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Abstract

In the UK there is a large number of analytical laboratory companies that perform quality
control testing on environmental samples, such as water control or ecological surveys.
Each of these companies employs a fleet of Samplers to carry out this work, who may
collectively gather more than 100,000 samples annually. This volume of vehicle travel
accounts for several hundred thousand tons of CO2 emissions every year, and a significant
carbon footprint. A scheduler is responsible for developing a schedule for this workforce
that provides an ordered list of locations for each sampler to visit. A scheduler in each of
these industries has a number of challenges in common: 1) the need to visit a large number
of locations on a regular basis, based on need (e.g. repair), governmental legislation (quality
control), or supply chain logistics; 2) plan daily schedules that result in a subset of locations
being visited; 3) comply with work directives that limit the time a technician or employee
is traveling and servicing a set of locations in a given work day; and 4) accommodate a fleet
of of employees that typically originate from a number of different geographical locations
in a given area.

Furthermore, it is the difficulty in planning for the revisiting requirements which, if
not managed intelligently, can result in high costs (both in terms of fuel and time) due
to a lack of optimality. However, this optimality needs to be traded off with the need for
pragmatic and fast solutions that can may need to be re-planned due to uncertainties in
the workforce, such as vehicle failures, traffic vagaries, and illness. Thus, the challenge is
to investigate a set of problems based on the well known Travelling Salesperson problem,
whilst taking into account multiple agents, tour cost limits, and a revisiting requirement.
The aim of this thesis is therefore to investigate one of these revisiting requirements, that
of having a maximum number of days between visits. We examine the this problem, which
we call the Multiple Periodic Maintenance Person People, by systematically breaking the
problem down. We first examine the sub problem of scheduling a single maintenance person
over multiple days, then we examine scheduling for multiple maintenance people over one
day. Finally we bring the work for these sub problems together to schedule for multiple
maintenance people over multiple days.
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Chapter 1

Introduction

In the UK there are a large number of analytical laboratory companies that perform

quality control testing on environmental samples; for example: water control, soil analysis,

or ecological surveys. Each of these companies may collect more than 100,000 samples

annually and this totals to several million samples per year. The collection of these samples

is carried out by a fleet of vehicles and this produces a large carbon footprint of several

hundred thousand tons of CO2 emissions every year. Likewise, maintenance companies

can be responsible for the repair of a given type of equipment in a designated geographic

area, with repair work being carried out by a number of employees who are trained in the

servicing of this particular equipment. The type of work varies between companies, with

some carrying out safety critical quality control testing, such as the water safety board,

and some carrying maintenance that is preventative in nature, for example examining the

state of internet infrastructure. It is because of this that the requirements for regularly

visiting a location can vary greatly depending on the industry. One form of revisiting

requirement is that a certain number of visits must be made within a specific time frame,

eg 10 times throughout a month. Another industry may have a set pattern of days that

may be visited, such as visiting a location on a Monday and Friday, or Wednesday and

Sunday.

A common form of revisiting frequency for quality control companies is that of having

a maximum number of days between visits. For example if a location must be revisited

within three days of it’s last visit which was on Tuesday, then it must be revisited on

either: Wednesday, Thursday, or Friday. Thus a challenge is to understand how scheduling

techniques can factor in this types of revisiting requirement whilst still achieving the overall

1
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goal of visiting disparate locations within an appropriate time frame. As the visiting and

revisiting of these locations by a workforce can account for a significant volume of vehicle

travel and therefore of CO2 production per year, this is a significant problem worthy of

academic attention. An additional layer of complexity is added to the problem with the

organisation of a workforce. This adds the requirement that each technician only works

within a maximum number of hours each day. The technicians are also often based from

their homes, which are geographically spread out across the area under the purview of the

company. They therefore travel from their home location to the various job sites and back

at the end of work, which must be taken into account when scheduling the specific work

for them. We call this problem of scheduling for a workforce over a given number of days,

where the amount of time each individual can work is constrained by a maximum time

limit, each individual is based and works from a home location, and each location must

be visited within a maximum number of days from it’s last visit, the Multiple Periodic

Maintenance Person Problem (MPMPP).

1.1 Motivating Scenario

To gain a deeper insight into the problem challenges, one can create a fictitious scenario that

characterises a maintenance company and its typical operation1. A laboratory analytics

company has a fleet of vehicles, with each vehicle corresponding to a sampler, who carry

out sampling in an area they are responsible for. The samplers visit a set of locations

called requests to carry out the water quality control tests at the site and this takes a

finite duration depending on the request. A sampler starts and finishes each day at a

unique home location; ie it’s depot, and must visit a laboratory prior to returning to their

depot. A sampler has a schedule which is produced ahead of time at the start of the

year by a team of laboratory technicians, this process is carried out over the course of a

month. Each day within this schedule is referred to as a tour. The schedules must adhere

to a set of legal requirements relating to the working hours for each sampler and must

also visit each request periodically depending on the request’s time window (which is the

maximum number of days since the previous visit that it must be visited within). A request

location can also be visited after a dynamic event, such as a pipe breaking in the case of

1This characterisation was based on discussions with a UK based water authority and a laboratory
sampling organisation that were jointly responsible for carrying out water sampling (i.e. visiting and
testing the quality of water) across a specific geographic area in the UK.
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water sampling, and are dealt with by the sampler closest to the request. These dynamic

requests are only visited once and do not have to be revisited.

1.2 Related Work

The laboratory analytics company typically faces several challenges when scheduling the

activities of their different samples, and thus may adopt different solutions to scheduling,

where the aim is to find an optimal or sub-optimal order to undertake a set of tasks given

additional parameters such as time related cost[68]. Several scheduling problems share

similarities with our problem, such as the bus and train scheduling problem[10, 54], the

bamboo garden trimming problem[29], the nurse rostering problem[25, 57, 9], and the

traveling salesperson problem[24, 31].

The bus and train scheduling problems model having two or more main stations from

which a vehicle will depart. This vehicle visits a number of smaller stations, where it stops

for a short period of time before departing. A driver for one of these vehicles can only work

for a set number of hours per day and must be relieved by another driver at the depot the

driver started from. The aim is to reduce the amount of time between visits to a station

given a number of drivers available. This problem shares a lot of similarities to ours as a

planning horizon and working hours are taken into account so that a driver returns back

to the station within the time limit. It does aim to minimise the time between visits to

a location, however this does not constrain the maximum number of days between visits

and therefore does not provide suitable solutions.

The bamboo garden trimming problem models the challenges faced by landscape gar-

deners in charge of a set of geographically disparate gardens. Bamboo grows by a constant

speed throughout the year, and this speed may vary between plants. Each day a gardener

travels between bamboo plants and cuts the plant back to ground level with the aim to

minimise the maximum size of the plants. There are both continuous and fixed time vari-

ant of this problem. This problem accommodates a form of periodicity, however this is

treated as a soft constraint with the aim being to minimise the maximum length of the

bamboo instead of to adhere to a maximum number of days between visits.

For the nurse rostering problem there is a set of tasks to be carried out in a hospital

that are to be assigned to members of a team of nurses. The aim is to produce a schedule

that either maximises the overall patient satisfaction with wait times, or minimises the

number of nurses required to complete all tasks. This problem deals with the assignment
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of tasks within a time frame for multiple agents which is similar to our problem, however

as these tasks do not reoccur there is no mechanism to accommodate the periodicity of

our problem.

It is the traveling salesperson family of problems that most closely matches the problem

encountered by the laboratory analytics company scenario described above. A salesman

wishes to travel to a set of locations to sell their product however they wish to minimise the

distance travelled in order to minimise the cost. The aim is to create a schedule referred

to as a tour where the salesman starts and finishes at a designated point and each of the

locations is visited only once. The traveling salesman problem and its variants are often

modelled as a network where each vertex represents a location to be visited and each edge

represents the shortest travel time between these locations. The triangle inequality holds

for all of these graphs as the edge represents the shortest time to reach a location instead

of the route to get there. There are several relevant variants of the TSP, however none

exactly match the problem presented here. These are:

• Traveling salesman problems (TSP) [24, 59] - As described above with a single sales-

man aiming to visit all of the locations. This problem usually does not break the

schedule into working hours over a set of days and does not revisit the locations.

There are a significant number of different mechanisms that have been applied to

this problem, and often these mechanisms are used in problems that are an extension

of the TSP.

• Orienteering problem (OP) [92] - This models the problem faced in the sport of

orienteering, where a single individual travels across a map in a limited amount of

time visiting a set of locations. Each of these locations has a reward associated with

it, and the goal of the individual is to plan and execute a route that maximises the

reward. This problem takes into account the tour cost limit, however does not deal

with the periodicity or multiple agents of our problem.

• Multiple traveling salesman problems (MTSP) [3, 56] - A variant of the TSP where

there are multiple salesman that collectively visit all of the locations. This problem

does account for the multiple agents required by the problem, however it does not

deal with either the periodicity of the problem or the tour cost constraints.

• Vehicle routing problems (VRP) [84, 58, 23] - This is an extension of the MTSP

where each vehicle has a product capacity and each of the locations has a product
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demand. This problem shares the same issue as the MTSP where working hours and

a planning horizon are not taken into account.

• Dynamic vehicle routing (DVRP) [74, 100] - A variant of VRP where requests can

be added at any time step. These problems attempt to match a task with a schedule

that would reduce the overall time for all schedules. These problems often do not

modify an existing schedule and only deal with the dynamic requests, and does not

account break the schedule into a set of tours over multiple days.

There are several additional constraints that can be added to these problems however

not all of these modifiers are relevant to each of the problem types. These modifiers are:

• Planning horizon [15] - This is a number of days that must be planned for and this

usually takes the form of a hard time limit on the length of each tour.

• Working hours [34] - This is a constraint that limits the length of a tour within a

day. This means that instead of having one large tour that could span over several

days, there are several shorter tours. This is different from a planning horizon as the

number of hours worked per week can change based off regulations related to that

industry. An example would be in the UK trucking industry it is possible to work

two additional hours twice a week if a day off occurs within the next three days.

Additional changes such as lunch breaks can also be taken into account.

• Multiple depots [12] - In situations where there are multiple salesman this adds that

they may not all start from the same depot however they usually must still return

to their corresponding starting depot.

• Time windows [26] - This is the period of time that a location can be visited within

and this is specified in whatever time unit is used for the amount of time to travel

between two locations.

• Periodicity [54] - This is where a location must be revisited regularly and can be

considered an extension of time windows.

1.3 Research Aims and Contributions

In this thesis, the challenges associated with the Multiple Periodic Maintenance Person

Problem (MPMPP) are addressed from various perspectives:
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1. When examining a variant of the MPMPP where only a single agent is examined,

what mechanisms can be used in order to solve this problem optimally and heuristi-

cally, what are the limitations of these mechanisms? This can conducted through an

examination of both an integer programming approach and a comparative investiga-

tion of different heuristics for this problem, which we call the Periodic Maintenance

Person Problem (PMPP). This problem is addressed in Chapter 3, with the intention

of investigating several questions; the first of which being: Given the complexity of

the problem, is an exact or heuristic algorithm more suitable for the PMPP?. To

address this we discuss the np-hard nature of the problem and formally define the

problem in Section 3.2 and then discuss a suitable approach to the problem in Sec-

tion 3.3. We then investigate the question: What sort of mechanisms are required to

accommodate the visit dependant revisiting requirement?.

2. What are the challenges involved when using graph partitioning when scheduling mul-

tiple tours in a single day? In Chapter 4 this is investigated using a comparative

empirical study of a number of different graph partitioning mechanisms, adapted

to accommodate the constraints of the MTSP. This raises the question: Can graph

partitioning mechanisms be adapted to be suitable as an approach to the Multiple

Traveling Salesperson Problem (MTSP)?. Which is answered in Section 4.2.

3. Can the use of graph partitioning be combined with heuristic approaches to the Peri-

odic Maintenance Person Problem to find solutions to the Multiple Periodic Mainte-

nance Person Problem (MPMPP)?. The aim here was to model multiple benevolent

cooperating agents determining tours over successive days for a shared set of service

locations by adapting the heuristic mechanism and a graph partitioning approach.

This problem is addressed in Chapter 5. The resulting empirical analysis was used

to answer the question How can we accommodate multiple agents with a revisiting

constraint?.

1.4 Thesis Outlines

In Chapter 2 we discuss the literature related to this topic. The major family of work ex-

amined is that of the Travelling Salesperson Problem (TSP), which is a common scheduling

and operations research problem that deals with developing a schedule for a salesperson to

visit a set of locations. This salesperson starts from a home location, called a depot, and
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Single agent Multiple agents

Without tour
cost limit

With tour
cost limit

Without tour
cost limit

With tour
cost limit

Single day
TSP

Assignment problem
OP MTSP

Multiple days
PTSP

Pinwheel problem
PMPP MPMPP

Table 1.1: A table describing the decomposition of the MPMPP based on the three vari-
ables discussed in Section 1.4

visits these locations exactly once before returning back to the depot in what is called a

tour or path. The aim of this problem is to minimise the total cost of travelling between all

of these locations, whether that is measured in time or distance. This can be characterised

as a scheduling problem instead of a routing problem as the major concern is the order

in which the locations are visited instead of the specific route to travel between any two

locations. This problem has a number of natural extensions, such as adding the require-

ment that a particular location is visited within an allotted time in the day, or modelling

a vehicle carrying and delivering a finite amount of a product to each of these locations,

with each having it’s own demands for it.

In order to examine the MPMPP we take a systematic approach, examining aspects

of the problem in order to inform work on the problem as a whole. We identified three

major features of the problem, which are: a tour cost limit, the number of agents, and the

planning horizon. A tour cost limit refers to the maximum amount of time that a sampler

can spend during a day visiting locations. The number of agents refers to the number of

samplers being planned for, and can either be for a single agent or multiple agents. The

final variable is the planning horizon, which refers to the number of concurrent days that

are being scheduled for, and can either be for a single day or multiple days. We take what

we believe is a novel approach to decomposing our problem, by taking a common approach

for all of our solutions and examining the effect that these additional features have on the

problem and what modifications are required by the solution. We have started with the

previously discussed TSP, assuming that the: single agent, without a tour cost limit, and

a single day; variant encompasses all of the TSP’s features. In Table 1.1 we outline the

combinations of these features.

The assignment problem describes the problem of scheduling for a number of agents
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to complete a series of tasks, with there being a cost that may vary between agents for

completing the task [6]. A special case of this problem can exist with a single agent,

and with the cost of each task changing to reflect the cost of travelling to that location

from the current tour. This can also be viewed as the standard TSP. For the variant

of the problem with: a single agent, on a single day, with a tour cost limit, this can

be viewed as a homogeneous OP. For the variant of the problem with: A single agent,

multiple days, and without a tour cost limit, the problem can be modelled as either a

PTSP or Pinwheel problem. For the PTSP, using the maximum number of days revisiting

constraint matches with the problem presented by this cell. The Pinwheel problem models

the problem of having the ability to carry out a single task per day and a series of problems

that have a minimum number of days before they must be repeated [11]. The aim of the

problem is to create a sequence that can be repeated continuously without breaking this

minimum number of days constraint. A special case of this problem could be modelled,

with a maximum number of days revisiting constraint added and the minimum number of

days constraint being 1. Multiple tasks could be handled on the same day and the cost

varies depending on the tasks visited that day. The Periodic Maintenance Person Problem

(PMPP) is a special case of the MPMPP where only a single agent is being scheduled for.

In Chapter 3 we examine all cells that are related to a single agent, specifically the:

TSP, OP, PTSP, and PMPP problems within those cells. An average case empirical anal-

ysis is conducted for each of these sub-problems in order to find the modification required

of a solution for the TSP. We determine that a heuristic algorithm called Successive Aug-

mentation is the most suitable for adaptation to solve these problems. We examine this

mechanism’s performance for the TSP in Section 3.4 in order to establish a baseline. We

then examine the modifications required to separately accommodate the tour cost limit

and the multiple days revisiting constraint in sections 3.5 and 3.6 respectively. Finally

we combine these modifications together, and discuss what modifications are required to

accommodate both of these features together in Section 3.7 for the PMPP.

In Chapter 4 the problem of scheduling a multiple maintenance workers for a single day

is examined. A popular extension of the TSP is that of the Multiple Travelling Salesperson

Problem (MTSP). This problem adds multiple salespeople, who together visit each of the

locations once to create a set of distinct tours. There are a variety of methods that can be

taken to this problem, for example using a market based approach trading the ownership

of various locations to other salespeople. Another is to model evolutionary processes like

that of an ant colony in order to generate a set of tours.
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An approach that has received little attention is that of dividing the problem space

into a set of distinct sub problems. A MTSP can be modelled as a graph, with each of the

locations being modelled as a vertex and the edges between each of these vertices having

a weight that is equal to the cost of travelling between these vertices. This graph can

therefore be divided into a series of distinct subgraphs, with each of the subgraphs then

being treated as a TSP. This problem shares some similarities with Graph Partitioning

(GP). GP divides a graph into a series of distinct subgraphs, typically aiming to minimise

the total edge cost of all of the edges in between these subgraphs. This means that there

is not a direct connection between the two problems, however some methods intended for

GP may be applicable for the MTSP with some modifications.

As this problem can be modelled as an MTSP, we explore a number of different graph

partitioning approaches and augment the work of Vandermeulen et al. [94], which adopts

the use of graph partitioning for the MTSP by using the average length of a subgraph

as a proxy for that subgraph’s optimal tour cost. We examine if there are other graph

partitioning mechanisms that can be adapted for this purpose, with specific references to

common geometric approaches to the problem. In Chapter 5 we examine the MPMPP,

scheduling for multiple maintenance workers over a multiple day period. This is a combi-

nation of the work from Chapter 3 and 4. Finally in Chapter 6 we discuss how successfully

these questions have been addressed and what future work could be carried out in this

field.



Chapter 2

Related Work

During this thesis the major family of work discussed is the Travelling Salesperson Problem

(TSP) [4]. The TSP is one of the most popular combinatorial optimisation problems,

which models a situation in which a single salesman must visit a set of cities exactly once

each, with the aim of producing the cheapest Hamiltonian circuit or tour [78]. There

is an additional variant of the TSP that instead aims to find the most expensive tour,

which is referred to as the Maximal TSP Maximal tour cost [2]. Due to the variety of

real world applications of the the TSP it has received a significant amount of attention.

These applications range from the directly applicable scheduling of delivery drivers, to

the ordering of embroidery stitching [4]. The TSP is however an NP-hard problem, and

therefore a significant amount of attention has been given to developing both the exact

and heuristic algorithms.

In this section we discuss the various aspects of the TSP that have been explored in the

literature. Work for the TSP can be broadly separated into the two categories of Exact and

Heuristic solutions. In Section 2.1 we present an overview of the of the literature related to

the exact algorithms for the TSP. In Section 2.2 we discuss the general heuristic approaches

taken to the TSP, as well as a common framework that is often used when decomposing

heuristics for the TSP family of problems. Each of these heuristics can be split into stages,

with each of these sections being classifiable in one of 4 categories [35, 93]. As in this

thesis we are interested in generating a set of tours, we provide additional attention to the

categories that are relevant to this in Section 2.2.1.

The addition of a tour cost limit to the TSP has been explored in the Orienteering

Problem (OP) [14], which results in changing the objective of the problem from generating

10
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the shortest Hamiltonian circuit to a combination of vertex selection and the shortest

Hamiltonian circuit generation given the resulting subset of vertices. In Section 2.3 we

discuss the most popular heuristics for the OP, as identified by Vansteenwegen et al. [95].

The Periodic Travelling Salesperson Problem (PTSP) [66] models a variant of the TSP

with a revisiting constraint. Specifically, the PTSP models a single agent operating over

a set of m ”days” within a defined planning horizon with the aim of each day visiting

a subset of possible locations before returning to a fixed start position. We discuss this

further in Section 2.4.

In Section 2.5 we discuss the Multiple Tour Maximum Collection Problem with Time-

Dependant Rewards and a Rolling Horizon Framework (MTMCP-TDR-RHF) [90]. This

is similar to PMPP in that it considers both a tour cost limit constraint and a revisiting

frequency, however the later is treated as a soft constraint. In this problem, each location is

assigned a reward that varies between location and between days, the aim of the problem

is to produce a schedule that maximises the reward while keeping each tour within the

tour cost limit. We discuss some additional variants of the TSP in Section 2.6, discussing

the Nurse Rostering problem. Finally in Section 2.7 we discuss a popular extension of the

TSP that deals with the addition of multiple agents, which is called the Multiple Travelling

Salesperson Problem (MTSP).

2.1 Exact approaches to the TSP

The most popular exact approach to the TSP is linear integer programming [81], with

the most common of those being the dual simplex method which is linear algebra based

algorithm [96]. Laporte and Nobert [53] produced two algorithms which are referred to

as the assignment-based solutions, which incorporate a method called Gomory cuts [37].

Gomory cuts reduce the problem space and therefore reduce the computational speed

required to solve a problem instance, and therefore increases the problem instance sizes

that can be solved. Another popular exact technique is branch and bound which uses a

tree structure to explore the problem space with the initial state of the problem as the

root node [55]. From this root vertex, each of the possible selections that can be made

are branches. The problem is first explored in a depth first fashion, resulting in an initial

solution, and this is referred to as the initial lower bound. Vertices on this tree that were

not selected for that initial solution are examined, and if the cost for selecting that vertex

would exceed the current lower bound then those vertices are pruned. The tree is then
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explored in a bottom-first fashion until there does not exist a vertex that has not either

been pruned or explored. Christofides et al. developed two solutions, called tree based and

flow based, that estimate the lower bound for each vertex using row and column reduction,

and follow the traditional branch and bound method [18].

A combination of these two methods is called Lagrangean relaxation with branch and

bound [43]. This approach divides the constraints into hard and soft constraints where

the hard constraints are moved to the objective function, with the categorisation of the

constraints varying by solution. Ali and Kennington developed a solution that applies

Lagrangean relaxation to degree constraints and to each of the tours and has shown close

to optimal results for small problem sizes [1]. Gravish and Srikanth [30] developed another

algorithm that uses a minimal spanning tree to generate a lower bound and then applies

Lagrangean relaxation to improve that the accuracy of that value. This solution had success

with solving large scale problems with 500 cities and 10 salesman and is considered to be

one of the fastest exact solutions. A final exact approach is Quasi-assignment which uses

a branch and bound technique to relax the subtour elimination constraint, thus ensuring

that the solution can be solved in polynomial time [38]. A subtour elimination constraint

examines if there is a cycle in the tour that is disconnected from the main tour, or is a cycle

that does not consist of all vertices in the tour. A solution was developed by Gromicho

et al. [38] that uses an additive bounding procedure to produce a lower bound which may

improve accuracy up to 10% better than the traditional methods.

2.2 Heuristic approaches to the TSP

There exists a common framework that is often used when decomposing TSP heuristic

algorithms into a collection of stages [35, 93]. These 4 stages can be characterised as:

1. Tour construction stage - where a valid tour is constructed but without any

further optimisation [48, 33].

2. Tour improvement stage - involving a meta-heuristic to improve an existing tour

[77].

3. Composite stage - corresponding to a combination of stages 1 and 2 [93].

4. Tour combination stage - where multiple tours are generated using the prior

stages, and then combined using evolutionary methods [94].
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Until recently only stages 1-3 were used as part of this framework, however Vandermeulen

et al. [94] observed that evolutionary mechanisms do not fit into the existing stages and

proposed the 4th stage. Each TSP heuristic algorithm must have either the tour construc-

tion (stage 1) or composite (stage 3) stage to produce the initial tour, which we call tour

generation. The resulting initial tour can then be used as the input for a tour improvement

stage (stage 2) in order to reduce the cost of that tour, and multiple tour improvement

stages may be carried out. Multiple tours, generated as the results of stages 1-3 can be

combined in stage 4 using a generating mechanism.

2.2.1 Construction stage

Huang and Yu [45] identified three general mechanisms for tour generation, including:

space-partitioning based, edge based, and node based mechanisms. Space-partitioning based

mechanisms can be decomposed into three steps. The first step is to partition the space

covered by the graph into a number of separate segments. The second step involves the

production of a Hamiltonian circuit for the subset of vertices in each of the segments. The

third and final step is to link all of the Hamiltonian circuits together to form a tour that

covers all of the vertices. Two prominent space partitioning based algorithms are used:

the Strip algorithm [89], and the Space filling curve algorithm [69].

The Strip algorithm works by splitting the problem space into k vertical strips of equal

width, each of the vertical strips are then split into k horizontal strips of equal height

[78]. The strips are combined from the top vertically downwards for each strip. Once the

vertical strips each have a Hamiltonian circuit, they are combined left to right until a tour is

created. The Space filling curve algorithm divides the space into 4 square segments, each of

which are then subdivided into 4 smaller square segments, this subdivision continues until

there is only a single vertex in each segment [63]. The process of combining Hamiltonian

circuits is then repeated in the reverse order of division.

Edge-based mechanisms work by selecting edges in a tour, or rearrange edges in a struc-

ture such as a tree until a tour is made. Common mechanisms in this paradigm include:

the Greedy algorithm [5], the Christofides algorithm [19], and the Savings algorithm [20].

The Greedy algorithm starts by selecting the cheapest edge in the graph. The next cheap-

est edge that does not form a cycle in the tour is selected, and this process is repeated

iteratively until all vertices have been visited, the cheapest edge that forms a complete

tour is selected. Christofides algorithm is the most common of the three as it has one of
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the best known approximation ratios for a heuristic algorithm of 1.5 [19]. The algorithm

has has three stages:

1. The construction of the minimum-weight spanning tree and a minimum-weight per-

fect matching on the vertices of odd degree in the tree.

2. The construction of a Eulerian cycle using the tree.

3. The traversal of the Eulerian cycle, whereby the vertices that have already been

visited are skipped.

The Savings algorithm starts with a loop from the depot to each of the vertices. The cost

of combining each combination of loops is evaluated, the cheapest combination is then

made and the process is repeated until a complete tour is made.

Node based mechanisms can broadly be divided into two categories: nearest neigh-

bour algorithms [4], and successive augmentation algorithms [48]. The standard nearest

neighbour algorithm has the following structure:

1. Select the first vertex based on some metric, append it to a tour with the initial

starting vertex.

2. Find the shortest edge from the last added vertex to a currently unvisited vertex,

append it to the tour.

3. Repeat step 2 until all vertices have been visited.

4. Append the initial starting node at the end of the tour.

A successive augmentation algorithm is similar to the nearest neighbour algorithm, in

that it also starts with a partial tour consisting of a non-empty subset of vertices in a

Hamiltonian Circuit [45]. Additional vertices are then selected, and then added in some

location within the tour (a process known as expansion). This process is then repeated until

all of the vertices are included in the tour. The nearest neighbour algorithm can therefore

be characterised as a successive augmentation algorithm, whereby the selection criteria

involves determining a new vertex with the shortest distance to the penultimate vertex

within the candidate tour. Thus each of the node based mechanisms can be considered

to use the mechanism of successive augmentation as a genetic heuristic framework. A

comprehensive description of the selection and expansion metrics for each of the procedures
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is given in Table 2.1. The approximation ratios, if known, and the time complexities are

given in Table 2.2.

The most intuitive approach is to simply start at a location and continuously travel

to the next nearest unvisited location, and this is modelled by the Nearest Neighbour

procedure (AKA next closest city) [5]. This however can lead to ’forgotten locations’, as it

has been observed that locations skipped over during the tour building process are filled

in at the end, often leading to large increases in the tour cost [78]. An extension to the

Nearest Neighbour procedure is to add the nearest unvisited vertex to either the start of

the tour or the end of the tour, which is called the Double Ended Nearest Neighbour (AKA

Double Sided Nearest Neighbour) [78, 39]. When reformulating the Double Ended Nearest

Neighbour as a successive augmentation procedure, the nearest vertex to the second vertex

and the second to last vertex are considered, with the closest of the two selected and inserted

at the respective position. Another approach that can be considered an extension of the

Nearest Neighbour procedure takes into account the effect on the lower bound of selecting a

vertex, called Dynamic weighting [70]. This takes inspiration from the Hungarian method,

using the cost of the edge to a vertex and the cost increase on the lower bound of selecting

that vertex [51].

Rosenkrantz et al. expanded on the Nearest Neighbour procedure by selecting the

unvisited vertex that is closest to any vertex in the partial tour, this is called the Nearest

Addition procedure (AKA closest insertion) [82]. A novel expansion criteria is proposed,

whereby the cheapest position on either side of the vertex in the partial tour is selected.

For example, given the nearest selection criteria vertex i is selected, vertex j in the partial

tour is the vertex that i is closest to. If the vertex before j in the the partial tour is g and

the vertex after is k, then a comparison is made between the costs of inserting the vertex

between g and j or j and k. The cost of insertion is cost of added the new vertex in-

between the vertices in the partial tour and removing the existing edge. More specifically

the difference between cost(g, i)+cost(i, j)−cost(g, j), and cost(j, i)+cost(i, k)−cost(i, k),
where cost(i, j) refers to the edge cost of travelling between vertices i and j. Rosenkrantz

et al. also provided an alternative expansion criteria with the Nearest Insertion procedure

[82]. Instead of determining which position on either side of the vertex in the partial tour

to insert into, each position within the partial tour is considered.

Rosenkrantz et al. identified that selecting the unvisited vertex that farthest away

from a vertex in the partial tour produces tours with a low total cost, which is called the

Farthest Insertion procedure [83]. This is because this method creates a general outline
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Procedure name Selection metric Expansion metric
Nearest neighbour
[4]

The unvisited vertex with the cheapest edge
from the second to last vertex in the partial
tour

The second to last position

Double sided near-
est neighbour [78]

The unvisited vertex with the cheapest edge
from either the second or second to last vertex
in the partial tour

At the second or second to last posi-
tion, depending on the corresponding
cheapest edge

Dynamic weighting
[70]

The unvisited vertex with the cheapest lower
bound when selecting it at the second to last
position in the partial tour

The second to last position

Nearest addition
[82]

The unvisited vertex that has the cheapest
edge from a vertex in the partial tour

At either position on the side of the
vertex in the partial tour with the
cheapest edge

Nearest insertion
[82]

The unvisited vertex that has the cheapest
edge from a vertex in the partial tour

At the position in the partial tour that
minimises the additional cost

Farthest insertion
[83]

The unvisited vertex that has the largest edge
from a vertex in the partial tour

At the position in the partial tour that
minimises the additional cost

Farthest insertion
(MinMax) [78]

The unvisited node where the most expensive
edge to a partial tour node is minimal

At the position in the partial tour that
minimises the additional cost

Farthest insertion
(MaxMin) [78]

The unvisited node where the cheapest edge to
a partial tour node is maximal

At the position in the partial tour that
minimises the additional cost

Cheapest insertion
[49]

The unvisited vertex which has the minimal
additional cost at any point in the partial tour

At the position in the partial tour that
minimises the additional cost

Cheapest Ratio The unvisited vertex which has the minimal
additional cost at any point in the partial tour

At the position in the partial tour with
the minimum ratio between the cost of
the additional edges over the replaced
edge

Largest insertion
[93]

The unvisited vertex with the most expensive
additional cost

At the position in the partial tour that
minimises the additional cost

Difference insertion
[76]

The unvisited vertex with the largest difference
between the cheapest and second cheapest in-
sertions

At the position in the partial tour that
minimises the additional cost

Loss [98] The unvisited vertex with the largest different
between the additional edge cost of inserting it
at the cheapest and second cheapest positions

At the position in the partial tour that
minimises the additional cost

Smallest sum inser-
tion [78]

The unvisited vertex with smallest sum of dis-
tances to the partial tour vertices, equivalent
of choosing the node with the minimal average
distance to the tour nodes

At the position in the partial tour that
minimises the additional cost

Largest sum inser-
tion [78]

The unvisited vertex with largest sum of dis-
tances to the partial tour vertices, equivalent
of choosing the node with the maximal average
distance to the tour nodes

At the position in the partial tour that
minimises the additional cost

Random insertion
[82]

A random unvisited vertex At the position in the partial tour that
minimises the additional cost

Greatest angle in-
sertion [62]

The unvisited vertex where the angle between
the two edges added to insert the vertex in the
partial tour is maximal

At the corresponding position from se-
lection

Most eccentric el-
lipse [62]

An ellipse is drawn around each pair of ver-
tices, using the vertices as the foci. The un-
visited vertex that is the first to encounter the
edge of any one of the ellipses

At the position between the two ver-
tices corresponding to the ellipse

Table 2.1: A description of the different selection and expansion criteria of the various
successive augmentation procedures
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Procedure name Approximation ratio Time complexity

Nearest neighbour [4] 1/2Logn + 1/2 [83] O(n2) [4]
Double sided nearest neighbour [78] Unknown O(n2) [78]
Dynamic weighting [70] Unknown O(n2n2) [70]
Nearest addition [83] 2 [82] O(n2) [82]
Nearest insertion [83] 2 [82] O(n2) [82]
Farthest insertion [83] 2 [35] O(n2) [83]
Farthest Insertion (MinMax) [78] Unknown O(n2) [78]
Farthest Insertion (MaxMin) [78] Unknown O(n2) [78]
Cheapest insertion [49] 2 [82] O(n2logn) [82]
Cheapest ratio [35] Unknown O(n2logn) [35]
Largest insertion [93] Unknown O(n2logn) [93]
Difference insertion [76] Unknown O(n2) [46]
Loss [98] Unknown O(n2) [98]
Smallest sum insertion [78] Unknown O(n2) [78]
Largest sum insertion [78] Unknown O(n2) [78]
Random Insertion [83] 2 ln(n) + 0.16 [82] O(n2) [82]
Greatest angle insertion [62] Unknown O(n2) [62]
Most eccentric ellipse [62] Unknown O(n2) [62]

Table 2.2: A description of the approximation ratio and time complexities for the various
successive augmentation procedures

of a tour and then fills in the remaining nodes at more optimal positions due to having

more information about the final tour. The selection criteria uses the edge cost in the

same way as the Nearest Insertion selection criteria. Reinelt expanded on the Farthest

Insertion procedure by selecting the unvisited vertex with the largest minimum edge to a

vertex in the partial tour with the Farthest Insertion procedure (MaxMin) [78]. Which is

to say each unvisited vertex has an associated cost, which is the minimum edge cost to any

vertex in the partial tour. The opposite is also proposed with by selecting the unvisited

vertex with the smallest maximum edge to a vertex in the partial tour with the Farthest

Insertion procedure (MinMax) [78].

An extension of inserting a vertex at the position that minimises the additional cost,

is to use that as a selection metric as in the Cheapest Insertion procedure [49]. This is

the most common successive augmentation heuristic due to it’s ease of implementation

as the selection and expansion criteria are the same. The expansion criteria however can

be modified, Golden et al. identified that the ratio between the additional edges and the

replaced edge can be used as an expansion metric [35]. This was discussed as a procedure



18 Joshua Alcock

that uses a convex hull as an initial partial tour and the procedure itself was not named,

so we have called it the Cheapest Ratio procedure. The Largest Insertion procedure was

described by Ursani and Corne as a combination of the Farthest Insertion and Cheapest

Insertion procedure, by selecting the vertex with the most expensive additional cost and

inserting it at the position that minimises the additional cost [93].

The successive augmentation heuristic selects an unvisited vertex that is locally optimal

given some selection metric. Raymond attempted to avoid that issue by taking inspiration

from chess and using a selection metric that plans ahead, with the Difference Insertion

procedure [76]. This is done by selecting the unvisited vertex with the greatest difference

between best and second best selection criteria costs. Webb modified that approach by

only considering the difference between the added edges between the cheapest and second

cheapest positions with the Loss procedure [98]. Reinelt identified that multiple edges can

be used instead of a single edge as the selection metric Smallest Sum Insertion procedure

and Largest Sum Insertion procedure [78]. The former takes a similar approach to Nearest

Insertion by selecting the unvisited vertex with the smallest total edge cost to all vertices

in the partial tour, with the later taking the opposite approach. This is the equivalent to

the average distance of each unvisited vertex to all vertices in the partial tour.

Rosenkrantz et al. proposed an additional procedure, called the Random Insertion

procedure AKA (Arbitrary Insertion) [82]. This procedure selects a random vertex that is

not currently in the partial tour and insert it at a position that minimises the additional

time. Norback and Love propose two procedures based on geometric methods for solving

the TSP. The first is Greatest Angle Insertion, which selects the vertex where the angle

between the additional edges of two consecutive vertices in the partial tour is greatest.

The second is Most eccentric ellipse, which creates an ellipse around each consecutive pair

of vertices in the partial tour using the vertices as foci. The ellipse is then expanded until

an unvisited vertex bisects with the edge of the ellipse, this vertex is then selected for

insertion inbetween the vertices that were the foci for the ellipse.

The initial partial tour criteria is not described by a successive augmentation procedure,

however as demonstrated by: Hock [46], Ursani & Corne [93], and Huang & Yu [45], there

can be a measurable effect between different criteria. The different criteria documented in

the literature are:

• Specific initial vertex with a self loop - Often vertices can be ordered in a specific

way, such as having the depot as the first vertex. In this situation this initial partial
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tour can be used as the starting point for the tour [5].

• Arbitrary initial vertex with a self loop - If the order of the vertices is not important,

then the selection of a random vertex is often carried out [78] [83].

• An arbitrary pair of vertices - This produces two edges that may be modified, and

therefore the insertion metric can select different positions [33].

• An arbitrary vertex with a second vertex using a given metric - A pair of initial

vertices produces this way aim to have the benefit of that metric, such as using

farthest Insertion as it tends to produce good quality tours [64].

• A pair of vertices with the cheapest 2 edge cycle cost - This metric intends to find a

partial tour with two vertices that has the smallest additional cost [42].

• Convex hull - This metric was inspired by the observation by Eilon et al. that the

order of vertices in a convex hull is similar to that of the optimal tour for a euclidean

problem [35].

It was identified by Hock that the different initial partial tour criteria do not have a

noticeable effect on the final tour cost, with the exception of the Convex Hull metric [46].

Golden et al. identified that this is likely due to the similarity between the order of vertices

in the convex hull, and the order of vertices in the optimal TSP tour [35]. This however

only holds true for TSP problems where euclidean distances are used for the edge weights.

2.3 Orienteering problem

The Orienteering problem (OP) can be viewed as a combination of the Knapsack problem

and the TSP [95]. Also known as the selective TSP, the maximum collection problem, or the

bank robber problem, the OP models the problem of an agent starting and ending at some

fixed location, and visiting a subset of possible locations within a fixed time limit [14].

As each location has a reward associated with it, the objective function is to maximise

the reward whilst returning to the initial position within the time limit. By assuming

homogeneous rewards, the objective function effectively becomes one of maximising the

number of locations visited within a time limit. Five state of the art heuristic approaches

are identified by Vansteenwegen et al. [95].
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Tsiligirides [92] describes two algorithms that solve the OP, the first being the S-

algorithm which is stochastic and the second being the D-algorithm which is deterministic.

The S-algorithm starts with a partial tour of the depot node with a self loop, then a

Monte Carlo mechanism is employed to determine which unvisited vertex is inserted into

the partial tour. Each selection is then made based using a probability generated from the

ratio between the reward over the cost of travelling to that vertex. The selected vertex is

inserted into the second to last position, and this process is repeated until a vertex there

does not exist a selection that would not bring the tour cost over the tour cost limit. The

D-algorithm is the same process, however only the vertex with the largest ratio is selected.

These two algorithms can be described as a modified Nearest Neighbour procedure.

Golden et al. [36] proposes a centre of gravity based algorithm. A modified Cheapest

Insertion Procedure is used to produce an initial tour. Three factors are used for selection:

the reward, distance from the centre of gravity, and distances from two ellipse points called

foci. An equation uses these factors to generate a cost for insertion, with the minimal cost

vertex being used for selection. The selected vertex is inserted at the position in the

partial tour with the smallest additional cost. This is repeated until a further insertion

would increase the tour cost over the tour cost limit.

Ramesh and Brown [75] propose a four step heuristic. A tour is generated using a

modified cheapest insertion procedure, with the selection criteria being the ratio between

the reward over the additional cost for each vertex. The 2-opt and 3-opt algorithms are

used to reduce the cost of the tour. The same modified cheapest insertion procedure is

then ran on the resulting tour to determine if additional vertices can be added to the tour.

The process repeats from the second step until the tour is not modified.

Chao et al. [14] proposes a five step heuristic, the tour is generated using a modified

cheapest insertion. An ellipse is drawn around the centre of the problem, and it’s radius

is reduced until it contains only two vertices, which are used as the initial partial tour.

The ellipse is then expanded, with each vertex being added at the position in the partial

tour with the minimum additional cost. This procedure is carried out until all vertices

have been added to the tour, ignoring both the reward and total cost. Vertices with the

largest additional tour cost are pruned from the tour until the cost is less than the tour

cost limit. A two point exchange procedure is carried out and the 2-opt algorithm. A

specified number of vertices are removed from the tour that have a high cost to reward

ratio, and the algorithm is repeated from the second step. This procedure repeats until

two iterations procedure the same tour and remove the same vertices. The tour without
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the removed vertices is used as the final tour.

Gendreau et al. [32] presents a Tabu search based heuristic where the initial tour is

generated using the Ramesh and Brown’s cheapest insertion procedure [75]. The Tabu

search is then applied to the resulting tour, relaxing the tour cost limit in order to find

potentially cheaper tours. For each of the algorithms examined, the tours are generated

using a successive augmentation procedure, with a majority of those procedures a modified

cheapest insertion procedure, with the exception being the nearest neighbour procedure of

Tsiligirides [92]. While the OP maps reasonably well to our problem, as it accounts for

the tour cost limit, it does not however account for the periodicity of the MPP.

2.4 Periodic Travelling Salesperson problem

The Periodic Travelling Salesperson Problem (PTSP) models a single salesperson who,

over an m day planning horizon, travels each day from a depot to visit at least one of the

n locations before returning to the depot [66]. Two different types of revisiting frequency

are considered in the literature: Visit cardinality and Fixed visit schedule. For the visit

cardinality form of frequency, each location should be visited a fixed number of times

within the planning horizon, with each visit occurring on different days (e.g. visit twice

in a every ten day period). Each of the visits must be on different days, for example if

location i must be visited 3 times within a planning horizon of 5 days, then it may be

visited on any subset of 3 days. This could for example be the: 1st day, 3rd day, and 5th

day; or on the: 3rd day, 4th day, and 5th day. In contrast the fixed visit schedule mandates

specific days in which a location should be visited. For example location i may have two

visit combinations: the 1st day, 2nd day, and 3rd day; or the 2nd day, 4th day, and the

5th day. The visit combination must be used in its entirety, and visiting on a subset of a

combination is not permitted. Each day must have an associated tour, with a tour being

a Hamiltonian circuit that visits that day’s subset of locations, starting and ending at the

depot. The goal is to produce a set of tours, called a schedule, which minimises the total

distance travelled while still adhering to the revisiting constraint.

The first type of revisiting frequency is the the default when discussing the PTSP, and

was first outlined by Christofides and Beasley [17]. Their algorithm has three phases, with

the first phase creating a set of tours by using a modified cheapest insertion procedure

to generate an initial set of tours. This procedure start with m partial tours, with each

having an instance of the depot and a self-loop. A pool of vertices is generated, which
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includes multiple instances of each vertex, given the number of times that vertex must

be visited. The cost of inserting each vertex at each position is evaluated across each of

the tours. The second phase uses the 2-opt procedure to reduce the cost of the tours,

and the third phase exchanges locations between tours as long as the total distance for

the two effected tours is reduced. Chao et al. presents an algorithm that starts integer

programming based solution, then uses a novel location moving procedure and 2-opt to

reduce the total tour cost [13]. Cordeau et al. developed an algorithm that starts with an

initial solution, generated using the GENI tour generation procedure, then improves that

initial solution with a modified tabu search [22]. Paletta proposed an algorithm that starts

with the same modified cheapest insertion procedure as Christofides and Beasley [17], and

then uses a novel location exchange procedure to ensure no tour is empty and reduce the

total cost of the tours. Hemmelmayr et al. presents an algorithm that generates the initial

set of tour using a modified savings algorithm. The CROSS variable neighbourhood search

procedure is then used to exchange locations between tours, which is then improved upon

using the 3-opt procedure to reduce tour costs [44].

The second form of revisiting frequency is referred to as the Multi Period travelling

salesperson problem (MPTSP) [65]. Paletta proposed two algorithms, the first used a

modified cheapest insertion procedure where the cost for each potential insertion is the

ratio between the additional edge weight cost and the number of days from the previous

visit [65]. The second algorithm uses a similar concept but instead uses the ratio between

farthest insertion’s selection criteria cost and the number of days from the previous visit.

Polacek et al. describe a solution that uses a modified nearest neighbour procedure to

generate the initial tours that are not necessarily feasible. A variable neighbourhood search

is then used to improve the total cost of all tours [71]. A majority of these heuristics use a

successive augmentation procedure to generate the initial set of tours, with a majority of

those being the cheapest insertion or nearest neighbour procedures.

2.5 Multiple Tour Maximum Collection Problem with Time-

Dependant Rewards and a Rolling Horizon Framework

The Multiple Tour Maximum Collection Problem with Time-Dependant Rewards and a

Rolling Horizon Framework (MTMCP-TDR-RHF), is an extension of the OP with soft

maximum number of days revisiting constraint [90]. A heterogeneous reward is associated
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with each location that varies both with respect to the locations and day visited, with an

objective function to maximise the total reward of the schedule while satisfying the tour

cost limit constraint for each tour. This is similar to our problem, in that the MTMCP-

TDR-RHF has a tour cost limit for multiple tours over a planning horizon, however the

revisiting constraint for each location while similar is treated as a soft constraint.

Tang et al. presents a heuristic algorithm for a simpler problem, the MTMCP-TDR,

which is an extension of the OP whereby each location must be visited exactly once over

a planning horizon. In a similar way to the MTMCP-TDR-RHF, the reward for visiting

each location varies between locations and varies between days for a location. The authors

provide a description of a modified randomised cheapest insertion procedure with a novel

tabu and neighbourhood search, and a description of how to extend this algorithm to

accommodate the additional constraints of the MTMCP-TDR-RHF. The description given

however, does not provide salient details that are required to replicate these modifications.

The first portion of the algorithm is the modified randomised cheapest insertion proce-

dure which populates the initial set of tours. For each of the m days, ψ candidate tours are

generated, each populated with the depot vertex and a random vertex. The same vertex

can be used for different candidate tours. For each of these tours, the additional edge cost

of inserting each vertex not currently in the tour is evaluated. The cost of each insertion

is then assigned as the ratio between the additional edge cost and the reward for visiting

that vertex on the day associated with the candidate tour. The insertion with the best

ratio is selected and the insertion is made. This process repeats until there does not exist

an insertion that can be made without exceeding the tour cost limit.

The candidate tour with the highest total reward is then selected, with the total edge

weight used as the tie breaking condition. This candidate tour is added to the initial

tours for it’s respective day. Every remaining candidate tour that contains the any of the

vertices from this newly selected candidate tour is removed from the candidate tour pool,

and a new tour is generated in it’s place until there are ψ candidate tours for each of the

remaining days. The costs are then reevaluated and the selection process is repeated until

a tour is selected for each of the m days.

A neighbourhood search procedure is then applied to each tour in the initial solution,

relaxing the tour cost limit constraint and generating α candidate tours for each day. These

new candidate tours may not include the same vertices that had previously been selected,

and can instead duplicate vertices from other tours. A tabu search procedure is applied to

each of the candidate tours, which aims to bring each cost of that tour within the tour cost
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limit. After β iterations the tabu search, if the cost of the tour is above the tour cost limit,

then a new candidate tour is generated and the tabu search repeated until there are α valid

candidate tours for each day. The candidate tour with the highest reward is selected and

added to the final solution for the associated day. In a similar way to the first half of the

algorithm, the tours that share vertices are removed and α candidate tours are generated

for each of the remaining days. This process is repeated until a complete solution is found.

A brief description of how this procedure can be adapted for the MTMCP-TDR-RHF

is provided by the authors; however crucial parts of the description are missing. In this

adapted algorithm, the reward mechanism is used to encourage gaps between visits to a

location. This is done by increasing the reward for days after a location’s last selection in

order to encourage larger gaps between selections. This means when a vertex is added to a

tour, the reward for that vertex in the subsequent days is updated; however the equation

used to generate the rewards is not defined. The reward could increase linearly for a

location, e.g. if the time window for location i is 5, then the rewards could be: 1, 2, 3, 4,

and 5. Alternatively, an exponential equation could be used. The way in which the reward

should be handled for days outside of the time window is not specified, for example the

reward for location i on day 6.

The modifications for the initial cheapest insertion candidate tour process are also not

specified. A vertex may be present in a tour, only if it exists in an earlier tour within it’s

maximum revisit time window or if it is within it’s maximum revisit time window from the

start of the planning horizon. How this is accounted for by the candidate selection process

is also not discussed. It also may not be possible, given a set of selections on certain days, to

build a valid schedule and how that is determined in advance or a backtracking mechanism

is not discussed. The modifications to the neighbourhood and tabu search procedures is

also not specified and the same issue applies for this portion of the algorithm. Tang et al.’s

algorithm for the MTMCP-TDR-RHF is therefore not replicable and a suitable solution

for the PMPP does not exist in the literature.

2.6 Additional Travelling Salesperson Problem variants

There exists a variety of additional variants of the TSP, usually related to a specific real

world problem and typically relate to scheduling for a pre-existing set of resources. An

example of this is the bus or train scheduling problems, where there are two or more major

stations from which a vehicle will depart and visit a number of smaller stations where they
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will stop for a short period of time [10]. A driver for one of these vehicles can only work

for a set number of hours per day and must be relieved by another driver at the depot the

driver started from. The aim is to reduce the amount of time between visits to a station

given a number of drivers available [54]. This problem accommodates the working hour

nature of the PMPP, however does not accounting for the location scheduling as the routes

for these vehicles are predetermined. Another example is the nurse rostering problem,

where there is a group of tasks in a hospital that need completing and a set of nurses that

need to be assigned tasks [25]. The aim is to produce a schedule that either maximises the

overall patient satisfaction with wait times or minimises the number of nurses required to

complete all tasks [57]. This problem accommodates the location scheduling, however the

periodic nature of tasks are not.

2.7 Multiple Travelling Salesperson Problem

The multiple travelling salesperson problem (MTSP) extends the travelling salesperson

problem (TSP), and aims to produce the cheapest set of distinct Hamiltonian circuits

AKA tours, one for each of the salespeople, that visits each vertex exactly once. There are

three elements of each MTSP configuration that determine exact what form of MTSP is

being carried out. The three elements are: open or closed path, single or multiple depots,

and MinSum or MinMax. The open or closed path describes if the agent must return to

their corresponding depot. For the closed path MTSP, each agent leaves their depot and

at the end of the tour returns to that depot. The open path MTSP by contrast has each

agent leave their corresponding depot but the tour ends on a non-depot location instead

of returning back to their depot. A vast majority of MTSP problems in the literature are

closed path, with only a small minority addressing open path.

The single or multiple depots element describes if all of the agents start at the same

location or from multiple disparate locations. For a single depot problem, each agent

starts at the designated location. For a majority of multiple depot problems, each agent

is assigned to a unique location as it’s depot, however this is not necessarily the case a

depot may be shared by two or more agents. The final element is the objective function,

for which there are two popular variants: (1) MinSum, which minimises the total cost of

all tours; and (2) MinMax, which minimises the cost of the longest tour. The MinSum

MTSP is used in situations where the total cost of travel is the primary concern, whereas

MinMax MTSP is used when minimising mission time is required.
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The MTSP can be demonstrated as NP-hard, each agent visits a set of locations in

the equivalent of a TSP tour, as the TSP is NP-hard the MTSP is therefore also NP-hard

[99]. This NP-hardness has encouraged the development of a wide range of heuristic algo-

rithms, for which Tolga Bektas identified five categories [3]. These are: Simple heuristics,

Simulated annealing, Tabu search, Genetic algorithms, and Neural networks. For the sim-

ple heuristics, Robert Russell presented an extension to the Lin-Kernighan TSP heuristic,

which uses the 2-opt and 3-opt [84]. This is for the single depot MinSum variant of the

problem for symmetric graphs. Potvin et alṗresented a heuristic that works in a similar

way with a k-exchange procedure for the same problem [72].

Simulated annealing is another mechanism which has been used, Song et alṗroposed

an algorithm called Extended Simulated Annealing, replicating a thermodynamic system

[88]. Ryan et alṗroposed an algorithm that generates an initial solution using linear integer

programming, a tabu search procedure is then applied to the resulting set of tours [85].

Several genetic algorithms have been proposed, Zhang et alintroduced a mechanism that

uses binary string encoding to represent which vertices are visited by each agent [104].

Yu et alȧpplied a genetic mechanism, with both random and greedy initial tours for the

MinSum and MinMax objective functions [103]. Tang et alȧpplied a genetic mechanism

to the MTSP modelled as a TSP with dummy nodes [91]. Neural network approaches to

the MTSP have also been developed by Wacholder et al. and Modares et al. [97, 61].

Wacholder et alṗresent a MTSP transformed to a TSP with dummy nodes, using the Basic

Differential Multiplier method. Modares et al’̇s approach uses a Self Organising Feature

Map for the MinMax single depot variant of the problem.

A recent approach that uses a graph partitioning mechanism has been introduced by

Vandermuelen et al. [94]. Graph partitioning is the term describing the process of separat-

ing a graph into several distinct subgraph. The objective function is often to minimise the

total cost of edges removed to split the graph into the subgraphs. This does not directly

correspond to the MTSP, as a graph partitioned in a to minimise for the MinSum or Min-

Max objectives. As determining the cost of a given graph is an NP-hard problem, a method

for applying graph partitioning is not immediately relevant. The authors present empiri-

cal testing that finds for euclidean TSP there is a strong correlation between the average

length of a graph and the optimal tour cost. This is used for a variant of the MTSP called

the Average Hamiltonian Partition Problem (AHPP), whereby the graph is partitioned

for either the MinSum or MinMax objective function for the subgraphs. For MinMax the

graph is partitioned into a set of m subgraphs with each subgraph corresponding to an
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agent, and then each subgraph is then solved as a TSP.

The approach starts with a randomly generated partition with a depot in each of the

subgraphs. Non-depot vertices are transferred and swapped between each pair of subgraphs

if it minimises the maximum average length of the pair. This process is repeated until there

are no more swaps and transfers between pairs of subgraphs that reduces the maximum

average length. Once this process is complete, outlying vertices are then transferred if

they contribute disproportionate to the average length. If vertices have been moved, then

the swap and transfer procedure is repeated, followed by the outlying transfer. If these

procedure don’t change the subgraphs then the algorithm terminates. An exact TSP

algorithm can then be applied to each of the subgraphs to produce a solution for the

MTSP.



Chapter 3

Periodic Maintenance Person

Problem

3.1 Introduction

Maintenance and inspection companies typically carry out regular visits to different clients

for the purposes of repair (servicing) or quality assurance, with each client being located

at a (potentially large) number of geographically disparate service locations. Visiting these

service locations accounts for a significant volume of vehicle travel per year, but is required

to ensure that equipment at these locations can continue to be used safely. Furthermore,

there are often legal regulations that stipulate how regularly such visits should be carried

out, as well as legislation on working hours that should not be exceeded per day (i.e.

the combined time spent at each visit location within a day as well as the time spent

travelling between visit locations and the depot). Therefore, scheduling mechanisms are

required to determine what service locations are visited on what days, and in what order

(bearing in mind that any schedule will start and end at some initial home location), such

that the schedules satisfy a set of requirements. The first of these requirements, known

as the fixed visit schedule (R1) represents the need to visit locations on specific days

(e.g. every second and seventh day of some time period). Another is the visit cardinality

(R2), which ensures that a location is visited a fixed number of times over some time

period (e.g. a location is visited twice in every ten day period). A third represents the

requirement of visiting a location within a fixed number of days since the previous visit

(e.g. return within four days of the previous visit). This requirement, i.e. that of having

28
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a visit dependant time window, or revisiting requirement (R3), is typically encountered in

scenarios whereby some form of quality control is required; for example ensuring that Water

Treatment plants are regularly checked to ensure that there is no build-up of contaminants.

Thus, in this chapter, the Periodic Maintenance Person Problem (PMPP) is characterised

as the problem of scheduling a sequence of tours for a single technician over a set period

of days (i.e a planning horizon - R4), whereby each tour corresponds to a different day

in the planning horizon. Each tour defines a schedule of visits to different locations that

start and end at a predefined location, or depot, such that the technician can visit each of

the locations and return to the depot within a specific time frame each day (as specified

by the tour cost limit - R5), subject to satisfying the revisiting requirement (R3) whilst

minimising the total time cost of the set of tours.

The PMPP is similar to the family of logistics problems based on the Travelling Sales-

person Problem (TSP). In its simplest form, the TSP models a single individual travelling

to a set of geographically disparate locations before returning to their original location,

whereby each location is visited exactly once, and the total travelling cost is minimised

[4]. As discussed in Chapter 2 the TSP itself has been studied extensively, resulting in

a variety of different algorithmic solutions with known complexities, as well as heuristic

solutions that can determine approximate solutions with known bounds [35]. A number of

variations on the TSP have also been explored [47], that vary the number of individuals,

impose time constraints or revisiting periodicity, etc. The Orienteering Problem (OP) is

an extension of the TSP which ensures that tours satisfy the tour cost limit (R5) require-

ment. Each non-depot location has an associated reward, with the solution aiming to

maximise the reward for the tour while keeping within the tour cost limit [95]. However,

this solution does not address the revisiting requirement (R3). The Periodic Travelling

Salesperson Problem, or PTSP [66], is another variant that extends the traditional TSP

problem by modeling an individual visiting a set of locations over a finite number of days;

i.e. within the planning horizon (R4). This problem typically addresses problems that

include the visit cardinality (R2) and fixed visit schedule (R1) requirements. Whilst there

are some similarities with these problems and the use of a time window, they are not

directly analogous and a mechanism designed for visit cardinalities or fixed visit sched-

ules can’t be used without adaptation for problems with a time window. The Multiple

Tour Maximum Collection Problem with Time-Dependant Rewards and a Rolling Horizon

Framework (MTMCP-TDR-RHF), is similar to PMPP in that it considers both a tour

cost limit requirement (R5) and a revisiting requirement (R3) [90]. However, the notion
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R1 Fixed Visit Schedule Locations should be visited on specific days

R2 Visit Cardinality A location should be visited a fixed number of times
over some time period

R3 Revisiting Requirement A location should be revisited within a fixed number
of days since the previous visit

R4 Planning Horizon A set period of days over which a tour is planned

R5 Tour Cost Limit A tour starts and ends at some depot and visits a
subset of service locations within a specific time frame

Table 3.1: The different tour requirements used by the Maintenance Person Problem

of revisiting is only treated as a soft constraint in this work.

Thus, in this chapter, a heuristic algorithm for the PMPP is presented, that determines

TSP-based tours associated with each day in the planning horizon (R4), whilst satisfying

the tour cost limit requirement (R5) and revisiting requirement (R3). We examine how

the Successive Augmentation mechanism (i.e. iteratively adding viable vertices to a seed

tour to form a complete tour) can be augmented to accommodate: 1) either the tour cost

limit (R5) or the revisiting requirement (R3); and 2) both of those requirements combined.

We then perform a comparative evaluation of the resulting approach across a number of

different successive augmentation procedures given a number of test cases.

The chapter is structured as follows; we first present a formalisation of the PMPP in

Section 3.2. In Section 3.3 we discuss why a heuristic algorithm is suitable for the PMPP,

and the qualities required in this algorithm. As the PMPP is an extension of the TSP, we

chose to extend a mechanism used for the TSP in order to solve the PMPP and identify the

most suitable mechanism as Successive Augmentation. We take a systematic approach to

identifying the modifications required, by first examining the baseline performance using

empirical testing in Section 3.4. We then examine the modifications required when adding

a tour cost limit (R5) in Section 3.5, and adding a revisiting requirement (R3) in Section

3.6, and similarly empirically evaluate the performance. We combine these modifications

and discuss additional modifications required to accommodate both features (R3, R5) in

Section 3.7, with a final set of empirical evaluation. Finally in Section 3.8 we discuss how

the resulting algorithm performs and consider future areas of research.



Chapter 3. Periodic Maintenance Person Problem 31

3.2 Formalisation of the PMPP

The problem is modelled using a complete directed graph G = ⟨V,E,w⟩, w : E → R+, V =

L ∪ D where the vertices V comprise a set of n geographic service locations of which a

subset will be visited in a tour π (defined below), and the singleton D represents the depot

where each tour both starts and ends. An edge (i, j) ∈ E, i ̸= j connects two vertices,

such that ti,j = w(i, j) represents the shortest travel time between two locations. We

assume that the triangle inequality holds, where ti,j ≤ ti,p + tp,j , i, j, p ∈ V . Furthermore,

each service location i ∈ L has a service time si which represents the amount of time an

agent must spend at that service location. Thus, a tour π = {vd, . . . , vi, vi+1, . . . , vd}, vd ∈
D, vi, vi+1 ∈ L is a path traversing a subset of service locations that starts and ends at

the depot and minimises the time taken to leave and return to the depot such that the

time taken to complete a tour π in one day is less than or equal to the tour time limit Q

(i.e. the maximum amount of time each day that a tour may take). The planning horizon

H ⊂ Z+ is the strictly increasing set of m days over which a sequence of tours are planned

(i.e. before any tour is repeated) where each element [1 ≤ k ≤ m] corresponds to a day

where the tour πk takes place.

The time window ri ∈ Z+, i ∈ L represents the maximum number of days between visits

to a service location i, and prior to planning, we assume that each location has been visited

the day before the first day in the planning horizon. Visits at service locations within the

planning horizon are represented as a set of binary values Z = {zi,k}, i ∈ V, k ∈ H, zi,k ∈
{0, 1}, where zi,k = 1 if i is visited on day k. Likewise, the roster of tours across the planning

horizon is represented as a set of binary values Y = {yk}, k ∈ H, yk ∈ {0, 1}, where yk = 1

if an agent carries out a tour on day k and 0 otherwise. Finally, the edges within a tour

πk, k ∈ H are represented as a set of binary values X = {xi,j,k}, i, j ∈ V, xi,j,k ∈ {0, 1}
where xi,j,k = 1 if (i, j) ∈ πk and 0 otherwise.

We define the problem as an integer program:

min
∑
i,j∈V

∑
k∈H

(ti,j + sj)xi,j,k +
∑
i∈L

∑
k∈H

ti,(n+1)xi,(n+1),k (3.1)

subject to the following constraints:∑
j∈L

x(n+1),j,k =
∑
i∈L

xi,(n+1),k = yk k ∈ H (3.2)
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∑
j∈V \{i}

xj,i,k =
∑

j∈V \{i}

xi,j,k = zi,k i ∈ V ; k ∈ H (3.3)

∑
i∈V

∑
j∈L

(ti,j + sj)xi,j,k +
∑
i∈L

ti,(n+1)xi,(n+1),k ≤ Q k ∈ H (3.4)

k+ri−1∑
p=k

∑
j∈V

xi,j,p ≥ 1 i ∈ L; k ∈ H; k + ri − 1 ≤ m (3.5)

Subtour elimination constraint∑
i∈U

∑
j∈U

xi,j,k < |U | k ∈ H;O ∈ Z; p ∈ V ; zp,k = 1;U ⊂ O; |U | ≥ 2 (3.6)

xi,j,k ∈ {0, 1} i, j ∈ V ; k ∈ H (3.7)

yk ∈ {0, 1} k ∈ H (3.8)

zi,k ∈ {0, 1} i ∈ V ; k ∈ H (3.9)

The objective function (Equation 3.1) minimises the total time cost for all of the tours,

subject to constraints (3.2 - 3.9). Each of the constraints is summarised below, and a fuller

description of each is given later in the chapter as part of a worked example. Constraint

(3.2) states that if an agent leaves the depot then they must return to the depot, and

also that a depot cannot be visited in the middle of a tour. Constraint (3.3) states that

any service location that is visited must not be the final location within the tour (this

complements constraint 3.2), whereas constraint 3.4 ensures that the total time taken for

a tour should not exceed the time limit, where the total time taken is the sum of the

total travel time and the total service time. Finally, constraint (3.5) ensures that each

service location is revisited within the maximum time window that is defined for that

location (note that an assumption is made that the location was visited the day before the

planning horizon starts). The subtour elimination constraint (SEC) used for the tours is

stated by constraint (3.6), which states a lower limit for the number of edges within any

proper subset of a potential tour, such that there are at least two vertices corresponding

to the start and end vertex (i.e. the depot). If the number of edges within a proper subset

is equal to the number of vertices, then there is a cycle that does not include all vertices

invalidates the tour. As this method of avoiding subtours is computationally expensive,

it is often omitted from a formalisation and the resulting set of tours can be checked to



Chapter 3. Periodic Maintenance Person Problem 33

1

2

3 6

4

5

1

2

3 6

4

5

2
2

2

2

4

4

5

5

2

2

4

4 2

2

4

4

2
2

3

3
2

2

2 2

2

2

1
1

2

2

Figure 3.1: A visualisation of the example graph, where service locations are represented
as the vertices in the graph {1, 2, 3, 4, 5} and the vertex {6} represents the depot vertex.
Each edge is labeled with the time taken to travel between each vertex.

verify that the constraints are not violated. If a violation is detected, the integer program

is re-executed with an additional constraint that specifically prohibits the invalid subtour

[67]. The integrality requirements are given by constraints (3.7), (3.8) and (3.9).

The intuition behind this integer program can be illustrated through a worked example

of the periodic maintenance person problem (PMPP). We first define our problem using

the terms given in the formalisation, and then provide two tours, both of which commence

on day one of the time window (i.e. are scheduled for the 1st day), and therefore represent

partial solutions. The first of these solutions represents a valid tour for day 1 which satisfies

all of the constraints (Figure 3.3), whereas the second solution illustrates a case where the

constraints 3.2 - 3.6 are violated, resulting in an invalid tour (Figure 3.4). The rationale for

using a single example to illustrate the violation of all constraints (as opposed to multiple

examples for each constraint) is one of expediency; the violation of any single constraint

Service location i ∈ L Service time si Time window ri
1 3 1

2 2 2

3 2 2

4 3 1

5 1 2

Table 3.2: The time required to service each of the locations, and their respective time
windows
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is still sufficient to result in an invalid tour. The use of the objective function as given in

Equation 3.1 will then be demonstrated only for the valid tour.

Assume that we have a scenario with n = 5 service locations (denoted L = {1, 2, 3, 4, 5})
that should be visited over a period of m = 3 days (such that the planning horizon is given

as H = {1, 2, 3}). In addition, we have a single depot represented by the singleton vertex

D = {6} such that the total number of locations for the problem are given by the union of

two sets V = L∪D = {1, 2, 3, 4, 5, 6}. Furthermore, the time cost associated with travelling

between any pair of vertices i, j ∈ V may differ depending on the direction (i.e. the edge

t3,5 ̸= t5,3). This can therefore be modelled as a complete directed graph with 6 vertices

(i.e. 5 service locations and 1 depot), as visualised in Figure 3.1, where the labels of the

edges represent the travel time cost associated with moving from a source vertex (adjacent

to the labelled edge) to the destination vertex. Each of the vertices in the graph also has

an associated service time si corresponding to the time that an agent has to remain at that

given service location before moving on (to complete some task) and an associated time

window ri corresponding to the maximum number of days that could elapse before the

agent should return to that service location to repeat its task. Table 3.2 lists the different

service times si and time windows ri for each i ∈ L.

1 2 3 4 5 6

1 0 2 2 3 4 2

2 2 0 4 2 4 2

3 2 4 0 3 2 2

4 3 2 3 0 2 1

5 4 4 2 2 0 2

6 2 2 2 1 2 0

j ∈ L

i ∈ V

Travel times (T)

i ∈ L

n + 1

n + 1

j ∈ V

(a) The travel times ti,j for each pair
of service locations i, j ∈ V

1 3

2 2

3 2

4 3

5 1

Service times (S)

i ∈ L

(b) The service times si
for each location i ∈ L

1 1

2 2

3 2

4 1

5 2

Time windows (R)

i ∈ L

(c) The time window ri
for each location i ∈ L

Figure 3.2: The matrix in Figure 3.2a represents the travel times ti,j between each pair of
vertices in the example, whereas the vectors in Figures 3.2b and 3.2c represent the service
times and time windows respectively.

To better illustrate the use of the objective function (Equation 3.1), the travel times,

service times and time windows can also be represented pictorially, as illustrated in Figure
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3.2. The travel times ti,j for each pair of service locations i, j ∈ V are given as a matrix

(illustrated in Figure 3.2a), with source locations i given as rows and destination locations

j given as columns. Thus, the travel time ti,j between location i = 3 and location j = 5 is

given by t3,5 = 1. The service time for each service location i ∈ L is given as a vector in

Figure 3.2b; for example the service time si for location i = 3 is given by si = 2. Likewise,

the time window ri for each service location i ∈ L is given in Figure 3.2c; for example, the

time window ri for location i = 3 is r3 = 2. Finally, as a tour is scheduled for each day,

the roster is given as Y = {1, 1, 1}, and the total time taken for each tour should be less

than or equal to the tour time limit Q = 20.

1

2

3 6

4

5

1

2

3 6

4

5

(a) A valid tour for day 1

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 0 1 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 1

5 0 0 0 0 0 0

6 1 0 0 0 0 0

i ∈ V

Visited edges (X)

j ∈ V

(b) The visited edges X for
valid tour 3.3a

1 2 3

1 1 1 1

2 1 0 1

3 0 1 1

4 1 1 1

5 0 1 0

k ∈ H

Visited (Z)

i ∈ L

(c) The visited service locations Z
for valid tour 3.3a

Figure 3.3: A collection of all figures relating to a valid tour for the example problem

Figure 3.3a illustrates the resulting valid tour for day 1 of the planning horizon, where

each vertex is visited in a strict order as given by the edge connectivity matrix in Figure

3.3b. In this solution, the tour for day 1 is defined as π1 = {6, 1, 2, 4, 6} with a total cost

(including travel time and service times) of 15. Figure 3.3c shows the visit matrix, Z, where

each column represents the vertices visited that day (given as a binary value where the

value 1 states that a vertex in a given row is visited). Thus, the first column represents the

vertices visited on day 1 as illustrated in Figure 3.3a1. This contrasts with the solution for

an invalid tour (see Figure 3.4), which visits every service location on day 1 and includes

a tour cycle without returning to the home depot, as well as having a minimum total cost

(including travel time and service times) of 23, which exceeds the tour time limit Q = 20.

On the basis of this example, we can now examine the constraints of Equation 3.1 in

1Note that Figure 3.3c presents the visit schedule for the vertices for each of the days within the planning
horizon H = {1, 2, 3}, and reflects the time window constraints for each location. For example, r1 for service
location i = 1 (Figure 3.2c) has a max time window of 1 and thus this location should be visited every day.
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(a) An invalid tour for day 1

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 0 1 0 0

3 0 0 0 0 1 0

4 1 0 0 0 0 0

5 0 0 0 1 0 0

6 0 0 1 0 0 0

i ∈ V

Visited edges (X)

j ∈ V

(b) The visited edges X for
the invalid tour 3.4a

1 2 3

1 1 1 0

2 1 0 1

3 1 1 1

4 1 0 1

5 1 0 0

k ∈ H

Visited (Z)

i ∈ L

(c) The visited service locations Z
for the invalid tour 3.4a

Figure 3.4: A collection of all figures relating to an invalid tour for the example problem

more depth. Recall that constraint 3.2 ensures that if an agent leaves the depot to begin

a tour, then it must return to that same depot only at the end of the tour (i.e. the depot

should not be visited at any point in the middle of a tour).

∑
j∈L

x(n+1),j,k =
∑
i∈L

xi,(n+1),k = yk k ∈ H (3.2)

If a tour is scheduled for some day k, then this is represented by the corresponding roster

value yk = 1; otherwise yk = 0 (i.e. no tour is scheduled for that day). Furthermore, the

depot vertex should have at most 1 outgoing and incoming edge. The constraint has an

equality between each of the three terms: the first,
∑

j∈L x(n+1),j,1, returns the outgoing

degree of the depot vertex; and the second,
∑

i∈L xi,(n+1),1, returns the incoming degree.

The third term ensures that if there is an equal number of incoming and outgoing edges

to the depot, then this is reflected in the roster for that day.

For the valid tour there is only
∑

j∈L x6,j,1 = 1 outgoing degree and
∑

i∈L xi,6,1 = 1

incoming degree, both of which are equal to the roster value y1 = 1. Therefore this

constraint is held. In contrast, for the invalid tour, there is
∑

j∈L x6,j,1 = 1 outgoing

degree, but
∑

i∈L xi,6,1 = 0 incoming degree. As these values are not equal to each other

and both not equal to the roster value y1 = 1, the constraint is violated and thus the

resulting tour is invalid.

The next constraint (3.3) states that if a service location is visited within a tour then
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it should only have a single incoming and a single outgoing edge.∑
j∈V \{i}

xj,i,k =
∑

j∈V \{i}

xi,j,k = zi,k i ∈ V ; k ∈ H (3.3)

This ensures that a tour does not terminate at a service location (as each tour must return

to the depot) and that each service location is visited at most once during a tour. If a

service location i is visited on day k then this is represented by zi,k = 1; with the term

zi,k = 0 used to denote no visit to i on day k. Here, we have an equality between the two

terms: the first term
∑

j∈V \{i} xj,i,k returns the incoming degree whereas the second term∑
j∈V \{i} xi,j,k returns the outgoing degree for each service location i.

To illustrate this, observe service location i = 4 for day k = 1, for both the valid and

invalid tour scenarios. For the valid tour, the incoming degree
∑

j∈V \{4} xj,4,1 = 1 and

outgoing degree
∑

j∈V \{4} x4,j,1 = 1. Both of these degrees are equal to the visited value

for that day, i.e. z4,1 = 1, and thus the constraint is satisfied. However, this is not the

case for the invalid tour, where the incoming degree
∑

j∈V \{4} xj,4,1 = 2 and the outgoing

degree
∑

j∈V \{4} x4,j,k = 1, which violates the equality constraint.

The need to ensure that the total time taken for each tour does not exceed the tour

time limit is represented by constraint 3.4. There are two terms in this constraint, the

first corresponds to the total time taken travelling to the service locations and servicing

those locations, whereas the second returns the time taken travelling from the last service

location to the depot. The total of these two summations are checked to determine if the

total time taken is less than the tour limit Q.∑
i∈V

∑
j∈L

(ti,j + sj)xi,j,k +
∑
i∈L

ti,(n+1)xi,(n+1),k ≤ Q k ∈ H (3.4)

For the valid tour on day k = 1, the time taken in travelling to the four service locations

{1, 2, 4} starting from the dept {6} is given by
∑

i∈V
∑

j∈L(ti,j + sj)xi,j,1 = 14, and the

time taken returning to the depot is given by
∑

i∈L ti,6xi,6,1 = 1. As the total time taken

14 + 1 ≤ 20, this satisfies this constraint. However, for the invalid tour on day k = 1,

the time taken travelling to service locations
∑

i∈V
∑

j∈L(ti,j + sj)xi,j,1 = 24 and the time

taken returning to the depot
∑

i∈L ti,6xi,6,1 = 0. As a result, the constraint is violated as

the inequality does not hold; i.e. 24 + 0 ≤ 20 is false.

The next constraint (3.5) ensures that each service location is revisited within its time
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(a) A visualisation of the subset for the
valid tour given in Figure 3.3a

1
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4

(b) A visualisation of the subset for the invalid
tour given in Figure 3.4a

Figure 3.5: The subset U = {1, 2, 4} of vertices for the valid (a) and invalid (b) tour, to
illustrate constraint 3.6.

window:
k+ri−1∑
p=k

∑
j∈V

xi,j,p ≥ 1 i ∈ L; k ∈ H; k + ri − 1 ≤ m (3.5)

Each service location i has an associated time window ri (Figure 3.2c). For each service

location, and for each day k, there is a time period extending ri days into the future.

Each of those time periods represents the maximum revisit period for that service location

starting from day k. Within that time period there should be at least 1 visit to that service

location. The time period should cover from day k to day k + ri − 1.

For example, service location i = 5 has the time window r5 = 2, meaning that this

location should be visited at least every other day, if not on adjacent days. We can

examine how this is used for the valid and invalid tour by looking at the visited Z values

(Figures 3.3c and 3.4c respectively). There are 2 time periods that are covered; from

k = 1 to k = 2, and from k = 2 to k = 3. For the valid tour,
∑1+2−1

p=1

∑
j∈V x5,j,p = 1

and
∑2+2−1

p=2

∑
j∈V x5,j,p = 1. In both cases, these satisfy the constraint (i.e. that the

sum of the values is greater or equal to 1). However, for the invalid tour, we find that∑1+2−1
p=1

∑
j∈V x5,j,p = 1 and

∑2+2−1
p=2

∑
j∈V x5,j,p = 0. Although the constraint for day 1

(i.e. the first time period) is satisfied, it is violated for day 2 (the second time period)

where we have the expression 0 ≥ 1 which is false.

Constraint 3.6 ensures that there are no cycles present in any non-empty proper subset

of the tour and therefore no subtours:∑
i∈U

∑
j∈U

xi,j,k < |U | k ∈ H;O ∈ Z; p ∈ V ; zp,k = 1;U ⊂ O; |U | ≥ 2 (3.6)

A cycle has the same number of edges and vertices. For each non-empty proper subset
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U of the tour, the total number of edges
∑

i∈U
∑

j∈U xi,j,k is checked to determine if it is

less than the number of vertices |U |. For this example we will use the subset U = {1, 2, 4}
for both the valid and invalid tours, with the number of vertices |{1, 2, 4}| = 3. This

subset for the valid tour is visualised in Figure 3.5a; the corresponding subset for the

invalid tour appears in Figure 3.5b. For the valid tour on day k = 1, the number of edges∑
i∈U

∑
j∈U xi,j,1 = 2 and therefore as 2 < 3 the constraint is satisfied. For the invalid

tour on day k = 1, the number of edges
∑

i∈U
∑

j∈U xi,j,1 = 3. This violates the constraint

as the expression 3 < 3 is clearly false.

As there can be an exponential number of subsets for a given graph, it can be com-

putationally expensive to implement this constraint. For this reason, subtour relaxation

[67] is typically used as a method for reducing the impact of this constraint. The process

works by solving the linear integer programming problem without any SECs, where each

non-empty proper subset of the resulting solution is checked to determine if it violates the

SEC. For each subset that violates the SEC the corresponding SEC is added and a new

solution is generated, this process is repeated until the solution does not violate any SEC.

3

1
2

4

5

6

(a) The graph representation of a valid tour

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0 0 0 0 1

3 0 0 0 0 1 0

4 0 1 0 0 0 0

5 0 0 0 1 0 0

6 0 0 1 0 0 0

i ∈ V

Visited edges (X)

j ∈ V

(b) The visited edges X for the valid tour

Figure 3.6: The valid tour for day k = 2 given the example problem from Figure 3.1

The objective function (Equation 3.1) returns the total time taken for all tours. It

Day(k)
∑

i,j∈V
∑

k∈H(ti,j + sj)xi,j,k
∑

k∈H ti,(n+1)xi,(n+1),k Total tour time

1 14 1 15

2 16 1 17

3 17 2 19

Table 3.3: A table that shows the total time cost for the valid tours given in Figures 3.3a,
3.6a, and 3.7a
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(a) The graph representation of a valid tour

1 2 3 4 5 6

1 0 0 1 0 0 0

2 1 0 0 0 0 0

3 0 0 0 0 0 1

4 0 1 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 1 0 0

i ∈ V

Visited edges (X)

j ∈ V

(b) The visited edges X for the valid tour

Figure 3.7: The valid tour for day k = 3 given the example problem from Figure 3.1

works in a similar way to constraint 3.4 in that the final result is the sum of two terms,

where the first term calculates the time travelling to and servicing the service locations∑
i,j∈V

∑
k∈H(ti,j + sj)xi,j,k, and the second determines the time taken to return to the

depot
∑

k∈H ti,(n+1)xi,(n+1),k. The valid tour corresponds with the first day k = 1 of a

valid solution, as illustrated in Figures 3.6 and 3.7. Figure 3.6b is a representation of

visited edges X for day k = 2, with a visualisation given in Figure 3.6a. Figure 3.7b is

a representation of visited edges X for day k = 3, with a visualisation given in Figure

3.7a. Table 3.3 shows the total time each tour takes with the total for all tours being

15 + 17 + 19 = 51.

3.3 Tour generation mechanism for the PMPP

As the TSP is an NP-hard problem, extensions of the TSP (such as the Orienteering

problem, Periodic Travelling Salesperson Problem) tend also to be NP-hard [47, 99]. In

the special case of the PMPP where only a single day is considered, and each vertex must

be visited, then the PMPP can be viewed as a traditional Travelling Salesperson Problem

(TSP). As the TSP is NP-hard, our problem is therefore also NP-hard, and thus it is

desirable to find a heuristic algorithm that can provide practical solutions for this set of

problems. One method for developing a suitable algorithm for the PMPP is to modify a

mechanism for the TSP to accommodate the additional features of the PMPP. As described

in Chapter 2, a TSP heuristic algorithm can consist of a number of stages but requires a tour

generation stage, which is responsible for generating an initial tour that may be used as a

solution, or subsequently improved. Although a number of tour construction mechanisms
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exist for the TSP, they are not directly suitable for use in providing solutions for the

PMPP, as they do not take into account the two additional constraints that characterise

the PMPP. These two characteristics are: 1) the cost limit for each tour (R5); and 2) the

revisiting constraint for each of the service locations (R3).

It is not always possible to simply add a tour cost limit (R5) to a TSP, due to the fact

that if an optimal tour has a cost greater than this limit, then the constraint is violated.

For such scenarios, a desirable solution is one that selects a subset of vertices that can

maximise some objective function, such as maximising the number of locations visited.

However, for almost all tour generation mechanisms, an appropriate subset of vertices needs

to be identified in order to determine a valid tour, such that the resulting solution does

not exceed the tour cost limit. A possible solution to this is the successive augmentation

mechanism whereby an initial tour is generated consisting of an initial vertex, before a

new vertex is greedily added to the tour to improve the solution. This mechanism can be

modified to terminate once the addition of any further vertices would result in the violation

of the tour cost limit, and thus makes the modified successive augmentation mechanism

suitable for the TSP with a tour cost limit (R5).

The inclusion of the visit dependant revisiting constraint (R3) to the TSP is also

problematic due to the fact that the presence of vertices in earlier tours imposes constraints

on the selection of vertices for latter tours. For example, if service location i has a time

window of 3 (ri = 3), and that service location is only visited on day 1, then it needs to

be visited again within the following 3 days (i.e. on day 2, 3, or 4). The vertices that

can be added to each of the days of a tour can be referred to as the potential vertex

insertions. A possible method for adding such vertices to a partially computed tour is to

augment the tour by updating the potential vertex insertions after each vertex is selected

for a given tour. The successive augmentation mechanism can therefore also be used to

determine which of the potential vertex insertions should be selected for a tour that will

satisfy this constraint.

Using the successive augmentation mechanism poses a number of challenges that need

to be resolved for it to be used:

1. Initial partial tour - What vertex or vertices are used for the initial partial tour?

2. Selection - Which unvisited vertex should be selected for insertion into the partial

tour?
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3. Expansion - Between which two consecutive vertices in the partial tour should the

selected vertex be inserted?

A selection metric paired with an expansion metric is typically called a successive

augmentation procedure, such that different successive augmentation procedures may be

identified, with each consisting of a pairing of some selection criteria with an expansion

criteria. In our investigation, we explore the use of eight procedures commonly discussed

in the literature [76, 93, 45]. Each procedure, as well as their selection and expansion

criteria, is listed in Table 3.4.

The name for each procedure is generally given as a concatenation of the selection

criteria and the expansion criteria. For example the Nearest selection criteria identifies the

unvisited vertex that has the lowest-cost edge from a vertex in the partial tour, whereas

the Insertion expansion criteria inserts the selected vertex at the position between two

consecutive vertices that minimises the additional tour cost. Thus, the name used for

this combination is the Nearest Insertion procedure. We consider three possible expansion

criteria, each of which selects a different insertion position, which corresponds to an edge

between two vertices:

• Addition - If the selection criteria identifies a vertex in the partial tour, then the posi-

tion in the partial tour before or after the selected partial tour vertex that minimises

the additional tour cost is selected.

• Insertion - The position between two consecutive vertices that minimises the addi-

tional tour cost is selected.

• Neighbour - The position that is between the second to last vertex in the partial tour

and the last vertex is selected.

For the selection criteria, there are six separate unique metrics studied. The largest sum

selects a vertex with maximal sum of distances to all vertices in the partial tour, whereas

the smallest sum selects the vertex with the minimal sum of distances. The nearest simply

selects the vertex with the smallest (minimal) cost to one of the vertices in the partial

tour, whereas the farthest selects the vertex with the largest (maximal) cost to one of the

vertices in the partial tour. The cheapest selects the vertex that has the minimal additional

cost at any point in the partial tour, and the difference selects the vertex with the largest

difference between the cheapest and second cheapest insertions.
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In order to examine what modifications would need to be made to the successive aug-

mentation mechanism, we take a structured approach. We first examine how the mecha-

nism currently performs for the TSP to establish a baseline for comparison. We do this

through empirical evaluation in Section 3.4. Then we examine what modifications are re-

quired to deal with the TSP with each of the additional features separately, i.e. the TSP

with a tour cost limit (R5) and the TSP with the revisiting constraint (R3). The problem

that is closest to the TSP with a tour cost limit (R5) is referred to as the Orienteering

Problem (OP), and a discussion of the modification and the results of the empirical testing

is given in Section 3.5. In a similar way, a TSP with a revisiting constraint (R3) is referred

to as the Periodic Travelling Salesperson Problem (PTSP) and it’s modification and results

are presented in Section 3.6. Finally in Section 3.7 we present our proposed mechanism

to solve the PMPP which, takes the modifications from Sections 3.5 and 3.6 and adds

additional modifications to deal with the combination of both additional features.

3.4 A comparison of successive augmentation procedures for

the Travelling salesperson problem

In order to evaluate the effectiveness of modifications to the successive augmentation mech-

anism, a baseline of performance is first required, which we establish with an average case

empirical analysis of the selected successive augmentation procedures. These procedures

were presented in Section 3.3, and further highlighted in Table 3.4. As the successive aug-

mentation mechanism requires a selection and expansion criteria, grouped in the form of a

successive augmentation procedure, the similarities and differences between these criteria

can be used in order to identify why particular criteria outperform others in the context

of the TSP. In this section we present the results of executing these procedures on two

problem sets. The first of these is a synthetic problem set of complete euclidean graphs

where the x and y coordinate of each vertex are random values. These graphs range from

a size of 25 to 100 vertices, and for each problem size there are 1000 different problem

instances. The graph size was varied in order to examine the performance scalability of

the various criteria. The second problem set is based on real world topologies and are a

subset of the TSPLIB problem library [79]. The subset chosen was undirected complete

euclidean graphs with an edge weight type referred to in the library as ’EUC 2D’, as it

most closely matches our problem. The real world graphs vary in their number of vertices
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from 51 to 18512. The optimal tour cost for the synthetic problem set was found, and the

optimal tour cost for the real world data set is known and this information was used in

order to evaluate the performance of the procedures in terms of the optimal tour cost.

This section is structured as fellows, first we provide a detailed description of the suc-

cessive augmentation mechanisms in Section 3.4.1, with a discussion of how the mechanism

as well as the various selection and expansion criteria may be implemented. A full descrip-

tion of the experimental methodology adopted by this study is given in Section 3.4.2, with

subsections covering aspects of the methodology in greater detail. The explanation and

justification of the graph structure used for both of the problem sets is discussed in Section

3.4.2, with a description of the graph sizes for both the artificial and real world problem

sets is given in Section 3.4.2. The reasoning for the selection of a measuring metric called

percentage tour cost increase is described in Section 3.4.2. Lastly for the experimental

methodology in Section 3.4.2 we describe the technical setup, detailing the equipment and

languages used. Finally we present the results of the empirical analysis and a discussion

of those results in Section 3.4.3.

3.4.1 Description of the successive augmentation mechanism

The successive augmentation mechanism is a polynomial heuristic algorithm for the TSP.

We provide an algorithmic description of this mechanism in Algorithm 1. The mechanism

iteratively selects a currently unvisited vertex using some selection criteria and then inserts

it at some position within a partial TSP tour given some expansion criteria. The algorithm

takes in a set of all locations that must be visited and the depot location. For example,

given a set of vertices V = {1, 2, 3, 4, 5}, then the last depot is specified as the depot

D = {5} and the remaining locations are locations to visit L = {1, 2, 3, 4}. On line 1, the

algorithm instantiates an empty partial tour. A partial tour, starts at a depot location

and visits a subset of non-depot vertices before returning to the depot. An empty partial

tour therefore consists of the depot vertex and a self loop, for example P = {5, 5}. Other

initial tours can be used, such as a convex hull of the problem instance graph, however we

have not chosen that variant.

Between line 2 and 6, there is the main loop for the algorithm which encompasses

the selection and expansion of the tour. This loop terminates once there no longer are

vertices that need to be added to the tour, and therefore the tour visits all locations. On

line 3, the vertex is selected using the selection criteria. Each selection criteria will have
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a different implementation, however they all will iterate through each potential selection

and determine the associated score. A situation may occur where two or more potential

selections have the same score, and therefore a tie breaking condition is required in order to

determine which of those are chosen. For our implementation we have chosen the earliest

position in the set of vertices as the tie breaking condition, as it is unique to each vertex.

For example if the selection of vertex 2 and 4 had the same score, then vertex 2 would be

chosen as it has an earlier position in the set of vertices. Line 4 completes the selection

process by removing the selected vertex from the list of locations yet to visit.

Line 5 completes the iteration, by selecting the position within the existing partial tour

where the selected vertex will be inserted. The potential positions are after the first depot

instance and before the second depot instance, in this way a tour can always be traversed at

each iteration. The expansion criteria similarly assigns a score to each potential expansion

and a tie breaking condition may also be required for this. For our implementation we

have chosen to use the earlier position within the partial tour as the unique attribute. For

example if the position 3 and 7 have the same expansion score, then position 3 would be

selected.

Algorithm 1 Successive Augmentation Mechanism

Require: L, D
1: P ← {D,D}
2: while L ̸= {} do
3: Select vertex v from L using selection criteria
4: Remove v from L
5: Insert v into P using expansion criteria
6: end while

3.4.2 Experimental Methodology

In this section we describe the reasoning behind the experimental and implementation

decisions for the average case empirical analysis of successive augmentation procedures for

the TSP. The structure of the graphs used for the testing is described in Section 3.4.2.

The problem sizes for the artificial problem set, and the real world problem instances are

described in Section 3.4.2. Section 3.4.2 describes the metric used in order to evaluate the

performance of the procedures. The metric used compares the tour cost for each problem

instance against the optimal tour cost for that problem instance, therefore the optimal
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tour cost must be found. The description of the optimal solver used and the reasoning for

that is given in Section 3.4.2. Finally the technical details are given in Section 3.4.2.

Graph structure

The average case empirical analysis was carried out on two problem sets of complete

euclidean undirected graphs, with the last vertex of each graph being designated as the

depot. A valid tour in the context of the TSP is a Hamiltonian path; i.e. a path between

two vertices on a given graph that visits each vertex exactly once. If a graph is incomplete,

in that there exists a pair of vertices that are not directly connected with an edge, then when

generating a Hamiltonian path a situation may occur whereby it is not possible to travel to

an unvisited vertex without first travelling through a previously visited vertex. Although

a backtracking mechanism could be used, where the last decision is reverted and another

option selected to avoid this situation, a problem occurs in that the successive augmentation

mechanism does not have a backtracking mechanism. Given a graph any permutation of the

vertices are possible as output using the successive augmentation mechanism [78]. Given

an incomplete graph has at least one permutation that would not produce a valid tour;

complete graphs were instead chosen [40].

Although the original problem characterisation was given for a directed graph, for this

set of evaluations, an undirected graph was chosen as a majority of the selected procedures

were intended for the symmetric TSP, which in the context of the TSP refers to a undirected

graph [78]. For an undirected graph, the cost of travelling from vertex i to vertex j (ti,j)

is the same as travelling from vertex j to i (tj,i) [77]. The weight for each of the edges

corresponds to the euclidean distances between two vertices, the triangle inequality can

therefore be said to hold. This is because the cost of travelling from vertex i to vertex j

(ti,i) will be less than or equal to the cost of travelling from i to k and then to j.

A program called Concorde was used to obtain the optimal tour cost of each problem

instance, as discussed more detail in Section 3.4.2, and as this solver uses a particular

variant of the euclidean distance equation, this was used for the edge weights for the analysis

[21]. This particular edge weight type is called ’EUC 2D’ by Concorde, and returns an

integer distance between two coordinates [79]. This edge weight type was selected as it had

the most suitable selection of real world problem instances, as discussed further in Section

3.4.2. This variant of the euclidean equation uses the ’bankers rounding’ method, whereby

a value of 0.5 is rounded up and all others values are rounded to the nearest integer. For



48 Joshua Alcock

example, a value of 1.3 becomes 1, a value of 1.5 becomes 2, and a value of 1.7 becomes

2. If we represent the X coordinate of the first point with a and the Y coordinate as b,

then if we represent the X coordinate and Y coordinate of the second point as c and d

respectively, then we can describe this variant of the euclidean equation as Equation 3.10.

round((c− a)2 + (d− b)2) (3.10)

For the artificial problem set, each of the vertices has an X and Y coordinate, with

both of these values being a uniform random real number in the range of 0 to 100. This

range is arbitrary, and in previous empirical analyses various spacial sizes have been used

such as 0 to 100 by Gendreau et al. and 0 and 1 by Norbeck and Love [32] [62]. The range

used by Gendreau et al. was selected arbitrarily and is not linked to the range of vertices

used. As the coordinates for the synthetic problem set use arbitrary distance units, the

euclidean distance for this problem set also represent arbitrary distance units. This is also

true for the real world problem set, with each individual problem instance representing

either: miles, meters, etc and the units of the euclidean distance also representing that.

Problem instance sizes

For both of the problem sets the number of vertices is varied, in order to determine the effect

of this variable on the performance of the various procedures. The synthetic problem set

consists of 16 different graph sizes, starting with 25 vertices and increasing in increments of

5 vertices up to 100 vertices. 100 vertices was chosen as the maximum graph size as finding

the optimal tour cost using the exact TSP solver Concorde has a time cost associated with

it [21]. Given the equipment available this graph size was chosen, with a round value being

used in order to present a range that divides evenly given an increment of 5. The minimum

size of 25 was an arbitrary selection as it is a multiple of 5.

The most popular of the problem set libraries for the TSP is TSPLIB, with a variety

of sub-libraries for variants of the TSP such as the Capacitated vehicle routing problem.

Symmetric and asymmetric in the context of the TSP refer to undirected and directed

graphs respectively [78]. As undirected complete euclidean graphs are the most suitable

for this empirical analysis, the symmetric sub-library of problems was selected which has

a total of 109 problem instances, that vary in size between 14 and 85900 vertices. These

problem instances can be further grouped into set of problem instances based on their edge

weight type, for which each problem instance may only have one type. These edge weight
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types describe the method by which the edge weight should be generated for the problem

instance.

Two criteria were identified as desirable for a real world problem set, which are that

the edge weight type for the problem is the euclidean distance, and that the number of

problem instances was of a sufficient size, which was arbitrarily determined to be 16 or

more vertices as that is the size of the synthetic data set. The first group of problem

instances is that with the edge weight type ’GEO’, and refers to an equation that takes

into account the curvature of the earth in order to accurately give the euclidean distance

between two points. This edge weight type may differ significantly from the euclidean

distance on an assumed flat plane, and only has 14 problem instances and was therefore

deemed unfit for our purposes. The second group of problem instances has the edge weight

type ’ATT’, which refers to a special distance function that is used for 2 problem instances,

and is therefore has a problem size too small for our purposes.

The ’EXPLICIT’ edge weight type is the third group, and specifies the distance be-

tween each pair of vertices in the form of a table. These problems are not necessarily

representative of an undirected graph, and the distance between two vertices may be dif-

ferent between the two directions. There are 11 problem instances and a majority have

between 17 and 58 vertices. As this problem group is not symmetric and have a compar-

atively small number of vertices, this edge weight type was therefore not selected. The

fourth group uses the ’CEIL 2D’ edge weight type, which is a variant of the euclidean

distance that returns an integer ceiling value for the distance. There is only however 4

instances that use this edge weight type which is not a significant enough number of prob-

lem instances for our purposes. The final edge weight type is ’EUC 2D’, which is a variant

of the euclidean distance equation that returns an integer value using banker’s rounding.

There are 78 problem instances that use this edge weight type, and we believe that this is

a significant sample size and is therefore chosen. The euclidean distance method for the

synthetic data set was modified after this selection in order to ensure both data sets are as

similar as possible. A list of these instances is provided in Table A.1, which can be found

in Appendix A.

Metric for comparison

In order to evaluate the average case performance of the selected successive augmentation

procedures, the resulting tour costs must be compared using a comparison metric. As the
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effect of varying the number of vertices is the variable being examined for the various pro-

cedures, the average performance of each procedure for each graph size should be found.

There are three methods in the literature for comparing the tour cost performance of suc-

cessive augmentation procedures. The first is to compare the tour costs directly, which

simply requires the result of executing the procedure on a problem instance and does not

require additional values such as the optimal tour cost. The tour cost between different

problem instances can vary significantly, for example consider two problem instances with

the same number of vertices. For the first instance all of the vertices are tightly clustered

together and for the second they are spread out significantly far apart. The first instance

would in general result in shorter tours than the second instance and therefore comparing

the tour costs for these instances would not be directly analogous. This method is how-

ever suitable for comparing single problem instances, for example using a TSP problem

instance library. This method is also suitable for use when computing the optimal tour

cost would be too computationally expensive and therefore comparing this value would be

the only suitable metric. An example of use of this method can be found in the work of

T. C. Raymond, who examined the tour cost performance for their proposed method and

presented the: worst, average, and best tour costs. Another example can be found in the

work of of Gendreau et al. , who carried out an average case empirical analysis on their

proposed successive augmentation procedure for problem sizes of 500 vertices which given

their resources was too computationally complex to compute [32].

The second method is an extension of the first method, where the tour cost is instead

expressed in relation to the optimal tour cost for a problem instance. This has the advan-

tage of normalising the tour cost across difference problem instances and different problem

sizes. For example, if a problem instance has an optimal tour cost of 100 and a heuristic

algorithm tour cost of 120, then the difference is 20. For another problem instance, if the

optimal tour cost is 1000 and the heuristic algorithm tour cost is 1200, then the difference

is 200. In both of these examples, the heuristic tour cost is 1.2 times that of the optimal

tour cost, therefore by presenting the difference as an increase over the optimal tour cost

as a ratio of the optimal tour cost the problem sizes can be normalised. This does however

require that the optimal tour cost is known, as finding this value is NP-hard and a succes-

sive augmentation mechanism runs in polynomial time then there will be a problem size

that will be too computationally expensive to compute in a reasonable time [47, 99]. This

method has been applied by Huang and Yu in their survey of tour construction mechanisms

for the TSP, where this was the method used to compare the performance of the various
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mechanisms. [45]

The final method is an extension of the second method, whereby the value is not

expressed as a result but is instead given as a percentage over the optimal tour cost. For

example, the ratio of 1.2 would be expressed as 20%, as in the heuristic tour cost is an

additional 20% of the optimal tour cost. This is is expressing the same result as a ratio,

with the same advantages and disadvantages, however it is subjectively more readable.

This method has been used by a variety of authors, and is referred to by several different

names. Glover et al. referred to this method as ’Average excess over optimal’ [33], with

Brest and Zerovnik instead calling this method ’Percent from optimal’ [7]. Xiang et al.

calls this method ’Percent excess’ [101], finally with Ursani and Corne referring to it as

’Percentage difference from the optimal value’ [93].

Optimal solver

As discussed in Section 3.4.2, several existing surveys of tour construction mechanisms have

used the Percentage Tour Cost Increase (PTCI) as a comparison metric, and this is typically

used on problem instances from TSPLIB where the optimal tour cost is known. For the

artificial data set we have chosen to use this same metric in order to allow for comparisons

to be more directly applicable between each problem instance in the real world problem

set and the artificial problem set. In order to determine the optimal tour cost, an exact

TSP algorithm must be used for which there are a wide variety in the literature [99]. A

popular existing solution for this is the state-of-the-art exact TSP solver Concorde [21].

This is a freely available solver, and uses a Chained Lin Kernighan algorithm to generate

an initial solution, which is then improved using the 3-opt procedure [87]. From this initial

solution, the remaining problem space is explored using a branch and bound mechanism

[48]. The Concorde solver takes in a ’.tsp’ file and outputs the result into the terminal.

The terminal output was piped into a text file in order to store the results.

Technical setup

Two different machines were used for the empirical evaluation. The first machine used was

a Windows 10 laptop with an Intel Core i7-8750H CPU @ 2.20GHz with 16GB of RAM.

This machine was used in order to generate the graphs and execute the test frame for the

empirical evaluation. The operating system was upgraded to Windows 11 in between the

graph generation and empirical evaluation. The second machine used was an Ubuntu 20.04
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Procedure name Summary PTCI (%) Standard deviation

Difference insertion 4.069 0.892

Largest sum insertion 8.499 2.997

Farthest insertion 8.696 2.877

Cheapest insertion 16.213 1.614

Nearest insertion 19.290 1.917

Smallest sum insertion 20.725 3.155

Nearest neighbour 23.308 1.678

Nearest addition 25.258 2.646

Table 3.5: A table showing the mean tour cost and standard deviation of the successive
augmentation procedures, ranked from the smallest Percentage Tour Cost Increase (PTCI)
to the largest for the artificial problem set

laptop with an Intel Celeron Dual-core T3300 CPU @ 2.00GHz with 2GB of RAM. The

optimal tour costs were found using the Concorde TSP solver, and this was executed on

the second machine.

The graph generation code was written using Python 3.7, with the co-ordinates for

each vertex generated using a random number generator. The seed was generated from

the current time (measured in milliseconds) when the code was executed. The graphs were

saved in the ’.tsp’ file format [80], with the co-ordinates for the graph specified instead of

the distance matrix and the edge type being specified as ’EUC 2D’. The test frame was

also written in Python 3.7, and the tour and tour cost were saved for each of the procedures

as a ’.dat’ file for each of the problem instances. A test frame for Concorde was written in

Bash, and passes the ’.tsp’ file for each

3.4.3 Results and discussion

The results of the average case empirical analysis for the artificial problem set is presented

in Figure 3.8, and the performance of each procedure is summarised in Table 3.5. Each

point in Figure 3.8 represents the mean Percentage Tour Cost Increase (PTCI) across

1000 problem instances for the corresponding graph size. Table 3.5 presents the mean of

these points for each of the procedures, which we will call the summary PTCI, and also

presents the standard deviation of those points. The results for the real world problem set

is presented in Figure 3.9, with the performance of each procedure summarised in Table 3.6.

The real world problem set examines the performance for a single problem instance, and
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Figure 3.8: A mean Percentage Tour Cost Increase (PTCI) comparison of the selected
successive augmentation procedures for the artificial problem set

Procedure name Summary PTCI (%) Standard deviation

Difference insertion 7.477 4.588

Farthest insertion 18.060 7.636

Cheapest insertion 18.302 4.712

Largest sum insertion 18.576 7.885

Nearest insertion 22.173 4.526

Nearest neighbour 25.179 5.537

Smallest sum insertion 26.748 5.688

Nearest addition 32.087 6.917

Table 3.6: A table showing the mean tour cost and standard deviation of the successive
augmentation procedures, ranked from the smallest Percentage Tour Cost Increase (PTCI)
to the largest for the real world problem set
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Figure 3.9: A mean Percentage Tour Cost Increase (PTCI) comparison of the selected
successive augmentation procedures for the real world problem set

therefore each point in Figure 3.9 is not representative of the mean PTCI for that graph

size, as in Figure 3.8. The results are therefore more effected by the problem instance’s

topology and more variance between the performance of graph sizes. Table 3.6 presents

the results in a similar way to Table 3.5, with a summary PTCI and standard deviation.

We present the results in four groups, based on the similarities and differences between the

procedures as described in Section 3.3. These four groups are presented in order of their

best performing procedure, as: Difference insertion and Cheapest Insertion; Largest Sum

Insertion and Farthest Insertion; Nearest Insertion and Smallest Sum Insertion; and finally

Nearest Neighbour, Nearest addition, and Nearest Insertion. With Nearest Insertion being

discussed twice, the second time only to compare the performance of the expansion criteria.

The best performing procedure can be classified in several different ways, however the

most evident is that with the smallest summary PTCI across the problem sets, which is

Difference Insertion. This procedure performs best for both the artificial and real world

problem set, with a summary PTCI of 4.069% for the artificial problem set and 7.477% for

the real world problem set. For the artificial problem set, the summary standard deviation

was also the smallest of all the procedures tested with 0.892. Note that all of the summary
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standard deviation for all procedures are based on results for a single problem instance

for each graph size, and therefore cannot be compared directly. The summary standard

deviation for the real world problem set is the second best, being 0.062 larger than the

best performing procedure. As discussed in Section 3.3 Difference Insertion is an extension

of Cheapest Insertion as it uses the difference between the smallest and second smallest

insertion cost as the selection criteria.

The Cheapest Insertion procedure was the fourth best performing procedure for the

artificial problem set with a summary PTCI of 16.213%, and 18.302% for the real world

problem set. The summary standard deviation for the artificial problem set is 1.614, and is

4.712 for the real world problem set. Difference Insertion therefore performs approximately

12% better than Cheapest Insertion for the artificial problem set and approximately 11%

better for the real world problem set, in terms of summary PTCI. As the expansion criteria

is the same for both, we can conclude that the extended selection criteria of Difference

Insertion accounts for the improvement in performance. Difference Insertion also has a

smaller standard deviation, with it being almost half that of Cheapest Insertion for the

artificial problem set and marginally smaller for the real world problem set, which shows

that it consistently produces tours with a smaller cost.

The second best performing procedure by summary PTCI is Largest Sum Insertion,

with 8.499% for the artificial problem set, and is the fourth best performing procedure with

18.576% for the real world problem set. The summary standard deviation of Largest Sum

Insertion for the artificial problem set is 2.997, and 7.885 for the real world problem set.

Rosenkrantz et alḋetermined that selection metrics that select an unvisited vertex that is

farthest away tended to generate good quality tours, due to a process of generating an

outline of a tour first and then filling in the remaining vertices given more information and

therefore being closer to optimal [83]. This strategy is also used by the Farthest Insertion

procedure, which was the third best performing procedure with the artificial problem set

with a summary PTCI of 8.696% and was the second best performing procedure for the

real world problem set with 18.060%. The summary standard deviation for the artificial

problem set is 2.877, and 7.636 for the real world problem set.

The performance of both of these procedures is similar for both problem sets, with

Largest Sum Insertion outperforming Farthest Insertion by only 0.197% for the artificial

problem set, and conversely Farthest Insertion outperforming Largest Sum Insertion by

0.57%. Farthest Insertion has a marginally smaller standard deviation, with a difference

of 0.12 for the artificial problem set and 0.249 for the real world problem set. As Largest
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Sum Insertion performs better than Farthest Insertion for the artificial problem set and

performs worse for the real world problem set, this indicates that a selection criteria that

uses multiple edges using this strategy performs better for graphs without the clustering

seen in some real world problems instances. This strategy performs better than the cost

based procedure Cheapest Insertion for the artificial problem set and similarly for the

real world problem set, and outperforms the closest selection strategy of the rest of the

procedures.

Nearest Insertion is the fifth best performing procedure for both problem sets, with

a summary PTCI of 19.29% for the artificial problem set and 22.173% for the real world

problem set. The summary standard deviation of the artificial problem set is 1.197 and

for the real world problem set is 4.526. This procedure uses a strategy of identifying

the unvisited vertex that is closest to the partial tour and then inserts that vertex at

the position in the tour with the smallest additional cost. This particular strategy is

also shared by Smallest Sum Insertion, which is the sixth best performing procedure for

the artificial problem set with a summary PTCI of 20.725%, and was the seventh best

performing problem set with 26.748%. The standard deviations for the artificial problem

set is 3.155, and for the real world problem set is 5.688. Nearest Insertion outperforms

Smallest Sum Insertion for both problem sets, and has a significantly smaller standard

deviation for the artificial problem set, with it being approximately half of Smallest Sum

Insertions. In comparison with Farthest Insertion and Largest Sum Insertion, the use of

multiple edges has a negative effect on performance for this strategy.

This final group of procedures use the same selection criteria of identifying the unvisited

vertex that is closest to the partial tours but have a different expansion criteria. The

Nearest Neighbour procedure is the seventh best performing procedure for the artificial

problem set with a summary PTCI of 23.308%. It was however the sixth best performing

for the real world problem set with 25.179%. The standard deviation for the artificial

problem set is 1.678, and for the real world problem set is 5.537. The worst performing

procedure procedure across both problem sets is Nearest Addition, with a summary PTCI

of 25.258% for the artificial problem set and 32.087% for the real world problem set. The

final procedure in this group, Nearest Insertion, was discussed in detail in the third group.

For both the artificial and the real world problem set the stratification of performance is

consistent between these procedures, with the insertion expansion criteria outperforming

the neighbour criteria, which in turn outperforms the addition criteria. The Neighbour

expansion criteria necessitates the modification of the selection criteria to only take into
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account the edge from the second to last position in the tour and therefore greedily selects

the nearest unvisited vertices from the last selection. In this way it aims to minimise

the edge travelling to that vertex and away from that vertex, which appears to be a

more successful strategy than selecting the cheapest insertion cost from either side of the

selection.

3.5 A comparison of successive augmentation procedures for

the Orienteering problem

In this section we present a modification to the successive augmentation mechanism to

accommodate a tour cost limit (R5) for the TSP, and an average case empirical analysis

for this mechanism. In Section 3.4, we presented the average case empirical analysis for the

standard successive augmentation mechanism, and this study will be directly comparing

the performance of the selection and expansion criteria against the baseline of this previous

study. As discussed in the introduction for Section 3.3, the TSP with a tour cost limit (R5)

may be formulated as several different existing problems. We have chosen to formulate

this problem as an Orienteering problem with homogeneous rewards. The procedures for

this empirical analysis are presented in Section 3.3, and further highlighted in Table 3.4.

We present the results of executing these procedures using the modified mechanism on the

same two problem sets from Section 3.4. Using the optimal tour cost for each problem

instance as the tour cost limit, the number of vertices visited by each tour is used as the

comparison metric. We independently examine two variables, the first being the number of

vertices in order to examine the scalability of the procedures with this modified mechanism.

The second variable is the tour cost limit, which we vary from 10% of the optimal tour

cost to 100% of the optimal tour cost in order to examine how the cost of each procedure

increases as the number of possible vertices is reduced.

This section is structured as follows, first we describe the modifications to the successive

augmentation mechanism in Section 3.5.1, with a discussion of the justification for these

modifications. A description of the experimental methodology for this study is provided

in Section 3.5.2. As the same problem instances are used in this study as in the study

from Section 3.4, the justification for the type of graph is given in Section 3.4.2, and

the reasoning for the selection of the problem instances is described in Section 3.4.2. A

different metric for comparison was used however, and this is described in Section 3.5.2.
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The motivation for choosing the range of tour cost limits is examined in Section 3.5.2.

As the same problem instances are used in this study as the former, the same optimal

tour costs are used, and was found using the same method outlined in Section 3.4.2. The

technical set up is similar to that described for the previous study, however the differences

are outlined in Section 3.5.2. Finally we present the results of the empirical analysis, and

a discussion of those results in Section 3.5.3.

3.5.1 Modifications to the successive augmentation mechanism for the

tour cost limit

In Section 3.4.1 a description of the successive augmentation mechanism was provided with

an algorithm description in Algorithm 1. In previous work in the literature, modifications

have been proposed to the mechanism, however they have been discussed specifically in

the context of a single successive augmentation procedure, typically cheapest insertion.

In this section we describe the selected modification from the literature and describe this

mechanism in general non-procedure specific manner, with the algorithm itself described

in Algorithm 2.

An example of a variant of the TSP with a tour cost limit is the Orienteering problem.

As discussed previously in Chapter 2, a majority of heuristic algorithms for the OP use

a successive augmentation procedure for the tour generation stage. For the five heuristics

described by Vansteenwegen et al. [95], all use a modified version of a successive augmen-

tation mechanism. Tsiligirides [92] proposed a modification to the successive augmentation

mechanism where a monte carlo method was employed. Each vertex at each position was

assigned a probability of selection based on it’s additional cost until no further vertices

may be added to the partial tour. Golden et al. [36] proposed a modification whereby

the mechanism would insert the most suitable vertex, given the selection criteria, into the

partial tour until no further vertices could be inserted. This was described by Golden et

al. in relation to the cheapest insertion procedure. Ramesh and Brown [75], Chao et al.

[14], and Gendreau et al. [32] all use Golden et al.’s mechanism for the cheapest insertion

procedure.

The algorithm takes in a set of all locations that must be visited and the depot location.

For example, given a set of vertices V = {1, 2, 3, 4, 5}, then the last depot is specified as the

depot D = {5} and the remaining locations are locations to visit L = {1, 2, 3, 4}. On line 1,

the algorithm instantiates an empty partial tour. A partial tour, starts at a depot location
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Algorithm 2 Modified Successive Augmentation Mechanism for a Tour Cost Limit

Require: L, D
1: P ← {D,D}
2: finished← False
3: while finished ̸= True do
4: bestCost = Null
5: bestV = Null
6: for each v in L do
7: if Selection criteria cost of v is better than bestCost then
8: additionalCost ← Expansion cost of v given the expansion criteria
9: if cost(P ) + additionalCost < Q then

10: bestCost← selection criteria cost of v
11: bestV ← v
12: end if
13: end if
14: end for
15: if bestV ̸= Null then
16: Insert v into P using expansion criteria
17: Remove v from L
18: else
19: finished← True
20: end if
21: end while
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and visits a subset of non-depot vertices before returning to the depot. An empty partial

tour therefore consists of the depot vertex and a self loop, for example P = {5, 5}. Other

initial tours can be used, such as a convex hull of the problem instance graph, however we

have not chosen that variant.

On line 2, a variable finished is instantiated with the flag False. This variable is

used in order to determine when vertices can no longer be added to the partial tour, and

therefore that process is finished. Between lines 3 and 20, there is the main loop for the

algorithm which encompasses the selection and expansion of the tour. This loop terminates

when the previously discussed finished flag is set to true. Line 4 instantiates the bestCost

local variable, which holds the current best cost for the selection criteria. A selection

criteria evaluates a potential vertex and assigns a cost based on the specific criteria, with

the best performing of these being assigned to this variable. Line 5 instantiates the bestV

local variable, which holds the vertex with the best cost given the selection criteria.

Between lines 6 and 14, there is a loop that iterates through each of the currently

unassigned vertices from the set L. Each of these vertices is assigned to the local variable

v. Between lines 7 and 13, there is an if statement that determines if the selection criteria

evaluates vertex v to be a better selection than the existing best cost. A selection criteria

may minimise or maximise a metric, which is why this statement determines the best

instead of the least or largest of a selection criteria. Line 8 occurs if a vertex v has the

currently best known selection criteria cost, and assigns the expansion cost of that vertex

to the local variable additionalCost, given the expansion criteria. Between lines 9 and 12,

there is an if statement that determines if the vertex can be added to the tour without

exceeding the tour cost limit. cost(P ) refers to the current cost of the partial tour at

the point where the vertex v may be added, and this in combination with additionalCost

represent the cost of the tour is vertex v is added to the partial tour. Line 10 occurs if the

vertex being added to the partial tour would not violate the tour cost limit, and the new

bestCost is found. Line 11 similarly occurs in the same situation and the bestV variable is

assigned the vertex with the best selection criteria cost that does not violate the tour cost

limit. Between lines 15 and 20

3.5.2 Experimental Methodology

In this section we explain our reasoning behind the experimental and implementation

decisions of the average case empirical analysis discussed in Section 3.5. The same graph
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structure and problem instances from the empirical analysis shown in Section 3.4 are used

in this empirical analysis, and a discussion of the graph structure is provided in Section

3.4.2, with a description of the problem instances given in Section 3.4.2. A description of

why the specific tour cost limits were chosen is given in Section 3.5.2 As the same problem

instances are used, the same optimal tour cost values can be used, and therefore was

found previously with the optimal solver described in Section 3.4.2. These same problem

instances were used in order to allow for a direct comparison between the TSP empirical

analysis and this empirical analysis. Section 3.5.2 describes the reasoning for using the

selected comparison metric. Finally the technical details that differ from the previous

empirical analysis is given in Section 3.4.2.

Metric for comparison

In Section 3.4.2 the Percentage Tour Cost Increase (PTCI) metric was selected as the most

suitable for evaluating the effectiveness of a tour in the context of the TSP. When a tour

limit is introduced, this metric is no longer suitable for evaluating performance as two tours

for the same problem instance are capped by this limit. The opposite of the optimal tour

cost is the maximal tour cost, which is the tour that visits each of the locations exactly

once, starting and ending at the home depot, where the cost is maximised [2]. There are

three options for how the tour limit can relate to the maximal and optimal tour costs.

1. If the tour cost limit is higher than the maximal tour cost, then it is not possible

that the tour cost limit will cap the length of a tour.

2. If the tour cost limit is lower than the maximal tour cost but higher than the optimal

tour cost, then a situation may occur where only a subset of the vertices can be

visited.

3. If the tour cost limit is lower than the optimal tour cost then it is guaranteed that

only a subset of vertices may be visited.

The first option can be reduced to the standard TSP, and therefore the PTCI would be

the most suitable metric. For the second option, the closer the tour cost limit is to the

maximal tour cost, the more likely that the resulting tour will visit all of the vertices,

however the closer the tour cost limit is to the optimal tour cost, the more likely that only

a subset of vertices will be visited in the resulting tour. For example, if the maximal tour



62 Joshua Alcock

cost for a problem instance is 80, and the tour cost limit is 40 then both tour A and B

may both have a tour cost of 40. The use of any metric discussed in Section 3.4.2 would

therefore not be suitable as they are comparing tour costs that may not have a difference.

The two tours may differ only in the number of vertices visited, so for the example given

before, tour A visits 20 vertices and tour B visits 15 vertices. In this case tour A would

be the better tour as more vertices are visited within the tour, and the number of vertices

can be used as a comparison metric. Option 3 guarantees that a subset of vertices are

visited and in this case the number of vertices would be the most suitable comparison

metric. As the goal of this empirical analysis is to examine the effect of the modification

of the successive augmentation mechanism, using this option ensures that the modified

mechanism is examined.

Tour cost limits examined

Different procedures use different strategies in order to build a tour, and by varying the

tour cost limit, the performance during different portions of the tour building process can

be examined. There are three potential ranges for a tour cost limit in relation to the

maximum tour cost and optimal tour cost, as detailed in Section 3.5.2. When the tour

cost limit is less than the optimal tour cost, the mechanism for determining which vertices

will be visited is always engaged during the tour building process, and therefore this is

the range chosen. the specific range value chosen was between 10% of the optimal tour

cost to 100% of the optimal tour cost, increasing in intervals of 10%, giving a total of 10

different tour cost limit percentages. A small scale experiment was carried out in order

to determine which interval would be appropriate for showing a noticeable different in

performance. This experiment used 10 problem instances for each graph size and aimed

to find which interval showed a minimum change of 3% number of vertices visited. It

was found that 10% showed the appropriate amount of change. As 10% was the smallest

possible value given this interval, it was chosen as the starting value, and 100% was chosen

as it is the highest value it could be in comparison with the optimal tour cost. For 100%

there is a possibility that the subset determining mechanism will not be required, however

in practise this did not occur.



Chapter 3. Periodic Maintenance Person Problem 63

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of vertices

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
Pe

rc
en

ta
ge

 o
f v

er
tic

es
 v

isi
te

d

Nearest Addition
Nearest Insertion
Nearest Neighbour

Farthest Insertion
Cheapest Insertion
Difference Insertion

Largest sum Insertion
smallest sum Insertion

Figure 3.10: A percentage of vertices visited comparison of the selected successive aug-
mentation procedures for the artificial problem set, varying the number of vertices

Technical setup

A portion of the technical work was carried out during the TSP average case empirical

analysis, and that technical work was detailed in Section 3.4.2. The graphs and their

associated optimal tour costs were generated in this previous empirical analysis. The test

frame was written using Python 3.7, and took in the graphs in the ’.tsp’ file format and

generated a tour for each procedure, for each graph, for each tour cost limit. The resulting

tours and tour costs were saved using the ’.dat’ format.

3.5.3 Results and discussion

In this section we present the results of the average case empirical analysis for the modified

successive augmentation procedure with a tour cost limit constraint. Two distinct problem
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Procedure name Summary percentage vertices visited (%) Standard deviation

Cheapest insertion 51.669 1.092

Nearest neighbour 51.261 0.510

Nearest insertion 49.971 1.219

Smallest sum insertion 48.961 1.897

Nearest addition 48.295 1.503

Difference insertion 46.619 1.523

Farthest insertion 43.225 0.185

Largest sum insertion 41.827 0.631

Table 3.7: A table showing the summary percentage of vertices visited and standard de-
viation of the successive augmentation procedures, varying the number of vertices, ranked
from the largest percentage of vertices visited to the smallest for the artificial problem set
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Figure 3.11: A percentage of vertices visited comparison of the selected successive aug-
mentation procedures for the artificial problem set, varying the tour cost limit
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Procedure name Summary percentage vertices visited (%) Standard deviation

Cheapest insertion 51.669 27.277

Nearest neighbour 51.261 27.628

Nearest insertion 49.971 26.456

Smallest sum insertion 48.961 25.707

Nearest addition 48.295 25.368

Difference insertion 46.619 30.299

Farthest insertion 43.225 31.404

Largest sum insertion 41.827 32.381

Table 3.8: A table showing the summary percentage of vertices visited and standard devi-
ation of the successive augmentation procedures, varying the tour cost limit, ranked from
the largest percentage of vertices visited to the smallest for the artificial problem set
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Figure 3.12: A percentage of vertices visited comparison of the selected successive aug-
mentation procedures for the real world problem set, varying the number of vertices
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Procedure name Summary percentage vertices visited (%) Standard deviation

Cheapest insertion 49.497 4.737

Nearest neighbour 49.303 4.246

Nearest insertion 47.559 4.217

Smallest sum insertion 44.798 4.970

Nearest addition 44.573 4.761

Farthest insertion 40.894 4.318

Largest sum insertion 40.878 5.073

Difference insertion 40.549 6.174

Table 3.9: A table showing the summary percentage of vertices visited and standard de-
viation of the successive augmentation procedures, varying the number of vertices, ranked
from the largest percentage of vertices visited to the smallest for the real world problem
set
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Figure 3.13: A percentage of vertices visited comparison of the selected successive aug-
mentation procedures for the real world problem set, varying the tour cost limit
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Procedure name Summary percentage vertices visited (%) Standard deviation

Cheapest insertion 49.497 26.135

Nearest neighbour 49.303 26.181

Nearest insertion 47.559 25.263

Smallest sum insertion 44.798 23.420

Nearest addition 44.573 23.447

Farthest insertion 40.894 28.744

Largest sum insertion 40.878 29.154

Difference insertion 40.549 29.787

Table 3.10: A table showing the summary percentage of vertices visited and standard
deviation of the successive augmentation procedures, varying the tour cost limit, ranked
from the largest percentage of vertices visited to the smallest for the real world problem
set

sets were used, the artificial and real world. For both of these problem sets, the number of

vertices and the tour cost limit percentage was varied independently so their effect on the

procedure can be examined. The results for the artificial problem set varying the number of

vertices is presented in Figure 3.10, and the performance of each procedure is summarised

in Table 3.7. For each graph size and tour cost limit combination there are 1000 problem

instances, and a mean number of vertices visited is found for each combination, which we

call the combination summary. Each point in Figure 3.10 represents the mean value for

each combination summary with the same number of vertices, and therefore summarises

the performance for that graph size. In Table 3.7 two values are presented for each of the

procedures. The first is the summary percentage vertices visited which represents the mean

value for all points in Figure 3.10 for a procedure. The second is the standard deviation

across the points in Figure 3.10. The results for the artificial problem set varying the tour

cost limit percentage is presented in Figure 3.11, and the performance for each procedure

is then summarised in Table 3.8. Each point in Figure 3.11 represents the mean value

for each combination summary with the same tour cost limit. Table 3.8, in a similar

way to Table 3.7, summarises the performance for each procedure with both the summary

percentage vertices visited and the standard deviation for Figure 3.11. The summary

percentage visited is the same between Table 3.7 and Table 3.8 for each procedure, and

the information is repeated for the readability of the tables.

For the real world problem set, the results for varying the number of vertices is presented

in Figure 3.12, and the performance of each procedure is summarised in Table 3.9. As there
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is only a single instance for each vertex size, there is a single tour for each tour cost limit.

Each point in Figure 3.12 represents the mean value for the number of vertices visited for

that graph size across the tour cost limits. Table 3.9 presents the summary number of

vertices visited and standard deviation for each of the procedures in Figure 3.12. For the

real world problem set, the results for varying the tour cost limit is presented in Figure

3.13, and the performance of each procedure is summarised in Table 3.10. Each point in

Figure 3.13 represents the mean value for that tour cost limit for each of the graph sizes

in the problem set. In Table 3.10, presents the summary number of vertices visited and

standard deviation for each of the procedures in Figure 3.13. In a similar way to the tables

for the artificial problem set, Table 3.9 and Table 3.10 have the same summary percentage

vertices visited for each procedure, repeated for readability.

We present the results in four groups, based on the similarities and differences between

the procedures as described in Section 3.3. These four groups are presented in order of

their best performing procedure, as: Difference insertion and Cheapest Insertion; Nearest

Neighbour, Nearest addition, and Nearest Insertion; Nearest Insertion and Smallest Sum

Insertion; and finally Largest Sum Insertion and Farthest Insertion. With Nearest Insertion

being discussed twice, the first time only to compare the performance of the expansion

criteria.

The best performing procedure in terms of having the largest number of vertices visited

for both the artificial and real world problem sets is the Cheapest Insertion procedure. The

the artificial problem set the summary number of vertices visited is 51.669%, and is 49.497%

for the real world problem set. The performance of all procedures, when varying the number

of vertices for the artificial problem set, is consistent across the number of vertices, which

can be seen by the small standard deviation of 1.092. When varying the tour cost limit,

the performance of the Cheapest Insertion procedure has an average increase of 8.049%

for each increase of 10% to the tour cost limit. The performance of the procedures while

varying the number of vertices for the real world problem set varies significant between

problem instances, which can be accounted for by the different topologies of the graphs.

This results in a standard deviation of 4.737. The performance of cheapest insertion when

varying the tour cost limit for the real world problem set is also consistent throughout the

tour cost limits, with an average increase of 7.730% for each increase of 10% to the tour

cost limit.

The difference insertion procedure was the 6th best performing procedure in terms

of summary number of vertices visited for the artificial problem set, with 46.619%, and
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the 8th best performing procedure for the real world problem set using the same metric,

with 40.549%. As previously discussed, the performance when varying the number of

vertices for the artificial problem set is consistent across the number of vertices, with

a standard deviation of 1.523. The performance of the difference insertion procedure

under performs on average in comparison with cheapest insertion due to it’s performance

with smaller tour cost limits as a percentage of the optimal. For a tour cost limit of

10%, different insertion performs 0.698% worse than cheapest insertion with regards to

the combination summary. The performance of difference insertion becomes progressively

worse by comparison to cheapest insertion until a tour cost limit of 50%, where it is 12.587%

worse. From that point on-wards the performance is still worse, but the gap in performance

closes until a tour cost limit of 90% where the performance improves so difference insertion

outperforms cheapest insertion by 1.785%. This trend continues with a tour cost limit of

100% having an average performance improvement of 6.549% between different insertion

and cheapest insertion. This indicates that the difference insertion procedure initially

creates a more expensive tour, then it fills in the remaining vertices in more optimal

positions than cheapest insertion, resulting in a cheaper tour. For the real world problem

set, the summary percentage vertices visited is 40.549%, which is approximately 9% worse

than using cheapest insertion. The standard deviation for varying the number of vertices

is 6.174, which is the highest of any of the procedures examined for the real world problem

set. For varying the tour cost limit the procedure follows a similar pattern to the artificial

problem set, starting with a 5.078% worse performance with a tour cost limit of 10% when

compared to cheapest insertion. The performance decreases until a tour cost limit of 50%

where the gap is 15.947%. This then improves until a tour cost limit of 100% where the

difference insertion produces a 3.915% improvement on cheapest insertion.

The second best performing procedure for both of the problem sets was nearest neigh-

bour, with a summary percentage vertices visited of 51.261% for the artificial problem

set, and 49.303% for the real world problem set. When varying the number of vertices

for the artificial problem set, the performance of the procedure was consistent and has a

standard deviation of 0.510, which is the second lowest. When varying the tour cost limit,

the procedure has an average increase of performance of 8.032% for each increase of 10%

to the tour cost limit. For the real world problem set, varying the number of vertices, the

standard deviation was the second smallest with 4.246. For varying the tour cost limit,

the increase was similarly linear with an average increase of 7.778% for every increase of

10% to the tour cost limit.



70 Joshua Alcock

The third best performing procedure for both the artificial and real world problem

sets was Nearest Insertion, with a summary percentage vertices visited of 49.971% and

47.559% respectively. When varying the number of vertices for the artificial problem

set, the performance of the procedure is consistent across the various graph sizes, with

a standard deviation of 1.219, which is the 5th best performing. When varying the tour

cost limit, the performance increases consistently in a linear manner. There is an average

increase in the mean number of vertices visited of 7.828% for a 10% increase in the tour cost

limit. For the real world problem set, the standard deviation in performance is 4.217 when

varying the number of vertices, which is the lowest for this problem set. When varying the

tour cost limit, the performance is linear with an increase of 7.463% for every increase of

10% to the tour cost limit.

Nearest addition is the fifth best performing procedure for both the artificial and real

world problem set. The procedure has a summary percentage vertices visited of 48.295%

for the artificial problem set and 44.573% for the real world problem set. For the artificial

problem set, the varying of the number of vertices resulted in a standard deviation of 1.503,

which is the 6th best performing. When varying the tour cost limit, each increase of 10%

leads to an average increase of 7.519% to the mean percentage number of vertices visited.

For the real world problem set, varying the number of vertices has a standard deviation of

4.761, which is the 5th best performing by this metric. Varying the tour cost limit resulted

in a mean increase of 6.942$ for an increase of 10% to the tour cost limit.

The third group examined is the formerly discussed nearest insertion, and smallest sum

insertion. Smallest sum insertion was the 4th best performing procedure for both problem

sets, with a summary percentage vertices visited of 48.971% for the artificial problem

set, and 44.798% for the real world problem set. Varying the number of vertices for the

artificial problem set resulted in a standard deviation of 1.897, which was the worst of the

procedures examined. Varying the tour cost limit, the performance is in line with Nearest

Insertion with an increase of 10% to the tour cost limit resulting in a mean increase of

7.652% to the mean percentage number of vertices visited. Varying the number of vertices

for the real world problem set resulted in a standard deviation of 4.970, which was the 6th

best performing. Varying the tour cost limit resulted in a mean increase of 7.013% to the

mean percentage number of vertices visited for each increase of 10% to the tour cost limit.

The worst performing group of procedures are Largest Sum Insertion and Farthest

Insertion. Farthest Insertion was the 7th best performing procedure for the artificial prob-

lem set with a summary percentage vertices visited of 43.225%, and was the 6th best
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performing procedure for the real world problem set with a summary percentage vertices

visited of 40.894%. For the artificial problem set when varying the number of vertices,

the standard deviation was 0.185 which is the best standard deviation for this problem

set. When varying the tour cost limit, the cost does not increase linearly across the dif-

ferent increments of 10% to the tour cost. As both Farthest Insertion and Largest Sum

Insertion have a non-linear increase in performance we will compare their performance

against the average performance of the linearly increasing procedures. These procedures

are: Nearest Addition, Nearest Insertion, Nearest Neighbour, Cheapest Insertion, and

Smallest Sum Insertion. For a tour cost limit of 10%, Farthest insertion has a combination

summary that is 3.468% worse than the average combination summary for the linearly

increasing procedures. The difference in performance increases until a tour cost of 40%

where farthest insertion performs 15.017% worse than the average combination summary.

The performance then improves until a tour cost limit of 90%, where farthest insertion

outperforms the average combination summary by 2.536%. Finally with a tour cost limit

of 100% farthest insertion outperforms the average by 5.108%. For the real world problem

set, the summary percentage vertices visited is 40.894%, which is the 6th best performing

procedure. For varying the number of vertices, the standard deviation is 4.318 which is

the 3rd smallest for this problem set. When varying the tour cost limit, farthest insertion

follows a similar non-linearly increasing pattern as for the artificial problem set, starting

with a decreasing in performance of 5.808% against the average combination summary of

the linearly increasing procedures, for the tour cost limit of 10%. The gap in performance

increases until a tour cost limit of 40%, where farthest insertion is 15.017% worse than the

average linearly increasing procedures. The performance then improves, with the gap clos-

ing until a tour cost limit of 90%, where farthest insertion only under performs by 0.124%.

Finally at a tour cost limit of 100% the performance of farthest insertion is 1.893% better.

3.6 A comparison of successive augmentation procedures for

the Periodic travelling salesperson problem

In Section 3.1, the revisiting requirement (R3) was introduced as the need to revisit some

location within a fixed number of days since being previously visited. This type of re-

quirement is particularly important in many maintenance or service scenarios, such as

those where a location needs to be regularly checked, for example with the Water Treat-
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ment Plant scenario, to ensure that there is no build-up of contaminants at such locations.

Thus, the addition of a revisiting requirement (R3) to the TSP changes the problem to

that of having multiple tours (where each tour is associated with each day in the planning

horizon) where a different subset of vertices are visited on each of the days such that a

location is re-visited within its time window (Figure 3.2c). This differs from the notion

of visiting all of the vertices each day in the planning horizon as that would simply be

equivalent to that of running the same TSP problem instance multiple times; rather this

problem also focuses on the selection of a subset of vertices each day to ensure that the

time window of each vertex is respected.

The problem itself is very similar to the Periodic Travelling Salesperson Problem

(PTSP), as discussed in Section 2.4, in that traditional solutions to the PTSP aim to

produce sets of tours, each associated with a day in the planning horizon, that minimise

the total cost of all tours while revisiting the non-depot vertices given some set of require-

ments. However, the majority of the existing solutions achieve this by assuming a fixed visit

schedule (R1) or visit cardinality (R2). As the focus of this work is to specifically model

the revisiting requirement (R3), we therefore refer to this specific variant of the PTSP as

the Periodic Travelling Salesperson Problem with Visit Dependant Time Windows (PTSP-

VDTW). The standard successive augmentation mechanism is intended for use with the

Travelling Salesperson Problem (TSP), and iteratively adds a currently unvisited vertex

to a partial tour until all vertices are present in that tour.

In order to accommodate the PTSP-VDTW, three modifications are required:

1. A mechanism for creating a partial tour that is associated with each day in the

planning horizon;

2. A mechanism that determines which insertions are viable for each of the days in the

horizon; and

3. A means for terminating execution when the schedule has satisfied the revisiting

constraint for all non-depot locations.

In Section 3.6.1 we discuss the modifications required to the mechanism and selection

metric, as well as the additional data structure required to accommodate the changes. In

Section 3.6.2 we discuss the experiment settings for the empirical evaluation, and present

the results in 3.6.3.
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The construction of multiple tours also introduces an additional criteria that the pro-

cedures should take into account for selection. We have identified two factors, the cost of

the tours and the time window for each location, that can be used to can be used augment

existing procedures. For example, the tour with the cheapest tour cost can be selected and

then a procedure such as cheapest insertion used. We have therefore identified four vari-

ants for each of the procedures: 1) cheapest tour; 2) most expensive tour; 3) smallest time

window; and 4) largest time window. We discuss the effect of augmenting each procedure

with these new variants in Section 3.6.4

3.6.1 Modifications to the successive augmentation mechanism for the

PTSP-VDTW

There are two major modifications required for the successive augmentation procedure, and

an additional data structure required for keeping track of which vertices may be inserted

on each of the days. The additional data structure required is called the potential visits,

which stores and represents which vertices can be inserted into each of the tours. In Section

3.6.1 we discuss the reasoning behind this data structure, and how it can be generated and

updated. Section 3.6.1 then describes how the mechanism can be modified. Finally in

Section 3.6.1 an additional modification is mentioned, which is the tie breaking conditions

and extensions to the selection criteria.

Potential visits data structure

One approach for ensuring that a schedule satisfies the revisiting requirement is to ensure

that a vertex is only inserted into a tour if it is within the time window of it’s previous

visit. For example, if location i is present in the tour for day 4 and has a time window of

2 days, then it would be available for insertion during days 5 and 6. Thus, it is desirable

to keep track of candidate vertices that are available for each day, which we refer to as

potential visits. This can be achieved by storing tuples as a list with there being m lists,

each associated with a day in the planning horizon and holding the potential vertices for

that day. The initial state of the potential vertex insertions is that an instance of each

is vertex present in each list that corresponds to a day that is less than or equal to the

vertex’s time window. For example, if the planning horizon is 4 days, and the time window

for vertex i is 2 and the time window for j is 1, then both i and j are present in the list

for day 1, only i is present in the list for day 2, with day 3 and 4 being empty.
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Vertex coverage refers to the latest day in the planning horizon that a vertex may be

inserted. For vertex i in the previous example, the vertex coverage would be 2. The list

of candidate tuples is then updated once a new selection has been made to reflect the

change in which vertices may be added to each tour. If vertex i is selected and inserted

into the tour for day 2 then the lists would be updated, and as a consequence, vertex i

could now be viably visited on either day 3 or day 4. Thus, i has a coverage of 4. As the

triangle inequality holds for each of the edges in the graph, adding a vertex into the prior

tour (for day 1) provides no benefit in terms of extending the vertex coverage and only

increases the resulting cost of that tour. We therefore only permit insertions that would

result in an increase in the coverage; and when updating the potential vertex insertions,

all visits before the current selection are removed. If a vertex’s coverage extends beyond

the planning horizon, then it can be considered planned for.

Algorithm 3 Generating potential visits

Require: pvi, r
1: for each v in L do
2: for each h in r[v] do
3: pvi[ v ] [ h ] ← True
4: end for
5: end for

Algorithm 3 describes the algorithm that generates the initial potential visits data

structure, which we refer to as pvi. The algorithm takes in an empty pvi which consists

of a list with the same length as the number of service locations, and each element of that

list is a list with the same length as the number of days in the planning horizon. Each

element of pvi initially starts as false. The loop starting on line 1 and ending at line 5

iterates through each service location. The loop starting on line 2 and ending on line 4

takes the current vertex being examined v and then iterates the number of times equivalent

to the time window for v. Line 3 assigns the positions in the potential visits data structure

to True in order to represent that a visit on that day is possible for that vertex. The

updating procedure is similar to the generation procedure. All elements of the sub-list

corresponding to the vertex’s position in the set is set to False. The elements following

the last visit are then set to True. If a vertex is totally planned for, this entire sub list is

designated as False.
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Successive augmentation modifications

There are two major modifications that are required for the successive augmentation mech-

anism to produce sets of tours for the Periodic Travelling Salesperson Problem with Visit

Dependant Time Windows (PTSP-VDTW). The first modification required is that a dif-

ferent termination criteria is required. Each iteration, the partial tour of the successive

augmentation mechanism is re-examined in order to determine if the termination criteria

is met. For the PTSP, the mechanism should terminate if each vertex is present within

it’s time window of the end of the planning horizon. If a vertex has vertex coverage

that extends beyond the planning horizon, then it may be visited on one of these days,

and therefore planning for it should cease. If all vertices reach this condition, and their

coverage extends beyond the planning horizon, then the termination criteria is met.

The second modification is that the successive augmentation mechanism must iterate

through the potential visits and determine which must be inserted into the relevant tours

within the planning horizon. Algorithm 4 presents a pseudocode description of the modified

successive augmentation mechanism. Line 1 instantiates a list S which has the same

number of elements as the number of service location. The loop between lines 2 and 4

iterates through each element of S and assigns a sub list with two elements of the depot.

This process results in a completed empty schedule S, which is the equivalent of the partial

tour P for the standard successive augmentation mechanism.

The loop spanning from lines 5 to 22 is the main loop of the modified successive

augmentation mechanism, and uses a method called checkcompletelyscheduled, that uses

S as a parameter to determine if the mechanism can terminate. Lines 6, 7, and 8 instantiate

the values bestCost, bestV , and bestH respectively. bestCost holds the information about

the cost of the currently best found vertex, with bestV holding that vertex, and bestH

holding which partial tour that vertex should be inserted into. The loop between lines 9

and 19 iterates through each position within the planning horizon in reverse. This iteration

order is chosen in order to preference later days for a tie breaking condition as they are

considered first. The loop between lines 10 and 18 iterates through each element in the

service locations set. The if statement between lines 11 and 17 determines if the currently

examined vertex, on that day within the planning horizon is possible by checking the

potential visit data structure. If it may be visited, then the if statement between lines 12

and 16 is entered, which checks if the selection criteria cost of that vertex is better than

the current cost. If that is true then the relevant variables on lines 13, 14, and 15 are
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modified and the loops continue. Line 20 inserts that vertex at the correct position given

the expansion criteria, and then on line 21 the potential visits are updated.

Algorithm 4 Modified Successive Augmentation Mechanism for a Revisiting constraint

Require: L, D
1: S ← {0, ..., n}
2: for each s in S do
3: s← {D,D}
4: end for
5: while checkcompletelyscheduled(S) do
6: bestCost = Null
7: bestV = Null
8: bestH = Null
9: for each h in H, from H to 1 do

10: for each v in L do
11: if pvi[ v ] [ h ] then
12: if Selection criteria cost of v is better than bestCost then
13: bestCost← selection criteria cost of v
14: bestV ← v
15: bestH ← h
16: end if
17: end if
18: end for
19: end for
20: Insert v into P using expansion criteria
21: Update pvi
22: end while

Selection criteria and tie breaking conditions

Instead of having a single initial partial tour associated with a single day, there are multiple

initial partial tours with one associated with each of the days in the planning horizon. The

selection metric therefore applies to each of the partial tours. For a TSP tour using a

successive augmentation mechanism, a situation may occur where two candidate insertion

positions may be identified with the same cost. In such a situation, a conflict resolution

policy or rule is required as a means of breaking the tie; i.e. if the two vertices in this

tie are different, then a rule can be used to the order in which the vertices are evaluated.

For example, if inserting vertex 1 and vertex 2 would have the same cost, and the rule of
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selecting the later vertex to resolve ties had been adopted, then vertex 2 will be chosen.

This is because the order in which vertices are considered for insertion is unique and this

will always resolve this tie breaking condition.

The insertion position within a partial tour can also raise the same issue, with there

being either a preference for earlier or later within a tour. For example, inserting vertex i

at either position 1 or position 5 in the tour, and if the preference is for the later position,

then position 5 will be chosen. With the addition of multiple tours, a further condition

must also be considered; that of using either an earlier or later preference of tours. In this

situation a preference of the later tour would be a more logical choice, as it increases the

vertex coverage to a greater degree than the earlier tour preference. We therefore will only

examine the later tour preference.

3.6.2 Experimental Methodology

An average case empirical evaluation was conducted over a set of small scale problem

instances in order to evaluate if the modified successive augmentation mechanism produces

schedules with costs that are within a reasonable percentage of the optimal schedule cost.

A small scale problem set was selected due to the NP-hardness of the problem, the cost

of determining the optimal schedule cost of a problem instance can have a significant time

cost associated with it. A real world problem set is then examined in order to determine the

applicability of the mechanism for practical purposes. In Section 3.6.2 the graph structure

of these problem instances is discussed, and the problem instance sizes are covered in

Section 3.6.2. The resulting tours for the small scale problem set are compared against the

optimal tour cost, with the metric of comparrison being percentage schedule cost increase,

which is discussed in Section 3.6.2. Finally the way the optimal tour cost is found, as well

as the other technical details are discussed in section 3.6.2.

Graph structure

The graph structures used for the PTSP do not differ greatly from that described in Section

3.4.2, as the graphs are complete undirected graphs. The same edge weight is used even

though Concorde is not used to determine the optimal schedule cost for this problem set.

This is in order to allow results to be more directly comparable between these empirical

evaluations. Each of the non-depot vertices has a time window, which is a random integer

between 1 and the floor value of half of the planning horizon. This range was chosen in
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order to ensure that each vertex is visited at least twice within the planning horizon. For

example if the planning horizon is 5 days, then the time window can be either 1 or 2.

Problem instance sizes

For the optimal problem set, as the optimal tour cost must be computed and there is a

significant computational cost associated with this, only a smaller size of graphs could be

used. Therefore a graph size of 6 vertices was chosen, with each the first vertex being

designated as the depot this results in 5 service locations. For this graph size, a maximum

number of days of that can be computed is 6 days within a reasonable computation time,

which we have determined to be approximately 4 hours. The range was therefore deter-

mined to be between 4 and 6 days, as 3 days only allows for each time window to be 1

given our twice revisiting constraint. In order to minimise the effect of any one randomly

generated graph, 1000 graphs were generated for the 4 and 5 day problems, with 700 being

generated for the 6 day problem. For the real world problem set, instances from TSPLIB

identified in Section 3.4.2 were selected, with problem instances used ranging in a graph

size from 51 to 1000 vertices. This size was chosen as the time complexity for the largest

graph size has a computational complexity associated with it of around 4 hours.

Metric

As discussed in detail in Section 3.4.2, the use of the percentage tour cost increase (PTCI)

metric has several benefits when comparing the performance of an approach in generating

tours where the optimal tour cost is known. This normalises for different graph sizes,

the variation in tour cost that may occur between multiple graphs of the same size. As

the PTSP has multiple tours, the use of PTCI on it’s own would not be suitable as a

comparison metric. We therefore use an extension of this metric, called percentage schedule

cost increase (PSCI). This takes the total cost of all tours in the schedule, and expresses

this as a percentage of the optimal schedule cost. For example if the tour costs for a

problem instance is 40, 60, and 50, and the optimal tour costs for a problem instance is 30,

50, and 20, then the total schedule cost is 150 and the optimal schedule cost is 100. The

cost is not shown for each of the individual tours, but the total schedule and therefore the

PSCI is 50%. For the real world problem set the raw schedule cost is used as a metric as

no optimal tour cost can be found.
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Technical implementation

The graphs were generated using python 3 on a windows 10 laptop with Intel Core i7-8750H

CPU @ 2.20GHz, with the co-ordinates for each vertex generated using a random number

generator, who’s seed was generated from the current time (measured in milliseconds)

when the evaluation was conducted. The method used to find the optimal schedule cost

was to implement a modified integer programming formalisation presented in Section 3.2.

This modification was to drop the tour cost limit given in Constraint 3.4, to correctly

match the problem presented by the PTSP-VDTW. The solution to each of the small

scale problem instances was found using the modified Integer Programming formulation,

which was implemented using pyomo library for python 3, and was executed on the same

Windows 10 laptop.

3.6.3 Results

The successive augmentation procedures used within this study can be divided into three

separate groups on the basis of their overall performance:

• The first group corresponds to the best performing approaches, which include Largest

Sum Insertion, Nearest Insertion, and Cheapest Insertion;

• The performance of the second group is not as good, and include Difference Insertion,

Smallest Sum Insertion, and Farthest Insertion;

• The poorest performing approaches include Nearest Addition and Nearest Neighbour.

The results of each of the procedures are presented in Figure 3.14, with a visualisa-

tion provided in Figure 3.14a, excluding the results for the Nearest Addition and Nearest

Neighbour procedures as their performance is far worse than the others and would skew

the visualisation. The best performing procedure is Largest Sum Insertion with a mean

PSCI of 3.247%, It’s performance is also consistent across the different problem sizes with

a standard deviation of 0.993. In the same way as discussed in the empirical analysis of

Sections 3.4 and 3.5, largest sum insertion generates tours by first generating an outline

by identifying vertices that are furthest away from the existing partial tour and then fills

in the remaining vertices.

The second best performing procedure is Nearest Insertion, with a mean PSCI of

3.449%. The performance of this procedure is also consistent across the problem sizes
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(a) A plot of the average percentage increase
in scheduling cost for the top performing suc-
cessive augmentation procedures with differ-
ent planning horizons

Procedure name
Mean
PSCI

Standard
deviation

Largest sum insertion 3.247 0.993
Nearest insertion 3.449 1.329
Cheapest insertion 4.003 1.367
Difference insertion 7.901 2.681
Smallest sum insertion 9.421 4.724
Farthest insertion 10.232 5.345
Nearest addition 67.307 1.454
Nearest neighbour 74.382 1.853

(b) The mean Percentage Schedule Cost In-
crease (PSCI) for each of the successive aug-
mentation procedures across different plan-
ning horizons investigated

Figure 3.14: The performance of different successive augmentation procedures when used
with the PTSP-VDTW with different planning horizons

with a standard deviation of 1.329. This procedure has a different strategy as it aims to

create a small tour by identifying vertices that are nearby, which may indicate that several

different strategies may be successful for small scale problem instances. Cheapest insertion

is the third best performing procedure, with a mean PSCI of 4.003%. The performance,

as with the prior two procedures, is stable when increasing the number of days, with a

standard deviation of 1.367. This procedure also aims to create small tours using the cost

as a selection criteria, and this would indicate that this strategy performs well regardless

of the problem size.

The difference insertion expands on the Cheapest Insertion procedure, and performs

worse with a mean PSCI of 7.901. The performance of the second group is more effected by

an increase in the number of vertices, this procedure starts with a mean PSCI of 5.269%
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Procedure name Summary mean schedule cost Standard deviation

Difference insertion 4001908.031 25564997.090

Farthest insertion 4174344.754 26798454.798

Largest sum insertion 4259375.301 27248037.388

Cheapest insertion 4351373.214 27814234.979

Smallest sum insertion 4377738.803 27980222.878

Nearest insertion 4393209.427 28060828.773

Nearest addition 4680802.728 29882211.782

Nearest neighbour 6793028.939 43660151.508

Table 3.11: A table showing the summary mean schedule cost and standard deviation of
the successive augmentation procedures, varying the number of vertices, ranked from the
smallest summary mean schedule cost to the largest for the real world problem set

for 4 days, however this increases to 10.629% with 6 days. The fifth best performing

procedure is Smallest Sum Insertion, with a mean PSCI of 9.421%. In a similar pattern

this procedure starts with a mean PSCI of 4.733% for 4 days, increasing to 14.18% for 6

days. The last procedure in this group is Farthest Insertion with a mean PSCI of 10.232%.

This procedure also follows a similar pattern with a mean PSCI of 6.241% for 4 days, and

16.304% for 6 days.

The final group contains the two procedures that do not use the insertion expansion

criteria. The first procedure in this final group is Nearest Addition, with a mean PSCI of

67.307%. The performance of this approach is consistent when increasing the number of

days with a standard deviation of 1.454. It is clear from this that the addition expansion

criteria is less effective than the insertion expansion criteria. Finally the worst performing

of all of the procedures examined is Nearest Neighbour, with a mean PSCI of 74.382%.

This also has a consistent performance when increasing the number of days with a standard

deviation of 1.853. The neighbour expansion criteria performed far worse than the other

two expansion criterias examined.

In Figures 3.15 and 3.16 we present the results of the empirical evaluation, using the

successive augmentation procedures with the modified successive augmentation mechanism

on the real world problem set. The results for this problem set follows a similar pattern as

that observed in Section 3.4.3, with procedures that generate outlines and then fill in ver-

tices performing the best such as Difference Insertion, Farthest Insertion, and Largest Sum

Insertion. The next next best performing group are those procedures that identify ver-
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Figure 3.15: A percentage of vertices visited comparison of the selected successive aug-
mentation procedures for the real world problem set, varying the number of vertices

Procedure name Summary mean schedule cost Standard deviation

Difference insertion 4001908.031 1009360.280

Farthest insertion 4174344.754 952353.422

Largest sum insertion 4259375.301 1015643.419

Cheapest insertion 4351373.214 1052569.612

Smallest sum insertion 4377738.803 983202.180

Nearest insertion 4393209.427 1061810.194

Nearest addition 4680802.728 1129738.263

Nearest neighbour 6793028.939 1935994.835

Table 3.12: A table showing the summary mean schedule cost and standard deviation of
the successive augmentation procedures, varying the number of depots, ranked from the
smallest summary mean schedule cost to the largest for the real world problem set



Chapter 3. Periodic Maintenance Person Problem 83

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of days

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
ea

n 
Sc

he
du

le
 c

os
t (

10
 m

illi
on

 d
ist

an
ce

 u
ni

ts
)

1e7

Nearest Addition
Nearest Insertion
Nearest Neighbour

Farthest Insertion
Cheapest Insertion
Difference Insertion

Largest sum Insertion
smallest sum Insertion

Figure 3.16: A percentage of vertices visited comparison of the selected successive aug-
mentation procedures for the real world problem set, varying the number of days
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tices that are geographically closest to the existing partial tour such as Cheapest Insertion,

Smallest Sum Insertion, and Nearest Insertion. Procedures that do not use the insertion

expansion criteria under perform in comparison with those that do, as Nearest Addition

under performs in comparison to Nearest Insertion, with Nearest Neighbour performing

worse than both.

3.6.4 Augmented results

Introducing the revisiting requirement (R3), and consequently generating multiple tours,

adds additional factors that are not currently accounted for by the selection criteria de-

signed for the TSP. We have identified two additional factors that we examine as augmen-

tations to the existing selection criteria. The first is the cost of each tour which could

be used in one of two ways. The first is to use a Cheapest tour preference, such that the

cheapest tour that has available vertices in the potential vertex insertions is selected. The

selection metric then performs as normal and selects the most appropriate of those vertices.

The second is to use an Expensive tour preference, whereby the opposite occurs with the

most expensive tour that has available vertices being selected.

The second additional factor is the size of the time window itself. This can also be

used in two ways, the currently unplanned-for vertex that has the largest time window

can be selected, and then the existing selection criteria can be used to determine which

day and at which point in the tour that vertex should be inserted. We call this a Largest

time window preference. The opposite is also possible, with the Smallest time window

preference selecting the unplanned for vertex that has the smallest time window.

Each of the 8 selected procedures were augmented with the 4 preferences, resulting in 32

variants which were all executed on the same dataset as in Section 3.6.3. When comparing

to the results in Section 3.6.3, we call the unmodified procedures Default. The mean

performance of the each of the preferences in presented in Table 3.13a, this specifically

refers to the mean performance of the preferences across the 8 procedures. A visualisation

of the performance for the 4 preferences proposed in this Section can be seen in Figure 3.17.

Each of these visualisations omits the Nearest Addition and Nearest Neighbour approaches

as their performance was significantly worse than the others, and could not be visualised

easily within the Figures whilst maintaining clarity. A representation of the mean PSCI

performance for each procedure given the 4 preferences is provided in Table 3.14.

The best performing preference is Expensive tour, with a mean PSCI of 19.693%, as can
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Procedure name
Mean
PSCI

Expensive tour 19.693
Default 22.493
Small window 24.210
Large window 24.753
Cheapest tour 29.024

(a) Augmentation summary

Procedure name
Mean
PSCI

Largest sum insertion 3.771
Cheapest insertion 3.919
Nearest insertion 3.999
Difference insertion 5.763
Smallest sum insertion 8.281
Farthest insertion 9.193
Nearest addition 74.324
Nearest neighbour 83.027

(b) Procedure summary

Table 3.13: The performance of the unmodified procedures (i.e. Default)

be seen in Figure 3.17d. This modification selects a tour and thus the problem becomes

more similar to a TSP or OP. The best performing procedure using this preference is

Farthest Insertion with a mean PSCI or 1.592%; this performance is broadly consistent

when varying the number of days, with a standard deviation of 2.1. This is vastly different

from how Farthest Insertion performs without the preference, as it had a default mean

PSCI of 10.232%. Largest Sum Insertion has a similar strategy to Farthest Insertion as it

generates an outline for a tour and then fills in the locations within that outline. It is the

second best performing procedure with a mean PSCI of 1.593%, and a similar consistency

with a standard deviation of 2.095.

The next best performing approach is Cheapest Insertion with a mean PSCI of 1.758%,

which is better than it’s default mean PSCI of 4.003%. As with the other procedures, it has

a consistent performance when increasing the number of days, with a standard deviation

of 1.928. Smallest Sum Insertion uses a similar strategy to Cheapest Insertion in that

it attempts to generate small tours, by reducing the cost of additional insertions. The

performance of these two procedures is also similar given the Expensive tour preference, as

it has a mean PSCI of 1.767%. The fifth best performing procedure is Nearest Insertion,

with a mean PSCI of 1.815, which is an improvement from it’s default performance of

3.449%.

Difference Insertion did not perform as well as would be expected, given it’s performance

in Sections 3.4 and 3.5. It had a mean PSCI of 1.815%, and a standard deviation of

1.936. This is likely due to the small scale of the graph size, as Difference Insertion uses

the difference between insertion costs as it’s metric. Nearest addition had marginally
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(a) A summary of performance with the small
time window preference
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(c) A summary of performance with the cheap-
est tour preference
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(d) A summary of performance with the ex-
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Figure 3.17: A set of visualisations of the mean Percentage Schedule Cost Increase (PSCI)
for each of the successive augmentation procedures across different planning horizons in-
vestigated, separated into a visualisation for each of the four preferences
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Procedure name
Mean
PSCI

Standard
deviation

Cheapest insertion 0.444 0.170
Largest sum insertion 0.509 0.160
Nearest insertion 1.002 0.740
Difference insertion 5.504 1.644
Smallest sum insertion 8.843 4.104
Farthest insertion 10.969 5.509
Nearest addition 78.646 3.068
Nearest neighbour 87.766 6.280

(a) A summary of performance with the small
time window preference

Procedure name
Mean
PSCI

Standard
deviation

Cheapest insertion 1.684 2.035
Difference insertion 1.684 2.035
Largest sum insertion 1.684 2.035
Nearest insertion 1.917 2.438
Smallest sum insertion 9.623 5.396
Farthest insertion 11.302 5.333
Nearest addition 80.189 3.236
Nearest neighbour 89.942 3.829

(b) A summary of performance with the large
time window preference

Procedure name
Mean
PSCI

Standard
deviation

Cheapest insertion 11.706 6.189
Smallest sum insertion 11.753 6.186
Nearest insertion 11.811 6.311
Largest sum insertion 11.825 5.745
Farthest insertion 11.870 5.768
Difference insertion 11.878 6.052
Nearest addition 77.478 3.570
Nearest neighbour 83.873 3.586

(c) A summary of performance with the cheap-
est tour preference

Procedure name
Mean
PSCI

Standard
deviation

Farthest insertion 1.592 2.100
Largest sum insertion 1.593 2.095
Cheapest insertion 1.758 1.928
Smallest sum insertion 1.767 1.920
Nearest insertion 1.815 1.936
Difference insertion 1.848 1.884
Nearest addition 67.999 3.653
Nearest neighbour 79.174 4.252

(d) A summary of performance with the ex-
pensive tour preference

Table 3.14: A summary of the mean Percentage Schedule Cost Increase (PSCI) for each
of the successive augmentation procedures across different planning horizons investigated,
separated into tables for each of the four preferences using the PTSP-VDTW

worse performance with the Expensive Tour preference when compared so the default

performance, with a mean PSCI of 67.999% against 67.307%. Nearest Neighbour also had

a worse performance with the Expensive Tour preference, with a mean PSCI of 79.174%.

The remaining preferences had a mean performance across the procedures that were

worse than the unmodified performance of 22.493%. The second best performing preference

was Small Windows with a mean PSCI of 24.493%. The best three performing procedures

are grouped closely together, with a similar mean PSCI and standard deviation. Cheapest

Insertion and Nearest Insertion aims to create small tours using the cost and distance

respectively, however Largest Sum Insertion uses the outline and fill in mechanism to

create tours. These are Cheapest Insertion, Largest Sum Insertion, and Nearest Insertion
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which were 3 procedures that performed well given the conditions of the OP in Section 3.5.

Cheapest Insertion performed best with a mean PSCI of 0.444%, which was unaffected

by an increase in the number of days with a standard deviation of 0.17. The second

best performing in this group is Largest Sum Insertion with a mean PSCI of 0.509% and

again a consistent performance when increasing the number of days with it’s standard

deviation of 0.16. The third best performing was Nearest Insertion with a mean PSCI that

is marginally worse than the second best performing with 1.002%. The standard deviation

for this procedure was 0.74.

The following three procedures are less closely grouped than the former three, with

the fourth best performing procedure being Difference Insertion with a mean PSCI of

5.504%. The procedure is not significantly effected by increasing the number of days with

a standard deviation of 1.644. This is followed by Smallest Sum Insertion with a mean

PSCI of 8.843%, however the performance is much more significantly effected by an increase

in the number of days. With 4 days the mean PSCI is 4.665% which increases significantly

to 12.868% for 6 days. This is similar to this procedure’s performance during the TSP

and OP conditions. The next best performing is Farthest Insertion, which is the first of

these procedures which has a worse performance when using the Small Window preference,

which mirrors the performance pattern seen in Section 3.5 and indicates that when using

this preference the selection criteria perform similarly to the The mean PSCI is 10.969%

which is marginally worse than it’s default performance of 10.232%. The performance

is also significantly effected by an increase in the number of days, with a mean PSCI of

6.527% for 4 days, which increases to 17.133% for 6 days.

The two other expansion criteria are significantly impacted by using the Small Window

preference. Nearest Addition has a mean PSCI of 78.646% which is significantly higher

than the default performance of 67.307%. The standard deviation was particularly high

with 3.068. The worst performing procedure was Nearest Neighbour, which has a mean

PSCI of 87.766% and as with nearest neighbour is significantly worse than it’s default

performance of 74.382%. The standard deviation was also the worst with 6.28.

The third best preference is Large Window, with a mean PSCI for the 8 procedures

of 24.753%. Three procedures all performed identically across the problem set, which are

Cheapest Insertion, Difference Insertion, and Largest Sum Insertion. The mean PSCI is

1.684% with a standard deviation of 2.035, and the performance for each of the procedures

is better than their default performance. These procedures had an almost identical perfor-

mance across the dataset, with only a small number of differences between the approaches.
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The fourth best performing procedure is Nearest Insertion, which performs similarly to

the previous 3 procedures with a mean PSCI of 1.917% and a standard deviation of 2.438.

These 4 procedures behave similarly when the preference is for Large Windows instead of

Small Windows due to the order in which the vertices are selected. This is because the

Small Window preference attempts to assign all of the vertices that will have the fewest

range of days that they may be assigned to, then vertices that have a larger range are as-

signed around them based on the existing tours. The Large Window preference attempts

to assign the vertices with the largest range first, however the partial tours will be less

populated, and therefore it is less likely to be an optimal position. As the 4 procedures

have the same expansion criteria, these procedures do not result in significantly different

sets of tours.

The Smallest Sum and Farthest Insertion procedures have similar performance with

both the Large and Small Windows preference. Smallest Sum has a mean PSCI of 9.623%

which is marginally worse than it’s default performance of 9.421%. With 4 days the

mean PSCI is 4.594% and this increases to 15.323% for 6 days. The performance of

Farthest Insertion procedure with the Large Windows preference is worse than it’s default

performance with a mean PSCI of 11.302% when compared to the 10.232% of default. The

procedure is also significantly effected by an increase in the number of days, with 4 days

having a mean PSCI of 6.745% which increases to 17.167% for 6 days.

As with the Small Window preference, the non-insertion expansion criteria perform

worse than the insertion procedures. Nearest addition has a mean PSCI of 80.189% and

a standard deviation of 3.236. Finally Nearest neighbour performs the worst out of all of

the procedures with a mean PSCI of 89.942% and a standard deviation of 3.829.

As with the Expensive Tour preference, the performance of the procedures are all close

with the first 6 procedures having a mean PSCI within 1% of the best and worst. The

performance of all 8 procedures are however worse than their default counterparts. The

number of days vastly effect of the mean PSCI, with 4 days having a PSCI of between

6.257% and 6.707%, and between 18.025% and 18.674% for 6 days. The best performing

of these procedures is Cheapest Insertion with a mean PSCI of 11.706%. This is closely

followed by Smallest Sum Insertion with a mean PSCI of 11.753%. The thirdly best

performing procedure is Nearest Insertion with a mean PSCI of 11.811%. These three

procedures all aim to produce small tours by selecting vertices that are close to vertices

in the partial tour. The fourth best performing procedure is Largest Sum Insertion with

a mean PSCI of 11.825%. This is followed by Farthest Insertion, with a mean PSCI of
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11.87%. Both of these procedures aim to generate initially large tours and then fill in the

remaining vertices at the best possible positions. The worst performing of the insertion

procedures is Difference Insertion, with a mean PSCI of 11.878%. Finally both of the non-

insertion procedures performed worse than the insertion procedures. Nearest Addition had

a mean PSCI of 77.478% and Nearest Neighbour had a mean PSCI of 83.873%.

3.7 A comparison of successive augmentation procedures for

the Periodic Maintenance Person Problem

The Periodic Maintenance Person Problem (PMPP), as formalised in Section 3.2, produces

a set of tours, each associated with a day in the planning horizon, where the cost of each

tour is within the tour cost limit and the revisiting constraint for each non-depot location

is satisfied while minimising the total cost of all tours. In this section we discuss a mod-

ification to the successive augmentation mechanism that expands upon the modifications

made to the mechanism in Sections 3.5 and 3.6. In Section 3.5 modifications were made

to the selection metric, such that a selection that brings the total tour cost over the tour

cost limit could not be made. In Section 3.6 changes were made to the mechanism to ter-

minate only when a valid schedule is produced, and a data structure was proposed called

the potential visits to ensure that each insertion increased the coverage of the vertices. For

the PMPP however, these two modifications would not be sufficient to solve the problem

as a situation may occur when an incomplete schedule does not have remaining space to

entirely plan for a vertex. In this situation a backtracking mechanism can be employed to

determine if different selections during previous iterations would allow for a valid schedule

to be created. The method we have chosen is a modification of Branch and Bound [48],

which we call Search and Bound.

Branch and bound uses a tree structure to explore a given search space in such a way

as to quickly find a valid solution. Then areas of that search space that are guaranteed

not to have better solutions are bounded off and the remaining space explored until the

optimal answer is found. For Search and Bound a similar process is carried out, with the

space explored and invalid portions bounded off, however the process terminates once a

valid solution is found to the problem. We describe the process in detail in Section 3.7.1.

We empirically evaluate the performances of the procedures and their variants as described

in Section 3.6.1. This is done by testing the average percentage tour cost increase on the
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same graphs as used in Section 3.6, however with a tour cost limit of 60% the optimal

TSP tour cost for a given graph. We discuss our experiment settings in Section 3.7.2 and

present our results in Section 3.7.3.

3.7.1 The Search and Bound method

The Search and Bound method is an adaption of the Branch and Bound method and can

be viewed as a depth first search with a bounding mechanism [48]. The Branch and Bound

method starts with an initial problem state and explores the problem state systematically.

For example the branch and bound for the TSP starts at a given node, then explores

all potential selections from that given node as separate branches on the data tree. The

selection that is the best, given some selection criteria is then explored until a viable

solution is found. Then every branch on the tree that is guaranteed to perform worse if

explored is bounded off, this is often done using the lower bound of a selection.

Branch and search carries out a similar process, starting with the initial state of the

problem, then selections from the possible vertex insertions data structure are ranked and

explored. If at any point a vertex, that does not have full coverage, cannot be inserted

in any of the tours without violating the tour cost limit, then that incomplete schedule

will never be viable. As the triangle inequality holds for the graph, it is not possible that

adding another vertex to those tours will allow the vertex to fit. Therefore a backtracking

mechanism is used, whereby the current state is reverted to that of the parent node, and

the next best selection is made.

3.7.2 Experimental Methodology

The same two problem sets, as used in Section 3.6, were reused in this section in order

to provide a direct comparison between the PTSP and PMPP. The PMPP formalisation

has two additional features that the PTSP does not have, which are a tour cost limit,

and a service time for each location. In order to ensure that the results are more directly

comparible, the service time for each non-depot vertex is 0 for this empirical analysis. The

small scale problem set contains graph sizes of 6 vertices, with the number of days varying

from 4 to 6. The real world problem set is also reused, with the same problem instances

used from TSPLIB, with sizes ranging from 51 to 1000. The tour cost limit for each

graph is set to 80% of the optimal TSP cost for that graph, in our testing we found that

100% rarely engaged the backtracking mechanism. The implementation of the modified
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(a) A PSCI comparison for the selected suc-
cessive augmentation procedures, not plot-
ted are the results for Nearest Addition and
Nearest Neighbour

Procedure name
Mean
PSCI

Standard
deviation

Largest sum insertion 4.506 1.006
Nearest insertion 6.200 1.396
Cheapest insertion 6.451 1.314
Difference insertion 10.725 2.658
Smallest sum insertion 12.716 5.498
Farthest insertion 12.834 5.530
Nearest addition 75.304 1.824
Nearest neighbour 82.684 1.595

(b) A table to show the average performance
of each procedure tested, sorted by the per-
centage tour cost increase

Figure 3.18: The performance of different successive augmentation procedures when used
with the MPP with different planning horizons

successive augmentation mechanism was done using python 3 on a windows 10 laptop with

Intel Core i7-8750H CPU @ 2.20GHz.

3.7.3 Results

The results of our empirical testing is shown in Figure 3.18a and the average performance

of each of the procedures is shown in Table 3.18b. Six of the eight procedures tested were

insertion procedures, and these six procedures outperformed the addition and neighbour

procedures, we therefore do not plot these procedures in Figure 3.18a. This is due to

the difference between the worst performing insertion procedure and the best performing

non-insertion procedure being 43%, which skews the scale of the diagram. For each of the

procedures, an increased number of days in the planning horizon increases the difference
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between the produced schedules and the optimal schedule costs.

The best performing procedure was largest sum insertion, with an average PSCI of

4.5%. The average PSCI for the 4 day problem set was 3.4%, increasing to 5.3% for the 6

day problem. Rosenkrantz et al determined that the strategy of selecting vertices farthest

away from the vertices in the current partial tour performs well, in the context of the

TSP, because it generates an outline of a tour then fills in the rest of the vertices given

more information about the partial tour [83]. This strategy is also taken by the sixth best

performing procedure which was farthest insertion. This procedure has an average PSCI of

12.8%, with the 4 day problem set having a PSCI of 8.9% increasing to 19.1% for the 6 day

problem set. Farthest insertion uses a single edge to determine the selected vertex, however

largest insertion uses the edge costs to each vertex in the partial tour. This indicates that

for the farthest away strategy, a selection criteria that takes into account more information

produces lower costing schedules and is less affected by an increased planning horizon.

The second best performing procedure was the Nearest Insertion procedure with an

average PSCI of 6.2%, the PSCI from the 4 day problem set is 4.6% which increases to

7.2%. The strategy used by this approach is to identify which vertices are closest to the

existing partial tour, with the intuition being that adding the vertex that is closest will

add the lowest overall additional tour cost. This strategy is also used by smallest sum

insertion, which is the fifth best performing procedure, and has average PSCI of 12.7%

The PSCI of 7.3% for the 4 day problem set increases to 18.3% for the 6 day problem set.

In contrast with the strategy of selecting vertices that are farthest away, finding the vertex

that is closest on average to all vertices in the partial tour performs worse as the vertex

selected is not closest to any one point in the tour. For this strategy the former approach

is also less affected by an increasing planning horizon.

The third best performing procedure was the cheapest insertion with an average PSCI

of 6.2%. The strategy employed by this procedure is to identify the vertex that would

minimise the additional tour cost, in this way the locally optimal choice is made. The

average PSCI for the 4 day problem set was 5%, increasing to a 7.7% PSCI for the 6 day

problem set. Difference insertion is an extension of the cheapest insertion procedure that

uses the difference between the cheapest insertion and the second cheapest insertion costs

as a selection criteria. It performed worse then the cheapest insertion procedure with an

average PSCI of 10.7%, which indicates that the actual cost of insertion is a better metric

than the opportunity cost in the context of the PMPP.

Nearest Neighbour and Nearest Addition have a different expansion metric to the other
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Figure 3.19: A percentage of vertices visited comparison of the selected successive aug-
mentation procedures for the real world problem set, varying the number of days

procedures. As these procedures both perform significantly worse than the worst perform-

ing insertion procedure, this indicates that minimising the additional tour cost produces

better quality tours and the insertion expansion criteria should be used. Nearest addition

is the seventh best performing procedure, with an average PSCI of 55.3%, with nearest

neighbour being the worst performing procedure, with an average PSCI of 82.6%.

The results for the real world problem are presented in Figure 3.19, and Table 3.15.

These results follow a similar pattern demonstrated in Section 3.6, with the best performing

procedures being those that first generate the general outline of a tour and then fill in the

remaining vertices. For the PTSP, Difference Insertion outperformed Farthest Insertion

however this does not apply here, which may indicate that the Difference Insertion selection

criteria is less effective with the introduction of a tour cost limit. Difference Insertion does
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Procedure name Summary mean schedule cost Standard deviation

Farthest insertion 346337.229 345578.163

Difference insertion 350209.396 346548.368

Largest sum insertion 369025.625 369967.288

Cheapest insertion 377789.062 374414.904

Smallest sum insertion 380724.771 378667.240

Nearest insertion 384752.979 380807.051

Nearest addition 411518.042 408076.245

Nearest neighbour 601754.646 614168.361

Table 3.15: A table showing the summary mean schedule cost and standard deviation of
the successive augmentation procedures, varying the number of depots, ranked from the
smallest summary mean schedule cost to the largest for the real world problem set

still outperform Cheapest Insertion, from which it is extended and therefore is still a

beneficial change to the selection criteria. Nearest Neighbour performs worse under these

conditions than in the PTSP, and therefore the expansion criteria may play a more crutial

role in this problem than others.

3.7.4 Augmented results

The augmented results, as presented as a visualisation in 3.20 and as a set of summary

tables in 3.16, follow a similar pattern as those presented for PTSP-VDTW. The expensive

tour preference out performed the default performance for a majority of the procedures.

3.8 Conclusion

In this chapter we have described and formalised the Periodic Maintenance Person Prob-

lem (PMPP), and discuss our reasoning for developing a heuristic algorithm. A systematic

approach was adopted to the generation of a tour construction mechanism for the PMPP,

based on the Successive Augmentation Mechanism for the TSP. The PMPP has two ad-

ditional features when compared to the TSP, which are the tour cost limit and the visit

dependant time window revisiting constraint. We have carried out a number of different

empirical studies for the TSP, and extensions of the TSP with each of those additional

features, the OP and PTSP. Finally we have discussed the modifications required to ac-

commodate both the additional features of the PMPP, and have empirically evaluated its
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(a) A summary of performance with the small
time window preference
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(b) A summary of performance with the large
time window preference
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(c) A summary of performance with the cheap-
est tour preference
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(d) A summary of performance with the ex-
pensive tour preference

Figure 3.20: A set of visualisations of the mean Percentage Schedule Cost Increase (PSCI)
for each of the successive augmentation procedures across different planning horizons in-
vestigated, separated into a visualisation for each of the four preferences
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Procedure name
Mean
PCTI

Standard
deviation

Largest sum insertion 2.083 0.121
Cheapest insertion 3.340 0.925
Nearest insertion 3.865 1.361
Difference insertion 7.734 1.437
Farthest insertion 12.642 4.301
Smallest sum insertion 12.661 4.158
Nearest addition 85.975 2.976
Nearest neighbour 96.483 5.739

(a) A summary of performance with the small
time window preference

Procedure name
Mean
PCTI

Standard
deviation

Largest sum insertion 2.676 0.707
Cheapest insertion 3.559 0.758
Difference insertion 3.905 1.995
Nearest insertion 4.956 1.795
Farthest insertion 13.863 5.309
Smallest sum insertion 14.295 5.443
Nearest addition 86.937 4.349
Nearest neighbour 103.118 0.856

(b) A summary of performance with the large
time window preference

Procedure name
Mean
PCTI

Standard
deviation

Largest sum insertion 13.556 5.993
Difference insertion 13.917 5.275
Farthest insertion 14.172 5.409
Cheapest insertion 14.239 6.176
Nearest insertion 14.767 6.305
Smallest sum insertion 15.351 7.457
Nearest addition 84.450 2.793
Nearest neighbour 93.812 4.035

(c) A summary of performance with the cheap-
est tour preference

Procedure name
Mean
PCTI

Standard
deviation

Largest sum insertion 3.085 2.191
Farthest insertion 3.818 2.219
Cheapest insertion 4.319 1.946
Difference insertion 4.446 1.624
Nearest insertion 4.574 1.177
Smallest sum insertion 6.161 2.161
Nearest addition 74.774 2.290
Nearest neighbour 87.198 4.585

(d) A summary of performance with the ex-
pensive tour preference

Table 3.16: A summary of the mean Percentage Schedule Cost Increase (PSCI) for each
of the successive augmentation procedures across different planning horizons investigated,
separated into tables for each of the four preferences using the PMPP

performance.

We have shown that for euclidean instances of the TSP and OP, Difference Insertion

performs consistently better than other procedures, having an average tour cost increase

from the optimal tour of 4.069% in the case of the TSP, and visiting 96.323% of all ver-

tices for the OP. The Smallest Time Window variant of the Cheapest Insertion procedure

performed best for the PTSP-VDTW, with an average percentage tour cost increase of

0.444%. In contrast to this, the Smallest Time Window variant of the Largest Sum In-

sertion performed best for the PMPP, with an average percentage tour cost increase of

2.083%.



Chapter 4

Multiple Travelling Salesperson

Problem

4.1 Introduction

Each day a quality control company dispatches a group of geographically disparate workers

(AKA Samplers) to perform tests at various service locations in the company’s designated

area. Each sampler starts from their home location, called a depot and visits a subset

of service locations before returning to the depot, this is called a tour. A scheduler is

responsible for creating a schedule for the workforce, which is an ordered list of locations

for each Sampler to visit. The scheduler may aim to optimise for several different metrics,

such as: total distance travelled by all Samplers, a balanced number of locations for each

Sampler to visit, etc. The most common of these metrics is to minimise the maximum

time worked by a sampler, as minimising this metric tends to balance the workload more

equally across the workforce. A majority of sampling companies employee salaried workers,

and their workload per day does not exceed a couple of hours, and therefore a maximum

number of hours per tour is not imposed on the problem.

This problem closely maps onto the Multiple Travelling Salesperson Problem (MTSP),

which is the broad term for the family of problems where multiple salesman each have a

distinct tour that visits each of the locations exactly once [16]. The specific variant of the

MTSP that we have chosen is the Multiple depot MinMax MTSP, which states that each

salesman has a unique depot location and that the aim is to minimise the longest tour.

As this problem is NP-hard, there exists a significant body of work in the literature that

98
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is dedicated to providing heuristic algorithms for the problem [102]. A wide variety of

different mechanisms have been explored, and recently a graph partitioning approach has

been introduced by Vandermeulen et al [94]. The MTSP often models the problem as a

graph, with the vertices corresponding to the locations and the edges weights corresponding

to the travel distance or travel time between between the relevant locations. A graph

partitioning approach to the MTSP first divides the graph into a set of distinct subgraphs,

with each consisting of single depot and a set of locations to visit, then this subgraph is

solved as a Travelling Salesperson Problem (TSP).

One contributing factor to why the graph partitioning approach has not received prior

attention in the MTSP literature, is that determining the cost of a tour from a subgraph

requires solving the NP-Hard TSP. Vandermeulen et al found that there is a correlation

between average length of a graph and it’s optimal tour cost, and as finding the average

length of a graph can be found in O(n2) it is therefore a suitable proxy. In their paper, the

authors present a greedy heuristic approach that performs a series transfers and swaps of

vertices between subgraphs, until there does not exist a transfer or swap that would further

improve the subgraph costs given the optimisation metric. The author’s literature review

discusses other MTSP algorithms, however does not discuss the existing graph partitioning

literature, which we believe is a fruitful area for adaptation and further work.

In this chapter we take several selected graph partitioning algorithms and modify them

to be suitable for use for the MTSP, in order to determine which characteristics of the

algorithms produce high quality tours. There are two broad categories of graph partitioning

mechanisms, which are: (1) mechanisms that take in a graph and output a set of subgraphs

which we call Construction mechanisms; and (2) mechanisms that take in a set of subgraphs

and exchange vertices between these subgraphs to optimise for a given metric which we

call Improvement mechanisms.

In Section 4.2 we discuss the selected graph partitioning algorithms and deconstruct

them into a set of Construction and Improvement mechanisms. We then provide a descrip-

tion of how these mechanisms have been modified to be suitable for the MTSP. In Section

4.3 we perform an average case empirical analysis on both the Construction and Improve-

ment mechanisms proposed in Section 4.2, and provide a discussion of the characteristics

of these methods that produce higher quality tours. Finally in Section 4.4 we discuss the

overall performance of graph partitioning mechanisms for the MTSP, and the potential

future work.
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Algorithm name Construction phase Improvement phase

Vandermeulen et al [94] Random partition Transfer and swap,
Transfer outliers

Kernighan-Lin [50] Random partition Swap and lock

Fiduccia-Mattheyses [28] Random partition Transfer and lock

Farhat [27] Breadth first search None

Gain [73] Cut size change None

Bubble (Tschöke) [73] Simultaneous Breadth
first search

Repeated seed changing
partitioning

Table 4.1: A table showing the selected graph partitioning mechanisms, decomposed into
Construction and Improvement mechanisms

4.2 Selected graph partitioning mechanisms

Vandermeulen et al presented an approach to the Multi-depot MinMax MTSP, in this sec-

tion we generalise this approach into a framework for using graph partitioning mechanisms

[94]. The general framework has two stages, the first is to divide the problem graph into a

series of subgraphs, with each subgraph containing a single unique depot. The second stage

is to treat each of these subgraphs as a TSP in order to provide a solution to the MTSP

when combined. A graph partitioning algorithm can be decomposed into a collection of

mechanisms, with those mechanisms classified as either Construction or Improvement. A

construction mechanism takes in a graph and returns a set of distinct subgraphs, and

an improvement mechanism takes in a set of subgraphs and returns a set of subgraphs

optimised for a particular metric.

Using the framework, unmodified construction mechanisms can be used in a MTSP

algorithm however as they optimise for minimising the number of edges between subgraphs

they may not optimise in a way that lines up with the objectives of the MTSP. There are

two modifications required to ensure that a graph partitioning mechanism is suitable for

the Multiple Depot MinMax MTSP. The first is that a distinct depot must be assigned

to each subgraph and cannot be transferred to another subgraph. The second is that the

optimisation metric should more closely reflect the optimisation function of the MTSP.

Vandermuelen et al found that there is a correlation between the average length of a graph

and it’s optimal tour cost, and as the average length is computationally less expensive to

compute than the optimal tour cost this can be used as a proxy and therefore optimised

for.
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Several broad categories of graph partitioning exist, with one category being geographic

based approaches [8]. 5 algorithms were selected from a survey by Preis and Diekmann

[73] that specifically discusses this category of graph partitioning algorithms. This is

therefore not an exhaustive list of all graph partitioning mechanisms that are suitable for

modification for the MTSP, however it is instead intended to illustrate that this conversion

and modification process is possible. Each approach is decomposed into a collection of

Construction and Improvement mechanisms, which we outline in Table 4.1. These graph

partitioning mechanisms do not produce subgraphs that optimise for either the MinSum

or MinMax objective functions, but instead aim to minimise the number of edges between

partitions and therefore modifications are required for each mechanism. As discussed in

Chapter 2, the term balanced in a graph partitioning context refers to generating partitions

that have as equal a number of vertices as possible in each subgraph. For example if there

are 10 vertices being partitioned into 2 subgraphs then each should have 5 vertices, however

if 10 vertices is partitioned into 3 subgraphs then the first subgraph has 4 vertices and the

second and third have 3. Where possible we will provide a variant to a modified mechanism

that both includes and does not include this constraint to determine it’s effectiveness for

the purposes of the MTSP. In Section 4.2.1 we discuss which construction mechanisms

were selected, and the modifications required, and Section 4.2.2 similarly discusses the

improvement mechanisms and their modifications.

4.2.1 Construction mechanisms

From the selected algorithms, 3 unique construction mechanisms were identified: Random

partitioning, Breadth first search, and Cut size change. There can be several variants for

each of these mechanisms, which we call mechanism variants, and these are presented in

Table 4.2. The Random partitioning is described in two different ways in the selected

algorithms. The first method randomly assigns each vertex to a subgraph, giving an equal

probability to each of the subgraphs which results in an unbalanced partition. The second

randomly assigns a fixed number of vertices to a subgraph before moving on and repeating

the process for the next subgraph. This fixed number is as close as possible to an equal

distribution of vertices as possible and therefore the subgraphs are balanced. Both of

these approaches can be modified to accommodate a depot vertex by first populating each

subgraph with a distinct depot, and then using the appropriate method to complete the

subgraphs. Due to the random nature of this approach a metric is not used, and therefore
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in this instance the second modification is not required. We call these methods Random

partitioning (balanced) and Random partitioning (unbalanced).

The second mechanism is Breadth first search, which generates a search tree with the

vertex with the minimum degree being used as the root. A tree structure is then generated

from this root node that selects the next vertex that is closest to any vertex currently

in the tree, and connects it to the tree by that edge. This process repeats until a fixed

number of vertices have been selected, which corresponds to as equal number of vertices

per subgraph as possible. The next currently unselected vertex with a minimum degree to

other unselected vertices is then selected as the next root node and the process is repeated.

These trees can be turned into a set of subgraphs which will therefore be balanced. As the

graphs we consider are complete and therefore using the degree to select the root vertex

would not be possible. Instead we assign a distinct depot vertex to each of the subgraphs.

As the graphs used by the MTSP is complete, using the minimium degree is not suitable,

and therefore the minimum total cost for a vertex to each vertex in a tree can be used

[86]. The tie breaking condition of the first vertex in the set is used. We call this modified

mechanism Breadth first search (local, sequential). It is local as it selects vertices based

on the cost of the unvisited vertices to the currently examined tree. It is sequential in the

manner in which each subgraph is examined, and it is balanced as it results in a balanced

number of vertices in each subgraph.

Another variant of this mechanism in the selected algorithms is the Simultaneous

breadth first search. A set of seed vertices are selected, and instead of each tree being

built sequentially, each tree selects a vertex in rounds. This process still results in the

same number of vertices being distributed amongst the trees as the standard Breadth first

search, and is therefore also balanced. Each tree has a unique identifier, and if two trees

happen to select the same vertex then the tree that has the earlier identifier selects it

and the other moves on to it’s next best choice. In a similar way to the main variant,

this process can be modified with each of the depots being used as the seed vertices, and

the metric does not require modification. We call this mechanism the Breadth first search

(global, simultaneous), as it considers costs across the entire graph and in a simultaneous

manner and results in a balanced set of subgraphs.

The simultaneous variant selects subgraphs in rounds, however another modification

is that instead of building each subgraph simultaneously, only the best selection is made

each round. This process could have an equal number of vertices in each subgraph by only

considering those subgraphs that are not at a balanced capacity, however the mechanism
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allows for this constraint to be dropped and therefore we separate this into two variants.

The first is called Breadth first search (global, sequential, balanced), as it considers which

selection would be best global and produces a balanced set of subgraphs. The other variant

is called Breadth first search (global, sequential, unbalanced), and is the same as the former

except it does not ensure each subgraph has an equal number of vertices.

The final mechanism is Cut size change, which starts with a set of seed vertices and

iteratively selects a vertex to add to each subgraph. Each of these subgraphs start with a

cut size, which is the number of edges connecting this subgraph to all of the others. The

vertex that would result in the smallest increase in cut size is selected and added to the

relevant subgraph until all vertices have been assigned. This procedure can be modified

with two changes, the first is to use each of the depots as the seed vertices, the second is

to use the average length metric instead of cut size as selection. There are two different

methods for this, the first is that the vertex and subgraph is selected with the minimial

additional cost. Which we call Average length change (local cost), as it is related to the

average length and not the cut size and it takes into account the local additional cost.

The second method is to select the vertex and subgraph that would result in the minimal

largest subgraph cost, which we call Average length change (subgraph cost).

4.2.2 Improvement mechanisms

The unique mechanisms identified from the selected algorithms were: Transfer and swap,

Transfer outliers, Swap and lock, Transfer and lock, and Repeated seed changing partition-

ing. In contrast with Section 4.2.1, a balanced variant does not apply to an improvement

mechanism and therefore each mechanism simply has a modified mechanism instead of a

mechanism variant. A summary of the modified improvement mechanisms is provided in

Table 4.3. Vandermuelen et al proposed two improvement mechanisms, the first being the

Transfer and swap procedure. This mechanism works by iterating through each pair of

subgraphs, transferring and swapping vertices between subgraphs that minimise the max-

imum average length of each pair of subgraphs. A transfer moves a vertex from subgraph

i to j, whereas a swap simultaneously moves a vertex from i to j and a vertex from j to i.

An eligible transfer or swap is one which reduces the maximum average length of the pair

of subgraphs. The procedure begins by iterating through each unique pair of subgraphs.

It was observed by Vandermuelen et al that for each pair there are fewer eligible transfers

than swaps, therefore the process starts by evaluating the cost of each possible transfer.



104 Joshua Alcock

Mechanism name Description

Random partitioning
(balanced)

As equal a number of vertices as possible are randomly as-
signed to each subgraph

Random partitioning
(unbalanced)

Each vertex is randomly assigned to a subgraph, with no
limits on the number of vertices in each subgraph

Breadth first search (lo-
cal, sequential)

A tree structure is generated from the first depot with as
equal a number of vertices as possible selecting the nearest
unselected vertex. This process is repeated for each depot
until all vertices have been assigned

Breadth first search
(global, sequential,
balanced)

Similar to Breadth first search (local, sequential, balanced),
however each round a vertex and tree is selected instead of
only building a single tree, as equal a number of vertices as
possible is assigned to each tree

Breadth first search
(global, sequential,
unbalanced)

The same as Breadth first search (global, sequential, bal-
anced) however there is no constraint on the number of ver-
tices in each tree

Breadth first search
(global, simultaneous)

The same as Breadth first search (global, sequential, bal-
anced) however each round a vertex is assigned to each tree

Average length change
(local cost)

Starts with a depot vertex in each subgraph, and the vertex
and subgraph are selected where the additional cost to the
average length of the subgraph is minimal

Average length change
(subgraph cost)

The same as Average length change (local cost) however the
vertex and subgraph are selected that results in the minimal
cheapest subgraph average length

Table 4.2: A brief description of each of the construction mechanism variants
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The best transfer is one which most reduces the maximum average length of the pair,

and this transfer is carried out and the cost of each transfer is re-evaluated. This process

repeats until there no longer exists a transfer that would reduce the maximum average

length of the pair. Then a similar process occurs with the swaps, evaluating the cost and

carrying out the best until there no longer exists an eligible swap. Once all of the swaps

have been carried out the entire process of transfers and swaps is repeated until there does

not exist a transfer or swap that would reduce the average length. This process iterates

through the next pair of subgraphs until it has iterated through each unique pair and there

does not exist an eligable swap or transfer, at which point the process terminates.

Evaluating the cost of each transfer and swap requires modelling the changes to both

subgraphs. This can be done in O(n2) for each subgraph where n is the number of vertices

in that subgraph. A different method is proposed by the authors however, each vertex

is initially assigned a marginal cost which is the cost of all edges from that vertex to

all other vertices in that subgraph. This marginal cost is used when modelling the cost

of a transfer and swap, which takes O(n) for each update. To avoid checking pairs of

redundant subgraphs, once a pair has been checked it is marked as checked and this will

not change until either of the subgraphs recieve or lose vertices. Vandermuelen et al

graceously provided their code for our use, it is from this that we found that they order

the subgraphs from the highest average length to the lowest average length. The most

expensive was paired with the least expensive, then the second most expensive until all

those pairs have been checked. Then the second most expensive is paired with the least

expensive and iterates in the same manner until each unique pair has been checked. No

changes need to be made to this procedure as it is designed for use with the average length

metric.

The second mechanism proposed by Vandermuelen et al is transfer outliers. This

procedure identifies and relocates vertices that have a disproportionate effect on the average

length of a subgraph. The marginal vertex cost is defined as the total cost of all edges from

a vertex to all other vertices in the subgraph. The average vertex cost of a subgraph is the

total cost of edges in the graph divided by the number of vertices. If a vertex’s marginal

cost is above a pre-determined factor from that subgraph’s average marginal vertex cost,

then the vertex should be transferred to a subgraph with the lowest marginal cost for that

vertex. This process is repeated until there are no more vertices with a disproportionate

impact on the average length for their subgraph, or those that remain are in a position with

the smallest marginal vertex cost. The intention of this procedure is to move vertices to
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subgraphs that may not reduce the maximum average length between the pair in order to

avoid only searching and optimising the local optima. The threshold for being considered

disproporate by the authors was a factor of 1.5. As this procedure was designed for use

with the multi depot MinMax MTSP, no modifications are required.

A popular graph partitioning approach is the Kernighan-Lin heuristic, which we will

call swap and lock. This approach starts with a given initial partition, with the author’s

suggestion being to use random partitioning. The current cost of the cut is determined,

which is the total cost of edges between subgraphs. Each pair of vertices are then evaluated

to determine the effect that swapping them would have on the cost of the cut, with any

reduction in cut cost being called the gain. The swap with the greatest gain is selected and

carried out, and both vertices are locked into position in that neither are considered for any

further swaps. This process repeats until all vertices have been locked. The state of the

partitions after each swap is recorded, and once the procedure has completed the state that

has the lowest cut cost is used as the result. It may be that the swap with the greatest gain

increases the total cut cost, this is still carried out as exploring beyond the local optima

may lead to better results. The first modification the algorithm requires is that each of

the initial partitions must contain a depot, and these vertices cannot be considered for

a swap throughout the procedure. The second modification is that the metric measured

should should be the maximum average length, however only considering the subgraph

with the maximum average length would mean that a large proportion of swaps would not

effect that value and would therefore have a gain of 0. Instead of this the difference in the

maximum average length of the subgraphs involved in the swap is used.

Another popular graph partitioning approach is the Fiduccia-Mattheyses heuristic,

which we will call Transfer and lock. This approach works in a similar way to the Swap

and lock heuristic, however the difference is that vertices are transferred between subgraphs

as opposed to swapping a pair of vertices. A unique data structure is proposed with this

mechanism that uses doubly linked lists, which allows for the gain values for each of

the vertices to be updated only for the effected vertices. As this work aims to examine

characteristics of graph partitioning approaches that produce good MTSP tours we will

not be translating this structure. The modifications required for this approach are the

same as for Swap and lock, with a depot in each of the subgraphs, and the metric used

being average length in the same way.

The final mechanism is repeated seed changing, which starts by generating a set of

initial tours using some construction mechanism from a set of initial seeds. The suggested
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Mechanism name Description

Transfer and swap Between each pair of subgraphs, transfer and swap vertices
until the maximum average length of the pair cannot be im-
proved. Repeat this process until no more transfers and swaps
can be made.

Transfer outliers Determine if a vertex has a marginal vertex cost that is above
a certain factor from the average for that graph. Move these
vertices to a subgraph that minimises this marginal vertex
cost.

Swap and lock Determine the reduction in the maxmimum average length
for each possible swap, make the best swap and do not move
either of the vertices again. Repeat the procedure until all
vertices have been locked, then revert to the partition with
the lowest maximum average length.

Transfer and lock The same process as swap and lock however with transfers.

Table 4.3: A brief description of each of the modified improvement mechanisms

method being to use simultaneous breadth first search. Then the vertex in each subgraph

that has the lowest marginal vertex cost is selected as the seed for that subgraph, and then

the process is repeated until two successive iterations generate the same set of seeds. As the

nature of this improvement mechanism is that is modifies the seed, and that a modification

required for the Multiple depot MinMax MTSP is that a depot node must be present in

each subgraph, this mechanism does not present an evident method for modification.

4.3 Empirical analysis

In order to evaluate the performance of the modified graph partitioning mechanisms dis-

cussed in Section 4.2, each was empirically evaluated. This was done in two ways, com-

paring the performance of tours generated by the graph partitioning mechanisms against

the optimal tours for small scale problem instances, and comparing the performance of

tours generated by the graph partitioning mechanisms against each other. For both scales

of problem, the number of vertices and the number of agents were varied independently

in order to evaluate the effect of those variables on the performance of the mechanisms.

For the non-optimal comparison, both artificial and real world graphs were compared in

order to examine the effect of the topology. This creates a total of 5 problem sets. A
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detailed description of the experiment settings is provided in Section 4.3.1. The results

of the empirical analysis of the Construction mechanisms, and analysis of those results

are presented in 4.3.2, and the analysis of Improvement mechanisms and it’s discussion is

presented in Section 4.3.3.

4.3.1 Experiment settings

In this section we provide the reasoning for the experimental design and implementation

decisions for the average case empirical analysis. In Section 4.3.1 we describe the reasoning

for selecting the particular graph structure used. In Section 4.3.1 we then discuss the

problem sizes for the 5 problem sets examined. We discuss the two different metrics used

for the problem sets in Section 4.3.1 and Finally in Section 4.3.1 we discuss the technical

setup.

Graph structure

Six different problem sets were used, with 2 of them consisting of a small scale set of graphs,

2 of them consisting of 2 larger scale graphs, and 1 of them consisting of real world graph

topologies. For each of the six data sets, complete undirected graphs were selected as to

remove the level of connectivity as an additional variable to control. Each graph has a fixed

number of vertices, with a subset of those vertices as depots corresponding to the number

of agents for that graph. For example if there are 6 vertices and 2 depots, then vertices 1

and 2 are depots, and vertices 3, 4, 5, and 6 are locations to visit. Each combination of a

number of vertices and depots is a graph combination. Each vertex has a random X and Y

co-ordinate, which is a real number in a range between 0 and 100. This range was selected

in order to provide consistency with Vandermeulen et al’s empirical analysis that used the

same range [94].

Each of the subgraphs are solved as a TSP, and in order to determine the optimal

tour cost a program called Concorde was used [21]. The reasoning for this selection are

described in more detail in Section 3.4.2. The form of edge weight most commonly used by

this solver is referred to as ’EUC 2D’, and returns an integer euclidean distance between

two coordinates [79]. This variant of the euclidean equation uses the ’bankers rounding’

method, whereby a value of 0.5 is rounded up and all others values are rounded to the

nearest integer. For example, a value of 1.3 becomes 1, a value of 1.5 becomes 2, and a

value of 1.7 becomes 2. If we represent the X coordinate of the first point with a and the
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Y coordinate as b, then if we represent the X coordinate and Y coordinate of the second

point as c and d respectively, then we can describe this variant of the euclidean equation

as Equation 4.1.

round((c− a)2 + (d− b)2) (4.1)

Problem instance sizes

We examine 5 problem sets, with 2 being small scale graph sizes, 2 being large scale graph

sizes, and 1 being real world graphs. For the construction mechanisms, all of these problem

sets were examined, however for the improvement mechanisms the 2 small scale problem

sets were used. For both small and large scale graph sets the number of vertices and agents

were varied independently, which results in two problem sets for each size. The first small

scale problem set is that of varying the number of vertices while maintaining 2 agents. The

number of vertices varies from 10 to 15, incrementing in steps of 1, which gives 6 graph

combinations. The second set of varies the number of agents while maintaining the number

of vertices as 15. The number of agents varies between 2 and 5, incrementing in steps of

1, which gives 4 graph combinations. Both problem sets share a graph combination of 15

vertices and 2 agents, therefore between the two sets there are 9 unique graph combinations.

As the optimal tour cost is computationally complex to obtain, these small scale problems

are used in order to give an indication of the overall performance of each of the mechanism

variants.

For the larger scale graphs the same general structure applies. For the first set the

number of vertices varies from 25 to 100 in increments of 5 vertices, with a constant of

5 agents, giving 16 graph combinations. The second set varies has a constant number

of 100 vertices, with the number of agents varying from 5 to 20 in steps of 1, giving 16

graph combinations. In the same way as the small scale graphs, one graph combination

is shared between the two sets and therefore the larger scale graphs has 15 unique graph

combinations. For each unique graph combination, 1000 graphs were generated to minimise

the effect of any one graph layout skewing the results. Therefore for the 9 unique graph

combinations of the small scale problem sets there are a total of 9000 graphs generated,

and for the 15 unique graph combinations of larger scale graphs there are a total of 15000

graphs.

For the real world problem set, the same problem instances from Section 3.4.2 are used
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from the TSPLIB [79]. The instances with the number of vertices from 51 to 1000 vertices,

with 49 unique graph sizes that use a real world topology. A list of these instances is

provided in Table A.1, which can be found in Appendix A. During the empirical analyses

of Section 3.4 and Section 3.5, it was determined that the larger problem instances did

not vary significantly in performance from the smaller problem instances. These problem

instances did incur a significant computational cost increase when compared to the smaller

problem instances. The problem instance of size 1000 was chosen arbitrarily, and given a

preference for numbers that are a multiple of 10.

Metric

Two different metrics are used to evaluate the performance of the different problem sizes.

For small scale problem instances where the optimal maximum tour cost is known, the

difference between the optimal maximum tour cost (OMTC) and the maximum tour cost

from a heuristic algorithm (HMTC) can be used to evaluate the performance of that

heuristic. For example, if the OMTC is 100 and the HMTC is 120 then the difference is 20.

For a different graph combination, if the OMTC is 1000 and the HMTC is 1200 then the

difference is 200. To normalise this and make the two problem instances comparable, the

HMTC can be expressed as a ratio or percentage of the OMTC, with the prior two examples

both being represented as a ratio or either 1.2 or 120%. We have chosen to represent the

the difference as a percentage, as we believe it is more readable when compared to a ratio,

with the prior examples resulting in a value of 20%. We call this metric the Percentage

Tour Cost Increase of the Maximum Tour (PTCI). For large scale and real world problem

instances the OMTC is not known and therefore the maximum tour cost is used.

Technical setup

Each graph was generated using the Python 3 programming language on a Windows 10

laptop with an Intel Core i7-8750H CPU @ 2.20GHz. The random co-ordinates require

a random number generator and therefore a seed, which was the microsecond the graph

was generated. A 10 microsecond delay was added between each graph generation to

avoid the same seed being used due to read or write delays. Each of the small scale

problem instances was solved using an Integer Programming formulation [41]. Laporte

and Nobert’s symmetric formulation is used, with the objective function modified to use

the MinMax instead of MinSum function [53]. The subtour elimination constraint used
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was Kulkarni and Bhave’s [52] extension of the Miller-Tucker-Zemlin subtour elimination

constraint [60]. This was programmed using the pyomo library for python 3, and was

executed on the same Windows 10 laptop. Each modified graph partitioning mechanism

was implemented in Python 3, and output each subgraph into the ’.tsp’ file format [80].

The Concorde TSP solver, for the reasons discussed in Chapter 3 Section 3.4.2, was used to

find the optimal tour and tour cost for each subgraph [21]. Concorde by default assumes a

rounded down integer euclidean distance, therefore this was used as the edge weight for the

graphs. Concorde was developed for a UNIX system and was therefore ran on an Ubuntu

20.04 laptop with Intel Celeron Dual-core T3300 @ 2.00GHz.

4.3.2 Empirical evaluation of construction mechanisms

Each construction mechanism variant described in Section 4.2.1 was executed on each of

the 5 problem sets. The deterministic variants, which are all mechanism variants excluding

random partitioning (balanced) and random partitioning (unbalanced), were executed once

on each problem instance as they will always return the same result. The non-deterministic

variants were executed 100 times on each problem instance in order to minimise the effect

of a particular random seed. The results for the small scale problem sets, varying the

number of vertices and varying the number of agents are presented in Figures 4.1 and 4.2

respectively. The results for the larger scale problem sets are shown in Figures 4.3 and 4.4

in the same way. Finally the results for the real world problem sets are shown in Figures

4.6 and 4.5. The conclusions about each of the mechanism variants come from the small

scale problem sets, as the PTCI is a more accurate reflection of the performance. The large

scale and real world problem sets are used to illustrate how the general trend observed in

the small scale problem sets continues.

Each of the figures consists of (a) which is a visual representation of the results, and (b)

a Table that shows a performance summary of each mechanism variant. For the small scale

visual representation in Figures 4.1 and 4.2, for the deterministic mechanisms each point

represents the mean PTCI for each graph combination. That is to say the mean PTCI

across the 1000 problem instances for that graph combination. For the non-deterministic

mechanisms, the mean PTCI for each problem instance is found, which is the max PTCI

of the 100 executions on that problem instance. Then the mean PTCI for that graph

mechanism can be found from the 1000 problem instance, and each point represents this

value. For the large scale visual representation in Figures 4.3 and 4.4, a similar process
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is carried out however the maximum tour cost is used as the metric. The real world

problem set visualisations are represented in Figure 4.6 and 4.5. This differs from the

previous two methods as there is only a single problem instance for each problem size and

number of depots, which we refer to as a graph combination. When varying the number

of vertices, each data point represents the mean value of the maximum tour costs across

all graph combinations relating to graph size. When varying the number of depots, each

point represents the mean value of the maximum tour costs across all graph combinations

relating to a number of depots.

Two standard deviation values are presented in the tables (b). The first is the mean

standard deviation of the mean PTCI, which is the standard deviation of a mechanism

variant’s mean PTCI values with the values corresponding to each graph combination.

The second is the mean standard deviation of the tour PTCI. For each set of tours, each

tour is normalised against the optimal maximum tour cost to get the PTCI value. The

standard deviation is then found between these tours, if at least two tours have a non-zero

cost. The mean of those standard deviations found for each graph combination, and finally

the mean is found for those graph combination values.

The best performing of the three unique construction mechanisms was Average length

change with a mean PTCI across both mechanism variants of 21.8%. For both small

scale problem sets, the subgraph cost variant outperforms the local cost variant, both in

terms of producing tours that are closer to optimal and in the consistency of closeness

to the optimal. The subgraph cost variant has a mean PTCI of 12.5% when increasing

the number of vertices, which is almost half that of the local cost variant at 23.6%. The

subgraph variant is also far more consistent, with it having a standard deviation of 0.9

compared to the local cost’s 1.4. Increasing the number of depots shows similar results

in favor of the subgraph variant, with a mean PTCI of 18.5% against local cost’s 32.6%.

The standard deviation of these PTCIs again has the same pattern with the subgraph

cost variant having a standard deviation of 3.7 and local cost having 4.9. The reason

for this improved performance is likely the balance of cost between the subgraphs and

therefore tours, as when varying the number of vertices the subgraph cost variant has a

standard deviation of 14.4 which is a vast improvement on local cost’s 43.9. Again a similar

performance increase is seen when varying the number of agents, with 24.2 against 47.0.

The difference between the metrics used by both mechanism variants is that local cost uses

just the additional cost, and subgraph cost aims to minimise the maximum average length.

These results indicate that a graph partitioning mechanism with a construction strategy
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that takes into account the entire subgraph cost will outperform those that do not.

The second best performing of the unique construction mechanisms was the Breadth

first search, with a mean PTCI of 38.7% for the 4 mechanism variants. The 4 breadth first

search mechanism variants can be separated into 2 pairs of approaches. The first pair is

the balanced and unbalanced variant of the global sequential strategy, and the second is

local sequential and global simultaneous. For the global sequential variants, the balancing

refers to an equal number of vertices for each subgraph. The balanced variant marginally

outperforms the unbalanced variant when increasing the number of vertices, with a mean

PTCI of 28.5% to 29.7%. The performance of the balanced variant is consistent when

increasing the number of vertices, with the mean PTCI values having a standard deviation

of 0.5. The unbalanced variant however is significantly impacted, with the PTCI starting

at 25.7% for 10 vertices and increasing to 34.1% for 15 vertices. This is initially better

than the balanced variant’s performance of 28.3% for 10 vertices, however from 12 vertices

onwards the performance is worse. The variance between the cost of each tour also varies

far more for the unbalanced variant with a standard deviation of 60.9 compared to the

39.2 of the balanced variant.

The opposite is true when increasing the number of agents, with the unbalanced variant

having a mean PTCI of 42.6%, which outperforms the balanced variant of 58.3%. The

unbalanced variant has a consistent performance when increasing the number of agents,

as shown by the standard deviation of 5.8. By contrast the balanced variant starts with

a PTCI of 28.6% for 2 agents, which outperforms the unbalanced variant’s 34.1%, then

drops significantly to 83.6% with 5 agents. The balanced variant does however still does

produce more consistent tours, with a standard deviation of 48 to the unbalanced variant’s

61.1. These results indicate that when the ratio between the number of vertices and agents

is in favor of the vertices, then selecting the balanced variant would be the better choice.

However when the ratio is in favor of the agents, with fewer vertices, the unbalanced variant

is a superior choice.

The local sequential and global simultaneous variants are similar in that both distribute

an equal number of vertices to each of the subgraphs, however the local sequential variant

distributes these vertices in a sequential fashion and the simultaneous variant distributes a

vertex to each subgraph in rounds. The global simultaneous variant outperforms the local

sequential variant when increasing the number of vertices, with a mean PTCI of 24.6% in

contrast to 25.2%. Both approaches have a consistent performance, with local sequential

having a standard deviation of 1.6 and global simultaneous having 0.8. When increasing the
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number of agents the local sequential is the better performing variant, with a mean PTCI of

49.4% against global simultaneous with 51.0%. Both of these approaches are significantly

affected by the number of agents. Local sequential starts with a PTCI of 24.7& with 2

agents, and increasing to 70% with 5 agents. Global simultaneous starts with a PTCI

of 24.8% for 2 agents, and 74.6% for 5 agents. The performance of both approaches are

similar, with similar performance trends when varying the number of vertices and agents.

This indicates that for the breadth first search, the difference between selection in rounds

and sequential selection is minimal.

The Random partitioning mechanism variants were the worst performing of the three

unique mechanisms, with a mean PTCI from both variants of 57.8%. For both problem

sets, increasing the number of vertices and increasing the number of agents, the balanced

variant outperforms the unbalanced variant by almost all of the metrics being observed.

When increasing the number of vertices the balanced variant has a mean PTCI of 38.5%

and the unbalanced variant has a mean PTCI of 42%. The performance of both variants

is consistent across the graph sizes examined, with the balanced variant having a standard

deviation of 0.8 and the unbalanced variant having 0.6. When increasing the number of

agents, the balanced variant has a mean PTCI of 72.7% with unbalanced having 78.1%.

The performance is greatly dependant on the number of agents however, with the balanced

variant starting with a mean PTCI of 39.2% with 2 agents and increasing to 94.5% with

5 agents. The unbalanced variant starts with a mean PTCI of 42.4% and with 5 agents

this becomes 103.7%. For both problem sets the balanced variant produces tours with a

smaller standard deviation, with 17 outperforming 24.8 when increasing the vertices and

28.7 outperforming 40.3 when increasing the number of agents. As the balancing constraint

is the only difference in the approaches, this demonstrates that for the MinMax objective

this is a beneficial constraint to apply.

4.3.3 Empirical evaluation of improvement mechanisms

Each of the modified improvement mechanisms described in Section 4.2.2, were executed

on the same 4 data sets used in Section 4.2.1. In contrast to a construction mechanism,

an improvement mechanism requires a partition as input instead of a graph. Therefore

the resulting partitions from the Random partitioning, both balanced and unbalanced, for

the 4 data sets was used as the input. For one of the mechanisms, transfer outliers, a

threshold value is used to determine the factor above which is selected for transfer between
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(a) A mean PTCI comparison of the selected graph partitioning mechanism variants, varying the
number of vertices.

Procedure name
Mean

PTCI (%)

Mean standard
deviation of

mean PTCI (%)

Mean standard
deviation of

tour PTCI (%)

Average
length change

(subgraph cost) 12.5 0.9 14.4
(local cost) 23.6 1.4 43.9

Breadth first
search

(global, simultaneous) 24.6 0.8 24.7
(local, sequential) 25.2 1.6 27.8
(global, sequential, balanced) 28.5 0.5 34.9
(global, sequential, unbalanced) 29.7 3.0 54.1

Random
partition

(balanced) 38.5 0.8 17.0
(unbalanced) 42.0 0.6 24.8

(b) Table to show a comparison between: the mean PTCI, the mean standard deviation of the
mean PTCI, and the mean standard deviation of tour PTCI for the selected graph partitioning
mechanism variants.

Figure 4.1: A summary of the results of the small scale empirical evaluation of construction
mechanism variants, when increasing the number of vertices. Figure 4.1a shows a visual
representation of the mean PTCI for the mechanism variants, with Table 4.1b presenting
a summary of the variants performance.
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(a) A mean PTCI comparison of the selected graph partitioning mechanism variants, varying the
number of agents

Procedure name
Mean

PTCI (%)

Mean standard
deviation of

mean PTCI (%)

Mean standard
deviation of

tour PTCI (%)

Average
length change

(subgraph cost) 18.5 3.7 24.2
(local cost) 32.6 4.9 47.0

Breadth first
search

(global, sequential, unbalanced) 42.6 5.8 57.5
(local, sequential) 49.4 19.1 39.1
(global, simultaneous) 51.0 21.7 38.6
(global, sequential, balanced) 58.3 23.8 48.0

Random
partition

(balanced) 72.7 25.1 28.7
(unbalanced) 78.1 26.7 40.3

(b) Table to show a comparison between: the mean PTCI, the mean standard deviation of the
mean PTCI, and the mean standard deviation of tour PTCI for the selected graph partitioning
mechanism variants.

Figure 4.2: A summary of the results of the small scale empirical evaluation of construction
mechanism variants, when increasing the number of agents. Figure 4.2a shows a visual
representation of the mean PTCI for the mechanism variants, with Table 4.2b presenting
a summary of the variants performance.
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(a) A maximum tour cost comparison of the selected graph partitioning mechanism variants, varying
the number of vertices.

Procedure name
Mean maximum

tour cost
Standard
deviation

Average
length change

(subgraph cost) 229.3 35.8
(local cost) 231.1 32.9

Breadth first
search

(global, simultaneous) 273.6 31.2
(local, sequential) 277.1 33.5
(global, sequential, balanced) 287.1 30.8
(global, sequential, unbalanced) 317.0 65.8

Random
partition

(balanced) 353.4 53.0
(unbalanced) 369.6 54.1

(b) Table to show a comparison between the mean maximum tour cost and standard deviation of
the mechanism variants, sorted by the mean maximum tour cost.

Figure 4.3: A summary of the results of the large scale empirical evaluation of construction
mechanism variants, when increasing the number of vertices. Figure 4.3a shows a visual
representation of the mean PTCI for the mechanism variants, with Table 4.3b presenting
a summary of the variants performance.
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(a) A maximum tour cost comparison of the selected graph partitioning mechanism variants, varying
the number of agents.

Procedure name
Mean maximum

tour cost
Standard
deviation

Average
length change

(local cost) 167.0 49.6
(subgraph cost) 174.7 51.6

Breadth first
search

(global, sequential, unbalanced) 241.0 78.3
(local, sequential) 243.7 34.0
(global, simultaneous) 253.0 27.5
(global, sequential, balanced) 267.1 26.8

Random
partition

(balanced) 324.8 48.7
(unbalanced) 338.0 51.6

(b) Table to show a comparison between the mean maximum tour cost and standard deviation of
the mechanism variants, sorted by the mean maximum tour cost.

Figure 4.4: A summary of the results of the large scale empirical evaluation of construction
mechanism variants, when increasing the number of agents. Figure 4.4a shows a visual
representation of the mean PTCI for the mechanism variants, with Table 4.4b presenting
a summary of the variants performance.
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(a) A maximum tour cost comparison of the selected graph partitioning mechanism variants, varying
the number of depots.

Procedure name
Mean maximum

tour cost
Standard
deviation

Average
length change

(local cost) 198225.1 44789.2
(subgraph cost) 143401.7 50308.7

Breadth first
search

(global, sequential, unbalanced) 154952.7 62007.8
(local, sequential) 156274.0 50786.0
(global, simultaneous) 229669.5 53260.6
(global, sequential, balanced) 150410.5 51678.0

Random
partition

(balanced) 215006.1 50727.3
(unbalanced) 217874.5 49991.0

(b) Table to show a comparison between the mean maximum tour cost and standard deviation of
the mechanism variants, sorted by the mean maximum tour cost.

Figure 4.5: A summary of the results of the empirical evaluation of construction mechanism
variants for the real world problem set, when increasing the number of depots. Figure 4.5a
shows a visual representation of the mean PTCI for the mechanism variants, with Table
4.5b presenting a summary of the variants performance.
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(a) A maximum tour cost comparison of the selected graph partitioning mechanism variants, varying
the number of vertices. With the last data point of 1000 vertices excluded as the cost varies so
greatly from the rest of the data set as to render it unreadable.

Procedure name
Mean maximum

tour cost
Standard
deviation

Average
length change

(local cost) 198224.7 1239321.9
(subgraph cost) 143401.2 898250.7

Breadth first
search

(global, sequential, unbalanced) 154952.3 975087.2
(local, sequential) 156273.5 981107.3
(global, simultaneous) 229669.1 1416023.8
(global, sequential, balanced) 150410.0 942947.5

Random
partition

(balanced) 215005.6 1361562.6
(unbalanced) 217874.1 1378457.1

(b) Table to show a comparison between the mean maximum tour cost and standard deviation of
the mechanism variants, sorted by the mean maximum tour cost.

Figure 4.6: A summary of the results of the empirical evaluation of construction mechanism
variants for the real world problem set, when increasing the number of depots. Figure 4.6a
shows a visual representation of the mean PTCI for the mechanism variants, with Table
4.6b presenting a summary of the variants performance.
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subgraphs, and we have chosen to place this threshold at 1.1. The results for the small

scale problem sets, varying the number of vertices and varying the number of agents are

presented in Figures 4.7 and 4.8 respectively. Each of the figures consists of (a) which is

a visual representation of the results, and (b) a Table that shows a performance summary

of each mechanism variant. The results for a mechanism using the random partitioning

(balanced) has the (balanced) suffix, and the same is true for the results of the random

partitioning (unbalanced) with the (unbalanced) suffix. For each graph combination there

are 1000 problem instances, and for each problem instance there are 100 partitions for

both the balanced and unbalanced variant. The mean PTCI for a mechanism across the

100 partitions is found, then the mean PTCI for the 1000 problem instances in that graph

combination is found and this is represented as a point in visualisation (a).

Two standard deviation values are presented in the tables. The first is the mean

standard deviation of the mean PTCI, which is the standard deviation of a mechanism

variant’s mean PTCI values with the values corresponding to each graph combination.

The second is the mean standard deviation of the tour PTCI. For each set of tours, each

tour is normalised against the optimal maximum tour cost to get the PTCI value. The

standard deviation is then found between these tours, if at least two tours have a cost.

The mean of those standard deviations found for each graph combination, and finally the

mean is found for those graph combination values.

The best performing mechanism was transfer and swap, with a mean PTCI of 14.5%

across the 4 data sets and balanced and unbalanced partitions. When increasing the num-

ber of vertices, using a balanced partition produces better results with a mean PTCI of

12.6% which is marginaly higher than unbalanced’s 12.8%. The variation in performance

is the same for both balanced and unbalanced with a standard deviation of 1.3, and the

standard deviation between tours of 10.8 and 10.9 respectively. When increasing the num-

ber of agents, unbalanced marginally outperforms balanced with a mean PTCI of 16.2%

against 16.5%. As with increasing the number of vertices, the standard deviations of both

balanced and unbalanced are 2.2, and a standard deviation between tours of 15.5 for both.

The closeness of both standard deviations as well as the closeness of mean PTCIs indi-

cates that regardless of the initial partition, for a given problem instance, the transfer and

swap mechanism tends to converge to the same the final partition. The approach is also

relatively unaffected by increasing either the number of vertices or agents, which indicates

that it’s performance is not dependant on the ratio between vertices and agents favoring

either side, and may indicate that the approach scales well across graph combinations.
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The second best performing mechanism was swap and lock, with an overall mean PTCI

or 21.5% for the 4 data sets, both balanced and unbalanced. When increasing the number

of vertices the balanced partitions benefited more, with a mean PTCI of 12.8% compared to

unbalanced’s 18.7%. The resulting tours from balanced partitions also outperform unbal-

anced partitions in terms of standard deviation between tours, with 10.3 and 15.5 respec-

tively. The performance was not significantly effected by increasing the number of vertices,

with a standard deviation of 1 for balanced and 0.5 for unbalanced. A similar pattern oc-

curs when increasing the number of agents, with balanced outperforming unbalanced with

20% to 34.4%. The performance from balanced partitions is relatively consistent across

the number of agents, with s standard deviation of 4.6. Unbalanced however, starts with

a mean PTCI of 19.1% for 2 agents, and increasing to 44.2% for 4 agents. A similar differ-

ence in standard deviation in tour costs occurs with balanced having 15.9 and unbalanced

having 24.1. Swap and lock differs from transfer and swap in two ways, it does not transfer

individual vertices between subgraphs, and it does not re-evaluate the position of a vertex

once moved. A combination of these factors mean that this mechanism does not converge

in the same way as transfer and swap, however it shows good performance for balanced

partitions.

The third best performing mechanism was transfer outliers, with a mean PTCI of

30.6% across the balanced and unbalanced results from the 4 data sets. When increasing

the number of vertices, using balanced and unbalanced partitions result in a similar final

performance, with a mean PTCI of 19% and 19.2% respectively. Unbalanced partitions

had a lower variance when increasing the number of vertices, with a standard deviation of

0.8 compared to balanced’s 1.2. Both also have a similar standard deviation between tour

costs with balanced having 17 and unbalanced having 18. When increasing the number of

agents, starting from an unbalanced partition outperforms the balanced partition with a

mean PTCI of 18.6% against 20.3%. The performance is greatly impacted by increasing

the number of agents, with the balanced partitions returning tours with a mean PTCI of

17.9% for 2 agents, and 65.1%. Using an unbalanced initial partition produces marginally

better results when increasing the number of agents, as it starts with 18.2% for 2 agents

and increases to 61.3%. The intention for the mechanism by Vandermuelen et al is to

displace vertices that are disproportionately effecting the subgraph average length, and

therefore avoid the local optima search problem that the transfer and swap method may

encounter. This method has similar performance, given the correct threshold value, to

swap and lock when increasing the number of vertices. It does however have significantly
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worse performance when increasing the number of agents.

The worst performing mechanism was transfer and lock, with a mean PTCI of 34.3%.

When increasing the number of vertices, the tours generated from an unbalanced partition

had a mean PTCI of 29.5% which outperformed the balanced partition’s 31.9%. Using both

balanced and unbalanced initial partitions, the performance decrease with an increase in

vertices. Balanced starts with a mean PTCI for 28.8% for 10 vertices and strays further

from optimal to 34.3% with 15 vertices. Unbalanced follows a similar pattern, starting

with a mean PTCI for 25.9% for 10 vertices and increasing to 32.4% for 15 vertices. The

standard deviation between tours for both are comparatively close with 12.4 for balanced

and 13 for unbalanced. When increasing the number of agents, the tours generated from

the unbalanced partition also outperformed that from the balanced partition, with a mean

PTCI of 35% against 40.6%. The standard deviation of the unbalanced is 2.4 which is

almost half of the balanced partitions 4.4. The standard deviation between tours is also

incredibly similar with 17.7 and 17.8 respectively.

4.4 Conclusion

In this chapter we have discussed the graph partitioning approach to the Multi Depot

MinMax MTSP proposed by Vandermeulen can be generalised into a framework, and that

other graph partitioning mechanisms can be modified for use with this framework. For both

construction and improvement mechanisms, we have identified through empirical testing

which characteristics may provide beneficial results. For construction mechanisms, we have

identified that when using random selection such as the random partitioning approach, that

applying the balancing constraint produces better quality tours. This however has limited

effect when using a edge weight metric such as Breadth first search, where the balancing

only provided better solutions when the ratio between the number of vertices and agents

was heavily in favor of the vertices. The best performing metric was that of using the

average length, with using the average length of the subgraph performing better than

using the local metric of the additional cost to the average length of adding a vertex. This

indicates that modifying graph partitioning mechanisms to use the average length is likely

to produce mechanisms that return high quality tours.

For improvement mechanisms, we have identified that the Transfer and Swap proce-

dure is the best performing mechanism of those examined. Finding that swapping ver-

tices tended to produce better quality results than the transferring of vertices between
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(a) A mean PTCI comparison of the selected graph partitioning mechanism variants, varying the
number of vertices.

Procedure name Mean PTCI
Mean standard
deviation of
mean PTCI

Mean standard
deviation of
tour PTCI

Transfer and swap (balanced) 12.6 1.3 10.8
Swap and lock (balanced) 12.8 1.0 10.3
Transfer and swap (unbalanced) 12.8 1.3 10.9
Swap and lock (unbalanced) 18.7 0.5 15.5
Transfer outliers (unbalanced, 1.1) 19.0 0.8 18.0
Transfer outliers (balanced, 1.1) 19.2 1.2 17.0
Transfer and lock (unbalanced) 29.5 2.6 13.0
Transfer and lock (balanced) 31.9 2.4 12.4

(b) Table to show a comparison between: the mean PTCI, the mean standard deviation of the
mean PTCI, and the mean standard deviation of tour PTCI for the selected graph partitioning
mechanism variants.

Figure 4.7: A summary of the results of the small scale empirical evaluation of improvement
mechanism variants, when increasing the number of vertices. Figure 4.7a shows a visual
representation of the mean PTCI for the mechanism variants, with Table 4.7b presenting
a summary of the variants performance.
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(a) A mean PTCI comparison of the selected graph partitioning mechanism variants, varying the
number of agents.

Procedure name Mean PTCI
Mean standard
deviation of
mean PTCI

Mean standard
deviation of
tour PTCI

Transfer and swap (balanced) 16.5 2.2 15.5
Transfer and swap (unbalanced) 16.2 2.2 15.5
Swap and lock (balanced) 20.9 4.6 15.9
Swap and lock (unbalanced) 34.4 11.0 24.1
Transfer and lock (unbalanced) 35.0 2.4 17.8
Transfer and lock (balanced) 40.6 4.4 17.7
Transfer outliers (unbalanced, 1.1) 41.5 18.6 33.1
Transfer outliers (balanced, 1.1) 42.8 20.3 32.3

(b) Table to show a comparison between: the mean PTCI, the mean standard deviation of the
mean PTCI, and the mean standard deviation of tour PTCI for the selected graph partitioning
mechanism variants.

Figure 4.8: A summary of the results of the small scale empirical evaluation of improvement
mechanism variants, when increasing the number of vertices. Figure 4.8a shows a visual
representation of the mean PTCI for the mechanism variants, with Table 4.8b presenting
a summary of the variants performance.
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subgraphs. As the transfer and swap mechanism can have a high time complexity from

the repeated searches between subgraphs, even with the complexity limited features of

not-checking unmodified subgraphs, future work should examine graph partitioning mech-

anisms that use vertex swapping.



Chapter 5

Multiple Periodic Maintenance

Person Problem

5.1 Introduction

Maintenance and inspection companies schedule a team of technicians to carry out the

regular servicing of equipment at service locations, over a given period of time called the

planning horizon. We call this problem the Multiple Periodic Maintenance Person Problem

(MPMPP). This scheduling can be approached in several different ways. One method is

to divide the area covered by the company into several smaller areas, each based around

a technician. These areas can then be treated as an Maintenance Person Problem as

discussed in Chapter 3. This approach has the advantage that it reduces the complexity

of the problem and the processing of a solution can be carried out simultaneously. The

insular nature of each of the sub problems means that a workload cannot be balanced on a

given day between technicians. For example the technician assigned to one area may have

a large number of service locations to visit, and the technician of the adjacent area may

have comparatively few.

Another method is to determine which service locations should be visited on each day,

and then each day can be treated as a Multiple Travelling Salesperson Problem (MTSP), as

discussed in Chapter 4. This has the advantage that the workload can be balanced between

each technicians, and there exists a wide variety of literature related to MTSP to draw

from. This does however require that the revisiting constraint must be satisfied manually

first, which may not be possible as determining if the workload is too much for the team
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scheduled to work that day requires simultaneously solving the MTSP while developing the

revisiting schedule. The method we will explore in this chapter is a combination of these two

approaches, where the scheduling of multiple technicians is carried out simultaneously for

the planning horizon. We present two heuristic mechanisms using this approach. The first

is an extension of the modified successive augmentation mechanism proposed in Chapter 3.

An initial partial tour, including the relevant depot for each of the technicians is generated

for each of the days in the planning horizon. The selection criteria is then extended to

accommodate the multiple agents, with each selection being ranked in the usual way.

The second is to combine the approaches from Chapters 3 and 4. The modified suc-

cessive augmentation mechanism evaluates, for each day, the cost of every vertex from

the potential vertex insertion data structure at every position specified by the expansion

criteria. Given the specifics of that expansion criteria this may be every position in each

of the partial tours. The best performing of the construction mechanisms examined in

Section 4.3.2 was Average Length Change, which builds a set of subgraphs iteratively. The

Average Length Change graph partitioning mechanism can be used as a selection criteria.

This has the advantage of evaluating far fewer options, as only each of the subgraphs need

to be evaluated instead of each position in the partial tours. Each of the subgraphs can

then be solved as Travelling Salesperson Problems (TSP) after the addition of each new

vertex in order to determine if the addition of a vertex has exceeded the tour cost limit. In

Section 5.2 we discuss both of the modifications to the successive augmentation procedure.

In Section 5.4 we perform an empirical analysis on these two approaches to determine

which performs better, and present the results of this. Finally in Section 5.5 we discuss

the findings from this work.

5.2 Proposed mechanism

We propose two methods for adapting the successive augmentation mechanism to accom-

modate: multiple agents, tour cost limit, and revisiting constraint (R3). The first is an

extension of the modified successive augmentation mechanism proposed in Chapter 3. This

modification already accommodates a tour cost limit and revisiting constraint (R3), how-

ever does not take into account multiple agents, and therefore further modifications are

required. We call this method the Extended modified successive augmentation mechanism

(EMSAM), and this is described in detail in Section 5.2.1. The second method is an exten-

sion of EMSAM that uses a graph partitioning mechanism to distribute vertices between
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the agents. The graph partitioning construction mechanism Average Length Change pro-

posed in 4 is iterative in nature, assigning a vertex to an agent’s subgraph each iteration

until all vertices have been assigned. This mechanism can be combined with the EMSAM,

with each iteration assigning a vertex using the graph partitioning mechanism instead of a

selection and expansion criteria to generate subgraphs instead of tours. These subgraphs

can then be turned into a tour using an exact or heuristic method to determine if the tour

cost limit was violated. We provide a full description of this modification, which we call

the Graph Partitioning and modified successive augmentation mechanism (GPMSAM) in

Section 5.2.2

5.2.1 Extended modified successive augmentation mechanism

As described in Chapter 3, the modified successive augmentation mechanism for the MPP

extends the successive augmentation mechanism in five ways. The first is that there is

an initial tour associated with each day in the planning horizon. The second is that the

selection and expansion criteria do not simply evaluate all of the candidate vertex insertions

across each of these multiple tours. The third is that the current state of the candidate

vertices are kept track of using the potential vertex insertions, which we model as a list with

m tuples. Each of these tuples is a list containing each of the candidate vertex insertions

associated with that day in the planning horizon. The fourth is that the termination

criteria is changed from when there are no more unvisited vertices to when each vertex has

a vertex coverage that extends beyond the planning horizon. The fifth is that a search and

bound mechanism is added, which explores the problem space and determines if a sequence

of selections can produce a valid schedule. If at any point an invalid schedule is detected,

the mechanism backtracks and explores another potential solution.

Extending the modified successive augmentation mechanism entails two changes. The

first change is that an initial tour is not only assigned to each of the days in the planning

horizon, but also assigned to each of the agents on each of days. For k agents there are

k partial tours, each containing the corresponding depot for the agent. This is repeated

for each of the days m in the planning horizon, resulting in km initial tours. The second

change is that for each day in the planning horizon, not only the candidate insertions for

a single tour is considered but instead each of the candidate insertions across the multiple

tours are considered. These additional modifications also require an updated set of tie

breaking conditions.
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If two candidate insertions have the same cost, given the selection criteria, a unique

attribute of these candidate insertions is used as a tie breaking condition. There are a

hierarchy of these tie breaking conditions, and this structure is followed to determine the

ordering of these possible candidate insertions. Currently the hierarchy is: vertex, day,

and finally position with a tour. This hierarchy is extended to: vertex, day, agent, and

finally position within a tour. If two candidate insertions have the same cost, however the

selected vertex for each of these is different then either an earlier or later vertex preference

can be used. Each vertex has a unique position in the set of vertices, and this is used to

determine if it is earlier or later in the set. For example if it would be either vertex 5 or 9,

and an earlier preference is applied then vertex 5 would be chosen, with the inverse being

true for a later preference.

If two candidate insertions both have the same cost and use the same vertex, however

are associated with different days in the planning horizon then a later day preference is

applied. Each day is unique in the set of days, for example days 3 and 11. Inserting a

vertex into a day’s tour increases a vertex’s coverage by a fixed amount, that day plus the

time window. So if a vertex with a time window of 2 is inserted into the tour for day 5

then the coverage of that vertex becomes 7. In this way, inserting a vertex into a later

tour will always result in a higher vertex coverage and therefore is the only preference in

this tie breaking condition. If two candidate insertions have the same: cost, vertex, and

day then the agent’s tour can be used as a tie breaking condition. As with the vertices

and days, the agents each have a unique position within the set of agents and each of the

tours are associated with one of these agents. Therefore this can be used in a similar way

to the vertex as there is no significant effect of having an earlier or later preference for the

agents.

Finally the position within the tour can be used as the final tie breaking condition

within the hierarchy. Two candidate insertions may have the same: cost, vertex, day, and

agent however they cannot have the same position within that agent’s tour. In the same

way as the vertex and agent there is no reason why a preference may be for an earlier or

later position in the tour. The other modifications made to the successive augmentation

mechanism for the MPP do not require further modification for the MPMPP. These ad-

ditional changes are the potential vertex insertions, termination criteria, and search and

bound method. The potential vertex insertions maintain the current state of available

vertices for insertion into each day of the planning horizon, and therefore the agent’s tour

that the vertex is assigned to or even the position in that tour is irrelevant. As the po-
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tential vertex insertions has not been modified, and one of it’s purposes is to keep track

of the vertex coverage for each vertex then the termination criteria is also unmodified.

Finally the search and bound method navigates the problem space for the MPP, with each

iteration selecting a vertex to be inserted on a given day at a position within it’s tour. For

the MPMPP the search and bound method navigates the problem space in the same way

except also selecting which tour within a given day.

5.2.2 Graph partitioning and modified successive augmentation mecha-

nism

The Extended Modified Successive Augmentation Mechanism can be further extended to

combine with a Graph Partitioning Mechanism, and specifically Average Length Change.

The EMSAG evaluates the cost of inserting each of the valid vertices at each of the position

in the tours that are specified by the expansion criteria. Depending on the insertion

criteria this may be each position within each of the partial tours for a given day. For each

iteration in navigating the problem space by the search and bound method, each of these

candidate insertions are considered. The combination of EMSAG with Graph Partitioning

is primarily motivated by a reduction in complexity, which therefore allows for quicker

navigation by the search and bound method. A modified construction graph partitioning

mechanism shares similarities to a construction mechanism for a TSP related problem, in

that both assign vertices to a tour or subgraph permanently instead of transferring those

between the tours or subgraphs. Therefore the modified graph partitioning mechanism of

Average Length Change was selected, as it was the best performing of these mechanisms.

The selection and expansion criteria of the EMSAG is replaced in the GPMSAG by

Average Length Change’s selection and expansion method. For each iteration, the effect

on the subgraph costs of each vertex is evaluated and a selection is made based on the

Subgraph cost and Local cost metrics of the two variants. The Subgraph cost variant

selects the vertex which results in the minimal largest subgraph cost. The Local cost

variant selects the vertex which results in the smallest increase to any subgraph’s cost.

This replaces the selection criteria for the EMSAG, and the expansion criteria becomes

adding the selected vertex to the relevant subgraph. This generates subgraphs instead of

tours however, and does not indicate if the tour cost limit has been violated. Therefore a

tour is generated for each subgraph after a new vertex has been added, and this can be

done using an exact or heuristic TSP algorithm.
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The current bounding mechanism for the EMSAG checks if a vertex can be inserted

into any of the position in the current tours, and if not will then backtrack. This is not

possible for the GPMSAG, and therefore this part of the bounding mechanism is removed.

The tie breaking condition for the GPMSAM differs from that of the EMSAM, as there is

no partial tour to consider. Therefore the order of consideration is: vertex, day, and then

finally subgraph.

5.3 Experimental Methodology

In order to evaluate the performance the EMSAG and GPMSAG, 2 problem sets were

generated and each procedure relating to the two approaches were executed on these prob-

lem sets. The EMSAG has 8 selected procedures which were outlined in detail in Chapter

3. The GPMSAM has two procedures, that of Average Length Change (Subgraph cost)

and Average Length Change (Local cost), with a detailed description provided in Chapter

4. The graphs used were complete euclidean graphs, for the reasons described in both of

the previous 2 chapters. The edge weight for these graphs was the euclidean distance was

rounded down to the nearest integer in order to allow for a consistent comparison with the

previous work. Each vertex has a random x and y co-ordinate, with both values being a

real number in the range of 0 to 100. The tour cost limit is 150% of the maximum tour cost

generated by the modified Average Length Change (Subgraph cost) method. This is an

an arbitrary value that we found through some experimentation engaged the backtracking

mechanism but did not result in a situation where all tours were maxed out at this value.

The service time for each service location is a random integer value between 1 and 10, and

the time window varies depending on if the graph is generated for the small scale or large

scale problem sets.

The small scale problem set consists of a single graph size at a single number of days.

This is due to the high computationally complexity associated with with finding the optimal

tour for a problem size. For this reason we selected a graph with 8 vertices, 2 of which

are assigned as depots and a planning horizon of 3 days. The time window for each of

the service locations is a random integer value from 1 until the number of days in the

planning horizon. During previous chapters we have enforced two visits for each location

to guarantee the revisiting mechanism is used, however with a planning horizon of 3 days

this is not possible. Using the method outlined in Section 5.3.1, the optimal tour cost was

found for 250 instances of the small scale problem size.
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The large scale problem set increases the number of days in the planning horizon

to determine it’s effect on each of the selection and expansion criteria. We do not use

an additional problem set to determine the effect of the number of vertices, as this is

addressed in Chapter 3, were we examined the effect of increasing the number of vertices

on each of the procedures for the EMSAG, and in Chapter 4 were we examined the effect on

the graph size and number of agents for the construction mechanisms, including Average

Length Change. The planning horizon increases from 7 days to 14 days in steps of 1 day,

this leads to 8 different problem sizes. The graphs were generated on a Windows 10 laptop

with an Intel Core i7-8750H CPU @ 2.20GHz using the Python 3 programming language.

The co-ordinates for each vertex was generated using a seeded random number generator,

with the seed being the current time in milliseconds. A 1 millisecond wait gap was given

in between generation to ensure that a read or write error did not cause two graphs to use

the same seed.

The GPMSAG generates subgraphs that are then solved using either a heuristic or

exact solver. We have chosen to use the Concorde solver to find the optimal tour cost [21],

in order to only evaluate the performance of the mechanism and selection metric on the

result instead of also examining the effect of a procedure on the TSP. For the small scale

problem set the Percentage Schedule Cost Increase (PSCI) was used as a metric to evaluate

the performance, however for the large scale problem set PSCI could not be used as the

optimal schedule cost is not known. The EMSAG procedures optimise for the total tour

cost, as is the objective function of the MPP, and the Average Length Change optimises for

the maximum tour cost. As there methods are optimising for different objective functions

we have instead chosen to use the mean schedule tour cost as an evaluation metric. The

mean value was found for all tours on a given day, the mean of these values was then found

to represent the mean tour cost from across the entire schedule.

5.3.1 MPMPP exhaustive algorithm

In order to find the optimal set of tours for MPMPP problem instances, an exhaustive

algorithm was used. For each day within the planning horizon, each vertex may be assigned

one of m + 1 states where m is the number of agents. One state is unassigned, and the

remaining m states correspond with being assigned to each of the agents. n−m represents

the number of non-depot vertices to visit, and therefore there are (m + 1)n−m possible

permutations. For example if there are 6 vertices to visit by 2 agents, then a permutation
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may be 1, 0, 2, 2, 0, 1. In this example vertices 2 and 5 are not visited, with vertices 1 and

6 being visited by agent 1, and vertices 3 and 4 being visited by agent 2.

For each of these permutations, given the vertices visited by an agent the optimal tour

can be found using a TSP exact algorithm. Each of the permutations that results in at least

one tour with a cost that is greater than the tour cost limit is removed as the permutation

is not valid for the MPMPP. Each day in the planning horizon may have any of the valid

permutations, therefore at most there are ((m + 1)n−m)k possible schedules where k is

the number of days in the planning horizon. Each possible schedule is then checked to

determine if it satisfies the revisiting constraint for each non-depot location. Then the

total cost of the valid schedules is found by totalling the cost of the optimal tours for each

of the days in that schedule, then the schedule with the minimal cost is returned by the

algorithm.

5.4 Results

The results of the empirical analysis on the small scale problem set, against the optimal

schedule cost, is presented in Table 5.1. The results of the empirical analysis of the large

scale problem set is presented in Figure 5.1. This consists of two elements, the first is

Figure 5.1a and is a visualisation of the large scale problem set. Each point represents the

mean schedule tour cost for a given number of days for each of the procedures. The second

element is Table 5.1b and shows a summary of the performance for each of the procedures.

The Graph partitioning and modified successive augmentation mechanism (GPMSAM)

variants, subgraph cost and local cost, outperformed all of the Extended modified succes-

sive augmentation mechanism (EMSAM) variants without a preference. That is to say

that both variants of GPMSAM outperformed the default preference procedures using the

EMSAM. The best performing of the GPMSAM procedures was Average Length Change

(Subgraph cost), with a mean PSCI of 8.143% with the small scale problem set and a mean

schedule tour cost of 156.622. This outperformed the other GPMSAM procedure, Average

Length Change (Local cost), which has a mean PSCI of 15.375% for the small scale prob-

lem and with a mean schedule tour cost of 202.756. These results reflect a similar pattern

of performance as the examination of the graph partitioning construction mechanisms in

Section 4.3.2.

The best performing of the EMSAM variants is Smallest Sum Insertion, with a mean

PSCI of 17.436% for the small scale problem set and a mean schedule tour cost of 247.538
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for the large scale problem set. This is followed closely by Cheapest Insertion, which has

a mean PSCI of 17.546% for the small scale problem set, and a mean schedule tour cost

of 250.226 for the large scale problem set. The fifth best performing procedure is Nearest

Insertion, which has a mean PSCI of 19.287% for the small scale problem set, and a mean

schedule tour cost of 260.413 for the large scale problem set. These three procedures are

the best performing of the EMSAM procedures, and all adopt the same strategy which is to

generate tours that are as small as possible. Cheapest Insertion aims to use the additional

cost to make a small tour, with Smallest Sum Insertion trying to find the vertex that is

closest to all of the vertices in the partial tour. Nearest Insertion also finds the vertex that

is closest but only uses a single edge to identify this. The order of performance for these

three procedures show that using the multiple edges is a better approach than using the

cost, with using a single edge under performing against both of those strategies.

The sixth best performing procedure is Farthest Insertion with a mean PSCI of 20.594%

for the small scale problem set and a mean schedule tour cost for the large scale problem

set of 293.809. The seventh best performing procedure is Difference Insertion with a mean

PSCI of 22.517% for the small scale problem set and a mean schedule tour cost of 312.397

for the larger problem set. Largest sum insertion is the eighth best performing procedure,

with a mean SCI of 22.845% for the small scale problem set, and for the large problem set a

mean schedule tour cost of 313.655. Farthest Insertion and Difference Insertion procedure

both aim to generate an initial outline of the tour by selecting the vertices that are furthest

away and then filling this outline in with the remaining vertices given more knowledge of

the general shape of the tour. This is one of the best performing strategies in for the TSP,

as demonstrated in Section 3.4.3, however when applying a tour cost limit, in Section 3.5.3,

the performance was impacted as the outline of vertices was not filled in. As there are

multiple tours using the same set of vertices, a similar issue occurs here with the procedures

generating outlines of of the tour but not filling in the remaining vertices as they must be

distributed amongst each of the tours. Difference insertion has a similar issue, in that it

relies on the assumption that a vertex will be inserted into one of the possible positions in

a tour and therefore the difference in these two costs can be used as a metric. As a vertex

is not necessarily assigned to a tour, and may instead be assigned to another tour, this

metric is less effective.

The final two procedures were the worst performing procedures, Nearest Addition and

Nearest Neighbour. The second worst performing procedure is Nearest Addition with a

mean PSCI of 86.651% for the small scale problem set, and a mean schedule tour cost
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Procedure name Mean PSCI (%) Standard deviation

Average length change (subgraph cost) 8.143 0.524

Average length change (local cost) 15.375 0.873

Smallest sum insertion 17.436 2.586

Cheapest insertion 17.546 2.849

Nearest insertion 19.287 2.945

Farthest insertion 20.594 4.273

Difference insertion 22.517 7.066

Largest sum insertion 22.845 6.286

Nearest addition 86.651 4.417

Nearest neighbour 93.393 4.991

Table 5.1: A summary of the mean percentage schedule cost increase and standard devia-
tion of the selected procedures using the EMSAG or GPMSAG, ranked from the smallest
Percentage Schedule Cost Increase (PSCI) to the largest

of 764.211 for the large scale problem set. The worst performing procedure is Nearest

Neighbour, with a mean PSCI of 93.393% for the small scale problem set and for the large

scale problem set a mean schedule tour cost of 1129.785. As with the empirical analysis

of the EMSAG for the MPP and PTSP, these expansion criteria are less effective than the

Insertion expansion criteria.

5.5 Conclusions

Our empirical analysis indicates that the Graph Partitioning and Modified Successive Aug-

mentation Mechanism outperforms the Extended Modified Successive Augmentation. This

is due to the better distribution of vertices across the tours and therefore a reduction the

maximum tour cost provided by the graph partitioning mechanism. This work could be

extended, using the additional variables introduced by having multiple tours in a simi-

lar way as demonstrated in Chapter 3. Other graph partitioning mechanisms that have

been adapted for use with the MTSP can also be used in order to determine if better

performance could be achieved.
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(a) A visualisation of the mean schedule tour cost for selected procedures using the EMSAG and
GPMSAG on the large scale problem set.

Procedure name Mean schedule tour cost Standard deviation

Average length change (subgraph cost) 156.622 23.945
Average length change (local cost) 202.756 28.126
Smallest sum insertion 247.538 52.484
Cheapest insertion 250.226 51.774
Nearest insertion 260.413 53.313
Farthest insertion 293.809 61.466
Difference insertion 312.397 71.797
Largest sum insertion 313.655 76.455
Nearest addition 764.211 120.349
Nearest neighbour 1129.785 146.230

(b) A summary of the mean schedule tour cost and standard deviation of the selected procedures
using the EMSAG or GPMSAG, ranked from the smallest mean schedule tour cost to the largest

Figure 5.1: A summary of the performance of each of the EMSAG and GPMSAG proce-
dures on the large scale problem set. Figure 5.1a shows a visualisation of the performance
when increasing the number of days in the planning horizon, and Table 5.1b summaries
the performance of each procedure.
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Discussion and Future work

In this thesis we have examined several questions posed around various aspects of the the

MPMPP.

1. When examining a variant of the MPMPP where only a single agent is examined,

what mechanisms can be used in order to solve this problem optimally and heuris-

tically, what are the limitations of these mechanisms? In Chapter 3 we explored

that the single agent variant of the MPMPP which we call the PMPP. For the op-

timal solutions to the problem, the NP-hard nature of the problem means that only

a small scale set of solutions can be examined. For generating a heuristic solution

to the problem, a modified successive augmentation mechanism was presented. The

selection and expansion criteria can have a significant impact on the result, and we

identified several strategies that resulted in better quality tours and identified the

characteristics of these approaches.

2. How do different heuristics for the Periodic Maintenance Person Problem (PMPP)

affect the quality of the tours, when considering different revisiting requirements?

In Chapter 3 we found that by using a successive augmentation mechanism, the

selection and expansion criteria can have a significant impact on the result. We

identified several strategies that resulted in better quality tours and identified the

characteristics of these approaches. Adding additional features such as a tour cost

limit can alter which strategies perform the best, and this was discussed in each of

the relevant sections.

3. Given the complexity of the problem, is an exact or heuristic algorithm more suitable

138
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for the MPMPP? In Chapter 3 we sketched a proof that the MPMPP is an NP-hard

problem and therefore a heuristic approach is more suitable to solve non-trivial sizes

of this problem. The problem sizes explored in this problem reflect problem sizes for

similarly non-trivial extensions of the TSP and future developments in areas relating

to these problems may have applications for the MPMPP.

4. What sort of mechanisms are required to accommodate the visit dependant revisiting

requirement? In Section 3.3 we discussed how an additional step of vertex selection

can be applied before using a TSP construction mechanism in order to accommodate

the revisiting requirement. We also discussed a method for updating and maintaining

a list potential insertion vertices that can be used to keep track of which vertices are

available for each day, and using vertex coverage, which vertices have been placed in

a sufficient number of tours to not require further insertions.

5. What are the challenges involved when using graph partitioning when scheduling mul-

tiple tours in a single day? As discussed in Chapter 4 the two problems have different

objective functions and therefore require some modification. It was found that the

average length of a graph is a suitable proxy for it’s optimal tour cost, and therefore

the objective function of graph partitioning was changed for minimising the total

edge weight between subgraphs to that of minimising the largest average length for

the set of subgraphs.

6. Can graph partitioning mechanisms be adapted to be suitable as an approach to the

Multiple Traveling Salesperson Problem (MTSP)? In Chapter 4 we first discuss the

framework introduced by Vandermeulen et al. for converting a set of subgraphs into a

set of MTSP tours, with average length being introduced as a metric to determine the

suitability of a set of subgraphs [94]. In Section 4.2 we discussed the two categories

of graph partitioning algorithm, that of construction and improvement. In Sections

4.2.1 and 4.2.2 we discuss what modifications a graph partitioning mechanism may

require in order to be suitable.

7. Can the use of graph partitioning be combined with heuristic approaches to the Peri-

odic Maintenance Person Problem to find solutions to the Multiple Periodic Mainte-

nance Person Problem (MPMPP)?. In Chapter 5 we examine two approaches, the

first is an extension of the work presented in Chapter 3 which we call the Extended

Modified Successive Augmentation Mechanism (EMSAM). The second approach we
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examined is a further modification of the EMSAM, using the graph partitioning con-

struction mechanism Average Length Change, which we call the Graph Partitioning

and Modified Successive Augmentation Mechanism (GPMSAM). Using a combina-

tion of the search and bound mechanism and potential vertex insertions, the possible

vertices for insertions were kept track of. The respective mechanisms were then used

to distribute the vertices across the agents.

8. How can we accommodate multiple agents with a revisiting constraint? We have

provided two methods for accomplishing this. The first is to extend an approach

intended for the TSP, as presented by the EMSAM. The second is to extend the

EMSAM with a graph partitioning approach, as it seen with the the GPMSAM. We

found that this second approach produced better quality tours as agents were better

distributed between tours.

6.1 Future work

6.1.1 A survey of successive augmentation procedures

The successive augmentation mechanism is ubiquitously used in heuristic algorithms for

various problems closely related to the TSP. Due to it’s importance there have been a

variety of survey papers that have discussed the performance of the various procedures,

such as those by: Huang and Yu [45], Ursani and Corne, [93], and Gutin and Punnen [39].

These surveys however all share two common issues, the first is that they often address

only a subgroup of successive augmentation mechanisms such as Insertion procedures or

Nearest Neighbour variants. The second is that they only examine procedures such as

Nearest Insertion or Nearest Neighbour, instead of examining the effect of each of the

selection and expansion criteria separately. Each selection criteria can be paired with each

expansion criteria in order to more accurately determine the effect that they have have on

the resulting tours. Selection criteria can also be categorised based on their characteristics,

such as using single edge, multiple edge, geometric based, etc. We believe that a survey

into the effects of these characteristics could lead to a better understanding of under which

conditions each selection criteria performs well. Finally the existing literature only examine

the performance of these procedures on symmetric euclidean graphs, and an evaluation,

empirical or otherwise, of the performance of these procedures on asymmetric graphs may

prove useful.
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6.1.2 Successive augmentation and the orienteering problem

A natural extension of applying the successive augmentation mechanism to the TSP is to

apply it to the OP. As discussed in Section 3.5 the successive augmentation mechanism

can be modified to better suit the orienteering problem. There are modifications to the

successive augmentation mechanism that were intended for the TSP but may prove useful in

providing high quality tours for the OP. An example of one such modification is successive

augmentation with regret as proposed by Hassin and Keinan [42]. For each iteration, when

a new vertex is selected the additional cost is checked against the contribution to the tour

cost of each of the vertices in the partial tour. If an existing vertex contributes more to

the partial tour cost than the newly added vertex, then it is removed and therefore the

new vertex was swapped for this one. In this way a vertex added that is a poor decision

and causes ’regret’ can be removed and swapped with a better selection. This mechanism

removes the guaranteed time complexity of O(n2), however has been shown to improve the

tour cost for the Cheapest Insertion procedure, and may prove beneficial to other selection

and expansion criteria.

6.1.3 An extension of the Periodic Maintenance Person Problem

The PMPP addresses the core problem of a single technician over a time period of multiple

days, however there are several additional constraints that could be explored. One would

be enforcing a minimum number of days between revisits to a service location. This may

be relevant in situations where a company must allow the element they are sampling for

a period of time before re-examination. Another aspect that has the potential for fruitful

work is the development of an improvement mechanism for the MPP. An approach that

could be taken is to determine which vertices in a tour have an additional number of days

in their time window before their previous visit. The cost of moving these vertices to tours

later in their time window could be evaluated and explored. This could be done in a way

that only makes a move if it reduces the total schedule cost, or could continue to ensure

that options outside of the local optima are explored. The GPMSAM approach discussed

in Chapter 5 introduces a mechanism that after each addition of a vertex to a subgraph,

uses an exact TSP algorithm to find the optimal tour given that set of vertices. An addition

of this method to the modified successive augmentation mechanism may result in better

quality tours, though would carry a much larger computational complexity.
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6.1.4 Extension of graph partitioning work for the Multiple Travelling

Salesperson Problem

The graph partitioning mechanisms presented in Chapter 4 are common geometric based

approaches to the problem. The graph partitioning literature is expansive, with a variety of

different approaches that have been proposed. An examination on how these approaches

could also be adapted to use Vandermeulen et al.’s framework may reveal mechanisms

that perform better than those explored in this thesis [94]. The time complexity of the

existing approaches we have presented may also provide a useful insight in determining

which mechanisms have a good ratio between it’s time complexity and the effectiveness of

the resulting tours. The approaches we have examined could also be shown in comparison

with other MTSP algorithms, to contextualise their performance.
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Problem ID Problem name Number of vertices Optimal tour cost
1 eil51 51 426
2 berlin52 52 7542
3 st70 70 675
4 eil76 76 538
5 pr76 76 108159
6 rat99 99 1211
7 kroA100 100 21282
8 kroB100 100 22141
9 kroC100 100 20749
10 kroD100 100 21294
11 kroE100 100 22068
12 rd100 100 7910
13 eil101 101 629
14 lin105 105 14379
15 pr107 107 44303
16 pr124 124 59030
17 bier127 127 118282
18 ch130 130 6110
19 pr136 136 96772
20 pr144 144 58537
21 ch150 150 6528
22 kroA150 150 26524
23 kroB150 150 26130
24 pr152 152 73682
25 u159 159 42080
26 rat195 195 2323
27 d198 198 15780
28 kroA200 200 29368
29 kroB200 200 29437
30 ts225 225 126643
31 tsp225 225 3916
32 pr226 226 80369
33 gil262 262 2378
34 pr264 264 49135
35 a280 280 2579
36 pr299 299 48191
37 lin318 318 42029
38 rd400 400 15281
39 fl417 417 11861
40 pr439 439 107217
41 pcb442 442 50778
42 d493 493 35002
43 u574 574 36905
44 rat575 575 6773
45 p654 654 34643
46 d657 657 48912
47 u724 724 41910
48 rat783 783 8806
49 dsj1000 1000 18659688
50 pr1002 1002 259045
51 u1060 1060 224094
52 vm1084 1084 239297
53 pcb1173 1173 56892
54 d1291 1291 50801
55 rl1304 1304 252948
56 rl1323 1323 270199
57 nrw1379 1379 56638
58 fl1400 1400 20127
59 u1432 1432 152970
60 fl1577 1577 22249
61 d1655 1655 62128
62 vm1748 1748 336556
63 u1817 1817 57201
64 rl1889 1889 316536
65 d2103 2103 80450
66 u2152 2152 64253
67 u2319 2319 234256
68 pr2392 2392 378032
69 pcb3038 3038 137694
70 fl3795 3795 28772
71 fnl4461 4461 182566
72 rl5915 5915 565530
73 rl5934 5934 556045
74 rl11849 11849 923288
75 usa13509 13509 19982859
76 brd14051 14051 469385
77 d15112 15112 1573084
78 d18512 18512 645238

Table A.1: A table showing each of the selected problem instances from TSPLIB
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