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There is growing interest in the adoption of Engineering with Nature or Nature Based Solutions 
for coastal protection including large mega-nourishment interventions. However, there are still 
many unknowns on the variables and design features influencing their functionalities. There are 
also challenges in the optimization of coastal modelling outputs or information usage in support 
of decision-making. In this study, more than five hundred numerical simulations with different 
sandengine designs and different locations along Morecambe Bay (UK) were conducted in Delft3D. 
Twelve Artificial Neural Networking ensemble models structures were trained on the simulated 
data to predict the influence of different sand engines on water depth, wave height and sediment 
transports with good performance. The ensemble models were then packed into a Sand Engine App 
developed in MATLAB and designed to calculate the impact of different sand engine features on the 
above variables based on users’ inputs of sandengine designs.

Global sea level rise (SLR) and changes in extreme storms in connection to climate change pose a significant 
threat to anthropogenic activities along the coast. By 2300, the global sea level is expected to rise by at least 0.3 m 
and up to 16 m in the worst-case  scenario1. Currently, more than 600 million people live along the coastline and 
face the consequences of coastal  erosion2 and  flooding3. These issues are being exacerbated by growing urban 
development and increasing  population4. Studies have also shown that nearly one-quarter of global beaches are 
experiencing  erosion4,5.

Given the ever-increasing coastal risks, and their impacts on human life and the economy, there have been 
growing efforts to look for efficient and cost-effective coastal protection methods. Traditional hard coastal 
defences such as breakwaters and seawalls have been successful but can be extremely expensive, have high 
maintenance costs and their adaptation to climate change is becoming economically  unviable6. Working with 
Natural processes or Nature-Based solutions for coastal protection including mega-nourishment interventions or 
wetlands restoration can offer a more economically viable alternative and in addition to their coastal protection 
services, have the potential to support Net Zero-Carbon emissions, biodiversity, and local  amenities7.

Mega-nourishment interventions are frequently referred to as sand engines and are very large, localized beach 
nourishments supporting safety against flooding as well as preventing coastal erosion in low-lying  areas8. In 
particular, sand engines can attenuate wave energy and feed sediments to nearby coastlines sections over a time 
scale of the order of decades which is significantly longer than the one expected for traditional beach nourishment 
and as such, they offer reduced maintenance works over the long  term9,10 because natural forces (wind, wave, 
and tides) distribute sediments along the coastline for several years. The first sand engine was built off the coast 
of South Holland in The Netherlands in 2011 and is more traditionally referred to as Sand Motor (https:// dezan 
dmotor. nl). The Sand Motor was built with 21.5  Mm3 of sand, having initially the shape of a hook with an area of 
128 ha, and it is currently stretching more than 2.4 km along the coastline and 1 km off the  coast8, thanks to the 
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redistribution of sediments by natural drivers. This intervention was designed to last for at least 20  years11 and 
observations over the last five years suggest a longer lifetime than the initial design  period12.

Although the shape of the sand motor has changed drastically since 2011, these changes are within the calcu-
lated limits. Simulated  results13,14 and ground  measurement15 showed that tidal forces spread a significant amount 
of sediments along the coastline. Four years (2011 to 2015) measurement revealed that despite all the sand move-
ment, 95% of the deposited sand was still present at the location, suggesting a lifetime of more than 20  years12.

Sand Engines are an example of a paradigm shift in coastal management, consisting in moving away from 
the idea of “fighting” natural forces towards the idea of utilizing them for coastal  protection8. Overall, in consid-
eration of reduced maintenance costs and the considerable co-benefits that they offer, Nature-Based solutions 
including sand engines can represent a viable alternative for coastal  protection16. However, when evaluating the 
effects of a Sand Engine on the surrounding areas depending on both Sand Engine features and site character-
istics, there are still huge uncertainties about the functioning of the intervention in terms of energy dissipation 
as well as the influence of the sand engines on the overall hydrodynamics. Existing research suggests the need 
to critically study the behaviour of different sand engine  designs4. Of course, practically implementing such 
massive interventions without prior know-how is not feasible. Laboratory, as well as numerical modelling, can 
be used for preliminary investigations and these rely on extensive resource usage. Within this context, Artificial 
Intelligence (AI) offers an interesting set of complementary tools which remain relatively unexplored within 
the coastal science field. It can help slim down resources usage through the development of algorithms solely 
focusing on a pre-defined set of variables, optimization of the usability of different modelling results within a 
separate external framework. Thus easing the implementation of such algorithms into light users-customizable 
applications which do not require prior knowledge on modelling.

This study focuses on the development of an operational framework for the evaluation of variations in wave 
height, water depth and sediment transport for different sand-engines configurations through the embedding of 
numerical modelling, performed on Delft3D, into an Artificial Neural Network (ANN). Followed by the develop-
ment of a standalone Sand Engine App for results communication and prediction of sand engines effectiveness 
based on users’ inputs. Ensemble modelling is preferred to model these complex variations, as it has been suc-
cessfully applied to model other complex relations such as coastal storm erosion  prediction17, air  pollution18 and 
its health risk  prediction19,  streamflow20 and water level  prediction21, and groundwater quality  modelling22,23. 
Specifically, 12 ensembles consisting of 96 different Recurrent Neural Network (RNN) and Feed Forward Neural 
Network (FFNN) models, is fed with data obtained from 552 simulations representing different sand-engines 
designs at 23 locations along the coastline of Morecambe Bay (UK). The simulated sand engines have different 
radii and heights and are tested with different wave conditions. Results from the ANN are then fed into a stan-
dalone application where users can input their sand engine features and obtain results about its effectiveness 
through the running of the ANN algorithms.

Methods and data
Methods overview. The hydrodynamics and sediment transport in Morecambe Bay were simulated using 
Delft3D and the outputs from the numerical models were then fed into the ANN models. Delft3D solves the 
3-D Navier–Stokes equations for incompressible free-surface flow under the shallow water approximation for 
unsteady, incompressible, turbulent flow. The module Delft3D-WAVE was used to simulate wave generation, 
propagation, and nonlinear wave-wave interactions. Time series of depth-averaged velocity, water depth, signifi-
cant wave height and sediment transport were extracted from several observation points located inside and out-
side the sand engines (at a buffer zone half of the radius of the sand engine) and fed into the ANN. Specifically, 
we used an ensemble of eight models structures: 4 Recurrent Neural Network (RNN) (i.e., 2 Elman Neural Net-
work (ENN) models, 2 Layer Recurrent Neural Network (LRNN) models) and 4 Feed Forward Neural Network 
(i.e., 2 Cascade-Forward Neural Network (CFNN) models and 2 Feed-Forward Neural Network (FFNN) mod-
els). Each model structure was trained twelve times to predict twelve different sets of two variables (e.g. Table 1), 
leading to a total of 96 ANN models. Feeding results and training the ANN allowed the development of fast 
algorithms predicting mean and maximum variations in wave height, water depth and sediment transport for 
observation points within and outside the Sand Engine. Specifically, each of the eight model structures is devel-
oped into a model predicting maximum and mean water depth, significant wave height and suspended sediment 
transport, before and after the sand engine implementation, inside and outside the sand engine. ANN is then 
used as the basis for the Sand Engine App where Users can enter Sand Engine and coastline specifics (e.g., radius 
of the Sand Engine; wave height at the boundary; coastline inclination) and obtain results in terms of variations 
in wave height, water depth and sediment transport before and after the implementation of the Sand Engine.

Numerical simulations. Morecambe Bay (Fig. 1A) is a large embayment, opening into the Irish sea, located 
in North-West of England. Most of its shoreline is covered in fine  sand24. The bay experiences spring tidal waves 
with amplitude ranging up to 10 m. Fetch length for wind waves is constrained by Ireland and Isle of Man and 
sprints at the bay mouth. The significant wave height at the mouth of the bay can reach up to 2 m for about 10% 
of the year and for the remaining duration of the year significant wave height remains around 0.5  m24 (Fig. 1B). 
The hydrodynamics and sediment transport of Morecambe Bay was simulated on Delft3D. The model grid size 
varies from around 120 × 130 m onshore to around 1000 × 300 m offshore. The bathymetry used in the model 
was downloaded from EDINA Marine Digimap download service (https:// digim ap. edina. ac. uk/ roam/ downl 
oad/ marine). DTM data from LiDAR surveys at 2 m resolution were then used for areas covering the shoreline 
and were downloaded from the UK Environment Agency’s LiDAR data archive (https:// envir onment. data. gov. 
uk/ Defra DataD ownlo ad/? Mode= survey). The model boundary is forced with ten tidal harmonics (M2, S2, N2, 
K2, K1, O1, P1, Q1, S1, M4) interpolated across the two boundary extremes and derived from the global tidal 
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model GOT-e 4.10c25,26. The module Delft3D-WAVE was used to simulate wave generation, propagation, and 
nonlinear wave-wave interactions. Within this module, bottom dissipation, whitecapping, and depth-induced 
breaking are fully accounted for in a dissipation  term27. The model was calibrated using  OpenDA28–31 and 
through a comparison of the simulated water level values with values at the Heysham tidal station (https:// ntslf. 
org/ data/ uk- netwo rk- real- time). OpenDA interfaces with Delft3D and uses a derivative-free algorithm (DUD 
or doesn’t use derivative)32, an algorithm for non-linear least squares minimization, to minimize a quadratic cost 

Table 1.  Performance of all ensemble model testing.

Model

Before sand engine After sand engine

Test regression Test MAE Mean STD Test regression Test MAE Mean STD

Mean

 Water depth (IN) (m) 0.9999 0.0055 0.0217 0.9950 0.0737 0.0710

 Water depth (OUT) (m) 0.9999 0.0028 0.0108 0.9999 0.0090 0.0237

 Wave height (IN) (cm) 0.9999 0.0610 0.3008 0.9995 0.3327 0.4901

 Wave height (OUT) (cm) 0.9999 0.0145 0.2885 0.9999 0.0463 0.2884

 Sediment transport (IN)  (cm3/s/cm) 0.9999 0.0081 0.1900 0.9975 0.0255 0.2618

 Sediment transport (OUT)  (cm3/s/cm) 0.9999 0.0060 0.0230 0.9998 0.0191 0.0483

Maximum

 Water depth (IN) (m) 0.9419 0.7573 0.8610 0.9362 0.7918 0.7312

 Water depth (OUT) (m) 0.9221 0.7042 0.9092 0.9261 0.6970 0.8997

 Wave height (IN) (cm) 0.9388 3.3494 4.2492 0.8902 3.4662 3.2525

 Wave height (OUT) (cm) 0.9769 2.5897 3.9645 0.9721 3.0452 3.8127

 Sediment transport (IN)  (cm3/s/cm) 0.9011 5.3613 7.4474 0.8728 4.6154 5.2015

 Sediment transport (OUT)  (cm3/s/cm) 0.9604 12.5810 15.7226 0.8804 10.2711 7.7354

Figure 1.  (A) Morecambe Bay model domain with the model bathymetry (colorbar located at the figure 
bottom). Locations with a sand engine are marked with black dots. (B) Wave rose presenting the wave climate in 
the area, the direction indicates waves provenance. Data are from the Northwest Regional Coastal Monitoring 
Programme (Data Copyright: Sefton Council. (C–G); (C) Examples of sand engines configuration: planar views 
for 0.5, 1.5 and 2 km diameter; Bathymetry of a sand engine of height (D) 0.5 m, (E) 1 m, (F) 2 m, (G) 3 m.

https://ntslf.org/data/uk-network-real-time
https://ntslf.org/data/uk-network-real-time
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function based on differences between observed and model water levels through changing of roughness coef-
ficient, water depth and boundary conditions. Successive iterations of the numerical simulation were repeated 
until the convergence criteria were reached. The accuracy was evaluated using the Brier Skill  Score33 defined as:

where α = r2XY , β =

(

rXY − σY
σX

)2

 , γ =

(

�Y�−�X�
σX

)2

 , ε =

(

�X�
σX

)2

 for which r is the correlation coefficient, σ is 
the standard deviation (STD), ε is a normalization term, and X and Y are observed and modelled values. The 
model was calibrated from January 5th to February 20th,  201834. The Brier Skill score in this case was 0.99. The 
model was then run for 5 days, with a time step of 1 min to encompass 10 tidal cycles. Non-Cohesive sediment 
type with a specific density of 2650 kg/m3 and dry bed density as 1600 kg/m3 was used for simulating the sedi-
ment transportation. Depth averaged (2DH) advection–diffusion equation is solved for suspended sediment 
load  calculation35,36. Van  Rijn37 separated bedload from suspended load based on a reference height (0.05 m for 
this case), above which is considered as suspended load transport and below which is considered as bedload. 
The depth-averaged equilibrium concentration, solved using expressions provided by Van  Rijn38, is used for the 
calculation of sediment exchange between the bed and water column, which includes computation of velocity 
profile and vertical concentration profile. Near-bed reference concentration  (Ca), computed by Eq. (2), is required 
to compute the vertical sediment concentration profile.

where: τb,cr  is the critical bed shear stress, τ ′b,cw  is grain related bed shear stress due to current and waves, D50 
is median sediment diameter (120 μm, in this case), a is Van Rijn’s reference height and D∗ is non-dimensional 
grain size. The depth-integrated suspended load transport is calculated by Eq. (3).

where: −→qs  is depth-integrated suspended sediment transport, −→U  is depth-averaged velocity, c is depth-integrated 
sediment concentration and h is water depth.

Twenty-three circular Sand engine locations along the coastline of Morecambe Bay were tested with sand 
engines having a different radii (0.5 km, 1.5 km, and 2 km) (Fig. 1C) and different height (0.5 m, 1 m, 2 m, and 
3 m) (Fig. 1D–G). Each sand engine was simulated individually under varying boundary conditions with wave 
heights of 0.5 m and 1 m imposed at the south-west of the domain, where the water depth varies from about 24 
to 30 m along the boundary, The wave direction was orthogonal to the boundary following the wave rose for the 
site (Fig. 1B). Water level boundary condition was used at sea boundary (south-west of the domain) where waves 
and tides were imposed. Neumann boundary condition was used for the lateral boundaries.

Each sand engine has its inner and outter observation points distributed around as shown in Fig. S1. For 
each sand engine simulation, an identical model was run without the sand engine to compare the effect of the 
latter on wave height, water depth and sediment transport. A total of 552 sand engine models were simulated 
encompassing all the above-mentioned configurations. The time series of different variables were recorded at 
the observation points inside the sand engine and outside sand engine. Mean and maximum for each time series 
were used to train ensemble models to predict the effect of sand engines on the mean and maximum of the three 
variables (water depth, significant wave height, and sediment transport) both inside and outside the sand engines.

Ensemble modeling. ANN is a black-box  model39,40, the internal structure of which is similar to the 
human  brain41–43. The function of ANN is to provide prediction values based on the historical data on which it 
is trained. Training allows ANN models to learn the relationship between input and output  variables39,44,45 and 
these relationships are then used for future predictions. ANN models can also learn non-linear relationships 
between different  variables46,47. Figure 2A represents a simplified version of the structure of the Feed Forward 
Neural Network (FFNN) which was used for this work. The Internal structure of FFNN consists of an Input 
layer, hidden layers, and an output layer with multiple nodes in each layer. The number of nodes in the input 
layer depends on the number of inputs to the  model48. The number of hidden layers and corresponding nodes 
in them depends on the level of complexity required to model the relationship between the variables and more 
complex relationships usually require more number of nodes and hidden layers. The number of nodes in the 
output layers depends instead on the number of prediction outputs the model is  providing48. All the nodes of one 
layer have a connection with those of the next  layer49 and data are received, processed, and transferred through 
these  nodes50. The data received at the node are processed (multiplied with the respective connection weights 
followed by adding the biases [Eq. (4)]51 and transferred using a transfer function. Out of several transfer func-
tions, two of them are used in this model for each node: log-sigmoid transfer function [Eq. (5)] for all nodes of 
hidden  layers52 and linear transfer function for nodes in output layer. Models were trained using two training 
functions: Levenberg–Marquardt (trainlm) for ENN and LRNN and Bayesian Regularization (trainbr) for FFNN 
and CFNN models. While training the model, weights and biases are updated at the nodes using the back-
propagation  algorithm53, which propagates the error produced by the model backwards from the output layer 
to input layer through hidden layers updating accordingly the weights and biases in every iteration of training, 
aimed to reduce the final  error54,55.

(1)BSS =
α − β − γ − ε
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where: γ is the processed value calculated by multiplying weight w with the value φ from the nodes of previ-
ous layer and adding biases β followed by transferring through a tan-sigmoid transfer function f (A) (A is any 
function value).

The structural difference between FFNN and other models used in this study are additional layers (in ENN 
and LRNN) and connections (in CFNN). Figure 2B presents the basic structure of ENN with additional context 
layer and Fig. 2C represents the basic structure of CFNN with additional connections between input, hidden and 
output layers. The special feature of ENN is its context layer, which stores a copy of the information to be provided 
to the hidden layers in the subsequent calculation  steps56, thus serving as a memory to the ENN as it holds a 
copy of activations of previous time  step57,58. Each hidden layer of ENN has its context layer with the number of 
nodes equal to the number of nodes in the corresponding hidden layer. The ENN model is chosen for this study 
because of its memorizing capability, through its additional context layer, which provides it with the character-
istic of being time-varying and having global  stability59,60. Also, ENN is well known for its capability of dynamic 
 modelling61. LRNN has the structure similar to ENN, thus, bearing all the advantages of ENN with additional 
forward propagation and backpropagation dynamic derivative function, which help in calculating derivatives 
using chain rule from input to output (in case of forward propagation) and from network’s performance back 
through the network (in case of backpropagation), thus helping in model learning. CFNN has similar structure 
to FFNN except for the additional connections between the layers which helps in exploring the dependency 
of target data upon input  data62. Each layer in CFNN receives a direct connection from the input layer and all 
preceding layers. These connections help in accommodating non-linear relationships between input and target 
without eliminating their linear  relationship63.

Data obtained from all 552 sand engine simulations were used to train the ensemble ANN models for predict-
ing water depth, significant wave height and sediment transport with and without the presence of a sand engine. 
Specifically, the data extracted from one simulation are the mean and the maximum of each interested variable at 
all observation points inside and all observation points outside the sand engine. The network was developed with 
the idea of utilizing the least possible number of input variables whose knowledge does not require prior detailed 
modelling or data collection on the site. Therefore, in addition to the main sand engine features (height and radius 
of a sand engine) the following were selected as input variables at the nodes: wave height at the boundary for an 
overall indication of wave conditions at the site, the distance of the sand engine from the boundary for a broad 
indication of how far inside the embayment the sand engine is, angle of the coastline at the location of the sand 
engine and depth average velocity at the same site (without the presence of sand engine). Angle of coastline was 
calculated in 360-degree format clockwise with respect to the simulated sea boundary (which is at 164.6 degree 
from north). These input values were used to predict the mean and maximum values of water depth, significant 
wave height and sediment transport inside and outside the sand engine before and after sand engine’s presence. 
A total of 12 ensembles (each consisting of 8 models structures) were trained to predict 24 different output values 

(4)γ = f
(

∑

(wi ∗ φi)+ β

)

(5)f (A) =
1

1+ e−A

Figure 2.  Basic structure of (A) FFNN and (B) ENN (C) CFNN  (x1,  x2 and  x3 are inputs to the model,  H1 and 
 H2 are the hidden layers, and Y,  Y1 and  Y2 are the outputs of the models).
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[i.e., 2 types (mean and maximum) for 3 output variables for 2 locations (inside and outside) for 2 conditions 
(with and without sand engine)]. Each ensemble was trained to predict two sets of outputs i.e., output variables 
with and without the sand engine. The value of the output variables with a sand engine has some dependency on 
the corresponding value without the sand engine. For instance, the reduction in water depth due to the presence 
of a sand engine is dependent on the initial water depth at that location without a sand engine.

Each ensemble was trained using eightfold cross-validation. Figure 3 represents the process of training and 
testing ensemble models. The available data (552 samples) were split into training and testing data with 504 and 
48 samples each, respectively. The division is close to 90–10 split with numbers selected such that the training 
dataset could be further split into 8 equal bins for eightfold cross-validation. Following the procedure of k-fold 
cross-validation, 8 models (2 ENN, 2 LRNN, 2 CFNN and 2 FFNN) were trained on 7 bins and tested on 8th bin, 
provided the testing bin was different for all 8 models, as shown in Fig. 3. The trained ensemble was tested on 
the testing dataset (48 samples) separated earlier. The outcome of the ensemble was calculated as the median of 
outputs of all 8 models after eliminating the negative outputs (if any), as the interested output variables cannot 
have negative values. STD was calculated to get the deviation of output of each model from the median result 
of the ensemble. However, all models are trained on different training and testing datasets, thus, are liable to 
produce different  outputs64. Apart from testing the ensemble models on the separated testing dataset, they were 
also tested for the output relevancy and STD on more than 90 k randomly generated inputs close to the training 
range. To generate these random inputs, all the 6 inputs were varied within the following range: height of sand 
engine was varied from 0.5 to 3 m with an interval of 0.5 m, radius of sand engine was varied from 0.5 to 2 km 
with an interval of 0.5 km, wave height was varied from 0.5 to 1 m with an interval of 0.25 m, distance was varied 
from 15 to 45 km with an interval of 5 km, angle was varied from 20 to 360° with an interval of 20° and average 
velocity was varied from 0.01 to 0.5 m/s with an interval of 0.05 m/s. All possible combination of these variation 
of 6 inputs were made which added to 90,720 random inputs. These 90 k random inputs were used to test the 
output relevancy of the ensemble model, where relevant output stands for non-negative output of the ensemble 
model. As either of the interested target variable cannot have negative values, hence, a negative prediction from 
the ensemble model is considered an irrelevant output.

Results
Figure 4 provides an example of simulation results and illustrates the impact of one of the tested sand engines 
in terms of water depth, significant wave height and sediment transport. Results are presented for a sand engine 
having 3 m height and 1.5 km width. The location of the sand engine in analysis is indicted by the double circle 
in Fig. 1A. The significant wave height at the boundary for the simulation is 1 m. Subpanels A and B refer to 
values for a specific wet observation points inside and outside the sand engine.

The performance of all ensemble models on the testing dataset is presented in Table 1. These values represent 
how well the ensemble models performed in predicting a given variable given the following inputs: wave height 
at the boundary; distance of the sand engine from the boundary; angle of the coastline at the location of the sand 

Figure 3.  Ensemble training methodology.
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engine; depth-average velocity at the same site (without the presence of sand engine). The predictive performance 
of ensemble models was measured based on three performance criteria: Regression [Eq. (6)], Mean Absolute 
Error (MAE) [Eq. (7)] and standard deviation (STD) [Eq. (8)]. Regression provides the statistical measure of 
how the predicted data fits with the target data, thus defining the generalizing capability of the model. However, 
regression criterion alone cannot define the accuracy of the  model65. Thus, MAE was included in the performance 
criteria, which provides a measure of error in the predicted values. Regression is calculated as:

STD along median (for this study) is calculated as:

(6)
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n
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∑

xy
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Figure 4.  Example of effect of sand engine implementation.
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where: n is the number of data points, x is target value, y is predicted value, σ is STD and m is median
All the models within the ensemble were trained several times by varying the hidden layers (2 and 3) and 

nodes within them (5 to 25) and the model providing least testing MAE was selected for further processes. The 
training and testing accuracy of all 96 models are presented in Table S1. Each ensemble model was trained to 
provide two outputs (before and after sand engine), hence the testing accuracy of the models is measured sepa-
rately for both the outputs, as presented in Table 1. Models trained on mean data provide predictions in relation 
to mean output variables, while those trained on maximum data predict the maximum in the output variables. 
The models for maximum prediction are less accurate in comparison to models for mean prediction, the reason 
being the training data of mean is more uniform in comparison to that of maximum data. The mean absolute 
error for maximum water depth is about 0.8 m while the maximum water depth observed at the location of sand 
engines is about 20 m. Since the maximum wave height at the boundary of the Morecambe Bay is around 2.0 m, 
and in situ and for the location of the sand engines is around 1 m for those closer to the boundary and about 
0.35 m for those farther away from the boundary, the maximum mean absolute error of about 3.5 cm is consid-
ered acceptable. Similarly, the maximum sediment transport simulated with sand engine was recorded around 
200  cm3/s/cm and the mean absolute error is around 13  cm3/s/cm which is considered acceptable.

Table 2 presents the analysis of all ensemble models on 90 k random inputs. No. of irrelevant output column 
presents the number of inputs, out of 90 k inputs, at which corresponding ensemble model provided negative 
outputs. The ensemble model predicting sediment transport outside the sand engine is providing more STD and 
it has less accuracy in for testing data (Table 1), due to the bad training data.

Sand Engine App. The trained ensemble models are packed into a MATLAB application [Sand Engine App 
(Fig. 5A)] for end users to receive outputs of the effect of a sand engine on the basis of their own inputs. This 
application runs on the MATLAB platform with one pre-requisite toolbox (Deep Learning Toolbox) available in 
the MATLAB add-ons (see SI, Video 1).

The Sand Engine App consists of an input panel (Configuration Panel) and two output panels (the ANN Panel 
and the Simulation panel). The App includes options for data export and a mapping visualization option. The 
Sand Engine App is available for download from the repository (https:// github. com/ pavit ra979/ SandE ngine. 
git). The Configuration Panel consists of six input options: height of sand engine, radius of sand engine, wave 
height at the boundary, distance of the sand engine from the boundary, angle of the coastline at the location of 
sand engine, and average velocity at the location before sand engine. To obtain information on the effect of the 
sand engine, users are required to input at least four of the above input variables. Each input subpanel provides 
information about the range of data on which the ensembles models were trained on, in the form of drop-down 
list for first three inputs and in the form of a range of values for the last three inputs. The ANN models are more 
likely to provide accurate results if the input variables are close to their training  ranges66–68.

The Configuration Panel includes an Output Variables option to select the variables to visualize in the results 
panels. It also includes a switch to select mean or maximum, which will display the analysis in relation to the 
mean or the maximum. The ANN Panel of the application displays prediction values in tables and plots. Each out-
put variable has a separate plot consisting of four predicted values: before and after implementing a sand engine 
and inside and outside sand engines. For the ANN Panel, results are based on the ANN algorithms developed 
in this article as mentioned in the above sections.

(8)σ =

√

∑n
i=1 (xi −m)2

n

Table 2.  Analysis of ensemble models using 90 k random inputs.

Model

Before sand engine After sand engine

No. of irrelevant outputs Mean STD No. of irrelevant outputs Mean STD

Mean

 Water depth (IN) (m) 18 1.6035 78 1.7940

 Water depth (OUT) (m) 42 1.8067 36 1.8656

 Wave height (IN) (cm) 529 6.7085 270 8.2437

 Wave height (OUT) (cm) 114 7.0349 123 7.0372

 Sediment transport (IN)  (cm3/s/cm) 45 0.7647 0 4.0602

 Sediment transport (OUT)  (cm3/s/cm) 68 1.3755 50 1.6399

Maximum

Water depth (IN) (m) 0 3.6174 51 3.4053

Water depth (OUT) (m) 0 5.0449 0 5.1096

Wave height (IN) (cm) 80 16.9346 294 16.3706

Wave height (OUT) (cm) 0 27.4876 10 26.6457

Sediment transport (IN)  (cm3/s/cm) 10 98.2375 5 53.2448

Sediment transport (OUT)  (cm3/s/cm) 0 201.0789 42 35.0140

https://github.com/pavitra979/SandEngine.git
https://github.com/pavitra979/SandEngine.git
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For completeness, we have included a Simulation Panel displaying results from the numerical simulation 
which is the closest to the input parameters in the input section panel. While the ANN Panel displays results on 
the basis of ANN algorithms, the Simulation Panel is static and displays an example from a numerical case which 
is the closest to the user case. In addition to summary results for the impact of a sand engine, The Simulation 
Panel includes a map plot to display the location of sand engines and their inside and outside observation points 
inside Morecambe Bay, and a button to expand results for every observation point. Finally, the Sand Engine 
Application has a feature of exporting the predicted and simulated results into an excel format.

The location of all 23 sand engines simulated in this study can be visualised all at once in a map presented 
in readme section within the configuration panel (Fig. 5B). This section has radio buttons to plot sand engines 
of all radii (0.5 km, 1.5 km and 2 km) used in this study. The “Boundary line” (Fig. 5B) tick box option allows 
displaying the boundary line of the simulation domain along with all the 23 sand engine, thus providing better 
visualization of the location of the sand engines with respect to the simulation boundary. Additionally, it contains 
the description of different parts of sand engine app thus easing the usability of the app.

Discussion
There are ever-growing concerns over the risks faced by coastal communities in the face of climate change and 
with the increasing urbanization of the coastline. At the same time, there has been a growing interest in the 
idea of Nature Based Solutions (or Working with Natural Processes) for coastal protection both in terms of 
flood risk management and coastal erosion management. This is in consideration of the increasing costs associ-
ated with hard-infrastructures maintenance as well as the co-benefits offered by such interventions including 
having the potential to support Net Zero target emissions and the creation of local amenities and recreational 
spaces. The potential of Nature Based Solutions has indeed been recognized in several regulatory frameworks. 
As an example, some of the UK strategies (https:// assets. publi shing. servi ce. gov. uk/ gover nment/ uploa ds/ system/ 

Figure 5.  (A) Sand Engine Application; (B). Readme section of Sand Engine Application.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/693158/25-year-environment-plan.pdf25
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uploa ds/ attac hment_ data/ file/ 693158/ 25- year- envir onment- plan. pdf25) explicitly mentioned the importance of 
working with nature in support of flood risk reduction. At the same time, the UN called for action in terms of 
ecosystems restoration, by declaring 2021–2030 as the “decade on Ecosystem Restoration”. Among the others, 
coastal habitats have been recognized as some of the areas with the lowest standards in conservation, ecological 
and environmental  terms69,70.

However, the implementation of Nature-Based Solutions is not straightforward. Sánchez-Arcilla, Cáceres70 
summarize some of the challenges in relation to their implementation by highlighting a set of technical, Financial 
and Governance barriers. Some of the barriers are interlinked and related to limited engineering expertise when 
dealing with a multitude of ecological and environmental factors. Such limitations, frequently lead stakeholders 
or coastal managers as well as the overall public opinion to lend towards the adoption of more traditional hard 
defences. For instance, Schuerch,  Mossman71 focus on Managed realignment options to highlight how these 
interventions can face mistrust by local communities not only because these interventions might require giv-
ing back to the sea previously utilized land but also because of the significant uncertainties in the use of such 
management actions.

A Sand-engine is one example of Nature Based solution having the potential to be economically viable when 
large volumes of the appropriate sediments are available for its implementation. There have been successful exam-
ples of mega nourishments, notably the Sand Motor in the Netherlands, and smaller-scale beach nourishment 
operations have been a traditional practice around the world for many years. However, in spite of the numerous 
studies on the topic, there are still many uncertainties on the impact of such interventions depending on their 
location, environmental conditions and geometrical features of both intervention and coastline. Furthermore, 
there is currently no consistent way of communicating and integrating results from different numerical or field 
experiments into a unique framework and in support of decision-making.

Within this context, this manuscript has proposed a novel framework presenting the initial methodological 
steps for the creation of novel tools aimed at supporting decision-making, gathering information from multiple 
sources to feed into a unique tool and, providing information on the effectiveness of different sand engines 
options on the basis of users’ inputs.

Specifically, the proposed framework integrates numerical modelling with Artificial Neural Networking into 
a Sand Engine App to provide information on significant wave height, water depth and sediment transport 
before and after the implementation of a Sand Engine. The example proposed in this manuscript focuses on 
Morecombe Bay. The proposed framework does not require detailed user inputs and it is designed to provide the 
mean and maximum values of all variables at locations inside and outside the sand engine. As a reference, the 
framework also provides complete information about the simulated results having a configuration which best 
matches users’ inputs. The Simulation panel displays the map with plotted observation points both at inside and 
outside locations. Also, the mean and maximum effect of a sand engine can be viewed at all observation points. 
The sand engines simulated for this study can be viewed all at once in the readme section of the App, which also 
displays the boundary line of simulation domain for better understanding of the location of each sand engine 
with respect to the boundary and with respect to the coastline. Readme section has the feature of plotting sand 
engine of all the three radii simulated in this study. The displayed map can be enlarged for better visualisation.

The obvious limitation of this study is that the location and training of data are limited to one study site. 
The prediction model is trained on a limited set of simulation data, as mentioned in the framework, hence, it is 
more likely to provide better results when users’ inputs are close to this range. The next steps for this framework 
will be to increase the amount of information fed into the ANN model to include a wider set of environmental 
conditions as well as different study sites. This will require formatting the input datasets in such a way that they 
can feed into the existing Network, but it doesn’t present stringent limitations in terms of data sources that could 
potentially be fed into it. Another limitation is the static nature of the simulation used in this study. Sand Engines 
are expected to change their shape and bathymetry over time when waves and tides are imposed, as observed 
in the sand motor in The  Netherlands9,72,73. The latter was originally hook shaped stretching more than 2.4 km 
along the coastline and 1 km off the  coast8,74 and has retreated 150 m towards the coastline and extended 1200 m 
alongshore within 18 months since the  establishment9. The sand motor peninsula lost around 1.8 million  m3 
of sand within the first 18 months, which is 10% of nourished  volume9,15. In this study, we did not focus on the 
morphological evolution of Sand Engines but rather on the initial effect of sand engines on a set of hydrodynamic 
and sediment transport variables inside and outside the sand engine.

We expect that allowing the sand engine to morphologically evolve over time will lead to varying effect of 
water depth, wave height and sediment transport both inside and outside the sand engine. In this sense the output 
variables determining the efficacy of the sand engine will change over time. Predicting non-stationary time-series 
for these variables will likely require complex RNN models such as Long Short-Term Memory (LSTM) model to 
handle multiple time  series75,76. To predict the varying effect over time, the model has to predict complete time 
series based on different feature inputs (sand engine and wave configurations), which requires additional con-
nection modifications and arrangements of LSTM cells, based on use case, as done by Wang,  Fan77. Wang,  Fan77 
arranged 501 LSTM cells in parallel to predict complete time series, based on different feature inputs, where each 
cell was predicting a time step of the series. In their case, the connection of the LSTM cells was modified such 
that each cell was predicting based on predictions of previous 16 cells. Studying the varying effect of evolving 
sand engine on water depth, wave height and sediment transport and developing complex LSTM models for 
predicting the same is recommended for future research.

The Sand Engine App is uploaded in a public repository with its link given at the beginning of this article 
which can be downloaded and directly installed in MATLAB. All the ENN models and required files are inte-
grated into the installation file of the framework, hence it does not require any network connection for usage. 
The framework has the advantage of running all 12 prediction models at once and presents the results in a 
meaningful manner along with the closest simulation results. However, it requires MATLAB to be pre-installed 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/693158/25-year-environment-plan.pdf25
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with one requisite toolbox: the deep learning toolbox, which can be easily searched and downloaded from the 
Add-ons option in MATLAB. A demo video and a description file, explaining the installation and usage, are also 
uploaded along with the framework in the repository. It is recommended to view those files before using the App.

Conclusion
This article presents a novel framework supporting the choice of coastal protection schemes through the synthesis 
of numerical modelling outputs into an Artificial Neural Networking model whose computational efficiency 
allows the creation of a standalone computer application (Sand Engine App) illustrating the effectiveness of dif-
ferent users’ defined sandengines. The article illustrates the potential of synergies and complementarity between 
numerical modelling and Artificial Intelligence techniques. A total of 552 simulations using Delft3D were con-
ducted with different sand engine configurations to look at their influence on the water depth, significant wave 
height and sediment transport at Morecambe Bay (UK). Simulation data were recorded at observation points 
placed inside the sand engine and outside the sand engine at a buffer zone equivalent to half of the radius of the 
sand engine. An ensemble of recurrent neural networks (ENN and LRNN) and feed forward neural network 
(FFNN and CFNN) was trained for the prediction of mean and maximum variable changes due to sand engine 
presence. Specifically, 12 ensemble models were trained to predict 24 different variables: [i.e., mean and maxi-
mum of 3 output variables (significant wave height, water depth, sediment transport) at 2 locations (inside and 
outside) and for 2 conditions (with and without sand engine)]. Ensemble models provided good accuracy with 
majority of testing regression greater than 0.90. Results from all ensemble models were packed into the Sand 
Engine App which is available for download (https:// github. com/ pavit ra979/ SandE ngine. git).

Data availability
Bathymetry data have been retrieved from EDINA Marine Digimap (http:// digim ap. edina. ac. uk/) and UK Envi-
ronment Agency’s LiDAR data archive (https:// envir onment. data. gov. uk/ Defra DataD ownlo ad/? Mode= survey) 
which are gratefully acknowledged. The Data drive models have been developed using the MATLAB librar-
ies from the Deep Learning toolbox [e.g. feedforwardnet(), elmannet(), cascadeforwardnet(), layrecnet(), and 
train()]. The Sand Engine App (Fig. S1) is available to download as part of the Supplementary material. This 
requires MATLAB and the MATLAB Deep Learning toolbox to run. A video (Video 1) in support of the instal-
lation is also provided in the Supplementary material. The App is available here: https:// github. com/ pavit ra979/ 
SandE ngine. git.

Code availability
Name of the Software: SandEngineApp. Developer: Pavitra Kumar and Nicoletta Leonardi. Contact Information: 
pavitra.kumar@liverpool.ac.uk. Year First Available: 2022. Platform: MATLAB. Required Library: Deep Learning 
Toolbox. Cost: Free. Software Availability: https:// github. com/ pavit ra979/ SandE ngine. git. Program Size: 4 MB.
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