cost functional

E

{∫ T

0

[x′`(t)q`(t)x`(t)+u
′
`(t)r`(t)u`(t)]dt+x

′
`(T )s`x`(T )

}
,

subject to (1), for some suitable adapted weight processes q` and r`, and a
suitable F`(T )-measurable weight random variable s`. A key feature of this
problem is that it admits an explicit-closed form solution as a linear state-
feedback control the gain of which is given in terms of a Riccati differential
equation. The LQ control problem has been studied extensively since its
introduction by Kalman in [14] for deterministic systems (see, e.g., [1], [7],
for a textbook account). One of the first solutions to the stochastic LQ
problem with multiplicative noise was given by Wonham in [29], [30], for the
case of deterministic coefficients (see, e.g., [33], [8], for a texbook account).
A typical assumption in the LQ control problems is that the coefficients
of the cost functional have certain definiteness properties. This assump-
tion can be weakened further and it leads to indefinite LQ control, see, for
example, [4], [20], [5], [24], [25], [23], [22], [19], [12], [18]. The stochastic
LQ control problem with a fixed final state was solved in [9], in the set-
ting of deterministic coefficients. For the systems of mean-field type see,
for example, [31], [32]. The LQ control problem with random coefficients
was considered by Bismut [2], and its solution is given in terms of the Riccati
backward stochastic differential equation (BSDE). This case of the stochastic
LQ control problem has been studied extensively since then (see, for exam-
ple, [21], [27], [28]), and has more recently been generalised to criteria with
state-dependent weights [10].

In this paper, we introduce a certain nonlinear generalisation to the
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stochastic LQ control problem with random coefficients by considering sys-
tems with square-root nonlinearity in the diffusion term as follows. Let
(W1(t), t ≥ 0) and (W2(t), t ≥ 0) be two independent one-dimensional Brow-
nian motions defined on the probability space (Ω,F ,P). We consider the
filtrations (F2(t), t ≥ 0) and (F(t), t ≥ 0) defined as the augmentations of
σ{W2(s) : 0 ≤ s ≤ t} and σ{W1(s),W2(s) : 0 ≤ s ≤ t}, respectively, by
all the P-null sets of F . If E is an Euclidian space, then we denote by
L∞F2

(0, T ;E) the set of E-valued F2-adapted uniformly bounded processes,
by L2

F(0, T ;E) the set of E-valued F -adapted square-integrable processes,
L2
F2

(0, T ;E) the set of E-valued F2-adapted square-integrable processes, and
by L∞F2(T )(E) the set of F2(T )-measurable bounded random variables. Con-

sider the following two dimensional stochastic control system (for t ∈ [0, T ]):

dx1(t)=[a11(t)x1(t)+a12(t)x2(t)+b1(t)u(t)

+c1(t)]dt+M(t, x(t), u(t)) dW1(t),

dx2(t)=[a21(t)x1(t)+a22(t)x2(t)

+b2(t)u(t)+c2(t)]dt+ [f21(t)x1(t)

+f22(t)x2(t) + h2(t)u(t) + k2(t)]dW2(t),

M2(t, x(t), u(t)) := x′(t)Q̃(t)x(t) + u(t)k̃′(t)x(t)

+r̃(t)u2(t) + ã′(t)x(t) + b̃(t)u(t) + c̃(t),

x1(0), x2(0) ∈ R are given,

(2)

where x(t) := [x1(t) x2(t)]
′. Here x1 and x2 are the states of the system, u

is the one-dimensional control process, whereas the remaining processes are
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given coefficients. If we define (for t ∈ [0, T ])

A(t) :=

[
a11(t) a12(t)
a21(t) a22(t)

]
, F (t) :=

[
0 0

f21(t) f22(t)

]
,

B(t) :=

[
b1(t)
b2(t)

]
, C(t) :=

[
c1(t)
c2(t)

]
, H(t) :=

[
0

h2(t)

]
,

K(t) :=

[
0

k2(t)

]
, N(t, x(t), u(t)) :=

[
M(t, x(t), u(t))

0

]
,

then we can write the system (2) as:

dx(t) = [A(t)x(t) +B(t)u+ C(t)]dt

+N(t, x(t), u(t))dW1(t)

+[F (t)x(t) +H(t)u(t) +K(t)]dW2(t),

x(0) ∈ R2, is given.

(3)

We associate with system (3) the following quadratic-linear cost functional:

J(u(·)) := E
{ ∫ T

0

[x′(t)Q(t)x(t) + r(t)u2(t)

+ u(t)k′(t)x(t) + f(t)u(t) + h′(t)x(t)]dt

+ x′(T )Sx(T ) + v′x(T )

}
. (4)

We assume that all the given coefficients appearing in the system equation
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(3) and in the cost functional (4) are random as follows:

A(·) ∈ L∞F2
(0, T ;R2×2); B(·) ∈ L∞F2

(0, T ;R2);

F (·) ∈ L∞F2
(0, T ;R2×2); H(·) ∈ L∞F2

(0, T ;R2);

C(·) ∈ L∞F2
(0, T ;R2); K(·) ∈ L∞F2

(0, T ;R2);

Q(·), Q̃(·) ∈ L∞F2
(0, T ;S2×2);

r(·), r̃(·), f(·) ∈ L∞F2
(0, T ;R);

h(·), k(·), k̃(·), ã(·) ∈ L∞F2
(0, T ;R2);

b̃(·), c̃(·) ∈ L∞F2
(0, T ;R);

S ∈ L∞F2(T )(S2×2); v ∈ L∞F2(T )(R2),

where S2×2 is the set of real 2 × 2 symmetric matrices. We consider the
following optimal stochastic regulator problem:{

min
u(·)∈A

J(u(·))

s. t. (3),
(5)

where A is a suitable set of admissible controls to be defined in the next sec-
tion. The considered system (2) is thus a generalisation of the linear stochas-
tic control system (1), which corresponds to the state x2 in (2), with another
state x1 the equation of which, due to the coefficient M , is nonlinear in gen-
eral. Note that the coefficient M is such that its square is quadratic-linear
in the state and control processes. A well-known example of the equation of
state x1 is the Cox-Ingersoll-Ross (CIR) model, which has wide applicability
in modelling interest rates (see, for example, [6], [26]), and it corresponds to
the coefficients a11, c1, being constant, a12, b1, Q̃, k̃, r̃, b̃, c̃, all being zero,
and ã = [1 0]′. Other examples of the equation of state x1, that also ad-
mit an explicit solution, can be found in §4.4 of [16]. This type of equation
with deterministic coefficients has been used to model nonlinear stochastic
uncertainties in the control system model (see [3], [13]). In the special case of
all coefficients being deterministic (and a slightly simpler nonlinearity), the
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problem (5) has been considered in [11] and an explicit-closed form solution
found. The problem (5) is thus a generalisation of the nonlinear regulator
problem of [11] to the case of random coefficients, and one motivation is the
optimal investment problem in a market with random coefficients.

In §2, we give the solution to problem (5) in an explicit closed-form as
a affine state-feedback control, the gains of which are given in terms of a
new type of a Riccati BSDE and a linear BSDE. We use a completion of
squares method which is more involved than in the stochastic LQ control
due to the nonlinear system dynamics. The random coefficients have neces-
sitated the use of BSDEs, which do not appear in [11] when considering only
deterministic coefficients and where ordinary differential equations (ODEs)
suffice to solve the problem. By their stochastic nature, the BSDEs are more
general and thus more challenging to consider as compared to ODEs, and
in particular the solution pairs appear here, a feature absent in ODEs. In
Theorem 1 of §2 we show the solvability the Riccati type BSDE that appears
in the solution to the optimal regulator problem (5). In section 3, we give
an application of our results to an optimal investment problem in a market
where in addition to a nonlinear model for the stochastic interest rate, which
also appears in [11], the other market coefficients (the appreciation and the
volatility of the sock) can also be random, and we thus generalise the result
of [11].

2. Solution to the stochastic nonlinear regulator problem

In order to give a precise definition of the admissible set A and to state
the solution to the problem (5), we introduce the following matrix-valued
backward stochastic differential equation of Riccati type (the argument t
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being suppressed):

dP = P1 dt+ P2 dW2, t ∈ [0, T ],

P1 := −(Q+ A′P + PA+ P2F + F ′P2 + F ′PF

+P11 Q̃− k̂ k̂′/4r̂),

r̂ := r +H ′PH + P11 r̃,

k̂ := k + 2P B + 2P2H + 2F ′ P H + k̃ P11,

r̂ > 0 a.e. t ∈ [0, T ] a.s.,

P (T ) = S a.s.,

(6)

where P11 is the first element of the matrix P . We also introduce the following
vector-valued linear backward stochastic differential equation:

dY = Y1dt+ Y2 dW2, t ∈ [0, T ],

Y1 := −(h+ 2PC + 2P2K + 2FPK + ã P11

+A′Y + F ′Y2 − k̂b̂/2r̂),

Y (T ) = v a.s..

(7)

Assumption 1. There exist unique solution pairs (P (·), P2(·)) and (Y (·), Y2(·))
to equations (6) and (7), respectively.

The Riccati BSDE (6) due to the term P11, is not of the type that appears
in the stochastic LQ control problem (compare, for example, with [27], [28]).
However, our next result shows that the Riccati BSDE (6), in one case of
coefficients, can be rewritten in a form to which the known results of Riccati
BSDE of stochastic LQ control can be applied.

Theorem 1. If k(t) = k̃(t) = 0, r(t) > 0, r̃(t) ≥ 0, Q̃(t) ≥ 0, Q(t) ≥ 0,
for all t ∈ [0, T ] a.s., S ≥ 0 a.s., then there exist unique solution pairs
(P (·), P2(·)) ∈ L∞F2

(0, T ;S2×2)×L2
F2

(0, T ;S2×2) and (Y (·), Y2(·)) ∈ L2
F2

(0, T ;R2)×
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L2
F2

(0, T ;R2) to the Riccati BSDE (6) and linear BSDE (7), respectively.

Proof. Let (Wi(t), t ≥ 0), i = 3, ..., 6, be standard Brownian motions defined
on the the probability space (Ω,F ,P). We assume that Brownian motions

(Wi(t), t ≥ 0), i = 1, ..., 6, are independent. The filtration (F̃(t), t ≥ 0), is
defined as the augmentation of σ{Wi(s) : i = 1, . . ., 6; 0 ≤ s ≤ t} by all the
P-null sets of F . Also let: C̃1 := T1Q̃

1/2, C̃2 := F , C̃3 := T2 Q̃
1/2, C̃4 := T1,

C̃5 := T2, C̃6 := 0, D̃1 := 0, D̃2 := H, D̃3 := 0, D̃4 := 0, D̃5 := 0, D̃6 := T3,
where

T1 :=

[
0 0
1 0

]
, T2 :=

[
1 0
0 0

]
, T3 :=

√
r̃

[
1
0

]
.

We further define the processes:

N (K̃) := r +
6∑

i=1

D̃′iK̃ D̃i,

M(K̃, L̃) := K̃ B +
6∑

i=1

C̃ ′iK̃ D̃i +
6∑

i=1

L̃i D̃i,

G(K̃, L̃) := A′ K̃ + K̃ A+Q+
6∑

i=1

C̃ ′iK̃ C̃i

+
6∑

i=1

(C̃ ′iL̃i + L̃i C̃i)

− M(K̃, L̃)N−1(K̃)M′(K̃, L̃).

From [27], [28], it follows that the Riccati BSDE:
dK̃ = −G(K̃, L̃) dt+

6∑
i=1

L̃i dWi, t ∈ [0, T ],

K̃(T ) = S a.s.,

N (K̃) > 0, a.e. t ∈ [0, T ] a.s.,

(8)

has a unique solution K̃(·) ∈ L∞F̃ (0, T ;S2×2), L̃i(·) ∈ L2
F̃(0, T ;S2×2), i =

1, ..., 6. However, as all coefficients of (8) are F2-adapted, and S is F2(T )-
measurable, then so must be the solution (K̃(t), t ∈ [0, T ]). This implies that
(L̃2(t), t ∈ [0, T ]) is F2-adapted and L̃1(t) = L̃3(t) = L̃4(t) = L̃5(t) = L̃6(t) =
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0 for a.e. t ∈ [0, T ] a.s.. This further means that (K̃(·), L̃2(·)) is the unique
solution pair to the equation:



dK̃ = −[A′ K̃ + K̃ A+Q+ L̃2 F + F ′ L̃2

+F ′ K̃ F + K̃11 Q̃

−(K̃ B + L̃2H + F ′K̃ H) (K̃ B + L̃2H

+F ′K̃ H)′(r +H ′ K̃ H + K̃11 r̃)
−1]dt

+L̃2 dW2, t ∈ [0, T ],

r +H ′ K̃ H + K̃11 r̃ > 0, a.e. t ∈ [0, T ] a.s.,

K̃(T ) = S a.s.,

(9)

where K11 is the first element of the matrix K. However, this is just equa-
tion (6), and thus its unique solvability is established. On the other hand,
equation (7) is a linear BSDE with bounded coefficients, and it is well-known
that it has a unique solution pair (see, for example, [33]). 2

We can now define the set of admissible controls A as the set of all F -
adapted one-dimensional processes u under which equation (3) has a unique
real strong solution, and satisfies the following integrability requirements:

E
∫ T

0

(
x′ P N + Y ′N

)
dW1 = 0, (10)

E
∫ T

0

[(x′ F ′+uH ′+K ′)Px+x′P2x+ x′P (Fx+Hu

+K)+Y ′2x+ Y ′(FX+Hu+K)]dW2 = 0. (11)

The control process u∗ is defined as an affine state-feedback control law given
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as (for t ∈ [0, T ]):

u∗(t) := −1

2
r̂−1(t) [k̂′(t)x(t) + b̂(t)], (12)

where b̂(t) := f(t) + P11(t)b̃(t) + Y ′(t)B(t) + Y ′2(t)H(t).

Theorem 2. If u∗(·) ∈ A, then u∗ the unique solution to the optimal stochas-
tic control problem (5). The corresponding optimal cost functional is: :

J(u∗(·)) = x′(0) P (0)x(0)+Y ′(0)x(0)+E
∫ T

0

(2H ′ P K

+ K ′ P K+P11 C̃+Y ′C+Y ′2 K−r̂−1b̂2/4) dt.

Proof. By Itô’s product rule, we derive the following differentials:

d(P x) = (dP ) x+ P dx+ (dP ) dx

= P1 x dt+ P2 x dW2 + P (A x+B u+ C) dt

+P N dW1 + P (F x+H u+K) dW2

+P2 (Fx+H u+K) dt,

d(x′ P x) = (dx′)P x+ x′ d(Px) + (dx′) d(Px)
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= (x′A′ + uB′ + C ′)P x dt+N ′ P x dW1 + (x′ F ′

+uH ′ +K ′)P x dW2 + x′ P1 x dt+ x′ P2 x dW2

+x′ P (Ax+Bu+C) dt+x′ P N dW1+x′P (Fx+K

+Hu) dW2+x′ P2 (Fx+Hu+K) dt+N ′ P N dt

+(x′ F ′ + uH ′ +K ′)[P2 x+ P (F x+H u+K)] dt

= [x′ (A′ P + P1 + P A+ P2 F + F ′ P2 + F ′ P F

+P11 Q̃) x+ u(2B′ P + 2H ′ P2 + 2HP F

+P11 k̃
′)x+ u2(H ′ P H + P11 r̃)

+(2C ′ P + 2K ′ P2 + 2K ′ P F + P11 ã
′)x

+P11 b̃ u+ 2H ′ P K +K ′ P K + P11 C̃] dt

+x′ P N dW1 + [(x′ F ′ + uH ′ +K ′)P x

+x′ P2 x+ x′ P (Fx+H u+K)] dW2, (13)

d(Y ′x) = (dY ′)x+ Y ′dx+ (dY ′)dx = [(Y ′1 + Y ′A

+Y ′2F )x+ (Y ′B + Y ′2H)u+ Y ′C + Y ′2K]dt

+ Y ′N dW1 + [Y ′2 x+ Y ′(F x+ H u+K)] dW2. (14)

By integrating both sides of (13) and (14) from 0 to T , and then taking the
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expectation, we obtain the following for all u(·) ∈ A, respectively:

E
[
x′(T ) s x(T )

]
= x′(0)P (0)x(0) + E

∫ T

0

[
x′ (A′ P

+P1 + P A+ P2 F + F ′ P2 + F ′ P F + P11 Q̃)x

+u (2B′ P + 2H ′ P2 + 2H ′ P F + P11 k̃
′)x

+u2(H ′ P H + P11 r̃) + (2C ′ P + 2K ′ P2 + 2K ′ P F

+P11 ã
′)x+ P11 b̃ u+ 2H ′ P K +K ′ P K + P11 C̃

]
dt,

E[ v′ x(T )] = Y ′(0)x(0) + E
∫ T

0

[(Y ′1 + Y ′A+ Y ′2 F )x

+(Y ′B + Y ′2 H
)
u+ Y ′C + Y ′2 K] dt.
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The cost functional J(u(·)), for all u(·) ∈ A, can now be written as:

J(u(·)) = x′(0) P (0)x(0)+Y ′(0)x(0) + E
∫ T

0

[x′ (Q

+A′ P+P1+P A+P2 F+F ′ P2+F ′ P F+P11 Q̃)x

+u(k′ + 2B′P + 2H ′P2 + 2H ′PF + P11k̃
′)x

+u2 (r +H ′ P H + P11 r̃) + (h′ + 2C ′ P + 2K ′ P2

+2K ′ P F + P11 ã
′ + Y ′1 + Y ′A+ Y ′2 F )x

+(f + P11 b̃+ Y ′B + Y ′2 H)u

+2H ′ P K +K ′ P K + P11 C̃ + Y ′C + Y ′2 K] dt.

The terms in the above integrand that depend explicitly on the control pro-
cess u can be put together, and then, by the completion of squares method,
be written as:

u2 (r +H ′ P H + P11 r̃) + u (k′ + 2B′ P + 2H ′ P2

+2H ′ P F + P11 k̃
′)x+ u (f + P11 b̃+ Y ′B + Y ′2 H)

= r̂ u2 + u (k̂′ x+ b̂)

= r̂

(
u+

k̂′ x+ b̂

2r̂

)2

− 1

4 r̂
(x′ k̂ k̂′ x+ 2 b̂ k̂′ x+ b̂2).
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The cost functional J(u(·)), for all u(·) ∈ A, can now be further written as:

J(u(·))=x′(0)P (0)x(0)+Y ′(0)x(0)+E
∫ T

0

{2H ′PK

+K ′ P K + P11 C̃ + Y ′C + Y ′2 K − r̂−1(b̂2/4)

+r̂[u+ (k̂′ x+ b̂)/2r̂]2}dt

≥ x′(0) P (0)x(0) + Y ′(0)x(0) + E
∫ T

0

[2H ′ P K

+K ′ P K + P11 C̃ + Y ′C + Y ′2 K − r̂−1b̂2/4]dt

This lower bound is achieved if and only if u(t) = u∗(t) for a.e. t ∈ [0, T ]
a.s.. 2

3. Application to optimal investment

In order to apply Theorem 2, it is required to check whether or not u∗(·) ∈
A. In this section, we give an application to an optimal investment problem,
which generalises a result of [11] to the market with random coefficients,
where this assumption is verified and hence Theorem 2 can be applied. Thus,
consider a market of a bank account with price S0 and of a stock with price
S1, that are solutions to the following equations (for t ∈ [0, T ]):

dS0 = S0ρdt,

dS1 = S1(µdt+ σdW2),

S0(0) > 0 and S1(0) > 0 are given,

where the interest rate ρ, the appreciation rate µ, and the volatility σ are
given market coefficients. Further consider an investor with the initial wealth
y0 > 0 that holds v0(t) and v1(t) number of shares at time t in the bank
account and in the stock, respectively. The value of investor’s portfolio at
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time t is thus y(t) := v0(t)S0(t) + v1(t)S1(t). If u1(t) := v1(t)S1(t) denotes
the amount of investor’s wealth invested in the stock, then the portfolio is
said to be self-financing if (for t ∈ [0, T ]):

dy=(ρy+ ηu1)dt+σu1W2,

y(0) = y0,
(15)

where η(t) := µ(t)−r(t). The optimal investment problem with a logarithmic
utility from terminal wealth is the following optimal control problem:{

max
u1(·)∈A`

E[log(y(T ))],

s.t. (15),
, (16)

where A` is a suitable set of admissible controls, which in particular ensures
that y(t) > 0 for all t ∈ [0, T ] (see, for example, [15], [17], for a textbook
account of the optimal investment problems). In [11], the problem (16) was
solved under the assumption of η and σ being deterministic, and the interest
rate ρ being the solution to the CIR equation:

dρ = (αρ+ β)dt+
√
ρdW1, t ∈ [0, T ],

ρ(0) > 0, is given,
(17)

for some constants α and β. In this section, as an application of our results,
we solve the problem (16) by assuming that η(·) ∈ L∞F2

(0, T ;R), 0 < σ(·) ∈
L∞F2

(0, T ;R), σ−1(·) ∈ L∞F2
(0, T ;R), and thus generalise the result of [11].

As in [11], we define the control variable and the two system states as (for
t ∈ [0, T ]):

u(t) := u1(t)/y(t), x1(t) := ρ(t),

x2(t) := log[y(t)] +

∫ t

0

1

2
σ2u2(s)ds. (18)

15



The state equations are now obtained from (17) and (15) (by applying Itô’s
formula to find the differential of log[y(t)]), respectively, as:

dx1 = (αx1 + β)dt+
√
x1dW1,

dx2 = (x1 + ηu)dt+ σudW2,

x1(0) = ρ(0), x2(0) = log(y0).

(19)

It follows from (18) that −E[log(y(T ))] can be written as:

E[log(y(T ))] = E
[∫ T

0

1

2
σ2u2(s)ds− x2(T )

]
. (20)

It is thus clear that the problem of minimizing (20) subject to (19), which
is equivalent to (16), is an example of our optimal control problem (5), and
thus can be solved by applying Theorem 2. In this case, we have:

Q̃ = 0, k̃ = 0, r̃ = 0, ã′ = [1 0], b̃ = 0,

c̃ = 0, M =
√
x1, Q = 0, k = 0, r =

σ2

2
,

f = 0, h = 0, S = 0, v′ = [0 − 1],

A =

[
α 0
1 0

]
, B :=

[
0
η

]
, C :=

[
β
0

]
, H :=

[
0
σ

]
,

K :=

[
0
0

]
, N :=

[√
x1
0

]
, F :=

[
0 0
0 0

]
.

As Q and S are zero, the solution pair to the corresponding Riccati BSDE
(6) is (P (t), P2(t)) = (0, 0), t ∈ [0, T ], and from Theorem 1 we know that
this pair is unique. The corresponding linear BSDE (7) is:

dY = −(A ′Y + F ′ Y2) dt+ Y2 dW2, t ∈ [0, T ],

Y (T ) = v a.s..
(21)

As A, F and v are constant, the unique solution pair to this equation
is (Y (t), Y2(t)) = (eA

′(T−t)v, 0), t ∈ [0, T ]. We also have that u∗(t) =
−σ−2(t)Y ′(t)B(t), t ∈ [0, T ]. By Theorem 2, for u∗ to be the required opti-
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mal control, it must be an admissible control. The equation of the state x1
in (19) is the CIR model, which it is known to have a unique strong solution
(see, for example, [26]). Under control u∗, the equation of the state x2 in (19)
is a linear stochastic differential equation with bounded coefficients, and thus
has a unique strong solution (see, for example, [33]). It remains to show that
the corresponding integrability requirements (10) and (11) also hold. The
requirement (10) is:

E
∫ T

0

Y ′(t)N(t)dW1(t) = 0,

which holds as its integrand is a square-integrable process (as x1 is positive
with a finite expectation). The requirement (11) is:

E
∫ T

0

Y ′(t)H(t)u∗(t)dW2(t) = 0.

which hold as its integrand is uniformly bounded. By Theorem 2, we con-
clude that u∗ is the unique solution to the optimal investment problem of
minimizing (20) subject to (19).

4. Conclusions

We have considered an optimal regulator problem for a class of stochastic
control systems with random coefficients that contain square-root nonlinear-
ities in their diffusion terms. An explicit closed-form solution to this problem
is obtained as an affine state-feedback control, which is expressed in terms
of the solution pairs to ceratin Riccati and linear BSDEs. The solvability of
such equations is also established for a class of coefficients, and the results
applied to an optimal investment problem in market with random coeffi-
cients. Although we have considered only the two-dimensional systems, it is
evident that the multi-dimensional systems can be considered similarly. Two
further generalisations that can be considered is the weakening of the pos-
itivity assumption on the coefficient r̂ to its nonnegativity, which will lead
to an indefinite optimal control problem, as well as more general random
coefficients, e.g. the case when the coefficients are F adapted, rather than
only F2 adapted.

17



References

[1] B. D. O. Anderson and J. B. Moore, Optimal control: linear quadratic
methods, Prentice Hall, 1989.

[2] J.–M. Bismut, Linear quadratic optimal stochastic control with random
coefficients, SIAM Journal on Control and Optimization, 14 (1976), 419-
444.

[3] G. Chen and Y. Shen, Robust reliable H∞ control for nonlinear stochas-
tic Markovian jump systems, Math. Prob. Eng., 5 (2012), 1-16.

[4] S. Chen, X. Li, and X. Y. Zhou, Stochastic linear quadratic regulators
with indefinite control weight costs, SIAM Journal on Control and Op-
timization, 36 (1998), 1685-1702.

[5] S. Chen and X. Y. Zhou, Stochastic linear quadratic regulators with
indefinite control weight costs. II, SIAM Journal on Control and Opti-
mization, 39 (2000), 1065-1081.

[6] J. C. Cox, J. E. Ingersoll and S. A. Ross, A theory of the term structure
of interest rates, Econometrica, 53 (1985), 385–407.

[7] J. J. D’Azzo and C. H. Houpis, Linear control system analysis and de-
sign: conventional and modern, Third Edition, McGraw-Hill, 1988.

[8] V. Dragan, T. Morozan, and A.-M. Stoica, Mathematical methods in
robust control of linear stochastic systems, 2006, Springer.

[9] B. Gashi, Stochastic minimum-energy control, Systems & Control Let-
ters, 85 (2015), 70-76.

[10] B. Gashi, Optimal stochastic regulators with state-dependent weights,
Systems & Control Letters, 134C (2019), 104522.

[11] B. Gashi and H. Hua, Optimal regulators for a class of nonlinear stochas-
tic systems, I. J. of Control, 96 (2023), 136-146.

[12] Y. Hu and X. Y. Zhou, Indefinite stochastic Riccati equations, SIAM
Journal on Control and Optimization, 42 (2003), 123-137.

18



[13] H. Hua, J. Cao, G. Yang, and G. Ren, Voltage control for uncertain
stochastic nonlinear system with application to energy internet: non-
fragile robust H∞ approach, J. Math. Analy. Appl., 463 (2018), 93-110.

[14] R. E. Kalman, Contributions to the theory of optimal control, Bol. Soc.
Mat. Mex., 5 (1960), 102-119.

[15] I. Karatzas and S. E. Shreve, Methods of mathematical finance, Springer,
1998.

[16] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential
equations, Springer, 1991.

[17] R. Korn, Optimal portfolios : stochastic models for optimal investment
and risk management in continuous time, World Scientific, 1997.

[18] H. Li, Q. Qi, and H. Zhang, Stabilization control for Itô stochastic sys-
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