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Abstract 

 

During economic decision-making, choice alternatives are evaluated and compared, 

and the option yielding the greatest expected value is selected. Appraising the resulting 

decision outcomes, and comparing expected rewards to received rewards, are essential for the 

updating of subjective values and the adaption of subsequent decision-making behaviours. This 

thesis synthesised neuroeconomic fMRI research of economic valuation, and examined the 

spatiotemporal dynamics of value processing in the brain, during incentivised demand-

revealing auction environments.  

Brain processes related to subjective valuation and reward processing were investigated 

using the Becker-DeGroot-Marschak (BDM) task, a second-price sealed-bid auction common 

in fMRI research, and the strategically equivalent Vickrey auction (VA), a socially competitive 

paradigm popular with online retailers. Three experimental chapters combine a meta-analysis 

of fMRI studies with two primary EEG studies to exploit the methodologies’ respective high 

spatial and temporal resolutions. A systematic review and activation likelihood meta-analysis 

was conducted on fMRI studies implementing the BDM task to measure subjective value. 

Subsequently, EEG recordings and event-related potential (ERP) analysis were used to 

investigate the neural mechanisms underlying reward processing of decision outcomes. 

Findings offer succinct empirical support for the ventral striatum and ventral medial 

prefrontal cortex as the core structures responsible for automatic formation of economic value, 

separate from the hedonic aspects of reward. The meta-analysis also provided evidence of the 

selective involvement of inhibition-related brain structures during active economic valuation. 

Further, reward-related ERPs were selectively elicited during the auction outcome period for 

both tasks. A feedback-related negativity was elicited in both auctions, and differentiated 

between more and less relatively advantageous win outcomes. The P300 component showed 
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 distinct sensitivities to outcome salience, social context, and value, as defined by 

market price and subjective willingness-to-pay.  

The current thesis demonstrated the neural representation of economic valuation and 

reward processing in incentive-compatible contexts, recorded by means of EEG and fMRI. A 

subset of the core brain valuation network showed a domain general and automatic increase in 

BOLD activation in line with willingness-to-pay values. Further, multiple distinct ERPs 

differentially encoded bid outcomes during the two auction tasks, with distinct cortical 

responses to valence, motivational significance and social context of auction outcomes.  
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1. General Introduction 

1.1. Economic theory of decision-making  

1.1.1. Quantification of value 

Value-based decisions are an essential and ubiquitous part of everyday life. Choosing 

between options – from what to eat for breakfast, to which brand of shampoo to buy, to what 

career to pursue – requires the weighing of each choice’s attributes, benefits and drawbacks, 

and the conjunction and ranking of option values, before selecting the one considered to be of 

greatest advantage. In philosophical value theory, every object and event can be characterised 

as holding either instrumental value, where the item in question has utility that is a means to 

an end, or intrinsic value, where the item is an end in itself (Olson, 2013). An example of a 

device with instrumental value is a dishwasher, as if it could no longer wash dishes it would 

lose its value to the consumer. Conversely, happiness and pleasure are thought to have intrinsic 

value as they are desirable for their own sake (Weber, 2013). Intrinsic value is adjacent to the 

concept of aesthetic value, where an item possesses the capacity to elicit pleasure (positive 

value) or displeasure (negative value) when appreciated or experienced aesthetically 

(Goldman, 1990, 2018).  

The definition of value can vary depending on the context, from the hedonic 

understanding of gratification and beauty to the utilitarian space of function and economic 

worth. Subjective valuations (SV) are the private internal states of people’s minds, and most 

are a combination of many different types of value. For example, a luxury car has the financial 

value of a high retail price, the functional value of high quality performance, the hedonic value 

of being enjoyable to drive, and the social value of the prestige and status that ownership brings 

(Wiedmann, Hennigs, & Siebels, 2007).  
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In practice, the definition of value in any given context is often dependent on the method 

of measurement, as the methodology and framing of research questions impacts how value is 

understood. For example, desirability, likeability and pleasantness ratings tasks elicit correlated 

but distinct results to economic bids and ratings of intention to purchase (Roberts et al., 2018). 

Additionally, some of the most common methods of eliciting SV, such as preference 

statements, two-alternative forced-choice tasks (2AFC), attractiveness ratings and liking 

scales, can also face issues of low reliability and real-world applicability. Research has shown 

that hedonic scores are not necessarily comparable between participants (Lange, Martin, 

Chabanet, Combris, & Issanchou, 2002) or appropriate for informing marketing strategies 

(Murphy, Allen, Stevens, & Weatherhead, 2005; Voigt, Murawski, & Bode, 2017). 

In economic contexts, SV is commonly elicited using the metric of willingness-to-pay 

(WTP): the maximum amount of wealth that a consumer would be willing to part with in 

exchange for a good or service being sold (Barrot, Albers, Skiera, & Schäfers, 2014; Noussair, 

Robin, & Ruffieux, 2004; Plassmann, O'Doherty, & Rangel, 2007). In this framework, all 

decision options can be ranked on the single linear scale of currency, regardless of their sensory 

properties (e.g. tastes can be compared to sounds), dimensions of value (e.g. the immediacy 

and probability of rewards can be incorporated into the singular value) and valence (e.g. good 

and bad outcomes can be directly compared) (Steiner & Hendus, 2012). WTP is often used in 

economic and psychological studies examining valuation processes , where a participant’s 

stated WTP is recognised as a direct and public declaration of their private SV. 

 WTP can be measured directly or indirectly, and can ascertain a consumer's real or 

hypothetical WTP. Direct measures include auctions and open-ended questions, whereas 

indirect methods include choice-based conjoint analysis and discrete choice experiments 

(Bijlenga, Bonsel, & Birnie, 2011; Schmidt & Bijmolt, 2020). Real WTP measures entail a 

financial commitment, while hypothetical measures of WTP do not impose any financial 
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consequences for participants’ decisions but instead pose the hypothetical question: “if given 

the opportunity to buy this product, how much would you pay for it?”. An implicit assumption 

of any value-based decision-making research is for the lab-based findings to accurately reflect 

real-world SV attribution (Plassmann et al., 2007). Meta-analyses of WTP paradigms have 

shown that hypothetical purchasing scenarios produce consistent behavioural overestimations 

of WTP in comparison to that of real WTP measures: this phenomenon is called the 

hypothetical bias (Foster & Burrows, 2017; List & Gallet, 2001; Little, Broadbent, & Berrens, 

2012; Murphy et al., 2005; Schmidt & Bijmolt, 2020). Furthermore, this hypothetical bias is 

considerably stronger in indirect measures of WTP compared to direct methods (Schmidt & 

Bijmolt, 2020).  

Finally, even within the domain of direct measures of real WTP, some methods can still 

produce unreliable results due to being not incentive-compatible (Breidert, 2007; Breidert, 

Hahsler, & Reutterer, 2015). If the parameters of a methodology do not induce truth telling in 

the participants through appropriate incentives (such that it would be strategically 

disadvantageous to under or over state their WTP), researchers cannot be certain that the WTP 

values are representative of SV and are not altered by the participant’s private strategy 

(Acquisti, Brandimarte, & Loewenstein, 2015; Wertenbroch & Skiera, 2002). The most widely 

used direct and incentive-compatible measures of real WTP are the Vickrey auction (VA) 

(Vickrey, 1961) and the Becker-DeGroot-Marschak auction (BDM) (Becker, DeGroot, & 

Marschak, 1964) (see sections 2.1.1 and 2.1.2).  

 

1.1.2. Expected Utility Theory 

Expected Utility Theory (EUT) is a normative economic model of rational choice under 

risk and uncertainty (Von Neumann & Morgenstern, 2007). EUT dictates that in conditions 
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where one is not certain of the outcomes which will result from one’s actions, the rational 

option is to choose the action with the highest expected utility (Grant & Van Zandt, 2007; 

Mongin, 1998). The utility of each available action option is calculated as a weighted average 

of the utility value x of the given outcome i and the probability p of outcome i occurring, such 

that the expected value of an outcome can be expressed as xi·pi. The resulting expected utilities 

of all possible actions are ranked, and the choice option(s) with the greatest expected utility 

value is executed.  

There are several intrinsic axioms central to the predictions of EUT: completeness, 

transitivity, independence and continuity. Completeness dictates that for any two options A 

and B, either one must be preferred over the other, or the decider must be indifferent between 

them. Transitivity states that if option A is preferred to option B, and option B is preferred to 

option C, then option A must be preferred to option C. The axiom of independence posits that 

if the decider is indifferent between two options A and B, they will remain indifferent between 

them regardless of context. Finally, continuity posits that “for any A, B and C, if A is preferred 

to B, and B is preferred to C, there exists a probability distribution of receiving either A or C, 

which is equivalent to receiving B with certainty”; this is designed to disallow a discontinuous 

jump in preferences between options (Caplin & Leahy, 2001; Grant & Van Zandt, 2007; 

MacCrimmon & Larsson, 1979). 

EUT serves as a useful reference guide in theoretical economics for situations where 

decision makers are uncertain of respective payoffs of choice options. However, it assumes an 

accurate mental representation of respective outcomes’ statistical likelihoods  (Hampton, 1994). 

There are many cases of real-world decision-making where this is not the case. For instance, it 

is widely observed that individuals over-weigh the probability of unlikely events occurring and 

under-weigh the probability of nearly certain events occurring (Friedman, Isaac, James, & 

Sunder, 2014): examples of overestimating the probability of unlikely events include playing 
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the lottery and fears of plane crashes and shark attacks. Inconsistent behaviour such as this 

cannot be explained by EUT. As a result, the investigation of apparently irrational behaviours 

of decision makers was subsequently developed into Prospect theory. 

 

1.1.3. Prospect Theory 

The foundations of neuroeconomics lie in Prospect theory and the pioneering 

experiments of Daniel Kahneman and Amos Tversky. Prospect theory is a descriptive 

behavioural model that describes how people weigh up uncertain probabilistic options when 

decision-making under risk (Kahneman & Tversky, 2013; Tversky & Kahneman, 1992). It 

introduces the concept of a ‘probability weighting function’ (Morewedge & Giblin, 2015), 

where the SVs of the decision outcomes depend on the individual’s reference point, and are 

weighted by a nonlinear function of the objective probabilities (Kahneman & Tversky, 2013). 

Prospect theory replaces the utility function of EUT with a value function over gains and losses 

which are relative to a subjective reference point rather than absolute outcomes (van Osch, van 

den Hout, & Stiggelbout, 2006). The reference point is viewed as the status quo, or a zero-

reference point (e.g. current wealth), and so any outcome that is less than the status quo is 

perceived as a loss, and an outcome that is greater than the status quo is perceived as a gain. 

The dependence on reference points can create framing effects, in which different values are 

assigned to the same prospect depending on which reference point is cognitively prominent 

(Rangel, Camerer, & Montague, 2008). Framing effects are illustrated in thought experiments 

such as the Allais paradox (Kühberger & Gradl, 2013), where two logically equivalent 

scenarios are presented descriptively differently, causing contradictions in people's choices 

(Tversky & Kahneman, 1989). 
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In Prospect theory, the value function is S-shaped, being concave in the gain domain 

and convex in the loss domain, as can be seen in Figure 1.1.1.1. The curvature of the value 

function implies different reactions to risk in the two domains, with risk aversion behaviours 

being seen more often in the gain domain, and risk-seeking behaviours seen in the loss domain 

(H. Levy & M. Levy, 2002; Levy, 1992; M. Levy & H. Levy, 2002). Risk attitude is an 

individual’s stated preference between the options of a guaranteed outcome and a (potentially 

more/less profitable) gamble (Kahneman & Tversky, 2013; Tversky & Kahneman, 1992). For 

example, in the gain domain, people are more likely to accept a guaranteed outcome of £80 

than select an 80/20 gamble of £100, whereas in the loss domain, people are more likely to 

select an 80/20 gamble of £100 loss than accept a guaranteed loss of £80.  

 

 

Figure 1.1.1.1 Graphical representation of the Prospect theory value function. 

 

Furthermore, the value function exhibits the psychophysics of diminishing sensitivity: 

the impact of a marginal change in value becomes less cognitively impactful the further away 

it occurs from the original reference point (Schwartz, Goldberg, & Hazen, 2008; Werner & 

Value 
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point 
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Zank, 2019). For example, the difference between a gain or loss of £50 and a gain or loss of 

£100 is more cognitively impactful than the difference between a gain or loss of £10,050 and 

a gain or loss of £10,100. As can be seen in Figure 1.1.1.1, the value function curve is also 

steeper in the loss domain than in gains, eliciting a cognitive bias called loss aversion. Loss 

aversion occurs during mixed gain/loss risky decisions, where the disutility of a potential loss 

is more cognitively prominent than the utility of a potential gain of equal (or comparable) value. 

It is encapsulated in the expression “losses loom larger than gains” (Kahneman & Tversky, 

2013). For example, people will typically choose a guaranteed outcome of £0 over a 50/50 

gamble of winning/losing £100. Loss aversion is an individual difference parameter, as levels 

of loss aversion attitudes vary between individuals.  

A common manifestation of loss aversion is the cognitive bias known as the endowment 

effect: the ascription of greater value to items in one’s possession merely because of ownership  

(Marzilli Ericson & Fuster, 2014). The endowment effect is shown experimentally through a 

difference between the amount individuals are willing to purchase an item for versus the 

amount they would be willing to sell an equivalent or identical item for (Kahneman, Knetsch, 

& Thaler, 1990). The property of ownership (and even pseudo-ownership in some cases) adds 

utility to the item, increasing its economic value to the owner. The endowment effect violates 

the EUT axiom of independence, as the ownership context shifts the individual’s reference 

points and influences valuations (Krigolson, Hassall, Balcom, & Turk, 2013). In addition to 

perceived ownership, utility can also be derived from social cues, such as how one’s 

performance fairs against others (Fehr & Schmidt, 1999), and the maintenance of a good social 

image (Bénabou & Tirole, 2006). Prospect theory suggests that individual preferences are 

subjective and context dependent, with values of items changing between people and within 

people over time (Jones, Childers, & Jiang, 2012). Expected utilities are continuously being 

updated to keep up with changing environments and preferences.  
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1.1.4. Auction Theory 

Auction theory is an applied branch of economics which deals with how people behave 

in auction markets, and how this behaviour is determined by the properties of auction 

parameters (Klemperer, 1999; Krishna, 2009). Auctions are defined as public transactions with 

a specific set of rules pertaining to resource allocation (goods, services or property) according 

to participant bids. There are many sets of rules and designs for auctions, and areas of study 

typically revolve around the efficiency of a given auction design, optimal and equilibrium 

strategies of the players, price discovery and revenue comparison (Milgrom & Weber, 1982). 

Auctions are a common paradigm used in many industries, such as real estate sales (Quan, 

1994), oil drilling rights (Hendricks & Porter, 1988), privatisation of public sector companies 

(López-de-Silanes, 1997), and the sale of licences for the use of the electromagnetic spectrum 

(Madden, Sağlam, & Morey, 2010). 

Auctions are characterised as games with incomplete information, as each bidder will 

possess the private information related to how much she values the item for sale, which is 

deliberately not shared with the other bidders or the seller. Private information can be referring 

to SVs of a given auction item, such as how much a person likes a house, or knowledge of 

objective valuations of the auction item, such as confidential surveys of the property (Kagel & 

Levin, 1993; Milgrom & Weber, 1982). Most auction items have both private and common 

values: for example, the bid value submitted for a painting may be a combination of how much 

a bidder likes it (private value) and the resale value or prestige of owning it (i.e. how much 

others like it).  

Auctions come in many different types, each with their own set of rules, iterations and 

corresponding optimal strategies. There are four standard single unit auction types (1 – 4), and 

two further more peculiar mechanisms (5 & 6) (Milgrom & Weber, 1982): 
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1. Open ascending auction (OA) – examples include the English auction. Players offer bids 

of increasing value until all but one player has dropped out, at which point the last 

remaining player pays the amount equal to their final bid. No payments are required for 

other players. The OA auction is the most well-known auction format, commonly used to 

sell antiques and art. 

2. Open descending auction (OD) – examples include the Dutch auction. Starting at a high 

asking price, the price is lowered incrementally by the auctioneer until a player bids, and 

at that point they commit to paying the current price. No payments are required for other 

players. The OD format is most commonly used to sell perishable goods, such as flowers 

and fish.  

3. First-price sealed-bid auction (FPSB) – also known as a blind auction. All players 

simultaneously and privately submit a single bid, all bids are compared and the player with 

the highest bid wins and pays the price equal to their bid. No payments are required for 

other players. The FPSB format is typically used for estate sales.  

4. Second-price sealed-bid auction (SPSB) – examples include the Vickrey and BDM 

auctions (see sections 2.1.1 and 2.1.2). All players simultaneously and privately submit a 

single bid, all bids are compared and the player with the highest bid wins but pays the price 

of the second highest bid. No payments are required for other players. The online auction 

giant eBay uses a modified version of a SPSB format.  

5. Reverse auction – multiple sellers compete for the business of a single buyer, all players 

placing bids of decreasing value for the price at which they are willing to sell their 

goods/services. The seller offering the lowest price wins the auction and sells their good 

for the price they bid. No payments are required for other players. The reverse auction 

format is commonly used by large corporations and governments as a competitive 

procurement method for raw materials, supplies, and contracts. 
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6. Bidding fee auction – also known as a penny auction, bidding fee auctions are similar to 

OA formats, except all players must pay a non-refundable fee to place a bid. The seller 

therefore profits from the payment of the winning bid and the fees charged to place each 

bid.  

With the wide variety of auction paradigms available, sellers naturally want to ascertain 

which type will yield the highest sale for their goods. The first formal application of Game 

theory principles to auction settings was conducted by Willian Vickrey in the 1960’s, with the 

development of the Revenue Equivalence theorem (RET) (Myerson, 1981; Riley & Samuelson, 

1981; Vickrey, 1961). The RET posits that, if a given number of risk-neutral bidders have 

independent valuations that are drawn from a common distribution, all four of the standard 

auction types will produce the same final sales price (Klemperer, 2000; Myerson, 1981; Riley 

& Samuelson, 1981). Bidders will learn to adapt their behaviour depending on the paradigm, 

such as bidding less than their true SV, referred to as bid ‘shading’ (Milgrom & Weber, 1982; 

Vickrey, 1961).  

Auction paradigms bring together intellectual and affective demands on the players, 

with cognitive workload and emotional arousal both influencing bidding behaviour (Adam, 

Astor, & Krämer, 2016; Adam, Krämer, & Müller, 2015; Agarwal & Malhotra, 2005; 

Lieberman, 2007; Turel, Serenko, & Giles, 2011; van den Bos et al., 2008). In the open auctions 

(1 & 2), the behaviour of other bidders can be observed by everyone else. For the OD auction, 

the maximum willing to pay value of each player is revealed when they drop out, while for the 

OA auction, incremental opponent bids indicate common values, especially if several players 

bid the same value at the same time. Conversely, in the sealed-bid auctions (3 & 4), each player 

has no information about the other players’ behaviour during the auction. It is only through 

repetitions of the auctions that players learn about their competitors. Social competition can 

change how people make decisions and evaluate outcomes. Defeating the competition to win 
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an auction, and the satisfaction that comes with the win, holds its own utility termed the “joy 

of winning” (Astor, Adam, Jähnig, & Seifert, 2013), which adds to the overall utility of the 

item (Chen, 2011). The bidders are also not in a situation of isolated decision-making, but their 

choices impact other bidders’ payoffs, and vice versa. In auctions with back and for th bidding 

or multiple rounds of auctions on similar items, competitors’ bids can be used as a valid social 

signal as an indication of each bidder’s individual private value, and collectively pointing to 

the good’s common value (Toelch, Jubera-Garcia, Kurth-Nelson, & Dolan, 2014). Bidders can 

update their SVs accordingly, where low competition typically reduces WTP values and high 

competition increases WTP values. Importantly, this adaption of behaviour is specific to social 

situations: van den Bos et al. (2008) showed that auction participants submitted significantly 

higher bids when competing against other humans, but not if the opponents were computers. 

The introduction of competition into auction-like environments evokes greater 

emotional responses. These can influence decision-making, often resulting in suboptimal 

strategies (Adam et al., 2015; Chen, 2011; Flynn, Kah, & Kerschbamer, 2016; Toelch et al., 

2014). Increasing the number of bidders (and therefore increasing the level of social 

competition) results in participants bidding more aggressively (Delgado, Schotter, Ozbay, & 

Phelps, 2008). Emphasis on competition during an auction can boost overbidding (Park & 

Bradlow, 2005) and bid frequency (Kamins, Noy, Steinhart, & Mazursky, 2011). The effect of 

competition and resulting spite from losing can lead to deviations from logic and can result in 

monetary losses and opportunity costs (Kagel & Levin, 1993; Kagel, Levin, Battalio, & Meyer, 

1989; Ku, Malhotra, & Murnighan, 2005). Suboptimal bidding strategies and outcomes such 

as the ‘winner’s curse’ have been widely seen in auctions, being a persistent phenomenon even 

with experienced and professional auction participants (Dyer, Kagel, & Levin, 1989; Garvin & 

Kagel, 1994). The ‘winner’s curse’ refers to when, due to emotions or incomplete information, 

the winning bid in an auction exceeds the intrinsic value or true worth of an item. The winner 
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therefore ends up winning the auction but making a loss overall. The ‘winner’s curse’ has been 

observed in auctions for oil drilling rights in the Gulf of Mexico (Capen, Clapp, & Campbell, 

1971), 3G spectrum auctions (Binmore & Klemperer, 2002) and baseball free agency 

(Blecherman & Camerer, 1998), as well as in industries such as book publishing (Dessauer, 

Dunbar, Brownstone, & Franck, 1982), construction (Dyer & Kagel, 1996), and corporate 

takeovers (Roll, 1986). 

Most auction houses have now moved online. Beyond the pragmatic benefits of lower 

operational costs, no geographical limitations and reaching a wider population of potential 

bidders, this shift to an online marketplace has also shifted the dynamics of auctions 

themselves. No longer can a bidder ‘eye up the competition’, physically examine the items they 

are about to bid on, or be caught up in the competitive and fast-paced atmosphere in the room. 

Furthermore, the information available is commonly limited and publicly available, and the 

auction itself can last several days or even weeks (Huang, Wu, Wang, & Boulanger, 2011). 

These factors all have influences on variables critical in auction theory, such as symmetry of 

information, risk neutrality, independence of bids and common/private valuation (Klemperer, 

1999, 2000). The social influences and competitive behaviour dynamics is clearly an important 

aspect of these situations, but this area has not yet received much attention in neuroeconomics.  

 

1.2. Neuroeconomics and decision-making in the brain 

The primary objective of neuroeconomics is to combine the disciplines of microeconomic 

theory, computational neuroscience and the psychology of decision-making in pursuit of 

answering fundamental questions regarding the representation and processing of preferences 

in the brain. In neuroeconomics, SV is defined as an averaged firing rate of certain neuronal 

populations coding behavioural preferences. Therefore, it follows that the level of neuronal 
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activity in such regions would be proportional to the participant- and stimulus-specific SV 

amount obtained using a given SV measuring task (Clithero & Rangel, 2014; Rangel et al., 

2008). Accordingly, many neuroeconomic studies seek to isolate SV neural mechanisms from 

the rest of the choice circuitry, such as that involved in choice cost valuation, arousal, motor 

preparation and attention processing (Maunsell, 2004). 

The majority of behavioural and computational models of decision-making assume there 

to be five distinct stages: representation, valuation, action selection, outcome evaluation, and 

learning (Rangel et al., 2008). Neuroeconomic investigation often focuses on how SV and 

reward processing are impacted by contextual factors, or ‘value modulators’, such as risk level, 

time delays, social situation, pharmacology, personality and emotion (Rangel et al., 2008). The 

scope of this thesis focuses on the valuation and outcome evaluation stages under conditions 

of risk and uncertainty, specifically economic value within the goal-directed valuation system 

in Chapter 4, and reward processing during outcome evaluation in socially competitive auctions 

in Chapters 5 and 6. 

 

1.2.1. Dopamine and reward prediction error 

When there is a difference between an obtained reward and the expected reward, be it 

positive or negative, the brain quantifies the reward prediction error (RPE), and updates SVs 

accordingly (Gazzaniga, Ivry, & Mangun, 2013; Gehring, Goss, Coles, Meyer, & Donchin, 

1993). The neurotransmitter dopamine has been hypothesised as the neural marker of RPE in 

reward-based learning (Paulus & Stein, 2006; Schultz, 1998, 2002). In this model, dopamine 

is a teaching signal that represents the ‘violation of expectation’, and the activation of 

dopaminergic neurons is dependent on the size of the subjective violation of the expectation of 
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the reward, and not on the objective size of the reward itself (Dayan & Balleine, 2002; Dayan 

& Niv, 2008). 

Anatomically, the dopamine reward system is vast: dopaminergic cells are found 

throughout the midbrain, and have axonal projections to several cortical and subcortical areas. 

The substantia nigra pars compacta and the ventral tegmental area (VTA) are two of the 

primary loci of dopaminergic neurons (Gazzaniga et al., 2013). From these brainstem nuclei, 

dopaminergic neurons project through two pathways: the mesolimbic and the mesocortical 

pathways (Fields, Hjelmstad, Margolis, & Nicola, 2007). The mesolimbic pathway connects 

the VTA to structures involved in emotional processing, including the nucleus accumbens of 

the basal ganglia, the amygdale, the hippocampus, and the anterior cingulate cortex (ACC). 

The mesocortical pathway projects to the neocortex, and is particularly strongly connected to 

the medial portions of the frontal lobe and the orbitofrontal cortex (OFC) (Papageorgiou, 

Baudonnat, Cucca, & Walton, 2016). In nonhuman animal studies, dopamine neurons have 

been shown to encode RPEs (Schultz, 1998, 2022), decreasing in activity when an expected 

reward is delayed (Roesch, Calu, & Schoenbaum, 2007; Roesch & Olson, 2004) or omitted 

(Bayer & Glimcher, 2005; Schultz, 1998).  

 

1.2.2. The brain valuation system 

Multiple reviews (Delgado, 2007; Grabenhorst & Rolls, 2011; Kable & Glimcher, 

2009; Knutson & Cooper, 2005; Kringelbach & Rolls, 2004; Kuhnen & Knutson, 2005; 

Montague & Berns, 2002; O’Doherty, 2004, 2014; Padoa-Schioppa & Conen, 2017; Peters & 

Buchel, 2010) and functional magnetic resonance imaging (fMRI) meta-analyses (Bartra, 

McGuire, & Kable, 2013; Clithero & Rangel, 2014; Jauhar et al., 2021; Lebreton, Jorge, 

Michel, Thirion, & Pessiglione, 2009; Levy & Glimcher, 2012; Luo, Eickhoff, Hetu, & Feng, 
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2018; Martins et al., 2021; Morelli, Sacchet, & Zaki, 2015; Oldham et al., 2018; Silverman, 

Jedd, & Luciana, 2015) have identified a large and diverse network of brain regions thought to 

be responsible for various aspects of value-based decision-making. The brain valuation system 

incorporates structures in the occipital, temporal and parietal cortices, including the ventral 

striatum (VS) and the ventromedial prefrontal cortex (vmPFC), as well as the posterior 

cingulate cortex (PCC), dorsolateral prefrontal cortex (dlPFC), OFC, anterior insula (AI), 

hippocampus, amygdala, insula, and ACC. 

Bartra and colleagues (2013) demonstrated two distinct patterns of regional blood-

oxygen-level-dependent (BOLD) signal changes during SV: a non-linear, ‘U-shaped’ function 

where brain activity increases with the level of arousal independent of valence, and a linear 

function where brain activity monotonically increases in line with SV over the entire value 

range. The two proposed patterns can be seen in Figure 1.2. In their meta-analysis, the bilateral 

AI, dorsal medial PFC, thalamus and the dorsal and posterior striatum exhibited U-shaped 

response profiles during valuation tasks, suggesting their role in salience, motor preparation 

and attentional processing. Conversely, the vmPFC, the anterior VS and the PCC consistently 

showed positively signed effects between SV and BOLD activity, suggesting that these areas 

are critically involved in the computation of SV for both appetitive and aversive stimuli . 

Further, the vmPFC and the VS independently responded to SV when choice options were 

presented and also when outcomes were delivered, suggesting a core role in both the initial 

valuation and outcome evaluation stages of decision-making. It is hypothesised that the 

representation of SV during these two stages of decision-making is computed similarly, as the 

predicted value of a choice option is needed in order to compute a RPE, and the value of 

received outcomes are used to establish SVs for future decisions (Kable & Glimcher, 2009). 

The findings from these meta-analyses therefore implicate a common set of brain regions in 
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the evaluation of choice options and choice outcomes, and propose that the vmPFC and VS 

form a ‘core valuation system’ in the brain (Bartra et al., 2013). 

 

 

Figure 1.2. Two hypothetical profiles for regional BOLD activity as a function of SV. 

Figure from Bartra et al. (2013). 

 

There is also converging evidence that the brain valuation system is automatic and 

domain general, with similar patterns of vmPFC and VS activation in the absence of value-

based choices (Lebreton et al., 2009; Levy, Lazzaro, Rutledge, & Glimcher, 2011), and for 

both primary rewards (such as food) and secondary rewards (such as money or social praise) 

(Delgado, 2007; Grabenhorst & Rolls, 2011; Kable & Glimcher, 2009; Knutson & Cooper, 

2005; Levy & Glimcher, 2012; Montague & Berns, 2002; O’Doherty, 2004; Peters & Buchel, 

2010). These findings are in line with the common neural currency hypothesis, which purports 

that a unitary system represents a ‘general-purpose’ SV across different types of stimuli, 
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allowing for the cross-category comparison of choice options (Brosch & Sander, 2013; Chib, 

Rangel, Shimojo, & O'Doherty, 2009; Kim, Shimojo, & O'Doherty, 2011; Levy & Glimcher, 

2012). 

 

1.2.3. Risk and uncertainty 

Most decisions involve some level of risk. For some choices, the probabilities of each of 

the outcomes are known, such as a 50/50 coin flip gamble, and so the decision is one of pure 

and static risk. However, in many instances in real life, decision makers do not have complete 

information regarding the risk parameters: the choices are ambiguous, or the respective 

probabilities of the outcomes are unknown, and so they are in a situation of uncertainty. During 

choice, the brain incorporates the respective perceived likelihoods of receiving each option into 

the computations of their distinct value signals. Behavioural studies have shown that people 

generally avoid choices that are ambiguous in comparison to certain outcomes (Camerer & 

Weber, 1992). It therefore follows that level of risk or uncertainty in a given choice option 

could modulate the computation of the choice value signal in the brain (Levy, Snell, Nelson, 

Rustichini, & Glimcher, 2010). 

Neuroimaging evidence investigating the neural encoding of the level of known risk of a 

given outcome, separate from the SV of that outcome, has found increased activation in line 

with increasing risk level in the lateral OFC and ventrolateral prefrontal cortex (vlPFC) (Hsu, 

Bhatt, Adolphs, Tranel, & Camerer, 2005; Huettel, 2006; Huettel, Song, & McCarthy, 2005; 

Huettel, Stowe, Gordon, Warner, & Platt, 2006; Tobler, O'Doherty, Dolan, & Schultz, 2007), 

the bilateral VS (Diekhof, Kaps, Falkai, & Gruber, 2012; Preuschoff, Bossaerts, & Quartz, 

2006; Tom, Fox, Trepel, & Poldrack, 2007; Yacubian et al., 2007), AI (Huettel et al., 2005; 
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Kuhnen & Knutson, 2005), and posterior parietal cortex (PPC) (Huettel et al., 2005). Activity 

in the vmPFC and VS (Tom et al., 2007), the AI (Weller, Levin, Shiv, & Bechara, 2009), and 

amygdala (Sokol-Hessner, Camerer, & Phelps, 2013) are associated with level of individual 

loss aversion at the time of outcome receipt. Further, in line with Prospect theory, when 

participants are presented with explicit probabilities the inverted S-shaped nonlinear weighting 

of outcome probabilities (Figure 1.1.1.1) is reflected in striatal activation (Hsu, Krajbich, Zhao, 

& Camerer, 2009) as well as in the vmPFC and the left dlPFC (Tobler et al., 2007).  

Conversely, neuroimaging studies examining decision-making under ambiguity (unknown 

risk) have pointed to the lateral OFC and vlPFC as playing a major role in ambiguity 

processing. The lateral OFC shows greater activity for ambiguity compared to risk processing, 

and this difference correlates with individual level of ambiguity aversion (Hsu et al., 2005). 

VlPFC activity is also associated with ambiguity aversion, with greater activation levels found 

when ambiguity is resolved (Bach, Hulme, Penny, & Dolan, 2011; Huettel et al., 2006). 

 

1.2.4. Social context 

Much of everyday decision-making incorporates some form of social component, 

whether in the form of social norms and expectations, or in interactions with others (such as 

comparison, cooperation, or competition). However, decision-making in social contexts has 

received comparatively little attention in neuroeconomics. When performing a task with 

another player, judgement of one’s own performance can become relative, depending on the 

immediate counter example of the other player. A meta-analysis exploring downward (being 

better than others) and upward (being worse than others) social comparison identified greater 

levels of BOLD activity within the VS and vmPFC for downward comparisons, and greater 



31 

 

levels of BOLD activity within the AI and dorsal ACC for upward comparisons (Luo et al., 

2018). The AI has also been associated with bad outcomes resulting from unfair offers in the 

Ultimatum Game (Sanfey, 2007; Sanfey, Rilling, Aronson, Nystrom, & Cohen, 2003), and 

betrayal in the Trust Game (King-Casas et al., 2005), suggesting a sensitivity to social rules.  

With regards to competitive auction tasks, Delgado, Schotter, Ozbay and Phelps (2008) 

conducted a two-player FPSB auction fMRI study investigating the ‘winner’s curse’. The 

inclusion of social competition produced a more pronounced BOLD response to loss in the 

striatum, and greater behavioural overbidding correlated with the magnitude of this activity. 

Further, van den Bos, Talwar and McClure (2013) conducted a multiplayer FPSB auction fMRI 

study, and found that participant RPEs correlated with activity in the VS and vmPFC, indicative 

of reinforcement learning (Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008). Additionally, 

individual differences in social preferences were related to activity in the temporal -parietal 

junction and AI. Both studies concluded that the players derive utility from winning and 

disutility from losing an auction, independent of monetary outcome (Delgado, Schotter, et al., 

2008; van den Bos, Talwar, & McClure, 2013). Therefore, the decision-making process was 

influenced by the intrinsic value of winning the auction, irrespective of the intrinsic value of 

the item won: suggesting an influence of the “joy of winning” (Astor et al., 2013). Van den 

Bos and colleagues further argue that the social context (e.g., the number of players and the 

expertise of the competition) may mediate the interaction between socio-emotional and reward 

areas to bias competitive decisions. It is clear that comparing one’s performance against 

someone else’s plays a role in outcome evaluation, even in cases where another individual 

doing well has no impact on one’s own performance (Fliessbach et al., 2007; Kedia, 

Mussweiler, & Linden, 2014). While preliminary, this evidence suggests that during socially 

competitive situations, the brain valuation system cares about not only rewards themselves, but 

also how the rewards have been obtained. 
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1.3. Temporal dynamics of reward processing 

The following section describes the spatiotemporal characteristics of feedback 

evaluation mechanisms during risky decision reward processing. The high temporal resolution 

of electroencephalography (EEG, see section 2.2) makes it well equipped to isolate and 

examine reward processing in the brain during the outcome phase of decision-making. The 

most extensively researched reward-related potential components during the outcome period, 

and focus of the EEG studies in this thesis, are the feedback-related negativity (FRN) (Hauser 

et al., 2014) and the P300 component (Glazer, Kelley, Pornpattananangkul, Mittal, & Nusslock, 

2018). 

 

1.3.1. FRN 

The FRN is the difference waveform between averaged potentials time-locked to the 

presentation of probabilistic gain and loss outcomes (Falkenstein, Hohnsbein, Hoormann, & 

Blanke, 1991; Walsh & Anderson, 2012). It has a frontocentral scalp distribution and is 

measured approximately 200 – 300ms after feedback onset from electrodes in the midline 

frontal-central area (e.g. Cz, FCz or Fz in the 10-20 system, see Figure 2.2.1) (Gehring & 

Willoughby, 2002; Glazer et al., 2018; San Martin, 2012). A visual representation of the FRN 

can be seen in Figure 1.3.1. First identified during a time estimation task by Miltner et al. 

(1997) and then during a monetary gambling task conducted by Gehring and Willoughby 

(2002), the FRN has become one of the most extensively studied event-related potentials 

(ERPs) in the reward processing literature (Gehring & Willoughby, 2002; Miltner, Braun, & 

Coles, 1997; Walsh & Anderson, 2012).  
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Figure 1.3.1. The time course and amplitude of the FRN, given by the difference 

waveform between averaged potentials time-locked to the presentation of gain and loss 

outcomes. This figure was taken from Walsh and Anderson (2012). 

 

It should be noted that within the literature, the FRN is also referred to as the feedback 

negativity (FN), the medial-frontal negativity (MFN), feedback error-related negativity (fERN) 

and the reward positivity (RewP). Conventionally, the FRN has been considered a medial-

frontal negative deflection in response to adverse outcomes, which is absent in good outcomes. 

However, there is a growing body of evidence that suggests that this component is actually 

modulated by positive feedback, and should be characterised as a positive fronto-central 

deflection in response to reward that is absent or suppressed following non-reward (Proudfit, 

2015). The visual negativity in the waveform is due to a N200 component, which has very 

similar latency and scalp distribution, being elicited automatically as a baseline response 

(Baker & Holroyd, 2011). Therefore, the positive deflection for reward outcomes is cancelled 

out by the N200 and has the appearance of an absence of activation, while non-reward 

outcomes have the appearance of greater negative activation (Holroyd, Pakzad-Vaezi, & 

Krigolson, 2008; Proudfit, 2015; Yaple, Shestakova, & Klucharev, 2018). The RewP 

difference waveform is the antonym counterpart of the FRN, and is calculated by subtracting 



34 

 

losses from gains, while the FRN is calculated by subtracting gains from losses (Proudfit, 

2015). In the experimental chapters of this thesis, this component is referred to as the FRN in 

Chapter 5 and the RewP in Chapter 6.  

Several theoretical accounts of the role of the FRN have been proposed (Yeung, 

Botvinick, & Cohen, 2004), the most influential being the Reinforcement Learning theory, 

which posits that the FRN reflects reinforcement learning RPE processing (Botvinick, Braver, 

Barch, Carter, & Cohen, 2001; Falkenstein et al., 1991; Holroyd & Coles, 2002). In the 

Reinforcement Learning theory, the ACC, midbrain dopamine system and basal ganglia form 

a reinforcement learning system within the medial-frontal cortex (Schultz, 2002). Short-

latency, phasic reward signals resembling RPEs are known to be encoded by mesencephalic 

dopamine neurons projecting to the striatum and frontal regions (Schultz, 2002). The FRN 

potential is generally thought to originate from midbrain dopaminergic projections to the ACC 

(Bellebaum & Daum, 2008; Cohen & Ranganath, 2007; Gehring & Willoughby, 2002), but 

there is also evidence of involvement from the PPC (Cohen & Ranganath, 2007; Donamayor, 

Marco-Pallares, Heldmann, Schoenfeld, & Munte, 2011) and the striatum (Carlson, Foti, 

Mujica-Parodi, Harmon-Jones, & Hajcak, 2011; Foti, Weinberg, Dien, & Hajcak, 2011). 

Decreases in phasic dopaminergic firing disinhibit ACC neurons, resulting in a more negative 

FRN, while increases in phasic dopaminergic firing inhibits ACC neurons, resulting in a more 

positive FRN. Each time there is a difference between an expected outcome and the received 

outcome, i.e. a prediction error, RPE signals are emitted signalling the inadequacy of 

expectations. It is hypothesised that RPE signals reinforce actions associated with positive 

outcomes and punish actions associated with negative outcomes, in order to guide action 

selection and future learning (Paulus & Frank, 2006).  

There is a large body of evidence that the FRN is primarily modulated by outcome 

valence (Hajcak, Holroyd, Moser, & Simons, 2005; Hajcak, Moser, Holroyd, & Simons, 2006; 
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Holroyd & Coles, 2002; Holroyd, Nieuwenhuis, et al., 2004; Luu, Tucker, Derryberry, Reed, 

& Poulsen, 2003; Nieuwenhuis, Holroyd, Mol, & Coles, 2004; Ruchsow, Grothe, Spitzer, & 

Kiefer, 2002; Yeung & Sanfey, 2004), and that elicitation occurs regardless of modality of 

feedback (e.g. visual, auditory or tactile) (Miltner et al., 1997) and whether the feedback 

comprises primary reinforcers (e.g. performance feedback) or secondary reinforcers (e.g. 

monetary gain/loss) (Foti et al., 2011; Hajcak et al., 2005; Nieuwenhuis, Yeung, Holroyd, 

Schurger, & Cohen, 2004; Yeung, Holroyd, & Cohen, 2005). FRN amplitude has also been 

found to be modulated by outcome probability, with greater amplitudes for improbable 

(unexpected) than for probable (expected) negative outcomes (Bellebaum & Daum, 2008; 

Bellebaum, Polezzi, & Daum, 2010; Cohen, Elger, & Ranganath, 2007; Hewig et al., 2007; 

Holroyd & Krigolson, 2007; Holroyd, Krigolson, & Lee, 2011; Holroyd, Nieuwenhuis, Yeung, 

& Cohen, 2003; Kreussel et al., 2012; Martin & Potts, 2011; Martin, Potts, Burton, & 

Montague, 2009; Potts, Martin, Burton, & Montague, 2006; Walsh & Anderson, 2011).  

Conversely, reports of FRN sensitivity to reward magnitude have been inconsistent. 

Some studies report a reward magnitude effect (Bellebaum et al., 2010; Kreussel et al., 2012; 

Nieuwenhuis, Holroyd, et al., 2004), while others report only a binary good/bad outcome 

differentiation (Goyer, Woldorff, & Huettel, 2008; Hajcak et al., 2006; Masaki, Takeuchi, 

Gehring, Takasawa, & Yamazaki, 2006; Osinsky, Walter, & Hewig, 2014). A meta-analysis 

reported a strong main effect of magnitude, where high magnitude outcomes produced larger 

FRNs than low magnitude outcomes (Sambrook & Goslin, 2015). Therefore, discrepancies in 

reward magnitude sensitivity may be due to heterogeneity in paradigm parameters or 

inconsistencies in how the FRN is measured. 

In line with the Prospect theory notion of a reference point, there is evidence that the 

FRN is dependent on the contextual domain of a given task, as what constitutes a good or bad 

outcome is determined by the alternative option (Gu et al., 2011; Holroyd, Larsen, & Cohen, 
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2004). For example, in a 50/50 gamble between a £10 win and £0 outcome, the £0 is perceived 

as the bad outcome, whereas in a 50/50 gamble between a £10 loss and £0, £0 is the good 

outcome. Linked to this idea, a central part of decision-making under risk and uncertainty is 

‘counterfactual thinking’ (Roese & Epstude, 2017; Roese & Olson, 1993), when the obtained 

outcome is compared with the other ‘roads not taken’. In this way, the FRN may not code for 

objectively ‘good’ and ‘bad’ outcomes, but instead reflect a subjective ‘worse than expected’ 

error signal (Holroyd, Larsen, et al., 2004; Miltner et al., 1997; Nieuwenhuis, Holroyd, et al., 

2004; Yu & Zhou, 2009).  

Similarly, the FRN is also sensitive to the contextual framing of options. For example, 

when given an initial endowment of £100 and then asked to choose between losing £40 

(negative frame) and keeping £60 (positive frame), negative frames were encoded as losses 

and positive frames were encoded as gains (Yu & Zhang, 2014). Interestingly, when 

participants received an initial £100 debt, and then chose to either save £60 or still lose £40, no 

FRN was elicited. The lack of FRN in the loss domain suggests the FRN does not reflect ‘better 

than expected’ positive RPE, and suggests a negativity bias or a greater sensitivity to potential 

losses than potential gains (Nieuwenhuis, Holroyd, et al., 2004; Yu & Zhang, 2014). To this 

point, the FRN also appears to be an index of loss aversion: using a 2AFC monetary gambling 

task, Kokmotou et al. (2017) found a positive correlation between individual level of loss 

aversion and FRN amplitude during choice outcome evaluation (Canessa et al., 2013; De 

Martino, Camerer, & Adolphs, 2010; Kokmotou et al., 2017). 

Finally, the inclusion of a social context has been shown to impact the FRN, with 

greater amplitudes in response to social (thumbs up and thumbs down) vs. non-social stimuli 

(+/- signs) (Pfabigan, Gittenberger, & Lamm, 2019). Furthermore, the FRN is sensitive to 

differences in social status (Boksem, Kostermans, Milivojevic, & De Cremer, 2012), can be 

elicited by watching someone else perform a gambling task (Yu & Zhou, 2006), and is 
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modulated by empathy (Liu, Hu, Shi, & Mai, 2018) and by relationship (Leng & Zhou, 2014; 

Wu, Leliveld, & Zhou, 2011) when decision-making for others and processing vicarious 

rewards. FRN amplitudes are also greater when a player’s outcomes are worse than another’s 

in the Ultimatum Game, signalling a sensitivity to social fairness (Boksem & De Cremer, 2010; 

Hewig et al., 2011; Mussel, Hewig, Allen, Coles, & Miltner, 2014; Osinsky et al., 2014; Polezzi 

et al., 2008; Riepl, Mussel, Osinsky, & Hewig, 2016).  

Conversely, evidence of FRN sensitivity to direct social comparison in other contexts 

is mixed. Boksem et al. (2011) found that when participants received a bad outcome, FRN 

amplitudes were smaller when another participant also received a bad outcome compared to a 

good outcome. However, these results were not replicated by two other studies (Qiu et al., 

2010; Wu, Zhang, Elieson, & Zhou, 2012). Further, Luo et al., (2015) found larger FRN 

amplitudes during social comparison for non-conforming outcomes than conforming 

outcomes, regardless of valence. A sensitivity to conformity could indicate that amplitude 

modulation was due to social inequality as opposed to having better or worse outcomes than 

another person, suggesting a prosocial value orientation (Boksem et al., 2012; Hu, Xu, & Mai, 

2017; Luo et al., 2015). Social fairness could also inform an individual’s expectations, as they 

may anticipate that they should perform as well or receive as much reward as another player, 

and so any deviations from this expectation would impact the RPE signal (Bismark, Hajcak, 

Whitworth, & Allen, 2013; Boksem, Kostermans, & De Cremer, 2011). 

Of course, the situation is slightly different in cases of direct competition, where each 

player competes for the maximization of their personal benefit, to the detriment of the other 

players. During outcome evaluation of competitive tasks, such as an auction, opponents’ 

behaviour can still be a barometer of expected performance or common values, but is most 

saliently a direct signal of personal failure or success (Sheremeta, 2013; Toelch et al., 2014). 

Competitive decision-making has received comparably less attention in neuroeconomics than 
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collaborative and comparative behaviours, but there is some evidence that the FRN is sensitive 

to competitive contexts. When passively viewing a partner’s (co-operative) and an opponent’s 

(competitive) gambling outcomes, the same gain or loss feedback given to both players evokes 

the opposite FRN modulations, as an opponent’s success is processed as the viewer’s failure  

(Itagaki & Katayama, 2008; Marco-Pallarés, Krämer, Strehl, Schröder, & Münte, 2010). The 

topography and polarity of the FRN (loss-minus-win) for a partner’s outcomes and the player’s 

own reward outcomes is the same, but the polarity is reversed for the opponent’s outcomes 

(win-minus-loss) (Czeszumski, Ehinger, Wahn, & Konig, 2019). 

Taken together, the FRN is posited to be involved in evaluating the motivational impact 

of outcomes, incorporating the value, likelihood and size of potential outcomes, as well as the 

framing of a given context, in order to characterise their relevance for future learning (Gehring 

& Willoughby, 2002; Walsh & Anderson, 2012; Yeung & Sanfey, 2004). Conventionally, the 

FRN is purported to reflect a coarse, binary differentiation of good versus bad outcomes 

(Hajcak et al., 2006; Yeung & Sanfey, 2004). However, there is a growing body of evidence 

that the FRN is reflective of a general salience prediction error that is sensitive to the unsigned, 

absolute size of a prediction error and not its valence (Hird et al., 2022; Sambrook & Goslin, 

2015; Talmi, Atkinson, & El-Deredy, 2013). Indeed, in the case of social contexts, it is possible 

that the FRN is dependent on the motivational and affective evaluation of outcomes, as well as 

the comparison of oneself to others as a valid social reference point signalling expected 

performance (Czeszumski et al., 2019; Toelch et al., 2014). Therefore, more research is needed 

on this topic in order to fully characterise the FRN in situations of complex and competitive 

value-based decision-making. 
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1.3.2. P300 

The P300 is a positive-polarity deflection peaking over midline parietal sites, most 

commonly Pz, CPz and Cz (Luck, 2014; Polich, 2007, 2012), occurring at approximately 300 

– 500ms following a feedback stimulus (Glazer et al., 2018; Nieuwenhuis, Aston-Jones, & 

Cohen, 2005), and is composed of two distinguishable subcomponents: the early, frontally 

distributed P3a and the late, parietally distributed P3b (Polich, 2007). During decision-making, 

the P300 is thought to be central to context updating and the integration of new information 

with existing mental schema in order to maximise future rewards (Bellebaum & Daum, 2008; 

Donchin, 1981; Duncan‐Johnson & Donchin, 1977; Duncan‐Johnson & Donchin, 1982; 

Nieuwenhuis, Aston-Jones, et al., 2005; Polich, 2007; Schuermann, Endrass, & Kathmann, 

2012; Sutton, Braren, Zubin, & John, 1965). As one of the most well-established and well-

documented ERPs, the P300 is also referred to as the P3, or the late positive potential (LPP), 

and in reward feedback specific contexts the Rew-P3 or FB-P3. A visual representation of the 

P300 can be seen in Figure 1.3.2. In this thesis, the component is referred to as the P300 in 

Chapter 5 and the P3 in Chapter 6. 
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Figure 1.3.2. The time course, amplitude and topography of the P300 component, referred 

to here as the FB-P3, demonstrating the relationship between the FRN and P300. Figure 

from Glazer et al. (2018).  

 

The P300 is highly sensitive to the motivational significance of stimuli, such as a target 

stimulus in visual search tasks, and the probability of outcomes, such as infrequent stimuli in 

oddball tasks (Duncan‐Johnson & Donchin, 1977; Duncan‐Johnson & Donchin, 1982; 

Pritchard, 1981). The amplitude of the P300 increases as a function of the decreasing 

probability of the occurrence of the target stimulus (Duncan‐Johnson & Donchin, 1977; 

Duncan‐Johnson & Donchin, 1982; Polich, 2007). During reward-related feedback processing, 

surprise at unexpected outcomes (outcomes which are statistically unlikely or subjectively 

deemed improbable) elicit stronger P300 amplitudes compared to expected outcomes 

(Bellebaum & Daum, 2008; Cohen et al., 2007; Hajcak et al., 2005; Hajcak, Moser, Holroyd, 

& Simons, 2007; Holroyd & Krigolson, 2007; Holroyd et al., 2003). 

The P300 is typically sensitive to reward evaluation (i.e. sensitivity to incentive vs. 

neutral feedback), showing larger amplitudes for reward-related feedback (Glazer et al., 2018). 

However, there is inconsistent evidence on whether the P300 is outcome valence dependent, 

with some reporting greater positivity for gain compared to loss feedback (Bellebaum et al., 
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2010; Cano, Class, & Polich, 2009; Conroy & Polich, 2007; Hajcak et al., 2005; Hajcak et al., 

2007; Holroyd, Larsen, et al., 2004; Leng & Zhou, 2010; Wu & Zhou, 2009; Yeung et al., 

2005), while others reporting no effect (Sato et al., 2005; Yeung & Sanfey, 2004) or reporting 

greater positivity for loss feedback (Frank, Woroch, & Curran, 2005). Furthermore, 

emotionally salient stimuli elicit larger P300 amplitudes, regardless of being positive or 

negative (Johnston, Miller, & Burleson, 1986; Keil et al., 2002). Conversely, the P300 has 

consistently been shown to encode the absolute magnitude of the reward feedback , with larger 

rewards eliciting more positive amplitudes than smaller rewards, and larger losses eliciting 

more positive amplitudes than smaller losses (Bellebaum et al., 2010; Gu et al., 2011; Sato et 

al., 2005; Wu & Zhou, 2009; Yeung & Sanfey, 2004). Pertinently, Tyson-Carr et al., (2018) 

found that high value products evaluated during a BDM task produced increased P300 

amplitudes during the initial valuation period.  

Taken together, it has been suggested that the P300 reflects an attentional resource 

allocation mechanism, evaluating the functional significance of feedback stimuli, driving the 

categorisation of salient outcome-related information and streamlining mental model or 

updating processes (Donchin & Coles, 1988; Hajcak et al., 2005; Kramer, Wickens, & 

Donchin, 1985; Polich, 2007, 2012; San Martin, 2012; Sato et al., 2005; Toyomaki & 

Murohashi, 2005; Wickens, Kramer, Vanasse, & Donchin, 1983; Yeung et al., 2005; Yeung & 

Sanfey, 2004). Linked to this, there is evidence that the relative amplitudes of the P300 

subcomponents, P3a and P3b, predict individual differences in gain maximization and loss 

minimization (P3b) and the subsequent behaviour change (P3a) (San Martin, Appelbaum, 

Pearson, Huettel, & Woldorff, 2013). Under the attention-allocation mechanism understanding, 

the P300 is not a valuation mechanism, but during decision-making highly valuable stimuli 

may be perceived as more motivationally significant than the alternatives. 
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It is thought that the addition of a social dimension to the decision-making context 

induces enhanced stimulus salience and processing ease in comparison to equivalent non-social 

feedback (Alexander & Brown, 2011; Bellebaum & Daum, 2008; Gehring & Willoughby, 

2002; Pfabigan et al., 2019; Pfabigan & Han, 2019). In line with this, there is evidence that a 

social context, reflected in social stimuli (e.g. thumbs up or a smiley face), enhances the P300 

amplitude, independent of outcome (Pfabigan et al., 2019; Pfabigan & Han, 2019). In situations 

of social comparison and competition, P300 amplitudes are modulated by individual 

differences in trait empathy for other players (Hu et al., 2017; Lyu et al., 2022), social 

acceptance feedback (Van der Molen et al., 2014; van der Veen, van der Molen, Sahibdin, & 

Franken, 2014), and interpersonal relationships (Hu et al., 2017; Leng & Zhou, 2010; Wang et 

al., 2014; Wang et al., 2017; Zhang et al., 2021). 

Experiments using the Ultimatum Game have shown that P300 amplitudes are greater 

when participants have better outcomes than another player (Qiu et al., 2010; Wu, Leliveld, et 

al., 2011; Wu, Zhou, van Dijk, Leliveld, & Zhou, 2011), and when players receive unfair offers 

(Falco, Albinet, Rattat, Paul, & Fabre, 2019; Liang et al., 2015; Qu, Wang, & Huang, 2013; 

Wu, Hu, van Dijk, Leliveld, & Zhou, 2012). The modulation of the P300 may be rooted in the 

primary social motivations of a given task (Zhang et al., 2021). For instance, in competitive 

situations, the primary focus of a player is to outperform other players and protect one’s self-

interests. Meanwhile, in co-operative situations, social inclusion, reciprocation and fairness are 

prioritised (Cinyabuguma, Page, & Putterman, 2005; Falco et al., 2019; Maier-Rigaud, 

Martinsson, & Staffiero, 2010; Masclet, Noussair, Tucker, & Villeval, 2003). 
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2. General Methods 

2.1. Auction Tasks 

2.1.1. BDM auction  

The BDM paradigm is a popular method of measuring SV through the metric of WTP 

(Becker et al., 1964). In auction contexts, WTP can be thought of as the bidder’s reservation 

price or point of indifference (Padoa-Schioppa, 2011). Under the BDM, a single player submits 

a single bid for a given item. A random number generator then produces a price, and the 

player’s bid is compared to this price. If the bid is above the price, the player receives the item 

and pays the randomly drawn price. If the bid is below this price, the individual pays nothing 

and receives nothing. The BDM is designed to incentivise people to report their true maximum 

WTP by bidding exactly their SV of a given item. To bid more than one’s SV risks overpaying, 

while to bid less than one’s SV risks losing the auction and not purchasing the item for less 

than they were willing to. Because of this, the BDM is referred to as a demand revealing 

mechanism. The weakly dominant strategy in this scenario is ‘truth-telling’, meaning that 

bidding one’s true maximum WTP is the optimal strategy regardless of the opponent(s) strategy 

profile, and so is independent of risk attitudes (Noussair et al., 2004). The formal argument is 

laid out in Figure 2.1.1. In practice, bid values elicited from BDM tasks have been shown to 

more accurately reflect consumer WTP at point of purchase than hypothetical or non-incentive-

compatible methods (Foster & Burrows, 2017; Penn & Hu, 2018; Schmidt & Bijmolt, 2020; 

Wertenbroch & Skiera, 2002)  

The research presented in this thesis used the BDM paradigm as a measure of individual 

SV in a fMRI meta-analysis reported in Chapter 4 and through primary research with EEG 

reported in Chapter 6. Individual reported WTP bidding values were correlated with changes 

in neural activity recorded by the two neuroimaging techniques.  
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Figure 2.1.1. Formal proof of the Dominant Strategy in BDM Auctions. 

  

Scenario: 

Suppose there is a single player in a BDM auction for a single item. The  player – 

denoted i — is given an endowment and asked to submit a bid bi. Simultaneously, a 

random number br is generated. 

The allocation rule is: 

i. if bi > br:  player i buys the item at price br; 

ii. if bi < br:  player i keeps the endowment; 

iii. if bi = br: either (i) or (ii) is implemented with equal probability. 

 

Strategy: 

Suppose that player i’s valuation of an item is vi, and the auction has a reserve price 

R. If bi >  br, the payoff for player i is vi –  br . If bi <  br , the payoff for player i is 0. 

 

a. When vi < R 

Player i does not want to win the auction because they would have to pay at least R, 

which will cause them to make a loss. Hence, bidding bi = vi is optimal since they will 

end up not winning the auction. 

 

b. When vi >= R 

Player i has three options, bi > vi, bi < vi and bi=vi 

 

i. Consider a deviation bi > vi: 

It is possible that bi > br > vi, in which case player i will win the auction with 

a negative surplus vi -  br . 

 

ii. Consider a deviation bi < vi: 

It is possible that bi  < br < vi, in which case player i loses the auction with a 

payoff of 0, whereas they could have won it with a positive payoff of v i -  br if 

they had bid bi = vi. 

 

Hence bidding bi = vi is the weakly dominant strategy. 

 

The payoff strategy of the BDM is as follows: 

 

{
𝜈𝑖  −𝑚𝑎𝑥𝑟≠𝑖𝑏𝑟              𝑖𝑓𝑏𝑖  > 𝑚𝑎𝑥𝑟≠𝑖𝑏𝑟

0                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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2.1.2. Vickrey auction 

The VA was derived by William Vickrey in 1961 and its impact was a major contributor 

to his 1996 Nobel prize in economics (Vickrey, 1961). The academic study of VA has great 

ecological relevance, as the VA format is used by the popular online auction website eBay 

(Barrot, Albers, Skiera, & Schäfers, 2010). During a VA, multiple players simultaneously and 

privately put forward bids to purchase a given good. The single highest bidder wins, but the 

winner will only pay the value of the bid submitted by the second highest bidder (Barrot et al., 

2014; Milgrom & Weber, 1982; Vickrey, 1961). The formal argument is laid out in Figure 

2.1.2.  

In a VA with fully rational players with standard preferences, the weakly dominant 

strategy is for a bidder to bid their SV. The optimal behaviour is posited to be impervious to 

the risk attitude of all bidders, the number of bidders involved in the VA, the strategies of other 

players, and whether the value distributions across players are symmetrical or even correlated. 

Further, the dominant strategy of bidding one’s true SV also holds if bidders have non-standard 

risk preferences, such as anticipated regret (Filiz-Ozbay & Ozbay, 2007) or ambiguity aversion 

(Chen, Katuščák, & Ozdenoren, 2007).  

The BDM is formally strategically equivalent to a VA against a single unknown bidder, 

who bids her valuation, and whose value is drawn from the same distribution of valuations as 

that of the BDM prices (Klemperer, 2000). The only difference in paradigm is that in the VA 

the participant interacts with other players, whereas the BDM places participants in a situation 

of individual choice. The normative predictions from Game theory suggest that both paradigms 

should elicit the same bid responses in players, as there is no incentive to changes one’s bid 

based on the opponent’s behaviour (Klemperer, 2000).  
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However, several significant differences have been found in practice. Many studies 

have found significant heterogeneity in bidding behaviour in the VA compared to the BDM 

(Flynn et al., 2016; Irwin, Mcclelland, Mckee, Schulze, & Norden, 1998; Kagel & Levin, 1993; 

Noussair et al., 2004). Despite clear instructions and an understanding of the paradigm, 

underbidding and overbidding relative to valuations are common. Flynn, Kah and Kerschbamer 

(2016) found consistent deviations of bids from SVs in VAs during a direct experimental 

comparison of the two mechanisms. In the BDM participants were true to their WTP, whereas 

during VAs participants fell into one of three patterns of behaviour. Firstly, a portion of the 

participants never found an incentive to deviate from self-interested behaviour and bid their 

SV as predicted. Secondly, some participants exhibited what was labelled as ‘altruistic’ 

behaviour, where they tended to underbid relative to their SVs in the VA. Finally, a third group 

exhibited the opposite behaviour, overbidding on items in the VA relative to their SV, and were 

termed ‘spiteful’ participants. The deviations from the logical optimal strategy suggests that 

the inclusion of a second player introduces corresponding social dynamics which impact 

valuation processing. The desire to beat rivals can lead participants to overpay, exceeding the 

intrinsic worth of an item (Bartling, Gesche, & Netzer, 2017). Similarly, the inclusion of 

another person can encourage pro-social behaviours for better group relationships, or induce 

less aggressive behaviours in risk averse individuals. The evidence of three divergent behaviour 

patterns suggests a role of individual differences in how players react to social competition. 

Similarly, Noussair, Robin and Ruffieux (2004) found that the payoff functions for the 

two mechanisms diverged over repeated games of bidding for objects of induced value. They 

suggested that outcome feedback (leading participants to adjust their bids in the direction of 

the optimum) is more powerful in the VA than in the BDM. In a VA, it is costlier to deviate 

from bidding one’s valuation, and there is more to be gained from improvement of a given 

suboptimal strategy in the VA than in the BDM. Though strategic uncertainty about other 
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players’ actions in the VA does not affect the optimal strategy, it does affect the expected cost 

of deviating from it. 

The experience of defeating the competition to win an auction and the satisfaction that 

comes with the win holds its own value, which adds to the overall value of the item (Adam et 

al., 2016; Astor et al., 2013; Cooper & Fang, 2008; Morgan, Steiglitz, & Reis, 2003). This is 

not the case in a BDM when the player is competing against a random number generator (van 

den Bos et al., 2008). Furthermore, the bidder’s decision-making process is made in isolation 

in the BDM, and the outcome only has consequences for the decision maker. Conversely, in 

the VA, the bidding behaviour of both players affects the monetary outcome for both parties 

involved.  

The VA tasks reported in the experimental Chapters 5 and 6 of this thesis were modified 

versions of the two-player VA: a computer opponent was used instead of a human competitor, 

and the tasks involved participant deception for them to believe they were playing an online 

VA against another human. In Chapter 5, the computer was programmed to bid so that the 

participant would lose one third of the trials, win by a small margin for a third of the trials, and 

win by a large margin for a third of the trials. In Chapter 6, the computer bidding behaviour 

was randomised so to match the BDM. In both experimental chapters, individual reported WTP 

bidding values were correlated with changes in patterns of neural activity recorded by EEG.  
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Figure 2.1.2. Formal proof of the Dominant Strategy in VA Auctions 

 

 

Scenario: 

Suppose there are two players in a VA for a single item. The players— denoted i and j 

with i ≠ j—are each given an endowment and asked to submit bids bi and bj. 

The allocation rule is: 

iv. if bi > bj: player i buys the item at price bj, while  player j keeps the endowment; 

v. if bi < bj:  player j buys the item at price bi, while  player i keeps the endowment; 

vi. if bi = bj: either (i) or (ii) is implemented with equal probability. 

 

Strategy: 

Suppose that player i’s valuation of an item is vi, and the auction has a reserve price R. 

If bi > bj, the payoff for player i is vi – bj. If bi < bj, the payoff for player i is 0. 

 

a. When vi < R 

Player i does not want to win the auction because they would have to pay at least R, 

which will cause them to make a loss. Hence, bidding bi = vi is optimal since they will 

end up not winning the auction. 

 

b. When vi >= R 

Player i has three options, bi > vi, bi < vi and bi=vi 

 

iii. Consider a deviation bi > vi: 

It is possible that bi > bj > vi, in which case player i will win the auction with a 

negative surplus vi - bj. 

 

iv. Consider a deviation bi < vi: 

It is possible that player j submits a bid higher than bid bi, but still lower than vi. 

In which case player i loses the auction with a payoff of 0, whereas they could 

have won it with a positive payoff of vi - bj if they had bid bi = vi. 

 

Hence bidding bi = vi is the weakly dominant strategy. 

 

The payoff strategy of the VA is as follows: 

 

{
𝜈𝑖  − 𝑚𝑎𝑥𝑗≠𝑖𝑏𝑗               𝑖𝑓𝑏𝑖  > 𝑚𝑎𝑥𝑗≠𝑖𝑏𝑗

0                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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2.2. EEG 

2.2.1. Physiological basis of the EEG signal 

EEG is a non-invasive method of recording electrical brain activity distributed across 

the scalp. Electrical signals are conducted along billions of neurons in the human brain 

(Azevedo et al., 2009; Lent, Azevedo, Andrade-Moraes, & Pinto, 2012; Sanei & Chambers, 

2009). Each neuron consists of a cell body, axon, and excitatory or inhibitory axon terminals 

known as dendrites. Neurons communicate information via action potentials, which are discrete 

voltage spikes generated in the cell body that travel along the axon fibre to the dendrites. An 

action potential is a momentary reversal of membrane potential voltage where the intracellular 

potential suddenly decreases (depolarisation) producing a spike in membrane potential, and 

then quickly returns to the resting membrane potential (repolarisation) (Sanei & Chambers, 

2009). This process is mediated by the exchange of sodium, potassium, calcium, and chloride 

ions through voltage-gated ion channels, where the release and binding of neurotransmitters 

alter the permeability of the postsynaptic cell membrane to specific ions (Hämäläinen, Hari, 

Ilmoniemi, Knuutila, & Lounasmaa, 1993). The resulting change in potential results in a dipole: 

a pair of positive and negative charges separated by a short distance. The fields generated by 

action potentials have a latency of between 1 and 2 milliseconds (Koester, 1991), a very limited 

potential field (Rowan & Tolunsky, 2003), and are generally not synchronous with nearby 

neuronal firing. Therefore, any voltage generated by action potentials is normally cancelled out 

and undetectable by electrodes on the scalp (Buzsáki, Anastassiou, & Koch, 2012; Speckmann, 

1993). 

Instead, EEG measures postsynaptic potentials originating from the extracellular 

current flow, also known as field potentials (Luck, 2014; Mulert & Lemieux, 2010; 

Niedermeyer & da Silva, 2005). This occurs when there is a build-up of electrical potentials 
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across the cell membrane, caused by neurotransmitters being released into the synaptic cleft 

and interacting with the corresponding receptors on the postsynaptic membrane (Buzsáki, 

Traub, & Pedley, 2003; Luck, 2014; Mulert & Lemieux, 2010). These potentials have a 

considerably longer duration (50 – 200 ms), a larger potential field (Rowan & Tolunsky, 2003), 

and stem from the summation of large populations of neurons firing in synchrony, with the 

same polarity and in spatial alignment (Buzsáki et al., 2012; Speckmann, 1993; Speckmann, 

Caspers, & Andersen, 1979). Due to the macroscopic organisation of dendrites, thousands of 

field potentials may occur in a similar location and orientation during a coherent response 

(Fisch & Spehlmann, 1999). The summation of these potentials can be detected and measured 

as voltage fluctuations on the scalp using EEG (Lopes da Silva, 1998; Nunez & Silberstein, 

2000). 

 

2.2.2. EEG signal acquisition and processing 

An EEG recording consists of the measurement and amplification of fluctuating 

electrical field potentials in the brain across time (Kamp, Pfurtscheller, Edlinger, & Lopes da 

Silva, 2005; Maus, Epstein, & Herman, 2011). For EEG data collection, electrodes are 

positioned on the scalp in predetermined locations, and a suitable conducting gel, paste or 

liquid is applied alongside the electrodes to achieve low impedance levels (Teplan, 2002).  

To ensure consistent positioning of electrodes on the scalp across studies and 

laboratories, electrodes are placed in accordance to a standardised system such as the 10-20 

system (Jasper, 1958) or the Geodesics EGI System arrangement (Magstim EGI, UK). These 

systems use internationally recognised anatomical landmarks on the skull: the nasion, inion, 

and left and right mastoids (Jasper, 1958; Klem, Lüders, Jasper, & Elger, 1999; Pizzagalli, 

2007). This standardised electrode placement ensures consistency of recordings between labs 
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which may use different EEG acquisition systems, and allows for the comparison and 

summation of EEG findings. EEG studies in this thesis used a 129-electrode sponge-based 

geodesic sensor net and a saline solution as the conducting medium (Magstim EGI, UK). Figure 

2.2.1 illustrates the locations of electrodes on the head using this system. The high-density 

system gives coverage of the whole head including the forehead and suborbital regions of the 

face. As can be seen in Figure 2.2.1, many sensors in geodesic arrangements (such as electrodes 

24, 33 and 45) have corresponding electrodes in the International 10–20 System (Luu & Ferree, 

2005).  

 

Figure 2.2.1. Distribution of the 129 electrodes across the scalp for the sponge-based EGI 

Geodesic sensor net.  

 

The raw EEG signal amplitudes from a typical adult scalp are very small, approximately 

10 – 100 µV (Aurlien et al., 2004), and so require signal amplification for accurate 

measurement (Luck, 2014). Once amplified, the resulting voltage fluctuations are digitized and 
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transformed into graphic representations for display, storage and analysis (Luck, 2014; Rowan 

& Tolunsky, 2003). An important part of this amplification process is establishing reference 

electrodes. Each individual electrode signal represents the voltage potential difference between 

an active electrode and a reference electrode signal, meaning that the scalp potentials are 

reference-dependent (Luck, 2014). Reference electrodes are most commonly the vertex 

electrode (VREF, commonly referred to as Cz) or the average of the bilateral mastoid 

electrodes (57 and 100). However, singular electrodes chosen as the reference site can be 

differentially affected by volume conduction effects of combinations of neuronal generators 

(Luck, 2014). Furthermore, as there are no inactive (also referred to as ‘silent’ or ‘infinite’) 

recording sites on the scalp, the choice of any single electrode as the reference is inherently 

arbitrary (Kayser & Tenke, 2015). Therefore, it is common practice to use a technique to obtain 

reference-free data, such as the common average reference method, which represents the mean 

signal of all electrodes (Lehmann, 1987; Lehmann, Ozaki, & Pal, 1987).  

The common average reference method relies on the principle that electrical events 

produce both positive and negative poles. The integral of these potential fields in a conducting 

sphere sum to zero when signals are collected from a spherical object such as the head. Only 

signals that are common to all sites remain in the common average reference, while isolated 

signals from singular electrodes are cancelled out. In this way, the reference signal will not be 

impacted by extreme maximal or minimal potential values in the same way that a single 

reference electrode would be. Subtracting the resulting common average reference from each 

electrode channel will result in reference-free EEG signals (Michel et al., 2004; Nunez et al., 

1997). The common average reference method is invaluable for inverse solution methods, 

where the intracranial sources of surface recorded data are reconstructed according to a 

common average reference. During source localisation, it is necessary to remove the constant 

potential value caused by the reference electrode prior to applying an inverse solution in order 
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to avoid violating the assumption that the total net source activity occurring in the brain at any 

one timepoint sums to zero (known as quasi-stationarity) (Murray, Brunet, & Michel, 2008). 

An alternative to the common average reference method is to use Laplacian modelling, 

which is a comparison between each electrode and the weighted average activity of the 

immediately surrounding electrodes (Carvalhaes & De Barros, 2015; Kamp et al., 2005; Nunez 

et al., 1997). The Laplacian transformation involves calculating the second spatial derivative 

of the potential field in the local curvature of each electrode and its neighbours. Surface 

Laplacian modelling is attenuated to the volume conducted influence of more remote sources 

in the brain, and so has the benefit of incorporating contributions of volume conduction within 

the plane of the scalp into the mathematical transformation applied to the EEG potentials 

(Kayser & Tenke, 2015; Murray et al., 2008). 

During EEG data acquisition and cleaning, the waveforms also undergo filtering 

according to their frequency (Luck, 2014). Low-pass filters are used to remove high-frequency 

signals such as muscular artefacts. High-pass filters are used to attenuate undesirable low 

frequency potentials resulting from movement (Litt & Cranstoun, 2003). A notch filter is also 

employed to remove the narrow range of frequencies generated by line currents, approximately 

50/60 Hz (Edgar, Stewart, & Miller, 2005; Luck, 2014). For EEG studies in this thesis, the 

vertex electrode was chosen as the initial reference, and the COM electrode, was used as the 

common/ground electrode. During recording, electrode-to-skin impedances were kept below 

50 kΩ, and a high-pass filter of 0.01 Hz and a low-pass filter of 1000 Hz were employed.  
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2.2.3. Artefact rejection 

In addition to electrocortical potentials, the EEG system also records extracerebral 

artefacts, which includes electrooculographic activity (i.e. eyeblinks and saccades; EOG), 

electrocardiographic activity (i.e. heartbeats; ECG), electromyographic activity (e.g. muscles 

movement or chewing; EMG), and respiration (Luck, 2014; Rowan & Tolunsky, 2003). 

Artefacts can also have non-physiological origins, such as poor electrode-to-skin contact, or 

electronic noise from nearby alternating current electrical appliances (Luck, 2014). These 

sources of noise contaminate the recordings and must be removed in order to isolate the 

cortically generated signal. Experimenters should also strive to minimise the creation of 

artefacts during data acquisition, such as instructing the participants to remain as still as 

possible, asking participants to not blink at certain intervals during recording (where 

appropriate), and proper use of a Faraday cage.  

During data cleaning, regularly occurring artefacts such as eye movements and 

heartbeats can be removed from the data using approaches such as principal component 

analysis (PCA) (Berg & Scherg, 1994) and independent component analysis (ICA) (Jung et al., 

2000). PCA uses a spatial filter approach, delineating artefacts that are defined by a systematic 

topography from the continuous electroencephalographic data. PCA can be implemented in 

software such as Brain Electrical Source Analysis (BESA, GmbH), whereby artefacts in 

question can be manually tagged and then removed using adaptive artefact correction (Berg & 

Scherg, 1994; Ille, Berg, & Scherg, 2002). In addition to this, all trials are visually inspected 

and any that contain further, unsystematic artefacts can be manually discarded. A potential 

limitation of the adaptive artefact correction method is that it relies on the researcher being able 

to accurately tag an artefact topography with a high signal-to-noise ratio, and so rigorous 

training is necessary. In this thesis, all EEG data was cleaned using BESA software.  
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Alternatively, ICA can be employed, where mathematical algorithms are used to isolate 

the average EEG signal component responsible for a specific artefact. The data is decomposed 

into a temporally independent, linear combination of brain and artefact activities, and the 

artefact component is subtracted from the rest of the EEG signal to leave behind ‘clean’ data 

(Ille et al., 2002; Lagerlund, Sharbrough, & Busacker, 1997; Luck, 2014). ICA is implemented 

in software such as the EEGLAB toolbox (Delorme & Makeig, 2004). However, the ICA 

method is limited in that the quality of decomposition is dependent on the quality of data 

(Makeig, Debener, Onton, & Delorme, 2004). 

 

2.2.4. Event-related potentials (ERPs) 

During EEG recording, ongoing spontaneous voltage fluctuations are continuously 

captured by electrodes. ERPs are time-locked waveforms evoked by the onset of a stimulus, 

which are in addition to the ongoing EEG activity (Niedermeyer & da Silva, 2005). ERPs 

reflect specific sensory, motor, or cognitive processing triggered by the presentation of an 

experimental stimulus (Curran, Tepe, & Piatt, 2006; Fabiani, Gratton, & Federmeier, 2007; 

Friedman & Johnson Jr, 2000; Lopes da Silva, 1998; Sanei & Chambers, 2009). ERPs need to 

be delineated from ongoing spontaneous EEG activity, often referred to as stationary noise, so 

that the neural responses to specific stimuli or events between experimental groups or 

conditions can be compared (Lopes da Silva, 1998). However, ERP responses are small 

voltages (1 – 30 µV) and cannot be reliably isolated from single trials. Therefore, a large 

number of trials are required for averaging in order to generate a robust mean ERP waveform 

with positive and negative voltage deflections, which reflect independent underlying or latent 

components (Luck, 2014; Niedermeyer & da Silva, 2005). Standard nomenclature for ERP 

components is the waveform polarity (P for positive or N for negative) followed by either the 
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post-stimulus latency or order of the component: for example, the P300 is a positive deflection 

appearing approximately 250 to 500 ms post-stimulus onset (Luck, 2014). 

Averaging over many trials improves the signal-to-noise ratio of the data by minimising 

the contribution of deflections that are not time-locked to the event of interest (Boudewyn, 

Luck, Farrens, & Kappenman, 2018). The EEG signal-to-noise ratio improves as a function of 

the square root of the trial number (Luck, 2014). However, this averaging technique has two 

drawbacks. Firstly, deflections which are not phase-locked to an event may be cancelled out 

during averaging, in which case time-frequency analyses may be more appropriate (Tallon-

Baudry et al., 1996). Secondly, the large trial number requirement can cause participants to 

become fatigued, uncomfortable or bored from the repetition of each condition. Therefore, 

experimenters must balance establishing a robust waveform with logistical concerns when 

determining the number of trials for an ERP experiment: taking into account factors such as 

quality of the data, sample size, effect size under investigation and the amount of time required 

for data to be collected (Boudewyn et al., 2018).  

The averaging process occurs after data cleaning and artefact removal have been 

completed. Epochs of a fixed length are characterised around the experimental trigger and 

extracted from the clean continuous data. These epochs typically involve a baseline period of 

100 – 300 ms duration prior to the stimulus presentation, and a period of 500 – 1000 ms 

duration post-stimulus presentation (Luck, 2014). The baseline period is used to correct for 

voltage offsets and slow data drifts by subtracting the mean baseline voltage from the entire 

waveform (Luck, 2014). The single-trial waveform epochs for each condition are then 

aggregated by summing together all of the trials and then dividing them by the number of trials. 

This produces the grand average waveforms for each condition.  
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2.2.5. Quantitative evaluation of ERPs 

ERP components are typically investigated using quantitative comparisons between 

experimental conditions of latency (i.e., the time point in ms at which peak occurs), amplitude 

(i.e., the size of the positive or negative deflection in µV), or scalp distribution (i.e., the pattern 

of voltage gradient across the scalp and over time) (Luck, 2014). Any resulting differences in 

component attributes between conditions can be used as evidence of the different temporal 

characteristics of neurophysiological processes between or within populations (Duncan et al., 

2009; Handy, 2005). 

The traditional method of quantifying the magnitude and timing of monophasic 

deflections was by ascertaining the amplitude and latency of peak voltage within a predefined 

time window (Donchin, 1979). This was the simplest approach to measuring ERPs prior to 

modern computing; however, it has now been superseded by the superior approach of 

quantifying the mean voltage amplitude over a given time window (Luck, 2014). By calculating 

the area under the waveform curve, the results are not impacted by latency jitter caused by 

other spatially and temporally overlapping components, high-frequency noise, or variations in 

peak latency across electrode sites, experimental conditions, and participants. 

 

2.2.6. Statistical handling of ERP data 

Conventional ERP analysis consists of constructing an averaged ERP waveform at each 

electrode site in each condition for each participant and measuring the ERP of interest on each 

waveform curve; these values then undergo statistical analysis. An analysis of variance 

(ANOVA) statistical analysis is the dominant approach in the majority of ERP experiments, 

with the hypotheses concerned with a main effect or an interaction in a crossed factorial design. 
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However, the rich datasets collected from EEG recordings can lead to implicit and explicit 

multiple statistical comparisons, increasing the probability of type 1 error (finding a false 

positive). With high-density EEG systems, the large number of electrode sites makes it highly 

likely that statistically significant differences between conditions will be found at a few 

electrode sites simply due to random noise. For example, with the 129-electrode system used 

in this thesis, one would expect statistically significant results in 6–7 electrodes under randomly 

produced data if each electrode was analysed separately. If not carefully controlled for, EEG 

experiments can report falsely significant results which lack replicability (Button et al., 2013). 

In order to minimise the probability of type 1 error, there are several steps researchers 

can take. Firstly, stringent parameters can be applied prior to statistical analysis through 

predetermined and specific a priori hypotheses (Luck, 2014). In this way, statistical analysis 

can be limited to a well-justified latency range at a reasonably small number of electrode sites. 

This is appropriate in cases of well-established ERP components, such as the P300, where the 

component is characterised through extensive previous research (Donchin & Coles, 1988; 

Duncan‐Johnson & Donchin, 1982; Duncan et al., 2009; Johnson Jr, 1993; Polich, 2007, 2012) . 

Secondly, the significance thresholds of the p-value can be adjusted relative to the number of 

comparisons being made through the Bonferroni correction (Maris & Oostenveld, 2007) or the 

False Discovery Rate (FDR) Correction (Benjamini & Hochberg, 1995). However, this may 

not be sufficient in under-researched topic areas or for more exploratory research questions.  

When there is insufficient justification for analysing a component at a single or small 

number of electrodes, a mass univariate approach, such as statistical parametric mapping 

(SPM), or the related permutation approach, offer alternative whole scalp analyses which 

control the Type I error rate while optimizing statistical power (Maris, 2004, 2012; Maris & 

Oostenveld, 2007). Originally developed for fMRI analysis (see section 2.3.2), SPM constitutes 

a voxel-based approach employing classical inference to interpret regionally specific responses 
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to experimental factors (Friston, 1994; Kiebel & Friston, 2004; Worsley, 2003). SPM creates 

3D volumes incorporating amplitude, latency and electrode, where the statistic value at each 

voxel represents level of evidence against the null hypothesis (Friston, 1994). Similarly, 

permutation analysis is a related nonparametric statistical framework, where randomised 

subsets of the observed data set are repeatedly calculated comparing conditions at each time 

point for each electrode site to determine the distribution of t values that would be expected by 

chance (null distribution). By using many iterations, researchers can ascertain how big a t-value 

must be in order to exceed what would be expected by chance. This is based on the assertion 

that if the null hypothesis is true, then the averaged waveforms for two conditions will be 

equivalent (excluding noise). Both approaches offer valid, robust and data-driven analyses with 

only minimal a priori assumptions, which is especially advantageous when investigating 

exploratory research questions (Achim, 2001; Galán, Biscay, Rodríguez, Pérez-Abalo, & 

Rodriguez, 1997; Guthrie & Buchwald, 1991; Karniski, Blair, & Snider, 1994; Kiebel & 

Friston, 2004). 

 

2.2.7. Advantages and limitations of EEG 

The main advantage of EEG as an investigative tool is that it has excellent temporal 

resolution, being able to detect electrical changes in the order of milliseconds (Schneider & 

Strüder, 2012). This allows for the direct understanding of the neural processing of stimuli in 

real time (Luck, 2014), as opposed to other neuroimaging methods such as fMRI and positron 

emission tomography (PET) (Hari, Parkkonen, & Nangini, 2010) which use haemodynamic 

function as a proxy measure, and have a poor temporal resolution in the magnitude of several 

seconds (Luck, 2014). In addition, EEG can also be used in tandem with other complementary 

methods which have superior spatial resolution, such as fMRI and magnetoencephalography 
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(MEG) (Chowdhury et al., 2015; Ding & Yuan, 2013; Ebersole & Ebersole, 2010; Henson, 

Mouchlianitis, & Friston, 2009). 

There are also considerable practical advantages to EEG. It is a non-invasive technique 

and is incredibly safe to use, with virtually no risks to participants. Advancements in mobile 

EEG technology has also allowed for recordings to be conducted in a wide range of 

environments: EEG systems can be transported to clinical patients when their mobility is an 

issue, and it can be used in naturalistic settings to increase the ecological validity of findings. 

Furthermore, in comparison to fMRI, EEG is relatively cheap to run, is silent when recording, 

is less likely to induce claustrophobia in participants, and does not require the use of strong 

magnetic fields that exclude participants with ferromagnetic implants.  

However, EEG also has some limitations. Fundamentally, it has limited spatial 

resolution in comparison to other neuroimaging methods such as fMRI or MEG (Burle et al., 

2015; Ferree, Clay, & Tucker, 2001; Hämäläinen et al., 1993). As EEG uses electrodes placed 

on the scalp, the electrical fields recorded are attenuated by the various tissues it has to pass 

through, such as white and grey matter, meninges membranes and cerebrospinal fluid (Nunez 

et al., 1997). In addition, the resistance in the skull results in smearing of the electrical signal 

(Hämäläinen et al., 1993). This smearing results in issues with identifying the location(s) of 

the source of neuronal activity in the cortex from the EEG data, commonly referred to as the 

inverse problem. Source analysis methods have been developed to reconstruct potential 

intracranial origins for a given EEG signal; however, these are not definitive as they are limited 

by the accuracy of conductivity models and brain templates utilised to subjective data 

(Schneider & Strüder, 2012). 

Further, EEG is not without its practical disadvantages. EEG is susceptible to 

contamination by non-neural artefacts such as myogenic activity from eye blinks, saccades, 
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jaw and neck movements, cardiographic signals, and spontaneous bad electrode connections. 

A typical EEG task will ask participants to remain as still as possible to minimise some of these 

artefacts, which can be effortful and uncomfortable to experience, and can potentially reduce 

the ecological validity of the results. Oculographic and cardiographic artefacts are removed 

during data cleaning through a standard pipeline such as principal components analysis (Berg 

& Scherg, 1994), but some of the trials will likely need to be rejected, and so the number of 

trials initially collected must take that into account. Separate to the issue of non-neural 

artefacts, EEG tasks generally require a great number of trials for each experimental condition 

in order to elicit reliable event-related components due to a high signal-to-noise ratio (Hauk, 

2013; Luck, 2014). Taken together, this can result in long, repetitive and boring tasks for the 

participant, which can induce fatigue or disengagement.  

 

2.3. fMRI 

2.3.1. Physiological basis of fMRI recordings 

fMRI is a non-invasive medical imaging technique used to measure brain activity over 

time for clinical and research purposes (Mandeville & Rosen, 2002). fMRI experimental 

designs can be task-based, where regional neural activation is triggered by a stimulus, or resting 

state, which investigates the functional architecture of the brain. Unlike EEG, fMRI is an 

indirect method of measuring brain activity, as it relies on the coupling of neuronal activation 

with changes in cerebral blood flow. 

The physical basis of MRI experiments is from the interaction of nuclear spins and 

magnetic fields. During scanning, a strong magnetic field causes a new alignment of hydrogen 

in the brain tissues that are otherwise randomly oriented within water nuclei, a process called 

longitudinal magnetisation (Mandeville & Rosen, 2002; Narasimhan & Jacobs, 2002; Pooley, 
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2005). Short radio frequency (RF) pulses are delivered perpendicular to the static magnetic 

field at a specific frequency called the Larmor frequency, which targets hydrogen nuclei. The 

RF pulse knocks the proton spins out of alignment with the main magnetic field, and induces 

transverse magnetisation (Mandeville & Rosen, 2002; Pooley, 2005). 

The RF pulse also causes hydrogen nuclei spins to precess in phase about the applied 

magnetic field. When the RF pulse finishes, the excited hydrogen nuclei spins realign with the 

external magnetic field, a process called longitudinal relaxation, and also move out of phase, 

known as transverse relaxation. The time it takes for net longitudinal relaxation and net 

transverse relaxation are referred to as T1 and T2, respectively. The transverse magnetisation 

that arises from the RF pulse induces an electrical current that can be detected by the radio 

frequency coils in the MRI setup; this is known as the magnetic resonance (MR) signal 

(Deichmann, Nöth, Merola, & Weiskopf, 2022; Hendee & Morgan, 1984). T1-weighted and 

T2-weighted scans are the most common sequences used in fMRI, highlighting the differences 

in the T1 and T2 relaxation times of tissues, respectively.  

Brain tissue cannot store oxygen or glucose, and so is highly dependent on a reliable 

and locally adaptable blood supply to constantly replenish energy levels for normal functioning 

to occur. As a region of the brain becomes more active, more energy is needed to resupply the 

cells, and so vasodilators are released and the volume of blood being directed to that local area 

increases. The neural tissue is unable to absorb all the excess oxygen being carried by 

haemoglobin molecules in the blood. Therefore, there is a localised increase in the ratio of 

oxygenated to deoxygenated haemoglobin in that area of the brain (Attwell & Iadecola, 2002; 

Logothetis, 2008). Oxygenated and deoxygenated haemoglobin have different MR signal 

characteristics: deoxyhaemoglobin is weakly magnetic in the presence of a magnetic field 

(paramagnetic) due to having 4 unpaired electrons, whereas oxyhaemoglobin is virtually 

resistant to magnetism (diamagnetic) and is indistinguishable from brain tissue by MRI.  
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In high concentrations, deoxyhaemoglobin causes field inhomogeneity and 

susceptibility artefacts from the rapidly de-phasing protons, which decreases the local MR 

signal, and modulates the intra- and extra-vascular blood’s T2 and T2* relaxation times (Kim 

& Bandettini, 2010; Mandeville & Rosen, 2002). Here, deoxyhaemoglobin acts as an 

endogenous paramagnetic contrast agent that attenuates the MR signal, and so can be used to 

evaluate blood flow (Kim & Bandettini, 2010; Mandeville & Rosen, 2002; Narasimhan & 

Jacobs, 2002). fMRI studies typically use a gradient refocused echo (GRE) MRI pulse sequence 

sensitive to T2 and T2* contrasts, where the areas with high levels of deoxyhaemoglobin 

appear darker on a T2 weighted image compared to areas with high levels of oxyhaemoglobin. 

As the resulting fMRI signal resolution between active and resting neurons is based on the 

relative concentration of oxyhaemoglobin in the downstream venules, fMRI images show areas 

with increased neuronal activity as appearing brighter. This value is referred to as the BOLD 

signal (Glover, 2011; Kim & Ogawa, 2012; Ogawa, Lee, Kay, & Tank, 1990). 

 

2.3.2. fMRI signal acquisition and processing 

fMRI studies measure the time course of changes in the BOLD contrast in order to 

make inferences regarding task-related changes in localised cortical activation of brain 

structures. During an fMRI experiment, a series of high-resolution ‘snapshot’ anatomical 

images are acquired, typically using an Echo Planar Imaging (EPI) method (Poustchi-Amin, 

Mirowitz, Brown, McKinstry, & Li, 2001; Schmitt, Stehling, & Turner, 2012). Complete cross-

sectional two-dimensional images are recorded approximately every 50–100 ms, with whole 

brain scans (known as sequential volumes) comprised of approximately 32 images completed 

every 2 seconds. Slices are typically a few millimetres spaced apart, or collected in an 

interleaved fashion, in order to prevent crosstalk between protons bordering the edges of slices, 
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which would reduce the contrast (McRobbie, Moore, Graves, & Prince, 2017). The 2D slices 

are then time corrected to bring all slices in a sequential volume to the same timepoint 

reference. The complete sequential volumes are then modelled across time as a 4D space 

containing around 100,000 cubic volumes of equal size, known as voxels, with each voxel 

defined by x y z coordinates and containing its time series across the scan. Each voxel 

corresponds to a spatial location on a uniform grid of data points and has an array of values 

that represents its intensity (Lindquist, 2008).  

EPI has the advantages of high imaging speed and BOLD contrast sensitivity, but is 

also susceptible to inherent artefacts and diminished image quality (Poustchi-Amin et al., 2001; 

Schmitt et al., 2012). fMRI is vulnerable to extraneous noise signals such as head motion, 

respiration and cardiovascular functions, variations in baseline neural metabolism, thermal 

sources in the participant and electronics, and random voltages within the fMRI coils and 

recording equipment. Due to artefact interference, sequential volumes may differ from each 

other even when there is no change in brain state. Indeed, noise signals can sometimes be larger 

than the signal of interest. Therefore, fMRI datasets are submitted to standardised pre-

processing corrections, such as motion co-registration, spatial smoothing, and low- or high-

pass temporal filtering, to improve the signal to noise ratio (SNR). Most importantly, fMRI is 

registered to the T1 structural image, and the structural image is registered to standard Montreal 

Neurological Institute (MNI) space, and so any changes in BOLD signal intensity are viewed 

on the normalised structural image. Following this, rigorous statistical analysis is performed to 

ensure that the changes in BOLD signal intensity between the 3D maps over time can be used 

to make inferences regarding task-related localised cortical activation of brain structures 

(Lindquist, 2008).  

The most common method of statistically analysing fMRI data is through general linear 

modelling (GLM), though cross-correlation with a modelled regressor or a data-driven 
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approach such as independent components analysis (ICA) are also used (Friston et al., 1994). 

GLM assumes that a given dataset can be modelled as a linear combination of differently 

weighted regressors, with any discrepancies between the model and the data being labelled as 

residuals. In GLM fMRI analysis, the BOLD response is convolved with a haemodynamic 

response function (HRF) to give the regressors, which are then summarised in a design matrix 

along with known sources of variance, to produce a statistical parametric map with associated 

parameter estimates for each experimental condition over time (Lindquist, 2008). The resultant 

BOLD activation maps are a function of the probability of condition-specific differences in 

brain activation patterns.  

 

2.3.3. Meta-analyses and Activation Likelihood Analysis  

Due to the often small sample size of neuroimaging experiments, individual studies can 

be underpowered; the results have low reliability (Raemaekers et al., 2007) and the findings 

are often not replicated in other studies (Eklund, Nichols, & Knutsson, 2016; Wager, Lindquist, 

Nichols, Kober, & Van Snellenberg, 2009; Woo, Krishnan, & Wager, 2014). Further, with the 

popularity of fMRI as a methodology, it can also be difficult to keep up with the vast number 

of studies published every year, and discern which effects from individual studies are robust 

and generalisable (Radua et al., 2012). Pooling data from multiple experiments which 

investigate the same, or similar, set of research questions is an important step for consolidating 

the literature (Müller et al., 2018). Performing meta-analyses allows for the identification of 

consistent brain activations across studies in a systematic and unbiased way (Eickhoff et al., 

2009; Laird et al., 2005). 

The two main approaches to the computation of fMRI data are image-based and 

coordinate-based meta-analyses. Image-based meta-analyses require the full statistical images 
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of the individual studies, as it uses hierarchical mixed effects models that incorporate intra- and 

inter-study variance (Salimi-Khorshidi, Smith, Keltner, Wager, & Nichols, 2009). Conversely, 

coordinate-based meta-analysis is based only on the published activation maxima x y z 

coordinates of statistically significant results reported in the papers in standardized anatomical 

space, which is comparatively a very sparse representation of the results. However, this has the 

advantage of integrating the maximum number of results across the entire published literature, 

as one does not need to contact the original authors. This avoids the bias of only collating 

primary data from researchers who are known, or respond, to the authors, and lessens the bias 

of preferentially reporting more recent results as older findings are less likely to have been 

stored in their entirety (Poldrack et al., 2008). For this reason, image-based meta-analysis is 

not recommended for the majority of research questions (Müller et al., 2018). 

Activation likelihood estimation (ALE) (Eickhoff et al., 2009; Eickhoff et al., 2016; 

Laird et al., 2005; Turkeltaub, Eden, Jones, & Zeffiro, 2002) is the most widely used coordinate 

based meta-analysis approach. ALE provides a measure of activation location consistency, 

being performed to determine whether a spatial convergence of foci or local maxima across a 

group of independent studies is larger than can be expected by chance. This is done by treating 

the peak activation foci locations reported in neuroimaging studies as spatial probability 

distributions centred at given coordinates. Every reported coordinate across all studies are then 

replaced with 3D Gaussian probability distributions modelling the associated spatial 

uncertainty (Eickhoff et al., 2016). The size of these Gaussian kernels is dependent on the 

sample size of the corresponding study, with larger samples having greater statistical power 

and less spatial uncertainty, and therefore producing smaller distributions. Simulated statistical 

parametric images, referred to as Modelled Activation (MA) maps, are created for each foci 

group from the 3D probability distributions and anatomically mapped to locations on standard 
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atlases such as the MNI (Collins, Neelin, Peters, & Evans, 1994) or Talairach (Talairach, 1988) 

three-dimensional space. 

Once the ALE scores are established in the form of the MA maps, the map values are 

tallied into histograms and the bins are divided by the total number of voxels in an MA map, 

in order to determine the null distribution of the ALE statistic (Eickhoff, Bzdok, Laird, Kurth, 

& Fox, 2012). This method removes spatial information and establishes the P values of finding 

each given ALE score value in a MA map. The P values are combined to create a P value 

image, which undergoes significance thresholding. A permutation analysis compares the 

modelled activation probabilities to a hypothetical null distribution of random spatial 

association for each voxel in the brain (Müller et al., 2018; Turkeltaub et al., 2002). This 

algorithm computes the likelihood that the convergence of foci clusters in the MA maps are 

not due to chance, and experimenters can set their threshold values to be more or less 

conservative based on their assumptions about the data (Eickhoff et al., 2012; Eickhoff et al., 

2016; Müller et al., 2018; Nichols & Hayasaka, 2003). The resulting ALE statistic reports the 

probability of activation being present at that given voxel for all studies in the analysis. 

In this thesis, a systematic review was conducted to identify journal articles 

investigating economic value with fMRI methods. Coordinates were then extracted from 

accepted research articles and subjected to an ALE meta-analysis using BrainMap GingerALE 

v3.0.2 (http://brainmap.org/ale), where the ALE algorithm is implemented (Eickhoff et al., 

2012; Eickhoff et al., 2009; Eickhoff et al., 2016). The results of the systematic review and 

meta-analysis are discussed in Chapter 4.  

 

 

 

http://brainmap.org/ale
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2.3.4. Advantages and limitations of fMRI 

There are several advantages to using fMRI. To begin, it is safe to use, as it does not 

involve use of injections, surgery, the ingestion of substances, or exposure to radiation like X-

rays, computed tomography (CT) and PET scans require. It is therefore very low risk for 

patients, and can evaluate the entirety of the brain safely and noninvasively. Further, the vast 

majority of studies follow standardised techniques for pre-processing (cleaning) data, 

individual statistical analysis, and group-level results analysis, without the need to adjust the 

analysis parameters each time. Importantly, fMRI has the best spatial resolution of any non-

invasive neuroimaging method, as it can examine a spatial range from millimetres to 

centimetres. A typical voxel in a 3D map contains a few million neurons and tens of billions 

of synapses, and so can provide an insight into how populations of neurons fire together.  

However, fMRI also has several limitations. Firstly, it is classified as an indirect 

measure of neuronal activity, as the level of regional activation is inferred from the intensity 

of the BOLD signal (Mandeville & Rosen, 2002). Changes in blood flow are modulated much 

more slowly than neuronal events, with the BOLD response being observed typically 6 – 10 

seconds after a stimulus presentation. Simultaneous fMRI and EEG recordings have 

established that synaptic and haemodynamic activity are closely related, with strong 

correlations between local field potentials and BOLD signal (Logothetis, Pauls, Augath, 

Trinath, & Oeltermann, 2001; Ogawa et al., 2000; Rees, Friston, & Koch, 2000). However, the 

delay in the vascular response means that fMRI cannot separate feedback and feedforward 

active neural networks in a brain region, as the BOLD signal is the summation of the whole 

region’s activity. This low temporal resolution of haemodynamic responses makes fMRI ill-

suited for investigating the temporal course of brain activity in comparison to EEG.  
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Further, much of the quality of the fMRI images rely on participant co-operation. 

Participants can experience claustrophobia and stress from being confined by the head coil and 

the narrow scanner space. They are also required to remain incredibly still for long periods of 

time throughout scanning in order to capture high quality images, which can be uncomfortable 

and limit task duration. Additionally, fMRI necessitates a very careful screening process to 

ensure that participants do not have any potential MRI-unsafe implants or any ferromagnetic 

debris (Huettel, Song, & McCarthy, 2009). Finally, as a research method, fMRI is significantly 

more expensive relative to EEG (Crosson et al., 2010). Due to this, fMRI studies often recruit 

small samples of participants (Szucs & Ioannidis, 2020), which can result in low reliability and 

low reproducibility of a single study’s findings (Raemaekers et al., 2007). 
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3. Research problems and Hypotheses 

3.1. Research problems 

The neural structures underpinning the automatic and domain-general brain valuation 

system have been well characterised through a wealth of fMRI studies (see section 1.2.2). 

However, many meta-analyses have chosen to make their inclusion parameters intentionally 

broad in the interest of including as many studies as possible in the final cohort (Bartra et al., 

2013). While this has some advantages, such as statistical power and robustness of results, the 

heterogeneity of task paradigms can muddy the proverbial waters. Many of the experiments in 

the neuroeconomics literature have not utilised an incentive-compatible design, and so the 

veracity of reported results is reliant on the assumption of participant goodwill, and may be 

distorted by hypothetical bias (Schmidt & Bijmolt, 2020) and question framing effects 

(Kühberger & Gradl, 2013). Therefore, there is potential for doubt as to how realistically the 

participants’ behavioural reports of value match their true SVs.  

In addition to this, having differing, vague or implicitly defined understandings of value 

leaves experiments vulnerable to participant interpretation and thereby outside of the 

researcher’s control. Moreover, multiple definitions of SV, such as instrumental, intrinsic, 

hedonic, utilitarian and aesthetic characterisations, may be amalgamated into a single meta -

analysis. In fMRI research, this can lead to confounds with brain areas demonstrating greater 

BOLD responses during valuation tasks, as researchers are unable to disentangle which 

definition or aspect of the valuation process the neural substrates are involved in.  

Furthermore, the poor temporal resolution of fMRI leaves it unable to isolate the 

spatiotemporal dynamics of the neural structures in the brain valuation system that are engaged 

on a scale of milliseconds (Luck, 2014; Schneider & Strüder, 2012). The inferior temporal 

resolution of fMRI may also lead to ambiguity over which neural substrates are involved with 
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which stage of decision-making: for example, the valuation period may blur into action 

selection (Rangel, 2008). The use of high-temporal resolution methods such as EEG allows for 

the elaboration of the temporal features of valuation processes. While the BDM is a popular 

method of measuring SV in fMRI research, its use in EEG studies to date has been scarce. The 

few EEG studies which have performed a BDM task have focused on the initial valuation 

period of value-based decision-making (Roberts et al., 2018; Tyson-Carr et al., 2018; Tyson-

Carr et al., 2020). To the best of this authors knowledge, none have investigated the outcome 

processing period in incentive-compatible contexts such as second-price sealed-bid auction 

tasks.  

The VA is a popular auction method in ecommerce and in the behavioural economics field 

(Lucking-Reiley, 2000), but the spatiotemporal neural dynamics underlying value-based 

decision-making during this task have yet to be investigated. Previous research suggests that 

feedback processing is facilitated by the presence of another person, and that impact of the 

social context interacts with both initial valuation and outcome salience (van den Bos et al., 

2008; van den Bos et al., 2013). It remains unknown whether reward-related brain components 

measured by EEG are elicited in the VA context at the time of receiving an auction outcome. 

Moreover, if the FRN and P300 are elicited, it is unclear to what extent this feedback processing 

is modulated by the socially competitive context. A direct comparison of the BDM and VA 

paradigms would afford the opportunity to isolate the SV of winning or losing against another 

player, and its impact on the time course of RPE processing in the brain.  
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3.2. Hypotheses  

 

H1 – Economic value, as defined by WTP, will elicit brain activation in the core areas 

associated with SV in the brain valuation system, such as the VS and vmPFC.  

H2 – Economic valuation processes in the brain will be performed automatically. 

H3 – Reward processing related ERPs, such as the FRN and P300, will be elicited at the time 

of receiving an outcome in a VA task. 

H4 – During outcome processing in the VA, the FRN amplitude will be positively correlated 

with individual differences in loss aversion.  

H5 – The inclusion/exclusion of a socially competitive dimension in the second-price sealed-

bid auction context will be differentially encoded by reward processing related ERPs. 

 

3.3. Thesis chapters outline 

Chapter 4 examines the neural correlates of economic value processing in the human brain 

by conducting a systematic review and meta-analysis of the fMRI literature. Experiments using 

a BDM task procedure (either before, during or after scanning) to elicit WTP values as a 

measure of SV were identified and underwent coordinate-based ALE analysis. It was 

anticipated that using the BDM paradigm would allow the delineation of the neural substrates 

involved in economic valuation from brain areas which are involved in other aspects of 

subjective valuation, such as hedonic processing (H1). A secondary contrast analysis was also 

performed to evaluate whether there is a difference in patterns of brain activation between 

studies which perform a BDM outside of the fMRI scanner and those that perform the BDM 

during fMRI scanning (H2). 
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Chapter 5 describes an ERP study utilising EEG and the VA paradigm to investigate the 

spatiotemporal characteristics of outcome processing during value-based economic decision-

making in the human brain. It was anticipated that outcome related ERPs such as the FRN and 

P300 would be elicited in this incentive-compatible task in a comparable fashion to that seen 

in previous decision-making tasks, such as 2AFC paradigms (H3). The experiment also 

employed a separate behavioural monetary gambling task measuring participants individual 

levels of loss aversion, thus allowing the investigation of the impact of loss aversion on reward-

related ERPs in this socially competitive auction context (H4).  

Chapter 6 extends the findings from Chapter 5 by comparing reward-related ERPs elicited 

during the outcome receipt period of the VA and BDM auction paradigms using EEG. Directly 

comparing two strategically equivalent demand-revealing mechanisms affords the opportunity 

to isolate the impact of social environment on how good and bad outcomes are computed in 

competitive, risky decision-making. The experiment increased the market price range of 

auction items in an effort to examine reward-related neural responses to winning or not-

winning high-SV items. It was anticipated that outcome related ERPs would be differentially 

sensitive to SV, opponent and feedback parameters (H5).  

Chapter 7 comprises a summary and general discussion of all experimental findings. The 

implications of the findings are discussed in terms of theoretical and practical impact within 

the field of neuroeconomics. Finally, the limitations of the current work and possible future 

directions of research are considered. 
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4. Economic value in the Brain: A Meta-Analysis of Willingness-

to-pay using the Becker-DeGroot-Marschak Auction 

 

Newton-Fenner, A.1,2*, Hewitt, D.1,3, Henderson, J.1, Roberts, H.1, Mari, T.1, Gu, Y.4, 

Gorelkina, O.5, Giesbrecht, T.6, Fallon, N.1, Roberts, C.1, Stancak, A.1,2  
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3 Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK 

4 Henley Business School, University of Reading, Reading, UK 

5 Management School, University of Liverpool, Liverpool, UK. 
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This study investigated the neural correlates of economic value during BDM auctions 

using the fMRI meta-analysis technique activation likelihood estimation analysis. This paper 

is currently undergoing peer review for publication at PLOS One. 

The format of the text has been altered to match the style of the thesis. 
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4.1. Abstract 

Forming and comparing subjective values (SVs) of choice options is a critical stage of 

decision-making. Previous studies have highlighted a complex network of brain regions 

involved in this process by utilising a diverse range of tasks and stimuli, varying in economic, 

hedonic and sensory qualities. However, the heterogeneity of tasks and sensory modalities may 

systematically confound the set of regions mediating the SVs of goods. To identify and 

delineate the core brain valuation system involved in processing SV, we utilised the Becker-

DeGroot-Marschak (BDM) auction, an incentivised demand-revealing mechanism which 

quantifies SV through the economic metric of willingness-to-pay (WTP). 

A coordinate-based activation likelihood estimation meta-analysis analysed twenty-

four fMRI studies employing a BDM task (731 participants; 190 foci). Using an additional 

contrast analysis, we also investigated whether this encoding of SV would be invariant to the 

concurrency of auction task and fMRI recordings. A fail-safe number analysis was conducted 

to explore potential publication bias. 

WTP positively correlated with fMRI-BOLD activations in the left ventromedial 

prefrontal cortex with a sub-cluster extending into anterior cingulate cortex, bilateral ventral 

striatum, right dorsolateral prefrontal cortex, right inferior frontal gyrus, and right anterior 

insula. Contrast analysis identified preferential engagement of the mentalizing-related 

structures in response to concurrent scanning.  

Together, our findings offer succinct empirical support for the core structures 

responsible for the formation of SV, separate from the hedonic aspects of reward and evaluated 

in terms of WTP using BDM, and show the selective involvement of inhibition-related brain 

structures during active valuation. 
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4.2. Introduction 

In human decision-making, where an individual compares their options and select the 

course of action with the highest SV, the construction of SV of potential outcomes is critical 

(Rangel et al., 2008). Previous theories of decision-making have highlighted rational 

expectations (Mongin, 1998; Moscati, 2018; Von Neumann & Morgenstern, 2007) and 

reference points (Kahneman & Tversky, 2013; Tversky & Kahneman, 1989) as prominent 

factors in SV formation. A set of regions have been identified as comprising the brain valuation 

system, including the ventromedial prefrontal cortex (vmPFC) (Kim, Hwang, & Lee, 2008; 

Lebreton et al., 2009; Winecoff et al., 2013), ventral striatum (VS) (Delgado, Locke, Stenger, 

& Fiez, 2003; Delgado, Nystrom, Fissell, Noll, & Fiez, 2000; Levy et al., 2010; Peters & 

Buchel, 2009), anterior insula (AI) (Bartra et al., 2013; Knutson, Rick, Wimmer, Prelec, & 

Loewenstein, 2007; Kuhnen & Knutson, 2005; Sescousse, Caldú, Segura, & Dreher, 2013), 

posterior parietal cortex (PPC) (Glimcher, 2003; Platt & Glimcher, 1999), orbitofrontal cortex 

(OFC) (De Martino, Kumaran, Holt, & Dolan, 2009; Padoa-Schioppa & Assad, 2006; 

Plassmann et al., 2007), amygdala (Basten, Biele, Heekeren, & Fiebach, 2010; Cardinal, 

Parkinson, Hall, & Everitt, 2002; De Martino et al., 2010; Holland & Gallagher, 2004; Lebreton 

et al., 2009) and anterior cingulate cortex (ACC) (Botvinick et al., 2001; Shenhav, Cohen, & 

Botvinick, 2016; Vassena, Deraeve, & Alexander, 2020; Walton, Croxson, Behrens, 

Kennerley, & Rushworth, 2007).  

Subjective valuation is a complex process requiring the amalgamation of an individual’s 

perceptions, prior knowledge, and reward expectations of a given stimulus. It has often been 

implicitly defined through differing methodology; such as liking scales, unpleasantness ratings 

and binary forced choice decisions in monetary gambling tasks. However, this heterogeneity 

in methodology can have the consequence of implicitly defining varying conceptualisations of 

value under the umbrella term of SV, with the potential to conflate SV with other closely related 
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concepts. For example, hedonic understandings of attractiveness (Rangel et al., 2008) and 

pleasure (Jiang, Soussignan, Schaal, & Royet, 2014), can be understood as distinct from 

utilitarian concepts of worth (Moscati, 2018), willingness to exert effort or a motivation to take 

on costs (Croxson, Walton, O'Reilly, Behrens, & Rushworth, 2009). Further, there are 

established differences in the brain circuitry involved in the liking, wanting, and pleasantness 

of a reward, in particular in subregions of the VS (Berridge, 2009; Berridge & Kringelbach, 

2015; Berridge & Robinson, 2016; Kühn & Gallinat, 2012). Whereas finding a reward pleasant 

or likeable refers to an emotional state and its experiential qualia, the wanting of a reward refers 

more to the underlying motivational processes and is linked to decision utility (Morales & 

Berridge, 2020). In this way, heterogeneity in the definitions of SV and task paradigms may 

confound the findings to date and it is likely that the range of brain regions associated with SV 

is smaller than indicated by available meta-analyses owing to SV being estimated by hedonic 

measures. For example, in the interest of maximising the pool of viable studies, Bartra et al. 

(2013) used simple search parameters of “fMRI” AND “reward”. However, as receiving a 

reward entails multiple other processes in addition to the representation of the SV of the object, 

such as the pleasantness of positive feedback, the perceived attractiveness of the object, and 

other hedonic processes, it is not known which part of the brain valuation system would 

specifically encode SV. 

In behavioural economics and neuroeconomics, valuation consolidates multiple 

determinants of a goods’ value into a singular figure of a given currency (Padoa-Schioppa, 

2011; Padoa-Schioppa & Conen, 2017). Methodologically, this has several advantages. Firstly, 

one can assign an economic value to any type of outcome stimulus, such as food, music, pain, 

or lottery tickets (De Martino et al., 2009; Plassmann et al., 2007; Salimpoor et al., 2013; 

Winston, Vlaev, Seymour, Chater, & Dolan, 2014). In this way, experiences in different 

mediums can all be translated into monetary worth that is subjective to the individual. 
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Secondly, multiple facets of reward receipt, such as the outcomes’ temporal immediacy and 

probability of reward, can be integrated into a single discounted SV, and so complex options 

can be compared against each other. Thirdly, economic valuation is applicable to both rewards 

and punishments: tasks can explore paying for the opportunity to receive a good outcome or to 

avoid a bad one (Delgado, Li, Schiller, & Phelps, 2008), which allows the relationships 

between loss and gain to be explored. Fourthly, as monetary scales are linear, the relative 

relationships of a theoretically infinite number of outcomes can be compared and ranked. 

Finally, it is intuitive to participants, as individuals are well-versed in weighing up purchasing 

decisions to maximise their utility in their everyday lives.  

WTP is the standard measure of value in economics, and is defined as the maximum 

amount of currency a customer is willing to part with in order to purchase a product or service. 

There are several methods that can estimate WTP, either directly or indirectly, and ascertain a 

consumer's hypothetical or actual WTP (Miller, Hofstetter, Krohmer, & Zhang, 2011). 

However, most methods, such as two-alternative forced-choice tasks (2AFC), open-ended 

questions (“what would you be willing to pay for this item?”) or choice-based conjoint analysis 

(“pick one item from this list of options”) can produce unreliable resul ts (Breidert, 2007; 

Breidert et al., 2015). This is due to a lack of incentive to induce truth-telling: within the 

parameters of these mechanisms, participants are not appropriately compensated for revealing 

the private information of their SVs. Therefore, they may not wish to do so, and the responses 

may be arbitrarily chosen or due to other motives, reporting SVs that they do not necessarily 

hold or would act upon. As the participants responses do not hold real consequences, such as a 

purchasing commitment, their choices may not reflect their true preferences. Consequently, 

researchers cannot rely on the values participants provide (Acquisti et al., 2015; Wertenbroch 

& Skiera, 2002).  
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Furthermore, hypothetical purchasing scenarios has been shown to produce consistent 

behavioural overestimations of WTP in comparison to that of real purchasing scenarios, termed 

the Hypothetical Bias (Foster & Burrows, 2017; List & Gallet, 2001; Little et al., 2012; Murphy 

et al., 2005). This effect is strongest in indirect measures, such as in 2AFCs, leading to 

consistent overestimation of WTP values (Schmidt & Bijmolt, 2020). Crucially for this work, 

valuation areas of the brain are also differentially activated by hypothetical and real choices, 

with greater activity for real purchasing decisions in the orbitofrontal cortex, and conflicting 

evidence of activation in the ventral striatum for hypothetical choices (Bray, Shimojo, & 

O'Doherty, 2010; Kang, Rangel, Camus, & Camerer, 2011). 

In contrast, the auction paradigm Becker-DeGroot-Marschak mechanism (BDM), also 

known as a second-price sealed-bid auction, is an incentivized experiment (Becker et al., 1964). 

During a BDM, a player submits a single bid for a given item. Their bid value is compared to 

a randomly generated price, and if the player’s bid exceeds or equals this price they win the 

item and pay the random price. If the player’s bid does not exceed that of the random number 

generator, they win nothing and lose nothing. As the player’s bid value is used to produce the 

outcome directly affecting the player, bidding one’s true SV is the dominant strategy. If the 

player underbids, they only risk not winning the item for a price that they would be willing to 

pay, and if the player overbids, they only risk winning the item for more than they are willing 

to pay. In this way, their bid value can also be thought of as their reservation price, or 

indifference point (Padoa-Schioppa, 2011). Formal proof of the dominant strategy in BDM 

Auctions can be seen in Figure 2.1.1. 

The present study proposed to compare brain activations associated with SV as defined by 

WTP through a BDM by employing a coordinate based meta-analysis with activation 

likelihood estimation (ALE) (Eickhoff et al., 2012; Eickhoff et al., 2009). A single paradigm 

was utilised, therefore avoiding the confounding effects of task heterogeneity. The BDM has 
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become increasingly popular in neuroeconomics in recent years, in no small part to its use in 

the seminal paper by Plassmann, O’Doherty and Rangel (2007), so that there now exists a 

sufficient body of work to conduct a meta-analysis of fMRI studies evaluating WTP using the 

BDM. 

Activation in the brain valuation system tends to increase when considering the SV of the 

available options during choice, as well as with the value of the reward received, and responds 

to both primary and secondary forms of reward (Peters & Buchel, 2010; Sescousse et al., 2013; 

Sescousse, Li, & Dreher, 2015). This suggests that a domain-general system in the brain is 

responsible for the encoding of SV across multiple decision stages and reward types (Levy & 

Glimcher, 2012). Furthermore, evidence for automaticity in value attribution has been provided 

in a number of previous studies (Grueschow, Polania, Hare, & Ruff, 2015; Lebreton et al., 

2009; Padoa-Schioppa, 2013; Polanía, Krajbich, Grueschow, & Ruff, 2014; Tyson-Carr et al., 

2018). For instance, the brain valuation system scales the SV of objects even if participants are 

asked to make value-irrelevant judgements, such as perceptual discernment of stimuli 

characteristics (Grueschow et al., 2015; Motoki, Sugiura, & Kawashima, 2019; Tyson-Carr et 

al., 2018). To investigate automaticity of economic valuation, we also compared the WTP 

contrasts in studies for which WTP was elicited during fMRI scanning (concurrently) or outside 

of the scanner (consecutively). We posited that the brain regions encoding WTP would be 

invariant to the concurrency of the BDM auction session and fMRI recording, as the WTP 

values would be automatically invoked during passive viewing of objects even in absence of 

choice selection. 
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4.3. Methods 

An a priori protocol for this meta-analysis was preregistered at The Open Science 

Framework: https://osf.io/vpt3d. 

 

4.3.1. Information sources and search strategy 

The formal search strategy consisted of systematically examining 3 electronic databases 

(PubMed, Scopus, PsycINFO) through August 2022 using the MeSH search terms (fMRI OR 

functional magnetic resonance imaging OR neuroimaging) AND (willing to pay OR willing-

to-pay OR willingness to pay OR willingness-to-pay OR WTP OR BDM OR Becker–

DeGroot–Marschak OR Becker DeGroot Marschak OR economic valuation). Searches were 

restricted to terms found in the title or abstract of the articles. No date limit was set for the 

searches. 

During the search process, the authors noticed that several potentially eligible papers 

did not refer to the task as a BDM auction; for example, one article in the final corpus cites 

Plassmann, O’Doherty and Rangel (2007) and not Becker, DeGroot and Marschak (1964) as 

the task originators (Verdejo-Roman, Vilar-Lopez, Navas, Soriano-Mas, & Verdejo-Garcia, 

2017). Therefore, for completeness, a comprehensive manual search of the reference sections 

and citation lists of identified articles was conducted to supplement the formal searches. 

Previous meta-analyses of fMRI studies on human reward (Bartra et al., 2013; Clithero & 

Rangel, 2014; Liu, Hairston, Schrier, & Fan, 2011; Morelli et al., 2015) were also screened for 

additional articles. 

 

 

https://osf.io/vpt3d
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4.3.2. Article selection and extraction of data 

Formal database searches were conducted by ANF, as were supplementary and manual 

searches. One author (ANF) was responsible for assessment of articles for inclusion, wi th three 

authors (AS, JH and DH) conducting 2nd reviews of 10% of the collected articles each (totalling 

30% of the initially identified articles). Decisions regarding final article inclusion were 

determined by discussion. One author (ANF) extracted the relevant coordinate data, and these 

were cross-checked by a second author (CR).  

 

4.3.3. Eligibility criteria 

The criteria for inclusion were 1) any human fMRI studies published through to August 

2022; 2) original English language articles; 3) published in a peer-reviewed journal; 4) used a 

Becker-DeGroot-Marschak task to elicit WTP; 5) computed the correlation of Blood 

Oxygenation Level Dependent (BOLD) activity to the WTP value; 6) coordinates were 

reported in the article or supplementary material in Montreal Neurological Institute (MNI) 

(Evans et al., 1993) or Talairach space (Talairach, 1988); 7) data were obtained from a healthy 

population (systemic disease-free); 8) whole-brain analysis were reported with thresholding of 

(or equivalent to) P < 0.001 uncorrected voxelwise throughout the whole brain with at least 

p < 0.05 cluster level correction (or equivalent) declared (Müller et al., 2018). 

 

4.3.4. Additional handling of data 

We excluded papers which only reported region of interest (ROI) analysis, which may 

bias results towards more established or accepted regions (Turkeltaub et al., 2012). One of the 
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studies in the final sample, Chib et al. (2009), reported three separate activation maps for the 

computation of WTP for three different categories of goods: money, trinkets and snacks. In the 

interest of including a wide variety of stimuli, the activation map for trinkets was selected for 

inclusion in the meta-analysis. Studies that reported coordinates in Talariach space were 

converted into MNI coordinates using GingerALE (Brainmap GingerALE version 3.0.2; 

Research Imaging Institute; http://brainmap.org) (Eickhoff et al., 2009). 

 

4.3.5. Activation likelihood estimation meta-analysis 

A primary ALE meta-analysis was conducted for experiments using BDM paradigms 

to elicit WTP measures, contrasting increasing WTP with increasing BOLD responses. 

Decreasing activations in line with increasing WTP were not investigated. See Table 1 for data 

on the included studies. Subsequently, an exploratory secondary analysis was performed on the 

same dataset, split by concurrency of BDM task with fMRI scanning, with 16 BDM tasks 

performed inside the scanner (concurrently) and 8 BDM tasks performed outside the fMRI 

scanner (consecutively). 

To determine consistency in reported regions of neural activation, for our primary 

analysis we conducted a coordinate-based ALE meta-analysis (single dataset analysis). The 

analysis was performed using Brainmap GingerALE version 3.0.2. Standardized procedures 

and default parameters for performing ALE using GingerALE were followed, as outlined in 

the GingerALE user manual (Research Imaging Institute; http://brainmap.org) and Eickhoff et 

al. (2016). 

The concordance of ALE values throughout the brain for WTP were evaluated in 

comparison to random distributions using permutation analysis (Maris & Oostenveld, 2007) 

http://brainmap.org/
http://brainmap.org/
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with 10,000 permutations. An initial cluster forming threshold (uncorrected p < .001) was 

implemented followed by cluster-level Family-wise error (FWE) correction (p < .05) to identify 

relevant ALE regions as previously recommended (Eickhoff et al., 2016; Turkeltaub et al., 

2012). Multi-image analysis GUI (http://ric.uthscsa.edu/mango) was used to overlay ALE 

maps onto an anatomical image using MNI coordinates. 

Resulting ALE maps for WTP for concurrency of BDM task were compared using 

conjunction and contrast analyses. The same protocol as previous ALE meta-analyses 

conducted in our lab was followed (Fallon, Roberts, & Stancak, 2020; Roberts et al., 2020). 

Again, permutation analysis was first performed on the concurrent/consecutive sub-groups 

with 10,000 permutations, an initial cluster forming threshold (uncorrected p < .001) and a 

cluster-level Family-wise error (FWE) correction of p < .05. For cluster analysis, an 

uncorrected threshold of p < 0.05 and a minimum cluster size of 200 mm3 was adopted as 

previously recommended (Eickhoff et al., 2009; Eickhoff et al., 2016; Gan et al., 2022; 

Hoffman & Morcom, 2018; Papitto, Friederici, & Zaccarella, 2020). 

To facilitate future research, ROIs created using the resultant unthresholded meta -

analytic clusters are available via NeuroVault 

(https://neurovault.org/collections/IBLCLBYH/images/785459/). 

 

4.3.6. Fail-Safe N analysis 

 Co-ordinate-based meta-analyses can be affected by publication bias, where 

unpublished null results may alter or invalidate findings: known as the “file drawer problem” 

(Rosenthal, 1979; Rothstein, Sutton, & Borenstein, 2005). The fail-safe N (FSN) analysis 

addresses this issue, assessing the robustness of ALE clusters by introducing null pseudo-

https://neurovault.org/collections/IBLCLBYH/images/785459/
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studies as noise to the ALE cohort to calculate the amount of contra-evidence that the ALE can 

tolerate (Acar, Seurinck, Eickhoff, & Moerkerke, 2018). It is posited that the number of 

unpublished fMRI studies is lower than behavioural studies due to their greater expense and 

time-demands. Recent estimations propose that for every 100 published fMRI studies, there 

are between 6 – 30 unpublished studies which report no local maxima (Samartsidis et al., 2020). 

Using the upper bound, an estimate for the number of unpublished WTP studies using BDM 

used in the FSN analysis (minimum FSN) was set at 7 null pseudo-studies (Pando-Naude, 

Patyczek, Bonetti, & Vuust, 2021). Further, to ensure that no single study is driving the ALE 

scores of each cluster, a maximum FSN was set at 146, requiring at least a 10% contribution 

from the cohort studies (Eickhoff et al., 2016). 

 

4.4. Results 

Figure 4.4.1 illustrates a flowchart indicating the study selection steps. A total of 8065 

records were returned from initial searches. Of these, 1940 were duplicates from repeated 

searches and removed in the first step. A further 5791 articles were removed following the 

initial review of titles and abstracts. Studies excluded at this stage included: those that were not 

reported in English (7) those where it was clear and obvious that no suitable (i.e. healthy, 

human adult) population was reported (291), where it was clear and obvious that they did not 

utilize a WTP task (2560), not an experimental report (e.g. review articles) (732), not fMRI 

method (2201). Furthermore, following full-text review a further 309 articles were removed 

including those which exhibited an inappropriate contrast (e.g. donation task) (287), or which 

only reported ROI analyses (22), leaving a total of 24 studies for the analyses of WTP (Table 

1). 
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Figure 4.4.1. Flow chart outlining the formal search and eligibility screening process.

8065 records identified 

through database, reference 

sections and citation lists 

searches 

6124 records identified for 

title and abstract screening 

333 studies eligible for full-

text review 

24 Studies included in ALE 

for willingness-to-pay 

1941 records removed due to 

duplication 

5791 records removed to: 

• 2560 not a WTP task 

• 2201 not an fMRI task 

• 732 not an experimental 

report (e.g. review paper) 

• 291 did not meet eligibility 

criteria (e.g. not human 

adults) 

• 7 not written in English 

309 articles removed due to 

287 inappropriate contrast 

(e.g. donation task) 

22 only reported ROIs 
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Table 1. Studies and experiments included in ALE meta-analyses on willingness-to-pay in human adults 

Authors Year Title N 

(men) 

Mean 

age (SD) 

Concurrency 

of recordings  

Main Findings 

Chib et al. 2009 Evidence for a common 

representation of decision values 

for dissimilar goods in human 

ventromedial prefrontal cortex 

32 

(25) 

23 Consecutive Common currency mechanism for decision, 

outcome and anticipatory values encoded in 

the vmPFC 

De Martino 

et al. 

2009 The neurobiology of reference-

dependent value computation 

18 

(10) 

22.2 

(3.1) 

Consecutive OFC and dorsal striatum encoded absolute 

WTP, VS indexed endowment effect 

De Martino 

et al. 

2013 Confidence in value-based 

choice 

20 

(NA) 

24.24 Consecutive VmPFC encodes SV comparisons and 

subjective confidence in decisions 

Enax et al. 2015 Nutrition labels influence value 

computation of food products in 

the ventromedial prefrontal 

cortex 

25 

(11) 

23.3 

(4.4) 

Concurrent VmPFC, ACC, caudate nucleus and 

putamen encode WTP. vmPFC modulated 

by the inferior frontal gyrus / dorsolateral 

prefrontal cortex (dlPFC) when rating 

unhealthy foods, and by the posterior 

cingulate cortex (PCC) when rating healthy 

foods 

Gluth et al. 2015 Effective Connectivity between 

Hippocampus and Ventromedial 

Prefrontal Cortex Controls 

Preferential Choices from 

Memory 

30 

(12) 

26.1 

(3.9) 

Consecutive VS, vmPFC and hippocampus encode the 

value of the chosen option, vmPFC encodes 

the value of the unchosen option 

Grueschow 

et al. 

2015 Automatic versus Choice-

Dependent Value 

Representations in the Human 

Brain 

26 

(13) 

RG 20-

28 

Consecutive Medial PFC and VS activity correlated with 

SVs during purchasing but not perceptual 

decisions. PCC activity correlated with both 
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Hare et al. 2008 Dissociating the role of the 

orbitofrontal cortex and the 

striatum in the computation of 

goal values and prediction errors 

16 (9) 24.1, RG 

19-38 

Consecutive Goal values correlated with medial OFC 

activity, decision values correlated with 

central OFC activity, and prediction errors 

correlated with VS activity  

Hutcherson 

et al. 

2012 Cognitive regulation during 

decision making shifts 

behavioral control between 

ventromedial and dorsolateral 

prefrontal value systems 

26 

(17) 

22, RG 

19-28 

Concurrent VmPFC and dlPFC correlated with WTP, 

indulging upregulated vmPFC signals, 

behavioural control modulation increased 

dlPFC contribution  

Janowski et 

al. 

2013 Empathic choice involves 

vmPFC value signals that are 

modulated by social processing 

implemented in IPL 

32 

(32) 

22.8 

(3.9) 

Concurrent Playing in a BDM for others engages 

vmPFC, modulated by activity from inferior 

parietal lobule (IPL) 

Linder et al. 2010 Organic labeling influences food 

valuation and choice 

30 

(15) 

26.03, 

RG 23-

38 

Concurrent Activity in VS increased with WTP for 

organic foods 

 

Mackey et al. 2016 Greater preference consistency 

during the Willingness-to-Pay 

task is related to higher resting 

state connectivity between the 

ventromedial prefrontal cortex 

and the ventral striatum 

19 (9) 31.5 (11) Concurrent Ventral precuneus, vmPFC and PCC 

activity increased with WTP  

McNamee et 

al. 

2013 Category-dependent and 

category-independent goal-value 

codes in human ventromedial 

prefrontal cortex 

13 (8) 22.1 

(3.6) 

Concurrent Medial PFC implements a goal-value code 

independent of stimulus category, medial 

OFC and vmPFC contain category 

dependent value codes 
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Medic et al. 2014 Dopamine modulates the neural 

representation of subjective 

value of food in hungry subjects 

47 

(23) 

23.8 

(3.2) 

Concurrent Infusion of dopamine agonist increased the 

inferior parietal gyrus/intraparietal sulcus 

response to WTP  

Merchant et 

al.  

2020 Neural Substrates of Food 

Valuation and Its Relationship 

With BMI and Healthy Eating in 

Higher BMI Individuals 

93 

(16) 

39.25 

(3.5) 

Concurrent vmPFC, anterior VS, bilateral AI, and the 

ACC activity correlated with WTP, vmPFC 

activity linked to valuation of healthy (vs 

unhealthy) items 

Motoki et al. 2019 Common neural value 

representations of hedonic and 

utilitarian products in the ventral 

stratum: An fMRI study 

27 

(21) 

20.37 

(1.15) 

Concurrent Values of hedonic and utilitarian goods are 

similarly processed in the VS during BDM 

Plassmann et 

al. 

2010 Appetitive and aversive goal 

values are encoded in the medial 

orbitofrontal cortex at the time of 

decision making 

20 

(15) 

23.25, 

RG 19-

34 

Concurrent Medial OFC and the dlPFC correlated with 

appetitive and aversive goal values 

Plassmann et 

al. 

2007 Orbitofrontal cortex encodes 

willingness to pay in everyday 

economic transactions 

19 

(16) 

25.45, 

RG 18-

46 

Concurrent Medial OFC and the dlPFC correlated with 

WTP  

Rihm et al. 2019 Sleep deprivation selectively 

upregulates an amygdala–

hypothalamic circuit involved in 

food reward 

32 

(32) 

26.13 

(3.8) 

Consecutive WTP increased when sleep deprived. 

Upregulation of hypothalamic valuation 

signals and amygdala– hypothalamic 

coupling after sleep deprivation 

Seak et al. 2021 Single-Dimensional Human 

Brain Signals for Two-

Dimensional Economic Choice 

Options 

24 

(11) 

25.4, RG 

19 - 36 

Concurrent Activity in striatum, midbrain, and OFC 

correlated with revealed preference across 

choice indifference curves 

Setton et al. 

 

2019 Mind the gap: Congruence 

between present and future 

25 

(10) 

22.52 

(2.79) 

Concurrent VS activity positively correlated with level 

of prospection bias towards food items 
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 motivational states shapes 

prospective decisions 

RG 18 - 

30  

 

Tang et al. 2014 Behavioral and neural valuation 

of foods is driven by implicit 

knowledge of caloric content 

29 

(NA) 

(NA) Concurrent Activity in the vmPFC linked with caloric 

density of auction food items 

Verdejo ‐

Román et al. 

2017 Brain reward system's alterations 

in response to food and monetary 

stimuli in overweight and obese 

individuals 

81 

(38) 

33.35 

(6.28) 

Concurrent Obese group showed greater activation in 

VS and dorsal striatum than overweight and 

normal weight groups  

Waskow et 

al. 

2016 Pay what you want! A pilot study 

on neural correlates of voluntary 

payments for music 

25 

(13) 

35.08 

(17.71) 

Concurrent Compared “Pay What You Want” (PWYW) 

to fixed price condition of BDM. OFC, 

medial PFC and ACC activity correlates 

with WTP in BDM, no correlation for 

PWYW found 

Zangemeiste

r et al. 

2019 Neural activity in human 

ventromedial prefrontal cortex 

reflecting the intention to save 

reward 

22 

(NA) 

NA Consecutive vmPFC activity correlates with value and 

one’s intention to save during sequential 

economic choices 
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4.4.1. Significant ALE clusters for WTP 

The WTP ALE meta-analysis pooled data from a total of 731 participants and 190 

reported foci from the 24 studies. The results (see Table 2) revealed six significant clusters, 

where ALE values represent consistent spatial activations which increased in line with WTP. 

The largest cluster was elicited in the vmPFC (Brodmann areas 10 and 32) centring on the 

medial prefrontal gyrus and extending into the left subgenual ACC (sgACC, Brodmann area 

32) and right pregenual ACC (pgACC, Brodmann areas 24 and 32). Further clusters were found 

encompassing the bilateral VS, in the right dorsolateral prefrontal cortex (dlPFC) (Brodmann 

areas 45 and 46), the right inferior frontal gyrus (IFG) (Brodmann area 44) and the right AI 

(Brodmann area 13). We found satisfactory robustness of our results against publication bias, 

with all but the right AI cluster showing an FSN above the minimum imposed, indicating an 

overall robust convergence of foci. Figure 4.4.2 illustrates the location of significant ALE 

clusters from the meta-analysis of WTP. 

 

4.4.2. Contrast and conjunction analyses 

To investigate to what extent the relationship between brain activation and reported 

WTP is automatically engaged, a contrast analysis was conducted comparing the ALE maps of 

concordant activations for concurrency of BDM performance and fMRI recording. Data was 

pooled from the entire cohort of 24 studies, with a total of 16 studies (535 participants and 158 

reported foci) for concurrent recording and 8 studies (196 participants and 32 reported foci) for 

consecutive recordings. The contrast analysis revealed 3 clusters indicative of increased 

activation likelihood estimates for concurrent scanning relative to consecutive scanning. These 

regions were in the right IFG, right dlPFC and right caudate (Table 3, Figure 4.4.3). 
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Additionally, given the likelihood of an extended network of reward processing, a 

conjunction analysis was conducted to establish commonalities in activation profiles between 

the two types of recording. The results highlighted an overlap of activation likelihood 

coordinates in two clusters, in the left vmPFC and the left OFC (Table 3, Figure 4.4.3). 
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Figure 4.4.2. The location of significant ALE clusters from the meta-analysis of 

concordant activations for WTP. A – F show coronal and sagittal slices at the cluster peak 

in: (A) vmPFC with sub-cluster in the ACC, (B) right dlPFC, (C) left VS, (D) right VS, 

(E) right IFG and (F) right AI. (G) shows all clusters in axial orientation. Results are 

displayed overlaid onto a standardized MNI template anatomical brain. ALE scores are 

indicated by the colour bar. 
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Table 2. Locations of significant clusters from the ALE map of WTP 

Cluster Label Volume (mm3) # Studies 

(foci) 

ALE peak Brodmann area MNI co-ordinates 

(x, y, z) 

Talairach co-ordinates 

(x, y, z) 

1 vmPFC L 4584 17 (19) 0.02463 10/32 -2, 40, -12 -2, 35, -12 

vmPFC L 0.02412 10/32 -8, 48, -6 -8, 43, -6 

Subgenual ACC 

L 

0.01898 32 -4, 28, -12 -4, 24, -10 

Pregenual ACC R 0.01955 10/32 6, 46, 0 5, 41, 0 

2 dlPFC R 1072 5 0.02479 45/46 46, 42, 12 45, 41, 13 

dlPFC R 0.01652 45/46 48, 38, 22 47, 38, 22 

3 VS L 1056 5 0.01670 n/a -10, 8, -4 -10, 5, 0 

4 VS R 1008 4 (5) 0.02956 n/a 10, 14, -4 9, 11, 0 

5 IFG R 968 6 0.01982 44 50, 10, 20 48, 9, 21 

6 AI R 784 4 0.02132 13 34, 22, 0 32, 19, 3 

L, left hemisphere; R, right hemisphere.
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Figure 4.4.3. The location of significant clusters from conjunction and contrast analyses 

of ALE maps for concurrent (inside) and consecutive (outside) recordings. Results are 

displayed overlaid onto standardized MNI template anatomical brain in as a montage of 

sagittal, coronal and axial slices through the clusters. ALE scores are indicated by the 

colour bars.  
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Table 3. Locations of significant clusters from conjunction and contrast analyses of WTP for concurrent and consecutive recordings 

Cluster  Label Volume 

(mm3) 

ALE peak Brodmann 

area 

MNI co-ordinates (x, y, z) Talairach co-ordinates (x, y, z) 

Conjunction Analysis 

1 OFC L 192 0.0100 11 -2, 40, -10 -2, 35, -10 

2 vmPFC L 104 0.0096 10/32 -6, 50, -4 -6, 44, -5 

Contrast Analysis – Concurrent > Consecutive 

1 IFG R 864 0.0173 6 43, 4, 31 42, 4, 31 

IFG R 0.0328 44 45, 8, 26 43, 8, 26 

IFG R 0.0328 44 50, 6, 24 48, 5, 25 

2 dlPFC R 336 0.0333 10 46, 45, 16 45, 45, 16 

dlPFC R 0.0494 10 46, 40, 20 45, 40, 20 

3 Caudate R 272 0.0246 n/a 14, 18, -4 13, 15, 0 

Subgenual ACC 

R 

0.025 25 4, 18, -4 3, 15, -1 

Caudate R 0.0265 n/a 10, 18, -6 9, 15, -2 

L, left hemisphere; R, right hemisphere. 
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4.5. Discussion 

Performing subjective valuation judgements, and carrying out choices based on these 

valuations, is an integral part of everyday life. In no case is this more pertinent than in economic 

purchasing decisions. The present meta-analysis was conducted to identify the core brain 

valuation system subserving computation of SV as determined by an incentive-compatible 

WTP metric. The primary ALE analysis identified the locations of positive effects of SV on 

BOLD activity, where positive effects elicited larger BOLD responses increasing with WTP. 

The largest concordant activation to WTP was located in the left vmPFC, with a sub-cluster of 

activation extending into the right pgACC and left sgACC. Additionally, the bilateral VS, right 

dlPFC, right IFG and right AI also demonstrated significant levels of consistent spatial 

activation for WTP. Secondary contrast and conjunction analysis established distinct and 

overlapping neural substrates underlying value-related activations according to concurrency of 

BDM and fMRI recordings, contrary to our hypothesis. As the pool of studies used a wide 

range of stimuli types, this analysis shows that the regions elicited play a central role in the 

encoding of decision values in a wide number of economic settings. Critically, by using an 

experimental design that allowed us to identify areas that encode for WTP, we were able to 

isolate those involved in economic choice from other areas that are related to hedonic aspects 

such as arousal or familiarity.  

The results from this meta-analysis confirm the vmPFC as a core brain area of SV 

computation, with 71% of the pool of studies contributing to the vmPFC cluster in the main 

analysis. Notably, activations in vmPFC and bilateral striatum are in good agreement with a 

previous fMRI meta-analysis (Bartra et al., 2013) which highlighted these regions, alongside 

the PCC, ACC, pre-supplementary motor area and insula, as parts of the brain valuation system. 

The role of vmPFC in the construction of SV also corroborates with positron-emission 
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tomography studies (Diekhof et al., 2012), as well as single-cell recordings (Strait, Blanchard, 

& Hayden, 2014), lesion (Fellows, 2011; Henri-Bhargava, Simioni, & Fellows, 2012) and 

animal studies (Lopatina et al., 2016; Tremblay & Schultz, 1999). Further, our conjunction 

analysis showed that the vmPFC is the only region to display consistent spatial activation 

regardless of concurrency of explicit valuation responses and fMRI recording. This suggests 

that the vmPFC may be the principal region responsible for SV processing in the brain. 

The activation shown in the vmPFC extended into the rostral portions of the ACC. 

Typically, ACC activations are linked to emotions (Phan, Wager, Taylor, & Liberzon, 2002; 

Vogt, 2005); resting-state fMRI studies show that the ACC is most functionally connected with 

areas implicated in affective processing, with pgACC having more widespread connections 

than sgACC (Stevens, Hurley, & Taber, 2011). Both the pgACC and sgACC have also been 

shown to be modulated by an overestimation of probabilities of good outcomes (Blair et al., 

2013), and sgACC activity in particular positively correlates with expected value of an outcome 

(Beckmann, Johansen-Berg, & Rushworth, 2009; Grabenhorst & Rolls, 2011). Further to this, 

ACC neurons in non-human primates encode the values of the chosen options during decision-

making (Cai & Padoa-Schioppa, 2012; Hosokawa, Kennerley, Sloan, & Wallis, 2013; 

Kennerley, Dahmubed, Lara, & Wallis, 2009). It may be that activity found in the ACC is due 

to the uncertainty implicit in the BDM, with the risk of good and bad outcomes being directly 

linked to the participant’s expressed expected values.  

The VS is also frequently cited as a primary region of reward processing (Clithero & 

Rangel, 2014; Filimon, Nelson, Sejnowski, Sereno, & Cottrell, 2020; Hare et al., 2008; Strait, 

Sleezer, & Hayden, 2015). Both the vmPFC and striatum are key dopaminergic areas, receiving 

dopaminergic projections from the midbrain (Rutledge, Dean, Caplin, & Glimcher, 2010), and 

are well established to be involved in option valuation and comparison (Camille, Griffiths, Vo, 
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Fellows, & Kable, 2011; Deserno et al., 2015; Lim, O'Doherty, & Rangel, 2011). Single-cell 

recordings in rhesus macaques show extensive similarities in neuron firing patterns in the VS 

and vmPFC during risky reward-based choice (Strait et al., 2015). Activity in the VS has been 

shown to be mediated by the magnitude of expected reward in both humans (Diekhof et al., 

2012; Tom et al., 2007; Yacubian et al., 2007) and non-human primates (Cromwell & Schultz, 

2003; Strait et al., 2015). Our findings confirm that the vmPFC and VS have signals that are 

directionally related to SV in a similar way as they both scale in activity with WTP. 

The delineation of activation patterns between concurrent and consecutive execution of 

task and fMRI scanning in the current context is related to the concepts of task relevance, and 

the automaticity of value processing (Grueschow et al., 2015; Lebreton et al., 2009; Tyson-

Carr et al., 2018). In line with previous studies demonstrating task-irrelevant underlying value-

related neural computations, we hypothesised that areas of the brain valuation system would 

be activated in proportion to WTP regardless of the task being performed in the scanner. 

However, activation in the right dlPFC and IFG also scaled with WTP, and showed preferential 

activation in concurrent over consecutive scanning. Both the dlPFC and IFG are known to be 

central to executive functioning, attention and cognitive control (Aron, Fletcher, Bullmore, 

Sahakian, & Robbins, 2003; Aron, Robbins, & Poldrack, 2004, 2014; Hampshire, 

Chamberlain, Monti, Duncan, & Owen, 2010; Hare, Camerer, & Rangel, 2009; Miller et al., 

2011; Staudinger, Erk, & Walter, 2011). Previous work has linked the dlPFC to behavioural 

restraint and delayed reward (McClure, Laibson, Loewenstein, & Cohen, 2004), demonstrating 

that individuals who successfully inhibit their value responses during self-control tasks exhibit 

greater dlPFC activity than those who did not (Chen, He, Han, Zhang, & Gao, 2018; Hare et 

al., 2009). The IFG is involved in the overweighting of private vs public information (Huber, 

Klucharev, & Rieskamp, 2014) and conflict resolution (Jarcho, Berkman, & Lieberman, 2010) 

during decision-making. While not being integral members of the brain valuation system, such 
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as that described by Bartra et al. (2013), the dlPFC/IFG may instead modulate valuation activity 

in the vmPFC to induce behavioural restraint (McClure, Ericson, Laibson, Loewenstein, & 

Cohen, 2007; McClure et al., 2004). This is supported by the contrast analysis, as the 

dlPFC/IFG would only be engaged during active bidding and not non-incentivised tasks or 

passive viewing. It is possible that during the BDM, the dlPFC/IFG acts as a self-control 

mechanism interacting with the valuation system to optimise bidding outcomes (Hare et al., 

2009).  

As noted earlier, previous investigation has found a large network of brain areas involved 

in the formation and updating of subjective valuation (Bartra et al., 2013; Clithero & Rangel, 

2014). To this point, a key finding of this meta-analysis is the notable absence of some of these 

areas in the patterns of consistent activation. For instance, we found no correlation with WTP 

in the PPC or the amygdala, both of which have been implicated in reward processing (De 

Martino et al., 2010; Huettel et al., 2006; Raggetti, Ceravolo, Fattobene, & Di Dio, 2017). Most 

notably, previous fMRI meta-analyses of SV using other tasks have found larger clusters in the 

vmPFC incorporating the medial OFC (Gottfried, O'Doherty, & Dolan, 2003; Hare et al., 2008; 

Levy & Glimcher, 2012), whereas the vmPFC cluster found in our main analysis did not. 

Neural activation in the OFC has been consistently linked to subjective pleasantness of various 

stimuli (see supplementary materials of Grabenhorst & Rolls, 2011 for review). The delineation 

of SV of an object from its hedonic pleasure in the present meta-analysis suggests that the OFC 

may be involved with evaluation of subjective liking as opposed to WTP (Kringelbach, 

O’Doherty, Rolls, & Andrews, 2003). Finally, the present meta-analysis also showed activation 

in the right AI in line with SV, but did not reach the statistical criterion of the FSN analysis. 

This brain region has considerable functional heterogeneity, being involved in a wide variety 

of functions such as interoception (Craig, 2009; Naqvi & Bechara, 2009), emotion processing 

(Bechara & Damasio, 2005; Critchley, 2005) and arousal (Quartz, 2009). With regards to 
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reward processing, the AI is extensively connected to dopaminergic regions such as the 

vmPFC, amygdala and ventral striatum (Namkung, Kim, & Sawa, 2017), and is implicated in 

loss prediction (Paulus & Stein, 2006), aesthetic appraisal (Brown, Gao, Tisdelle, Eickhoff, & 

Liotti, 2011) and in economic uncertainty (Mohr, Biele, & Heekeren, 2010; Platt & Huettel, 

2008; Rutledge et al., 2010). The AI has been proposed as a candidate for generalized 

uncertainty processing, as the perception of risk and uncertainty involves integrating both 

external probability computation and the internal qualia of emotions (Loued-Khenissi, 

Pfeuffer, Einhäuser, & Preuschoff, 2020; Sescousse et al., 2013). It is possible that the size of 

the final cohort was insufficient to reliably shed light on the role of the AI in this context.  

The present study is not without its limitations. It should be acknowledged that the BDM 

has been found to be not incentive compatible in certain circumstances, such as when the object 

being valued is a lottery (Karni & Safra, 1987). There is also evidence that bid values in second-

price sealed bid auctions can be impacted by subjective perceptions of uncertainty (Horowitz, 

2006) and social competition (Newton-Fenner et al., 2023). Furthermore, the decision to focus 

on the BDM task, while allowing a clean analysis of SV computation without the confounding 

effects of task heterogeneity, resulted in a smaller final cohort. This meta-analysis exceeded 

the recommendation of at least 17 independent studies for ALE analysis in order to be confident 

that the results are not biased by any individual experiment from the cohort (Eickhoff et al., 

2016). However, due to the subsequent split into two subgroups for recording concurrency, it 

may be premature to draw strong conclusions from the secondary contrast and conjunction 

analysis. These preliminary distinctions between the effects of concurrency of recordings on 

SV representation would benefit from clarification by more, higher powered experiments. This 

would also afford the opportunity to better disentangle any neural differences between passive 

viewing, binary choice and bid value activation patterns. Here, the aim was to focus on 

concordance of activations across studies which utilized whole-brain analyses and robust 
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statistical thresholding to reveal the core regions of the brain which demonstrate subjective 

valuation activations regardless of existing bias. Permitting less stringent search methods 

would have been detrimental to the integrity of the present investigation. Many other WTP 

tasks are not sufficiently incentivised, and therefore the WTP values are not reliable indicators 

of SV (Waskow et al., 2016; Wertenbroch & Skiera, 2002). We should also note that all but 

one of the clusters (right AI) in the main analysis passed the FSN analysis for potential 

publication bias, indicating their stability. With the growing popularity of the BDM, a follow 

up investigation utilizing a larger cohort would further enhance the robustness of these results.  

To conclude, we used ALE analyses to map consistent patterns of cerebral activations 

involved in SV as determined by the behavioural-economic tool of BDM, which pinpoints SV 

as WTP. The findings document both overlap and dissociations of valuation regions engaged 

by concurrency of task and scanning. The BDM paradigm has the ability to differentiate 

economic value from other factors that contribute towards subjective valuation, such as 

emotional processing, autonomic responses, associative learning, perceptual attention and 

motor control. We believe that the present meta-analysis represents the most succinct evidence 

to date of the core brain regions that encode consumers’ economic valuations of goods. 

Knowledge of the distinct and overlapping roles of these brain areas offers unique insights for 

both theoretical and applied neuroeconomic research.  
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5. Bid outcome processing in Vickrey auctions: an ERP study 
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This study investigated the spatiotemporal dynamics of reward processing during 

competitive and risky economic decision-making using Vickrey auctions. This paper was 
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5.1. Abstract 

Online retailers often sell products using a socially competitive second-price sealed-bid 

auction known as a Vickrey auction (VA), an incentivised demand-revealing mechanism used 

to elicit players’ subjective values. The VA presents a situation of risky decision-making, 

which typically implements value processing and a loss aversion mechanism. Neural outcome 

processing of VA bids are not known; this study explores this for the first time using EEG. 

Twenty-eight healthy participants bid on household items against an anonymous, 

computerised opponent. Bid outcome event-related potentials were predicted to differentiate 

between three conditions: outbid (no-win), large margin win (bargain) and small margin win 

(snatch). Individual loss aversion values were evaluated in a separate behavioural experiment 

offering gains or losses of variable amounts but equal chances against an assured gain. 

Processing outcomes of VA bids were associated with a feedback-related negativity 

(FRN) potential with a spatial maximum at the vertex (251–271 ms), where bargain win trials 

resulted in greater FRN amplitudes than snatch win trials. Additionally, a P300 potential was 

sensitive to win versus no-win outcomes and to retail price. Individual loss aversion level did 

not correlate with the strength of FRN or P300. 

Results show that outcome processing in a VA is associated with FRN that 

differentiates between relatively advantageous and less advantageous gains, and a P300 that 

distinguishes between the more and less expensive auction items. Our findings pave the way 

to an objective exploration of economic decision-making and purchasing behaviour involving 

a widely popular auction. 

 

Keywords: ERPs, FRN, P300, vickrey auction, reward  
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5.2. Introduction 

As electronic commerce continues to dominate retail markets, it is vital to understand 

decision-making in online purchasing contexts (Cinar, 2020; Nguyen, de Leeuw, & Dullaert, 

2018; Rose, Hair, & Clark, 2011). In value-based decision-making research, subjective 

valuations are often quantified in the form of willingness-to-pay (WTP), where a person assigns 

a monetary unit to the value of obtaining a good or experience. This has the advantage that 

valuations within and across domains (such as food, pain, people and experiences) can be 

compared on the linear scale of a given currency. Auction paradigms are widely used to 

quantify WTP in neuroeconomics research; the most well-established of these being the 

Becker-DeGroot-Marschak (BDM) auction (Becker et al., 1964; Peters & Buchel, 2010; 

Plassmann et al., 2007; Roberts, Tyson-Carr, Giesbrecht, & Stancak, 2022; Roberts et al., 2018; 

Tyson-Carr et al., 2018; Tyson-Carr et al., 2020). Further, several multinational auction 

websites utilise a format that is strategically equivalent to the BDM: the Vickrey auction (VA) 

(Barrot et al., 2010). 

The VA and BDM share the same basic paradigm: players put forward a single bid 

privately, the highest bidder wins and pays the value of the second highest bid. All other players 

win nothing and lose nothing. In both auctions, the game-theory dominant strategy, that is, the 

best reply to every strategy profile of all other players, is to bid the maximum amount one is 

willing to pay (Vickrey, 1961). Therefore, the VA and BDM allows for the inference of the 

participant’s subjective values of items whilst manipulating the behaviour of their opponent 

and therefore the auction outcomes (Noussair et al., 2004). 

The VA and BDM are both demand-revealing mechanisms, but differ in two major 

respects: the identity of the bidder’s opponent(s) and the amount of outcome feedback 

(Noussair et al., 2004). In a BDM, the player bids against a random number generator and is 
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told whether they won or lost; whereas in a VA the players are aware of competing with other 

anonymous, human players, and the winner is also told the final price paid. This price is wholly 

dependent on the bid of the losing player (or in the case of multiple opponents the second 

highest bidder) and therefore, the winner receives information about their opponents’ 

subjective values, and whether their values align. 

Furthermore, by revealing the final price paid in winning trials, wins can be divided 

into more- and less-advantageous outcomes. If there is a large difference between the bids, the 

winner will pay significantly less than they were willing; an outcome hence referred to as a 

bargain trial. Meanwhile, if both players place similar bids, the final price paid will be much 

closer to the winner’s WTP; an outcome hence referred to as a snatch trial. Both outcomes are 

considered ‘good’ as the participant pays less than their WTP, but the margin of difference 

between their bid and the final price paid can be controlled. This is a unique advantage of the 

VA, as it allows for intermediate outcomes on a scale of relative good–bad in the win domain, 

so that some wins can be more extreme than others. Previous behavioural studies of economic 

decision-making have also demonstrated that subjective value is sensitive to social factors, 

such as how one’s performance fairs against others (Fehr & Schmidt, 1999). Therefore, 

decision-making in the VA could employ different reward processing mechanisms to the BDM, 

by virtue of social context information and the competitive environment (Chen, 2011; Malhotra 

& Bazerman, 2008; van den Bos et al., 2013). 

In EEG research, the most prominently investigated event related component connected 

to outcome evaluation in decision-making tasks involving uncertainty is the feedback related-

negativity (FRN) (Walsh & Anderson, 2012). Also referred to as the feedback error related 

negativity, (fERN) (Holroyd & Coles, 2002), the medial frontal negativity (MFN) (Gehring & 

Willoughby, 2002), feedback negativity (FN) (Hajcak et al., 2006), and most recently the 
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reward positivity (RewP) (Proudfit, 2015), is a suppressed or otherwise obliterated negative 

deflection elicited by win outcomes approximately 200 – 300 ms post-feedback onset, which 

is not present in loss outcomes. It is typically measured from a single electrode in the midline 

frontal-central area (Glazer et al., 2018), and has been posited to reflect a reinforcement 

learning reward prediction error (Holroyd & Coles, 2002), consistently differentiating between 

context-dependent favourable and unfavourable outcomes (Hajcak et al., 2006; Holroyd, 

Larsen, et al., 2004). It was initially theorised to reflect a subjective “worse than expected’’ 

error signal (Hajcak et al., 2007; Nieuwenhuis, Holroyd, et al., 2004). However, current 

research suggests that the apparent negativity of the FRN waveform is produced by a conflation 

of the N200 potential with the RewP component, where all outcome feedback elicits an N200, 

but a RewP suppresses this N200 in gain outcomes in this time range (Holroyd et al., 2008; 

Proudfit, 2015). Here, we define the FRN as the difference waveform between averaged 

potentials time-locked to gain and loss outcome-feedback. As VA involves outcome 

uncertainty, it is likely that feedback processing of auction outcomes entails an FRN. 

Additionally, the P300 event related component – in particular the P3b sub-component 

– is also thought to be involved in outcome evaluation. The P3b has a positive-going amplitude 

which occurs approximately 300 – 500 ms after stimulus onset, and typically peaks at its 

maximum amplitude at parietal electrode sites, most commonly Pz, CPz and Cz (Polich, 2007, 

2012). While the P300 is typically produced by non-frequent target stimuli interspersed among 

frequent standard stimuli (Duncan‐Johnson & Donchin, 1977; Polich, 2012; Polich & Margala, 

1997), it also has well established sensitivities to outcome magnitude, particularly in 

purchasing and social contexts (Bellebaum et al., 2010; Jones et al., 2012; Pfabigan & Han, 

2019; San Martin, 2012; Schaefer, Buratto, Goto, & Brotherhood, 2016; Yeung & Sanfey, 

2004). Recent literature has also shown that the P300 is modulated by social feedback in 

economic contexts (Mussel, Weiß, Rodrigues, Heekeren, & Hewig, 2022; Weiß, Mussel, & 
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Hewig, 2020), with a larger positivity for positive and unexpected feedback. The P300 is also 

modulated by outcome probability, with studies utilising gambling paradigms demonstrating 

that unexpected rewards elicit stronger P300 amplitudes compared to expected rewards (Cohen 

et al., 2007; Hajcak et al., 2005; Hajcak et al., 2007). Taken together, we postulated that a series 

of VA trials would elicit a P300 potential, differentiating between win and no-win outcomes. 

Research into reward processing typically investigates decision-making in conditions 

of risk and uncertainty, most commonly using a variant of a gambling task (Chandrakumar, 

Feuerriegel, Bode, Grech, & Keage, 2018). These scenarios also often engage loss aversion: a 

greater sensitivity to potential losses than potential gains (Kahneman & Tversky, 2013). For 

example, loss aversion is correlated with greater autonomic responses to losses (Sokol-Hessner 

et al., 2013; Stancak et al., 2015) and stronger activation in the amygdala in the outcome period 

during gambling tasks (Canessa et al., 2013; Sokol-Hessner et al., 2013). Most relevantly, 

Kokmotou et al. (2017) found a positive correlation between loss aversion and FRN amplitude 

in the outcome evaluation period of a monetary gambling task. Most gambling tasks have 

known probabilities of outcomes (e.g. a 50:50 gamble) whereby participants can quantify the 

static risk level and behave accordingly (Kokmotou et al., 2017). During a VA, by using an 

anonymous opponent with an unknown strategy, the players are put into a situation of 

unpredictable uncertainty. This allows investigation of the role of uncertainty in decision-

making as a separate entity to risk. A secondary aim of the current study was to investigate loss 

aversion implementation in this real online purchasing scenario.  

To date, no studies have explored the neural mechanisms implemented during a VA, 

despite its widespread use in online retail. Unlike other decision-making tasks under 

uncertainty, no outcome in a VA can be classified as a financial loss, and so it is unclear 

whether processing outcomes in a VA would be associated with FRN and a P300. This study 
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examined for the first time the FRN and P300 components of ERPs elicited by receiving 

outcomes of bids in a VA, and explored the nuance of ERP responses to different types of wins 

in a win vs no-win context (e.g. high retail value wins vs low retail value wins, and bargain 

wins vs snatch wins). It was hypothesised that processing outcomes in a VA will be 

accompanied by the FRN and P300 ERP components. Further, we predicted that the relatively 

advantageous win outcomes (bargain) will show greater FRN than the relatively 

disadvantageous (snatch) win outcomes. Finally, given the presence of FRN in the data, we 

also postulated a positive association between individual loss aversion levels and the strength 

of FRN. 

 

5.3. Method 

5.3.1. Participants 

Twenty-eight healthy participants (12 male, 25 right handed) with a mean age of 25.9 

± 6.9 years (mean ± SD), took part in the current study. Three participants (two male) were 

removed from subsequent analyses due to excessive muscle artefacts in EEG recordings. One 

participant (male) was excluded due to not bidding in 65% of trials. All had normal or 

corrected-to-normal vision. All participants were screened for psychological/psychiatric 

disorders. A post hoc sensitivity analysis confirmed that the one-way within-subjects ANOVA 

with 24 participants across three outcome conditions would be sensitive to effects of ƞp2 = 0.21 

with 80% power (α = .05). The experimental procedures were approved by the Research Ethics 

Committee of the University of Liverpool. All participants gave written informed consent in 

accordance with the Declaration of Helsinki. Participants were reimbursed for their time and 

travel expenses. 
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5.3.2. Procedure 

The study was carried out in a single session. Participants completed an EEG 

experiment involving a computerised VA task, and a behavioural computerised monetary 

gambling task to measure loss aversion. The purpose of the experiment and instructions for the 

tasks were explained to participants at the beginning of the session. All experimental 

procedures were carried out in a dimly lit, sound-attenuated Faraday cage. Both tasks were 

displayed on a 19-inch LED monitor using MATLAB (Mathworks, Inc., USA), with Cogent 

software 2000 (Cogent, www.vislab.ucl.ac.uk/Cogent/). 

 

5.3.2.1. VA Task 

Participants received an initial endowment of £18 and were instructed to use it to 

purchase items during the VA task. They were informed that two items from winning trials 

would be randomly selected and the price that they won the items for would be deducted from 

their endowment; they would receive the remaining amount of their endowment and the two 

items as reimbursement for their participation. After application of the EEG net, participants 

were led into the Faraday cage to complete the task. Participants were seated in front of the 

computer and rested their dominant hand on a computer mouse. 

The protocol for the VA task was adapted from previous studies (Kokmotou et al., 

2017; Roberts et al., 2018; Tyson-Carr et al., 2018; Tyson-Carr et al., 2020) which used a BDM 

paradigm. The trial structure is shown in Figure 5.3.1. The order of item presentation was 

randomised between participants, and each item was presented once, resulting in a total of 300 

auction trials. The stimuli comprised 300 everyday household products such as kettles, batteries 

http://www.vislab.ucl.ac.uk/Cogent/
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and mugs, valued in the ranges £3 – 5 (low value) and £7 – 9 (high value; n=150 in each range), 

with a mean value of £6.04 ± £2.19 (mean ± SD) obtained from a shopping catalogue. The 

items were chosen for their ubiquity, utility and price point, as we wanted the participants to 

be familiar with the type of items they were bidding on and view them as desirable. Each 

auction trial began with a resting interval during which participants viewed a white fixation 

cross on a black background for 2 s. The participants were then presented with an item to bid 

on, using a sliding scale from £0 – £9 in increments of 25p, giving a total of thirty-seven 

options. Participants were asked to bid the maximum amount they would be willing to pay for 

each item, and to select their bid value by clicking on the scale, and submit the bid by clicking 

on a white square in the bottom right-hand corner. There was no time limit on bid submission 

and participants could click on the scale as many times as they wished before submitting the 

bid. 

After bid submission, the trial outcome was determined randomly by the computer, 

with three equally likely outcomes: (1) the participant is outbid (no-win condition); (2) the 

participant has won by a small margin, paying 70 – 90% of the value of their bid (‘snatch’ 

condition); (3) the participant has won by a large margin, paying 10 – 30% of the value of their 

bid (‘bargain’ condition). In outcome (1), the value of the participant’s bid plus a 25p increment 

appeared in the centre of a red square for 2 s. In outcome (2) and (3), prices were rounded to 

the nearest 25p and displayed at the centre of a green square for 2 s.  

The task consisted of a total of 300 trials, split into three blocks of 100 trials each. Trials 

were presented in random order for each participant. Participants were given a short break in 

between blocks to limit fatigue. The duration of each block was approximately 15 minute s. 

After the VA task was complete, participants were given a short break and the EEG system 

was removed. 
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Figure 5.3.1. a) Trial structure of Vickrey Auction task in the bargain condition. Each 

trial began with a fixation cross for 2 s, followed by the auction item and a sliding scale 

from £0 – £9 in increments of 25p on which to select their bid. Participants were 

instructed to select their bid on the scale, and once they were happy with their decision 

submit the bid by clicking on a white square in the bottom right-hand corner. The screen 

was blank for 2 s before presenting the outcome of the trial. If the participant won the 

trial (presented) a green square appeared with the amount they won the item for in the 

centre of the square. If the participant lost the trial, 25p more than their bid value was 

shown at the centre of a red square. b) Trial structure of loss aversion task. Top panel: 

Declined gambles. Bottom panel: Accepted gambles. Each trial began with a fixation 

cross, followed by the presentation of two possible choices, which were displayed on the 

screen for 4 s. Half of the screen showed the gamble option (e.g., “you win £3.0, you lose 

£3.0”) with a 50:50 chance of winning or losing the displayed amount of money. The other 

half of the screen showed the value of a sure outcome. In the next 2.5 s, the options stayed 

on the screen and two yellow rectangles appeared at the bottom of the screen. Participants 

were instructed to choose between the two options by pressing the left or the right mouse 

button corresponding to the side of the screen they preferred. If the participants selected 

the sure outcome, a fixation cross appeared on the screen and the next trial started after 

1 s. If participants selected the risky gamble option, a black screen was displayed for 1 s 
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after the 2.5 s response period, and feedback about the gamble outcome was shown for 

1 s (“You won” or “You lost”). A 1 s black screen served as a resting period before the 

next trial.  

 

5.3.2.2. Loss aversion task 

The loss aversion task was adapted from previous studies (Kokmotou et al., 2017; 

Stancak et al., 2015). Participants were given £10 as an initial endowment to use during the 

task. They were told that 10% of the final amount of money gained or lost during the task 

would be added to or subtracted from the endowment, and the remaining amount would be 

given as compensation for their travel costs and time. 

The task consisted of 100 two-alternative forced choice monetary gamble trials. In 80 

of those trials, participants chose between a 50:50 gamble and a sure zero outcome. The gamble 

options comprised of 8 possible gain amounts (£1.00, £2.00, £3.00, £3.50, £4.50, £5.00, £5.50, 

£6.00) and 10 possible loss amounts, which were devised by multiplying the given gain value 

with a number between 0.2 – 2.0 in 0.2 increments. All possible permutations were presented 

in the task trials (8 gains × 10 losses). In the other 20 trials, participants chose between a gain-

only gamble and a sure smaller gain. In these trials, the gain-only gambles presented a 50:50 

chance to win a certain gain amount or a zero outcome. The list of assured gains was identical 

to our previous study (Stancak et al., 2015). Trial order was randomized for each participant. 

The trial structure of the loss aversion task can be seen in Figure 5.3.1.  

At the beginning of each trial a fixation cross appeared on screen for 1 s, followed by 

the two alternative options for 4 s. One side of the screen showed the gamble option (e.g., “you 

win £2.0, you lose £1.5”), and the other side of the screen showed the sure outcome option. 
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Participants were told that the gamble option had a 50:50 probability of winning or losing. 

They were told to make their selection by pressing the left or right mouse button as it 

corresponded to their choice on the monitor. When the participant chose the gamble option, 

outcome feedback appeared on screen for 1 s (“you won” or “you lost”). The task took 

approximately 10 minutes to complete. 

 

5.3.3. EEG recordings 

EEG was recorded continuously using a 129-channel Geodesics EGI System (Electrical 

Geodesics, Inc., Eugene, Oregon, USA) with a sponge-based HydroCel Sensor Net. This 

system allows full head electrode coverage as it includes electrodes positioned over lower scalp 

regions and face, which is essential for identification of deep cortical sources, such as those 

located in the orbitofrontal cortex (Luu, Poulsen, & Tucker, 2009; Luu et al., 2001; Sperli et 

al., 2006; Tucker, 1993). The sensor net was aligned with respect to three anatomical 

landmarks: two preauricular points and the nasion. Electrode-to-skin impedances were kept 

below 50 kΩ and at equal levels across all electrodes, as recommended for the system (Ferree, 

Luu, Russell, & Tucker, 2001; Luu et al., 2003; Picton et al., 2000). The recording band-pass 

filter was 0.001 – 200 Hz with sampling rate of 1000 Hz. The electrode Cz served as the 

reference electrode. 

 

5.3.4. ERP analysis  

The ERP analysis of the outcome period served to evaluate the individual feedback-

related potentials FRN and P300. EEG data were pre-processed with the BESA v. 7.0 program 
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(MEGIS, Munich, Germany). EEG signals were spatially transformed to reference-free data 

using the common average reference method (Lehmann et al., 1987). This spatial 

transformation restored the signal at electrode Cz for use in further analyses. 

During pre-processing, EEG data were filtered (0.5 – 70 Hz with a 50 Hz notch filter) 

for viewing both slow, for example, movement or pressure pulse, and high-frequency, for 

example, EMG, artefacts. Ocular artefacts and, when necessary, electrocardiographic artefacts 

were removed with principal component analysis based on averaged artefact topographies 

(Berg & Scherg, 1994; Ille et al., 2002). Data were also visually inspected for the presence of 

atypical electrode artefacts. In rare cases where an electrode signal was continually affected by 

artefacts, the electrode signal was interpolated. Continuous data were sectioned into epochs of 

900 ms duration each with a baseline interval ranging from -300 ms to 0 ms relative to feedback 

onset.  

The average number of accepted trials in each condition were: no-win, 96.8 ± 15.8 

(mean ± SD); bargain win, 89.9 ± 11.4; snatch win, 85.0 ± 10.0. Paired t-tests revealed that the 

average number of accepted trials differed between the snatch win and other conditions (p < 

.05) but did not differ between no-win and bargain win conditions (p > .05) or between number 

of accepted trials in low value and high value conditions (low = 135.3 ± 9.4, high = 136.4 ± 

9.1; p > .05). Data were filtered from 0.5 – 30 Hz. ERPs in response to outcome feedback were 

computed separately for each condition by averaging respective epochs in the intervals ranging 

from -300 ms to 600 ms post feedback-onset. The FRN potential was quantified by subtracting 

ERPs of no-win trials from ERPs of bargain/snatch trials (analogous to a win-minus-loss 

difference waveform). 

In the VA task, EEG epochs were averaged for each type of outcome (snatch, bargain 

and no-win) and for both market value categories (high and low). Based on visual inspection 
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of scalp topographies and previous research (Glazer et al., 2018; Hauser et al., 2014; Krigolson, 

2018; Meadows, Gable, Lohse, & Miller, 2016; Walsh & Anderson, 2012), the Cz electrode 

was selected for statistical analysis. Intervals of interest were selected based on visual 

inspection and a permutation test involving 4000 permutations and implemented in the 

statcond.m function of the EEGLAB toolbox (Delorme & Makeig, 2004; Maris & Oostenveld, 

2007). The time windows of interest chosen were 251 – 271 ms (FRN) and 354 – 374 ms (P300) 

post feedback-onset. Graphical representations of these intervals can be seen as grey bars in 

Figures 5.4.2b and c for FRN, and 5.4.3b for P300.  

 

5.3.5. Statistical analysis  

5.3.5.1. Behavioural data 

For the VA task, trials in which the participant did not bid were excluded due to lack 

of engagement in the trial and the resulting outcome. Response times were uninformative as 

judgements were not time limited. A one-way repeated measures ANOVA was conducted to 

examine the effect of market value category on bid value. 

As outcome probabilities were fixed, the participant was pre-determined to win two 

thirds of the trials. While participants were instructed that the dominant strategy was to bid 

one’s true subjective value, the true dominant strategy was to bid the smallest amount possible: 

25p per trial. In order to test for any implicit learning during the task, we conducted a Pearson’s 

correlation between the trial number and bid value to test for a general  trend of lowering of 

bids as the task progressed.  

For the loss aversion gambling task, Shapiro-Wilk tests were conducted to confirm 

normal distributions across loss aversion, risk aversion and choice sensitivity parameters.  
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5.3.5.2. ERP data 

For the FRN, in line with previous studies (Chandrakumar et al., 2018; Glazer et al., 

2018; Walsh & Anderson, 2012), win trials were subtracted from no-win trials in order to 

establish the difference waveform, and to select the appropriate electrode and latency epoch 

showing a statistically significant effect. A one-way repeated measures ANOVA was 

conducted examining outcome condition (no-win, bargain, snatch), and a subsequent 2 × 3 

repeated measures ANOVA was conducted comparing the effects of value (high vs. low) and 

outcome condition (no-win, bargain, snatch) on ERP amplitudes.  

For the P300, four electrodes of interest corresponding to Fz, FCz, Cz and Pz in the 10-

20 electrode system, numbered 11, 6, 129 and 62 respectively in the HydroCel Geodesic net, 

were selected to account for the whole positive maximum of the P300 potential. A 4 × 2 × 3 

repeated measures ANOVA with factors of electrodes (four electrodes), value (low vs. high) 

and bid outcome conditions (bargain, snatch, no-win) was carried out. A subsequent 2 × 3 

(value × outcome) repeated measures ANOVA was carried out to unpack the relationship 

between outcome condition and item market value in electrode 6.  

In both components, Greenhouse-Geisser corrections were utilised whenever the 

sphericity assumption was violated. Significant differences outlined in the ANOVA were 

subjected to pairwise t-tests with Bonferroni corrections and a critical threshold of p < .05 was 

upheld. A 95% confidence level was always employed. 
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5.4. Results 

5.4.1. Behavioural data 

5.4.1.1. The VA Task 

Participants submitted bids in 94.2% of trials. The maximum bid of £9 was submitted 

on 2.9% of trials. The overall mean bid value was £3.36 (SD ± 2.5), £2.59 less than the mean 

market value of the items. Average bid value rose slightly as the task progressed: r(22) = .63, 

p < .001. 

Figure 5.4.1a shows a statistically significant relationship between participants’ mean 

bid value and the six levels of market value (F(5,115) = 68.11, p < .001, ƞp2 = .75). Post hoc 

pairwise comparisons with Bonferroni corrections showed differences across all value levels 

(p < .05) except between the £3 – 3.5 and £4 – 4.02 brackets, and between the three high market 

value brackets (p > .05). The participants were not told the retail price of the auction items so 

as not to anchor their bids, but the significant relationship between participant bid value and 

market value validates the use of market value as a proxy measure in the analysis. Additionally, 

there was a highly significant linear trend (p < .001), confirming a linear increase in subjective 

value with increase in retail price. This suggests that subjective value ratings within the VA 

reflects the retail prices of the products. The distribution of market price frequencies among 

the 300 auction item stimuli can be seen in Figure 5.4.1b. 

5.4.1.2. Loss Aversion Task - Choice Parameters 

Loss aversion (W(23) = .98, p > .05), risk aversion (W(23) = .97, p > .05) and choice 

sensitivity were all normally distributed (W(23) = .96, p > .05). The mean level of loss aversion 

(λ) was 1.38 ± 0.10 ( mean ± SEM). This value fit well with previous studies of λ = 1.4 (Sokol-

Hessner et al., 2009; Stancak et al., 2015). There was no correlation between loss aversion and 

risk aversion (p > .05). 
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Figure 5.4.1. (A) Bar graph showing mean participant bids in the VA task across 6 levels 

of market value: three subsections of low value (£3 – 5, dark grey) and high value (£7 – 9, 

light grey). The subsections were grouped according to frequency of price, as seen in (B). 

All levels of participants’ bid value differed between the six levels of market value except 

for the brackets highlighted by a *. (B) Bar graph showing the frequencies of marke t 

prices among 300 auction item stimuli corresponding to the 6 levels of market value in 

(A). Efforts were made to distribute prices evenly within the high and low value ranges. 
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5.4.2. ERP results 

5.4.2.1. FRN  

An FRN with a spatial maximum at the central midline electrode Cz was found in 

response to bidding outcomes in VA during the epoch 251 – 271 ms (Figure 5.4.2a). 

From visual inspection of the topographic plots, the FRN appeared to be stronger in the 

right hemisphere, as can be seen on the topographic maps in Figure 5.4.2a. To verify a right 

lateralisation effect, a repeated measures ANOVA was conducted comparing activity at the Cz 

electrode with the electrodes on the right and left of Cz (electrodes 36, 31, 80 and 104 were 

selected). No significant difference was found between electrodes (p > .05). 

The grand-average ERP waveforms at electrode Cz for win and no-win conditions used 

to compute the difference wave are shown in Figure 5.4.2b. Figures 5.4.2c and d demonstrate 

a main effect of condition (F(2,46) = 16.90, p < .001, ƞp2 = .42) between the win and no-win 

conditions during the epoch 251 – 271 ms. Significant differences were found between all three 

outcomes, with bargain trials (1.84 ± .38 μV) resulting in more positive potential amplitudes 

than snatch trials (1.61 ± .39 μV, p = .036) and both bargain and snatch trials resulting in more 

positive amplitudes than no-win trials (0.95 ± .38 μV, p < .001 and p = .001 respectively). The 

subsequent 2 × 3 ANOVA found no statistically significant main effect of value or interaction 

between values and condition (p > .05). 
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Figure 5.4.2. FRN component. (a) Whole scalp topographic maps displaying differences 

in grand average ERPs at time point (251 – 271 ms). (b) Grand average ERP waveform 

across all subjects and product value conditions comparing win (purple), no-win (green) 

outcome conditions and the no-win minus win difference waveform (black) at electrode 

Cz. Epoch of interest showing statistically significant differences between win and no-win 

conditions (251 – 271 ms post feedback-onset) highlighted in grey. (c) Grand average ERP 

waveform across all subjects and product value conditions comparing the no-win 

outcome condition (green) to the two types of win condition – bargain (blue) and snatch 

(pink) at electrode Cz. Epoch of interest (251 – 271 ms post feedback-onset) is highlighted 
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in grey. (d) Grand average difference ERP waveform across all subjects and product 

value conditions comparing the no-win minus bargain win (blue) and the no-win minus 

snatch win (pink) at electrode Cz. Epoch of interest (251 – 271 ms post feedback-onset) is 

highlighted in grey. (e) Bar graphs showing mean amplitude of ERPs over epoch 251 – 

271 ms for (b) and (c). Statistically significant differences are denoted as * for < .05, ** 

for < .01 and *** for < .001. The error bars show the standard error. 

 

5.4.2.2. P300 Component 

Topography of the P300, as can be seen in Figure 5.4.3a, showed bilateral positivity over 

the parietal electrodes, peaking at 354 – 374 ms. The topographic maps of the P300 component 

in win and no-win conditions showed spatial maximum at central parietal locations, and the 

greatest differences between conditions were maximal at midline frontal-central electrodes.  

A main effect of electrodes (F(3,69) = 6.69, p = .004, ƞp2 = .225), value (F(1,23) = 8.81, p 

= .007, ƞp2 = .277), and outcome conditions (F(2,46) = 7.89, p = .001, ƞp2 = .255), and a 

statistically significant interaction between electrodes and bid outcome conditions (F(6,138) = 

4.19, p = .006, ƞp2 = .154) was found. The main effect of value was due to the larger P300 

potential in high- compared to low-value items (high: 1.48 ± .24 μV; low: 1.23 ± .21 μV, mean 

± SEM).  

Subsequent analysis revealed that the main effect of electrodes was due to significant 

differences in amplitudes between all electrodes apart from between 62 and 11, and between 

129 and 62 (F(3,69) = 6.61, p = .001, ƞp2 = .223). A stronger positive P300 potential was 

observed at the electrodes located at vertex (electrode 129: 2.01 ± .35 μV) and in the parietal 

scalp region (electrode 62: 1.67 ± .43 μV) compared to two electrodes located anteriorly 

relative to the vertex electrode (electrodes 11: .34 μV ± .20 μV, and 6: 1.37 ± .30 μV; see Figure  

5.4.3c). Figure 5.4.3b shows topographical maps of the difference in potential amplitude of the 
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P300 between conditions. Notably, the topographic maps of the contrast no-win vs. both win 

conditions revealed that only the anterior part of the P300 potential maximum, represented in 

electrodes 11 and 6, resolved the bid outcome conditions. 

The main effect of bid outcome conditions (F(2,46) = 7.59, p = .001, ƞp2 = .248) was related 

to a stronger P300 in no-win outcomes (1.64 ± 0.27 μV, mean ± SEM) compared to both 

bargain (1.28 ± 0.25 μV) and snatch (1.12 ± 0.19 μV) outcomes; the two win outcomes did not 

significantly differ. The interaction between electrodes and bid outcomes (Figure 5.4.3d) 

revealed that the amplitudes differed between no-win and both win outcomes in electrodes 11 

(bargain: .18 ± .24 μV, p = .009; snatch: .16 ± .20 μV, p = .001; no-win: .66 ± .22 μV,), and 6 

(bargain: 1.15 ± .31 μV, p = .001; snatch: 1.01 ± .27 μV, p < .001; no-win: 1.94 ± .39 μV), at 

electrode 129 no-win differed from snatch but not from bargain (bargain: 2.05 ± .40 μV p > 

.05; snatch: 1.69 ± 2.8 μV p = .012; no-win 2.29 ± .41 μV), and the outcomes did not differ at 

all in the parietal electrode 62 (ps > .05), in accordance with the topographic maps of bid 

outcome contrasts (Figure 5.4.3b). This can be seen in Figure 5.4.3d. 

Figure 5.4.3e shows the grand mean ERP amplitudes at electrode 6 in each of three bid 

outcomes and for high and low-value items, as evaluated in the subsequent 2 × 3 repeated 

measures ANOVA. A main effect of condition (F(2,46) = 12.03, p < .001, ƞp2 = .34) and of 

value (F(1,23) = 4.57, p = .043, ƞp2 = .17) was found. There was no statistically significant 

interaction effect (p > .05). No-win trials (1.94 ± .39 μV) resulted in more positive potential 

amplitudes compared to both snatch (1.01 ± .28 μV; p < .001) and bargain trials (1.14 ± .30 

μV; p = .001; see Figure 5.4.3e). Bargain and snatch trials did not significantly differ from each 

other (p > .05). High market value trials (1.21 ± .31 μV) resulted in a more positive potential 

amplitude than low market value trials (1.51 ± .31 μV, p = .043; see Figure 5.4.3e).  
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Figure 5.4.3. P300 component (a) Whole scalp topographic maps displaying grand 

average ERPs for each of the outcome conditions at time point 354 – 374 ms. Four midline  

electrodes used in statistical analysis, numbered 11 (Fz in 10-20 system), 6 (FCz), 129 (Cz) 

and 62 (Pz) in HydroCel Geodesic net, are highlighted in white. (b) Whole scalp 
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topographic maps displaying difference in grand average ERPs between conditions in the 

latency epoch of 354 – 374 ms. (c) Bar graph showing mean amplitude of ERPs over epoch 

354 – 374 ms for all outcome conditions across four midline electrodes 11, 6, 129 and 62, 

as indicated by white circles on topographic maps in (a) and (b). The error bars show the 

standard error. Statistically significant differences in the bar graphs are denoted as * for 

< .05, ** for < .01 and *** for < .001. (d) Top: Grand average ERP waveform across all 

subjects and product value conditions comparing outcome conditions at electrode 6. 

Bottom: Grand average ERP waveform across all subjects comparing no-win outcomes 

with high (green) and low (blue) market value to win outcomes with high (red) and low 

(orange) market value at electrode 6. Epoch of interest 354 – 374 ms post feedback-onset 

is highlighted in grey. (e) Bar graph showing mean amplitude of ERPs over epoch 354 – 

374 ms for all outcomes and market values.  

 

5.5. Discussion 

 The present study shows for the first time that FRN and P300 can be elicited during the 

VA. Both FRN and P300 components differentiated between win and no-win outcomes. Most 

notably, an FRN potential elicited at the vertex 251 – 271 ms post feedback onset differentiated 

between less favourable (snatch) and more favourable (bargain) wins – representing two 

extreme outcomes unique to the VA. In addition, the P300 amplitudes differentiated wins from 

no-wins and between auction items of high and low retail price. 

The production of an FRN demonstrates that VA bid outcomes were processed in a way 

comparable to outcomes in individual gambling tasks, such as a binary forced-choice monetary 

gambling task (2AFC) (Gehring & Willoughby, 2002; Hajcak et al., 2007; Kokmotou et al., 

2017; Yeung & Sanfey, 2004). Our findings support the involvement of a context-dependent 

reward prediction error, as the FRN was primarily modulated by outcome valence (Holroyd & 

Coles, 2002; Holroyd, Larsen, et al., 2004). While the no-win condition was objectively a 
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financially neutral outcome, in the context of winning or ‘losing’ an auction, it was the most 

unfavourable result. 

The ability of the FRN to differentiate between the two types of win outcomes is also 

in line with reinforcement learning (Holroyd & Coles, 2002; Holroyd, Larsen, et al., 2004; 

Nieuwenhuis, Holroyd, et al., 2004). The bargain win condition can be viewed as a reward of 

greater magnitude than the snatch win, as the difference between the participant’s bid and the 

final price paid is larger. In the VA and BDM paradigms, one’s bid value can also be referred 

to as a reservation price or indifference point, as paying one cent more than one’s bid is a bad 

outcome (Padoa-Schioppa, 2011). Therefore, the participants should be ambivalent towards a 

price outcome that is equal to their bid, and so the snatch condition is an intermediate outcome 

between the two extremes of bargain and no-win. The greater FRN amplitude for bargain than 

snatch outcomes indicates that the FRN is sensitive to the relative value of a win (Holroyd, 

Larsen, et al., 2004; Meadows et al., 2016).  

Violations of expectation may also have contributed to the difference in FRN 

amplitudes between snatch and bargain outcomes. The probability of each outcome is unknown 

in a VA task, unlike paradigms such as the 2AFC monetary gambling task, where participants 

are aware of the 50:50 chance of winning or losing (Gehring & Willoughby, 2002). The 

uncertainty caused by unknown outcome probabilities in the VA may have induced participants 

to rely on their own subjective values as an indicator of their opponent’s behaviour, and hence 

a predictor of likely outcomes. Correspondingly, the bargain condition would be considered a 

less probable win outcome as it indicates the misalignment of the participant’s subjective value 

with that of their opponent. Therefore, the bargain result is the greater deviation from the 

expected reward magnitude (Bellebaum et al., 2010; Hauser et al., 2014). 
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 In contrast with the previous study (Kokmotou et al., 2017), no correlations were found 

between any of the ERP components and loss aversion level. During a 2AFC monetary 

gambling task, loss aversion correlated positively with FRN amplitude at electrodes 

corresponding to the OFC, indicating a link between loss aversion implemented during risky 

decision-making and a valuation process occurring in the OFC (Canessa et al., 2013). However, 

the associations between FRN and loss aversion seen in the study by Kokmotou and colleagues 

were based on FRN elicited during a task which involved real monetary losses in loss trials. 

Our findings suggest that the association between loss aversion and the FRN does not occur in 

the absence of a potential (monetary) loss. Therefore, the subjective framing of no-wins as 

‘losses’ in an auction setting may be inadequate, and an objective risk of real loss is necessary 

to engage loss aversion mechanisms. 

The P300 distinguished between no-win and win outcomes, and between high and low 

market value results. However, the parameters of the study limits interpretation of the win vs 

no-win amplitude differences due to the win outcomes being twice as frequent as the no-win 

outcomes. As the P300 is well established to be sensitive to outcome probability (Polich, 2007, 

2012), it cannot be ruled out that this difference impacted the observed win vs no-win 

amplitudes.  

As the P300 is involved in discerning motivational significance of outcomes (Bradley, 

2009; Hajcak & Foti, 2020; Pfabigan et al., 2019; Wang, Zheng, Huang, & Sun, 2015), the 

attentional engagement and cognitive effort shown in auctions may be mediated by the market 

value of the item being auctioned (Meadows et al., 2016; Tyson-Carr et al., 2018). This is also 

in line with the broader motivational significance framework (Bradley, 2009). As bid values 

were linked to market value, participants may have been more invested in the outcomes of 

items that they appreciated were worth more. This tendency would echo the sunk cost effect, 
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where emotional and cognitive effort is extended in situations of financial commitment (Zeng, 

Zhang, Chen, Yu, & Gong, 2013; Zeng, Zou, & Zhang, 2013). This would suggest that P300 

component was sensitive to retail value as items of a higher retail price are more salient and 

engaging. 

The present study was not without its limitations. Previous work has shown significant 

relationships between cortical activation changes during initial valuation of products and 

subsequent purchase decisions (Goto et al., 2017; Schaefer et al., 2016). As the pre-bid period 

during the VA consists of free viewing of a displayed item, electrophysiological explorations 

would require recording and analysis of eye-movement related potentials, similar to Tyson-

Carr et al. (2020), which was beyond the scope of the present study. A monetary threshold 

effect may have also impacted the results. As all wins are considered a good economic 

outcome, the degree of difference between the final price paid and one’s bid could be of minor 

importance. Meanwhile, the social reward of beating an opponent brings another dimension to 

the outcome, and so “snatching” a win could be perceived as the “better” reward outcome 

(Chen, 2011).  

This interplay of social and financial reward processing is a limitation of the present 

study, but could be unpacked by directly comparing a VA to a BDM to isolate the effect of a 

social dimension on reward processing mechanisms. Previous behavioural data has shown that, 

relative to a BDM, participant bidding behaviour during a VA is more varied and divergent 

from the economically dominant strategy (Flynn et al., 2016). Further, fMRI studies using first-

price auctions have found emotional cue factors, such as risk aversion and loss contemplation, 

result in higher levels of overbidding and the ‘winner’s curse’ (Delgado, Schotter, et al., 2008; 

van den Bos et al., 2013). A comparison of the two mechanisms could be valuable for 

evaluating individual differences in replying on emotional cues during bidding. 
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Present data provides an initial insight into neural mechanisms underlying evaluation 

of decision outcomes in VA. Results show that receiving bid outcome information during a VA 

elicited an FRN potential at a latency and location that were compatible with FRN activity seen 

in other decision-making tasks. The amplitude of the FRN also differentiated the favourability 

of VA win outcomes, a specific feature not seen in other demand revealing mechanisms. The 

VA also elicited a P300 component that encoded salience related to the economic value of the 

items. Separation of value- and auction-specific cortical responses provides important insight 

into decision-making processes. Future exploration of the dynamics of Vickrey auctions has 

the potential for significant contributions to understanding the cognitive and neural systems 

that support economic decision-making. 
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6.1. Abstract  

Vickrey auctions (VA) and Becker–DeGroot–Marschak auctions (BDM) are strategically 

equivalent demand-revealing mechanisms, differentiated only by a human opponent in the VA, 

and a random-number-generator opponent in the BDM. Game parameters are such that players 

are incentivised to reveal their private subjective values (SV) and behaviour should be identical 

in both tasks. However, this has been repeatedly shown not to be the case.  

In the current study, the neural correlates of outcome feedback processing during VA and 

BDM were directly compared using electroencephalography. 28 healthy participants bid for 

household products which were then divided into high- and low-SV categories. The VA 

included a human opponent deception to induce a social environment, while in reality a 

random-number-generator was used in both tasks.  

A P3 component peaking at 336 ms over midline parietal sites showed more positive 

amplitudes for high bid values, and for win outcomes in the VA but not the BDM. Both auctions 

also elicited a Reward Positivity potential, maximal at 275 ms along the central midline 

electrodes, that was not modulated by auction task or SV. Further, an exploratory N170 

potential in the right occipitotemporal electrodes and a vertex positive potential component 

were stronger in the VA relative to the BDM. 

Results point to an enhanced cortical response to bid outcomes during VA task in a potential 

component associated with emotional control, and to the occurrence of face-sensitive potentials 

in VA but not in BDM auction. These findings suggest modulation of bid outcome processing 

by the social-competitive aspect of auction tasks. 

 

Keywords: P3, RewP, N170, EEG, subjective value, reward, willingness-to-pay  
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6.2. Introduction 

Social comparison and competition have been shown to affect reward-seeking behaviour, 

subjective valuation, and outcome processing during economic decision-making (Bhanji & 

Delgado, 2014). Emphasis on competition during an auction can increase bid frequency 

(Heyman, Orhun, & Ariely, 2004; Kamins et al., 2011), overbidding (Delgado, Schotter, et al., 

2008; Teubner, 2013; van den Bos et al., 2008) and the prevalence of the ‘winner’s curse’, 

where the winning bid exceeds the worth of the auction item (Malhotra, 2010; Park & Bradlow, 

2005). However, the neural mechanisms underlying these processes are underexplored. 

Vickrey auctions (VA) and Becker–DeGroot–Marschak auctions (BDM) are two of the 

most widely used demand-revealing mechanisms in experimental economics (Lucking-Reiley, 

2000; Noussair et al., 2004), and notably have been adopted by online auction websites such 

as eBay. In both auctions, the player who submits the highest bid for a given good wins the 

auction, but pays a price equal to the second highest bid (Vickrey, 1961). The only difference 

between the two is that in the VA, players compete against other human players, whereas in 

the BDM a single player bids against a random number generator (Becker et al., 1964). Unlike 

other auction structures, both the VA and BDM purport dominant strategies of bidding one’s 

true subjective value (SV), as deviating from doing so risks paying more than they believe the 

item is worth or missing out on the item for a price they were willing to pay. Importantly, these 

strategies are impervious to the risk attitude of the player and the strategies of other players. 

The vast majority of risky decision-making tasks employ monetary gambling paradigms 

where the participant can win and lose varying amounts of currency. The VA and BDM are 

different in that, in economic terms, the outcomes are either good (in the case of win) or neutral 

(in the case of no-win); the degree to which a given win outcome is good depends on the 

difference between the bid value and the final price paid. In the BDM, outcomes are processed 
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as purely economic rewards and can be ranked on that single dimension. Meanwhile, the VA 

involves the additional dimension of social value, which is a combination of the validation of 

shared public values and the value of “winning” as a separate entity to the value of the item 

won (Ariely & Simonson, 2003; Astor et al., 2013; Delgado, Schotter, et al., 2008; Malhotra, 

2010). 

Further, the BDM is formally strategically equivalent to a VA against a single unknown 

bidder, who bids their valuation, and whose value is drawn from the same distribution of 

valuations as that of the BDM prices. Therefore theoretically, under these conditions, the BDM 

and VA paradigms should elicit the same responses in players. However, many behavioural 

studies have found significant heterogeneity in bidding behaviour in the VA compared to the 

BDM (Irwin et al., 1998; Kagel & Levin, 1993; Kagel et al., 1989; Noussair et al., 2004). 

Despite clear instructions and a full understanding of the paradigm, underbidding and 

overbidding relative to SV are common in the VA (Flynn et al., 2016; Georganas, Levin, & 

McGee, 2017; Rosato & Tymula, 2019). The deviation from logical decision-making has been 

attributed to several factors, including: feelings of spite induced by competition (Bartling et al., 

2017; Kagel & Levin, 1993; Kagel et al., 1989; Ku et al., 2005), the “joy of winning” and the 

fear of losing (Astor et al., 2013), and differences in risk and uncertainty between the two 

paradigms (Levy et al., 2010; Noussair et al., 2004). The direct comparison of the VA and 

BDM under these conditions affords the opportunity to isolate the impact of a social 

environment and competition on decision-making processes in the brain. 

The inclusion of a second player in the VA has several implications. Whereas the BDM 

places players in a situation of individual choice, in the VA the player is now being observed 

by a competitor and can utilise their opponent’s bid values to inform them about the items’ 

common/public value (Toelch et al., 2014). The items also now have an additional dimension 
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of value, in that the act of winning against another person holds a worth that is separate from 

the value of the item itself (Noussair et al., 2004). Further, while both tasks place players in a 

situation of decision-making under uncertainty, in the BDM players are in a situation of static 

risk, where the computer bid values have equal probability across the entire range. Therefore, 

participants can quantify the probability of winning any given trial depending on their bid 

value. However, in the VA, the human opponent is unpredictable, in that opponent bids will 

not be equally distributed across the entire range of values. As a consequence, the players are 

placed in a situation of uncertainty, where they cannot gauge the likelihood of a given outcome 

based on their bid (Levy et al., 2010). Therefore, we would expect there to be a difference in 

subjective outcome probability expectation between BDM and VA. 

Several studies investigating SV and outcome processing during decision-making have 

found increased arousal and immediate emotional responses in the presence of a human 

opponent, as evidenced by increased heart rate and skin conductance responses (Adam et al., 

2015; Astor et al., 2013; Teubner, Adam, & Riordan, 2015), and stronger activations in brain 

regions related to emotion processing (Delgado, Li, et al., 2008; Sanfey et al., 2003), social 

preferences (Sanfey, 2007; van den Bos et al., 2013) and mentalizing (Riedl, Mohr, Kenning, 

Davis, & Heekeren, 2011). 

Reward positivity (RewP), also known as the feedback-related negativity (FRN), is the 

most widely investigated ERP component in the outcome processing stage (Falkenstein et al., 

1991; Walsh & Anderson, 2012). The RewP is maximal at 200 – 300ms post feedback onset 

over fronto-central sites and reflects a subjective reward prediction error signal. It is 

characterised by a suppressed negative deflection elicited by win outcomes, that is not present 

in loss outcomes, giving the appearance of enhanced negativity for bad outcome feedback 

(Hakim & Levy, 2019; Holroyd, Larsen, et al., 2004; Miltner et al., 1997; Nieuwenhui s, 
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Holroyd, et al., 2004). The RewP is also dependent on the relationship between expected 

rewards and actual rewards, with increased amplitudes for unexpected compared to expected 

outcomes (Ferdinand, Mecklinger, Kray, & Gehring, 2012; Hajcak et al., 2005; Hajcak et al., 

2007; Pfabigan, Alexopoulos, Bauer, & Sailer, 2011). The RewP is also sensitive to outcome 

magnitude (Goyer et al., 2008; Gu et al., 2011) and salience (Hauser et al., 2014; Talmi et al., 

2013; Walentowska, Severo, Moors, & Pourtois, 2019; Yeung et al., 2005). However, the 

RewP was not sensitive to reward magnitude in our previous VA study (Newton-Fenner et al., 

2022), as characterised by auction item market value.  

Notably, while a social dimension adds salience to the context and induces comparison of 

one’s task performance to others (Fehr & Schmidt, 1999; Fliessbach et al., 2007; Kedia et al., 

2014), the evidence of an impact on RewP amplitudes is mixed. RewP amplitudes have been 

shown to be larger for non-conformity when comparing performance to other players during a 

lottery task (Luo et al., 2015), and for competition compared to cooperation during a perceptual 

four-alternative forced-choice task (Czeszumski et al., 2019). However, no difference in RewP 

amplitudes were found comparing non-social, socially comparative and socially competitive 

conditions during a monetary gambling task (Rigoni, Polezzi, Rumiati, Guarino, & Sartori, 

2010). We hope to shed light on this inconsistency, using a context where the participant’s 

optimal strategy to maximize their payoff is the same, regardless of the social context. As the 

level and type of competition remains the same between tasks, we can delineate the effect of 

competition from the social environment. 

The P3 (or P300) component, a large positive deflection elicited 300 – 450 ms along 

midline central-parietal electrodes post-feedback onset (Polich, 2007, 2012) is also extensively 

studied during outcome processing and performance monitoring. The P3 is thought to be 

central to indexing attention for novel stimuli (Schuermann et al., 2012), mismatch detection 
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and context updating (Martin & Potts, 2011), and is highly sensitive to the motivational 

significance of stimuli (Nieuwenhuis, Aston-Jones, et al., 2005; San Martin, 2012; Yeung & 

Sanfey, 2004). Regarding reward processing, positive feedback elicits larger P3 amplitudes 

compared to negative feedback (Pfabigan et al., 2011), as do reward outcomes associated with 

higher levels of arousal or task-relevance, reflecting an increased allocation of attention 

(Nieuwenhuis, De Geus, & Aston-Jones, 2011). The P3 is also sensitive to outcome magnitude, 

with larger rewards/losses eliciting greater amplitudes (Bellebaum & Daum, 2008; Yeung & 

Sanfey, 2004). Relevantly, in our most recent study using a VA task, auction outcomes were 

associated with larger P3 amplitudes for high market value than low market value items, and 

win outcomes compared to no-win outcomes (Newton-Fenner et al., 2022). Similarly, Tyson-

Carr et al., (2018) also found during a BDM task that high-value products produced increased 

activation in the P3 interval during the initial valuation period. 

This study focused on the time course of neural activity during feedback processing upon 

receipt of the auction outcome. We analyzed the amplitudes of the RewP and P3 components 

during the outcome processing period to gain insight into the temporal progression of 

attentional biases and attentional resource assignment, preference encoding, prediction error 

and motivation during decision-making. We hypothesised that RewP amplitudes would 

differentiate between the BDM and VA tasks, but not between high- and low-value items as 

denoted by bid value. The P3 component was predicted to be larger for wins than no-wins, and 

for high-value than low-value items, in both tasks, in line with our previous findings. In 

addition to the hypothesized components, during visual inspection of the topographies, we also 

found an enhanced negative potential in the right occipitotemporal electrodes and a vertex 

positive potential (VPP) in the latency of 170 – 180 ms during the VA compared to the BDM. 

The configuration is consistent with the face-sensitive N170 ERP component occurring during 

viewing human faces (Deffke et al., 2007; Dijkstra, Mostert, Lange, Bosch, & van Gerven, 
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2018; Rossion, 2014; Rossion & Jacques, 2012; Weiß et al., 2020), and so we performed a post 

hoc exploratory analysis.  

This is the first EEG study to directly compare the neural correlates of decision-making 

during the VA and the BDM. Contrasting the two paradigms isolates the effect of a competitive 

environment on ERPs while keeping the paradigm identical in all other respects. This informs 

work on SV, reward processing, overbidding and competitive arousal. 

 

6.3. Method 

6.3.1. Participants 

Twenty-four healthy, right-handed participants (14 female) with a mean age of 25.9 ± 5.4 

years (± SD) completed the study. Four additional participants (3 female) were removed prior 

to ERP analysis due to not properly following the study procedure. All participants had normal 

or corrected-to-normal vision and were screened for psychological/psychiatric disorders. All 

gave written informed consent and were reimbursed for their time and travel expenses. The 

experimental procedures were approved by the Research Ethics Committee of the University 

of Liverpool and were in accordance with the Declaration of Helsinki. 

 

6.3.2. Procedure 

The study was carried out over two sessions separated by a minimum of 7 days (mean 10.3). 

Participants completed computerised VA and BDM tasks, one task per session, while brain 

activity was recorded with EEG. The order of the tasks was counterbalanced. The purpose of 

the experiment and instructions for the tasks were explained to participants at the beginning of 
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the session. All experimental procedures were carried out in a dimly lit, sound-attenuated 

Faraday cage. Both tasks were displayed on a 19-inch LED monitor using PsychoPy software 

(Peirce et al., 2019). Upon completion of the second session, participants were given the option 

to receive two auction items (one from each task) for the price that they were won for, or to 

select two equivalent items from a small selection in the lab. This was done for logistical 

reasons due to the Covid-19 pandemic to reduce the number of participant visits into the lab. 

 

6.3.2.1. BDM Task 

The BDM task protocol can be seen in Figure 6.3.1. At the beginning of the session, 

participants were informed that they would be bidding against a random number generator in 

a computerised auction task. If the participant bid higher than the random number, they would 

win the item and pay the random number as the price; if they bid lower than the random number 

they would lose the trial, not winning the item and paying nothing. In the case of both bids 

being equal, the winner was decided randomly. 

Participants received an initial endowment of £12 and were instructed to use it to purchase 

items during the BDM task. To ensure that their behaviour was incentivised, they were 

informed that at the end of the session one of their winning trials would be randomly selected 

and the price that they won the item for would be deducted from their endowment; they would 

receive the remaining amount of their endowment and the item as reimbursement for their 

participation. After application of the EEG net, participants were led into the Faraday cage to 

complete the task. Participants were seated in front of the computer and rested their dominant 

hand on a computer mouse. 

The protocol for the BDM task was adapted from previous studies (Roberts et al., 2018; 

Tyson-Carr et al., 2018; Tyson-Carr et al., 2020). The stimuli comprised 300 everyday 
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household products such as kettles, batteries and mugs, valued in the ranges £3 – 7 (low-value) 

and £8 – 12 (high-value; n=150 in each range), with a mean value of £7.39 ± £3.12 (± SD) 

obtained from a shopping catalogue. Efforts were made to distribute retail prices evenly within 

the two ranges. Each auction trial began with a resting interval where participants viewed a 

white fixation cross on a black background for 2 s. The participants were then presented with 

an item to bid on, using a sliding scale from £0 – £12 in increments of 25p. The item was 

presented for 2 seconds before the sliding scale appeared. Participants selected their bid using 

the sliding scale and submitted the bid by clicking on a button in the bottom right-hand corner. 

There was no time limit on bid submission and participants could click on the scale as many 

times as they wished before submitting their bid. The opponent bid was generated by the 

random function in Excel (Microsoft, USA) to be between £0 - £12 with matched increments 

of 25p and compared to the submitted bids. The outcome was displayed on the screen (e.g. 

“you won! £2.75” or “you lost”) for 2 s. 

Participants were instructed, and confirmed that they understood, that there was an equal 

likelihood of the random number bidding any increment of 25p between £0 - £12, and so their 

bid directly corresponded to the likelihood that they would win a given trial. For example, if 

they place a bid of £6 on an item, the likelihood of them winning is 50%. The order of item 

presentation was randomised, and each item was presented once, resulting in a total of 300 

auction trials. The task was broken up into five blocks of 60 trials, and participants were given 

a short break in between blocks to limit fatigue and to make any necessary adjustments to the 

EEG system. The duration of each block was approximately 12 minutes. 
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6.3.2.2. VA Task 

The VA task protocol can be seen in Figure 6.3.1. The VA task was identical to the BDM 

task in all but two respects. Firstly, at the beginning of the session, the participants were 

informed that they were playing against another human participant as their opponent, who was 

situated in another room so they would remain anonymous. They were told that for each trial, 

whoever bid higher would win the item but pay the price equal to their opponent’s bid. In 

reality, the participants were bidding against the random number generator. Secondly, a jitter 

of between 0 – 6 seconds was included post-bid submission where the phrase “wait for 

opponent” and a loading GIF appeared on screen to mimic a human opponent deciding on their 

bid. Participants were informed of the deception during the debriefing. All participants  

confirmed that they believed that they were bidding against another person during the VA 

during an informal exit interview. The same stimuli, trial number and timings were used in the 

VA task as in the BDM.  

 

 

Figure 6.3.1. a) A no-win trial in the BDM task. b) A win trial for the VA task. For both 

tasks, each trial began with a fixation cross for 1 s, followed by the auction item for 2 s, 
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which is then joined by a sliding scale from £0 – £12 in increments of 25p on which to 

select their bid. Participants were instructed to select their bid on the scale, and once they 

were happy with their decision, to submit the bid by clicking on the button in the bottom 

right-hand corner. In the VA, in two thirds of the trials, this was followed by the phrase  

“wait for opponent” and a loading GIF indicating that the other player has yet to submit 

their bid, which lasted for either 1 – 2 s or 5 – 6 s. This was then followed by a blank 

screen for 1 s. In the BDM, the screen was blank for 1 s before presenting the outcome of 

the trial. The outcome of the trial was then presented for 2 s. EEG triggers were synced 

to the onset of auction feedback. 

 

6.3.3. EEG recordings 

EEG was recorded continuously using a 129-channel Geodesics EGI System (Electrical 

Geodesics, Inc., Eugene, Oregon, USA) with a sponge-based HydroCel Sensor Net. The sensor 

net was aligned with respect to three anatomical landmarks: two preauricular points and the 

nasion. Electrode-to-skin impedances were kept below 50 kΩ and at equal levels across all 

electrodes, as recommended for the system (Ferree, Luu, et al., 2001; Luu et al., 2003; Luu et 

al., 2001; Picton et al., 2000). The recording band-pass filter was 0.001 – 200 Hz with a 

sampling rate of 1000 Hz. The electrode 129 (corresponding to Cz in the 10 – 10 system) served 

as the reference. 

 

6.3.4. ERP analysis 

EEG data were pre-processed with the BESA v. 7.0 program (MEGIS, Munich, Germany). 

EEG signals were spatially transformed to reference-free data using the common average 

reference method (Lehmann et al., 1987). This spatial transformation restored the signal at 

electrode 129 for use in further analyses. 
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Ocular and electrocardiographic artefacts were removed using a combination of a pattern-

search algorithm and principal component analysis based on averaged eye blinks and artefact 

topographies (Berg & Scherg, 1994; Ille et al., 2002). Data were also visually inspected for the 

presence of atypical electrode artefacts, head movement artefacts, and artefacts related to 

muscle contractions. Continuous data were sectioned into epochs of 1200 ms duration each 

with a baseline interval ranging from -200 ms to 0 ms relative to feedback onset. Epochs 

contaminated with artefacts were manually excluded. 

The average number of accepted trials after artefact exclusion were 254.2 ± 39.6 (mean ± 

SD) in the BDM and 260.5 ± 25.6 in the VA. For each condition, the average accepted number 

of trials were: in the BDM, high 127.7 ± 22.7; low 126.5 ± 18.3, win 101.2 ± 31.2; no-win 153 

± 35.7; and in the VA, high 130,7 ± 15.5; low 129.8 ± 13, win 105 ± 23.6; no-win 155.4 ± 31.6. 

Conditions in the auction outcome period were grouped by value or outcome for statistical 

analysis. Paired t-tests revealed that the average number of accepted trials differed between the 

win and no-win conditions in both the BDM (win: 101.2 ± 31.2, no-win: 153.0 ± 35.7) and VA 

(win: 105.0 ± 23.6, no-win: 155.4 ± 31.6) (p < .001), but did not differ between high- and low-

value conditions for both time periods and both tasks. There were also no differences between 

the average number of accepted trials when conditions were compared across the two tasks (p 

> .05). 

Data were filtered from 0.5 – 30 Hz and exported to EEGLab (Delorme & Makeig, 

2004) for further processing. ERPs in response to outcome were computed separately for each 

condition by averaging respective epochs in the intervals ranging from 200 ms before outcome 

onset to 1000 ms post feedback onset. EEG epochs were averaged for both tasks (VA and 

BDM), each type of outcome (win and no-win) and for both subjective value categories (high 

and low). The RewP potential was quantified as a win–minus–no-win difference waveform in 
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the outcome receipt period. Based on visual inspection of scalp topographies and previous 

research (Glazer et al., 2018; Hauser et al., 2014; Krigolson, 2018; Meadows et al., 2016; Walsh 

& Anderson, 2012), the electrodes 129, 55 and 6 for the P3 and RewP components 

(corresponding to Cz, CPz and FCz in the International 10-10 system respectively), and 101, 

100, 99 for the N170 component (electrode 100 corresponding to TP10 in the International 10-

10 system) were selected for statistical analysis (Luu & Ferree, 2005). Time intervals of interest 

were selected based on visual inspection of waveforms in our data and according to the 

definitions concerning the time windows of each component from previous literature (Glazer 

et al., 2018; Polich, 2012; Roberts et al., 2019; Tyson-Carr et al., 2018; West, Bailey, Anderson, 

& Kieffaber, 2014). These time periods were further analysed using repeated measures 

ANOVAs. To compensate for violations of the sphericity assumption, a Greenhouse Geisser ɛ 

correction was used where applicable. Significant differences outlined in the ANOVA were 

subjected to pairwise t-tests with Bonferroni corrections and a critical threshold of p < .05 was 

upheld. A 95% confidence level was always employed. 

 

6.4. Results 

6.4.1. Behavioural Results 

The overall mean bid value across the two tasks was £4.61, with VA = £4.66 (SD ± 3.25) 

and BDM = £4.56 (SD ± 3.25). The mean retail value of the auction items was £7.39. The 

participants were not told the retail price of the auction items so as not to anchor their bids. A 

Shapiro-Wilk test confirmed the bid values within the two tasks were normally distributed (p 

> .05). Response times were uninformative as judgements were not time limited. All but three 

participants showed a strong positive correlation between their bid values in the two tasks (r = 
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.90 – .61; two showed a medium positive correlation (s = .431 and .367) and one a weak positive 

correlation (r = .273, p < .001). To explore effects of high and low SV in subsequent ERP data 

analysis, the bid values for each participant were divided into low- and high-value by median 

split, with approximately n=150 each and means of £2.15 (SE = .021) and £7.04 (SE = .039) 

respectively. 

The effect of task order was investigated with paired samples t-tests. Bid values did not 

significantly differ between the first and second session: t(23) = 1.038, p > .05. The order of 

the two tasks were counterbalanced; 10 participants bid more in the first session (6 in the VA 

and 4 in the BDM) and 10 participants bid more in the second session (5 in the VA and 5 in 

the BDM). 

In order to determine whether participants changed their strategy as the tasks progressed, 

we correlated the average bid values in each task with the trial number. A small negative trend 

was observed in VA (r(22) = -.118, p = .041), suggesting participants tended to decrease their 

bid as the task progressed. No significant correlation was found in the BDM. 

Finally, overbidding or underbidding behaviours in the VA relative to the BDM were explored, 

however there was no significant difference in bidding behaviour between tasks (paired t-test: 

t = -.37, df = 23, p > .05). To examine any individual differences in bid behaviour, a series of 

paired t-tests compared the bid values for matched auction items during both tasks for each 

participant. 11 participants bid more in the VA, 9 participants bid more in the BDM, and 4 

participants’ bid differences between tasks were not statistically significant. The overall 

average bid value across both tasks did not statistically significantly differ between VA > BDM 

and BDM > VA participants (p =.50). As there was no effect of strategy on the overall bidding 

behaviour, strategy was not explored in the ERP analysis. 
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6.4.2. ERP results 

Figure 6.4.1 shows a butterfly plot illustrating the ERPs at each electrode site in response 

to outcome presentation across all conditions and both tasks; ERP components and their 

corresponding latencies and topographic maps are labelled. 

Three distinct ERP components were observed across the epoch. The RewP component 

was defined as the win–minus–no-win difference waveform and was measured from midline 

frontal-central electrodes peaking at 275 ms post-feedback onset. The P3 component (Polich, 

2012) emerged at approximately 310 ms in a parietal region on the right side of the scalp, 

before reaching a positive maximum at 331 ms over the midline frontal electrodes. 

The N170 component peaked at 182 ms and displayed a bilateral negative potential at 

occipitotemporal electrodes that was stronger on the right than left side of the head. The  

prominent negative potential in the right occipitotemporal electrodes was accompanied by a 

vertex positive potential (VPP) (Figure 6.4.1). In contrast to the VPP seen in VA task, the scalp 

potentials in the BDM task showed two symmetric positive spatial maxima in occipital regions 

of the scalp. The topographic maps of the VPP and N170 components overlaid on the 3D 

volume rendering of a human head are shown in Supplementary materials (Figure 6.6.1). 
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Figure 6.4.1. Butterfly plots of grand average ERPs in response to outcome presentation 

for (A) VA task and (B) BDM task. Epochs for distinct ERP components, N170, P2 and 

P3, are highlighted with grey bars, and the corresponding averaged topographies across 

the selected epochs are shown above. 
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6.4.2.1. N170 component 

For analysis of the N170 component, based on visual inspection of scalp topographic maps 

(Figure 6.4.2) and previous research (Eimer, 2000; Rossion, 2014; Rossion & Jacques, 2012), 

the epoch of 172 – 192 ms post-outcome stimulus onset and the occipitotemporal electrodes 

99, 100 and 101 (100 corresponding for TP10 in the 10 – 10 system) and the vertex electrodes 

129 and 55 (corresponding for Cz and CPz in the 10 – 10 system) were selected for statistical 

analysis. The ERP waveforms for win and no-win outcomes and for bid value contrasts in both 

tasks are shown in Figure 6.4.2. 

As far as the negative potential in occipitotemporal electrodes is concerned, a 3 × 2 × 2 × 

2 repeated measures ANOVA (electrode × task × value × outcome) revealed main effects of 

electrode (F(2, 46) = 4.46, p = .017, ƞp2 = .16), outcome (F(1,23) = 12.48, p = .002, ƞp2 = .35), 

task (F(1,23) = 10.34, p = .004, ƞp2 = .31) and value (F(1,23) = 11.34, p = .003, ƞp2 = .33). No 

significant interaction effects were found. Electrode 101 (-1.59 ± .23 μV) showed less negative 

amplitudes than electrode 100 (-2.01 ± .27 μV, p = .004); win trials (-2.09 ± .26 μV) resulted 

in more negative potential amplitudes than no-win trials (-1.53 ± .23 μV); VA trials (-2.11 ± 

.27 μV) resulted in more negative potential amplitudes than BDM trials (-1.52 ± .23 μV); and 

high-value trials (-1.93 ± .24 μV) resulted in more negative potential amplitudes than low-value 

trials (-1.70 ± .23 μV). 

 Analysis of the VPP using a repeated measures 2 × 2 × 2 × 2 ANOVA (electrode × task × 

value × outcome) revealed main effects of task (F(1,23) = 11.53, p = .002, ƞp2 = .33), value 

(F(1,23) = 4.39, p = .047, ƞp2 = .16) and outcome (F(1,23) = 12.94, p = .002, ƞp2 = .36). There 

was also a significant interaction effect between task and electrode (F(1,23) = 4.71, p = .041, 

ƞp2 = .17), and between task and outcome (F(1,23) = 9.23, p = .006, ƞp2 = .29). 
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Notably, amplitudes for win outcomes were significantly greater in the VA task than in the 

BDM (VA win: 2.39 ± .40 μV, BDM win: 1.50 ± .34 μV, p<.001), but there was no significant 

difference between tasks for no-win outcomes (VA no-win: 1.37 ± .26 μV, BDM no-win: 1.03 

± .24 μV, p=.097). Amplitudes between the two electrodes also significantly differed during 

the VA (129: 1.97 ± .34 μV; 55: 1.25 ± .31 μV, p = .046) but not during the BDM (129: 1.79 

± .30 μV; 55: 1.28 ± .25 μV, p = .805). Further, VA trials (1.88 ± .32 μV) resulted in more 

positive potential amplitudes than BDM trials (1.26 ± .28 μV); high-value trials (1.71 ± .29 

μV) resulted in more positive potential amplitudes than low-value trials (1.43 ± .29 μV); and 

win trials (1.94 ± .36 μV) resulted in more negative potential amplitudes than no-win trials 

(1.20 ± .23 μV). 
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Figure 6.4.2. Win–no-win contrasts (a – b) and high vs. low bid values contrasts (c – d) in 

BDM and VA tasks for the N170 and the VPP. (a) Whole scalp topographic maps 

displaying grand average ERPs for each outcome condition at time point 182 ms. 

Electrodes used in statistical analysis (129, 55, 99, 100, 101) are highlighted in white. (b) 

Grand average ERP waveforms across all participants and subjective value conditions 

comparing the four outcome conditions: BDM win (light blue), BDM no-win (navy), VA 

win (light orange) and VA no-win (dark orange). Epoch of interest (172 – 192 ms post 

feedback-onset) highlighted in grey. (c) Whole scalp topographic maps displaying grand 

average ERPs for each value condition at time point 182 ms. (d) Grand average ERP 

waveform across all participants and outcome conditions comparing the four value 

conditions: BDM low-value (dark green), BDM high-value (light green), VA low-value 

(red) and VA high-value (pink). 

 

6.4.2.2. RewP component 

A RewP with a spatial maximum at the central midline electrodes was found in response to 

bidding outcomes in VA and BDM during the epoch 260 – 290 ms. The electrodes 6, 129 and 

55 (corresponding to FCz, Cz and CPz in the 10 – 10 system) were selected for statistical 

analysis. The ERP win–minus–no-win difference waveforms are shown in Figure 6.4.3. A 3 × 

2 × 2 repeated measures ANOVA (electrode × task × value) revealed no main effects or 

interaction effects. 
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Figure 6.4.3. The Win–No-win contrast in BDM and VA tasks in the RewP component. 

Left: Whole scalp topographic maps displaying differences in grand average ERPs at 

time point 275 ms. Three electrodes used in statistical analysis, numbered 6, 129 and 55, 

are highlighted in white. Right: Grand average win–minus–no-win ERP difference 

waveform across all subjects and product value conditions comparing BDM (blue) and 

VA (orange) win–minus–no-win difference waveforms. Epoch of interest, 260 – 290 ms 

post feedback-onset, highlighted in grey. 

 

6.4.2.3. P3 Component 

Topographic maps of the P3 component for the win–no-win contrast and the high vs low-

value contrast (Figure 6.4.4) showed a positive potential over the midline parietal electrodes, 

peaking at 316 – 346 ms. The electrodes 6, 129 and 55 were selected for statistical analysis. 

A 3 × 2 × 2 × 2 repeated measures ANOVA (electrode × task × value × outcome) revealed 

a main effect of value (F(1, 23) = 6.83, p = .016, ƞp2 = .23) and outcome (F(1, 23) = 6.52, p = 
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.018, ƞp2 = .22), and, importantly, an interaction effect between task and outcome (F(1, 23) = 

6.35, p = .019, ƞp2 = .22). No other interaction or main effects were found. 

High-value trials (1.33 ± .20 μV) resulted in more positive potential amplitudes than low -

value trials (0.99 ± .20 μV), and win trials (1.43 ± .24 μV) resulted in more positive potential 

amplitudes than no-win trials (0.88 ± .19 μV). As far as the interaction between task and 

outcome is concerned, amplitudes for win outcomes were significantly greater than no-win 

outcomes in the VA task (Win: 1.68 ± .26 μV; no-win: 0.85 ± .22 μV, p=.001) but not in the 

BDM (Win: 1.18 ± .28 μV; no-win: 0.92 ± .25 μV, p=.345) (Figure 6.4.4). 

 



157 
 

 

 

Figure 6.4.4. The win – no-win contrast (a – b) and the high vs low-value bids contrast (c 

– d) in BDM and VA tasks in the P3 component. (a) Whole scalp topographic maps 

displaying grand average ERPs for each outcome condition at time point 331 ms. Three 

electrodes used in statistical analysis, numbered 6, 129 and 55, are highlighted in white. 

(b) Grand average ERP waveforms across all subjects and product value conditions 

comparing the four outcome conditions: BDM win (light blue), BDM no-win (navy), VA 
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win (light orange) and VA no-win (dark orange). Epoch of interest (316 – 346 ms post 

feedback-onset) highlighted in grey. (c) Whole scalp topographic maps displaying grand 

average ERPs for each value condition at time point 331 ms. (d) Grand average ERP 

waveform across all subjects and outcome conditions comparing the four value 

conditions: BDM low-value (dark green), BDM high-value (light green), VA low-value 

(red) and VA high-value (pink). 

 

6.5. Discussion 

The present study examined the impact of social competition on economic valuation and 

the cortical representations of outcome processing during risky economic decision-making. 

Two well-established second-price sealed-bid auction paradigms were utilized to elicit SVs 

and isolate the impact of a second human competitor on reward-related ERPs. Contrasting the 

two tasks highlights the impact of a social dimension, while comparing win and no-win 

outcomes examines the effect of feedback valence, and splitting the data into high and low SV 

investigates feedback salience. Our results found that the amplitude of the P3 component for 

win compared to no-win trials was larger in the VA than in the BDM. Further, the VA task, 

relative to the BDM, was associated with an unanticipated prominent negative potential in the 

right occipitotemporal electrodes and a VPP in the latency range of approximately 170 – 190 

ms, suggesting the modulation of a face-sensitive N170 potential. Both the P3 and N170 were 

also sensitive to SV, as indexed by bid value, and trial outcome. A RewP, defined as a win–

minus–no-win difference waveform, was elicited in both tasks but was not modulated by task 

or value.  

The increased amplitudes of the N170 potential and the VPP in the VA relative to the BDM 

was not hypothesized. The N170 in the right occipitotemporal electrodes is well established as 

a face-sensitive component, traditionally posited to reflect early bottom-up visual perception 
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(Deffke et al., 2007; Itier & Taylor, 2004). The VPP is a frequent companion to the negative 

N170 potential (Jeffreys, 1996; Joyce & Rossion, 2005; Rossion, 2014), and the two 

components are thought to be opposing manifestations of the same brain processes (Zhao, 

Meng, An, & Wang, 2019). There is evidence that the mental imagery of faces recruits the 

same early processing mechanisms as face perception (Ganis & Schendan, 2008). The N170 

has been shown to be elicited by imagining a face (Dijkstra et al., 2018), and modulated by 

prompted mental imagery (Ganis & Schendan, 2008) and auditory semantic information 

(Landau, Aziz-Zadeh, & Ivry, 2010) prior to face perception. These enhancement effects reflect 

the influence of top-down processing pathways on the N170 component, with the mental 

visualization of a person recruiting additional perceptual processing resources. In the present 

study, the visual stimuli in the outcome period were words and were identical between the two 

tasks. Nevertheless, the outcome feedback in the VA was not merely financial information, as 

in the BDM, but also a valid social signal of their opponents’ SV. It is possible that the 

additional mental visualization of a human opponent during the VA task caused a projection 

of personhood onto the expected incoming visual stimuli, which enhanced the VPP and N170 

component amplitudes through top-down processes. Together, the activations of a prominent 

VPP and negativity in the occipitotemporal electrodes in the VA present strong evidence that 

the VA, but not the BDM, activated the fusiform cortices responsible for the N170 face-

sensitive component. This is a preliminary finding, and the VPP and the N170 component were 

not the focus of this study but merit further exploration in future research. 

Further, the P3 component activity also differentiated between the two tasks: P3 amplitudes 

showed an effect of feedback valence in the VA but not in the BDM. Consistent with prior 

studies, a P3 was elicited in both tasks over central midline sites peaking at 331 ms post 

outcome feedback presentation, showing a more positive amplitude for win outcomes than no-

win outcomes in the VA. The P3 is well established as sensitive to outcome probability 
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(Duncan‐Johnson & Donchin, 1982; Polich, 2007, 2012; Polich & Margala, 1997; Rosenfeld, 

Biroschak, Kleschen, & Smith, 2005) and so a main effect of outcome was expected, as in both 

tasks no-win outcomes were more probable than win outcomes. The task parameters of both 

auctions prescribe that the participants are in control of the likelihood of win/no-win outcomes. 

As the bid value directly dictates the outcome probabilities (for example, in this experiment a 

bid of £3 designates a 25% probability of winning), we were unable to control the respective 

quantities of win/no-win trials. However, the overall win/no-win probabilities in both tasks 

were comparable, with the average likelihood of winning being 38.83% and 38% for VA and 

BDM respectively. The P3 component is central to the allocation of attentional resources based 

on motivational significance (Nieuwenhuis, Slagter, von Geusau, Heslenfeld, & Holroyd, 

2005), therefore the observed difference in amplitudes between outcomes during the VA which 

is absent in the BDM can also be interpreted as reflecting the enhanced motivational salience 

of social compared to non-social feedback stimuli (Bellebaum & Daum, 2008; Gehring & 

Willoughby, 2002; Pfabigan et al., 2019). The final price paid in VA win trials is the only 

source of information about the opponent and their SVs, and so can be utilized as a valid social 

signal for the participant to learn about the public, shared values of items. Comparatively, the 

win outcome in the BDM (final price paid) does not provide any insight into the opponent 

strategy or can be used to predict future behavior.  

No other ERP component in the present study differentiated between VA and BDM tasks. 

Specifically, the lack of RewP component sensitivity to the social domain in this competitive 

context is interesting when compared to previous research. In the present study, the level of 

competition remained the same, but the source of competition was changed. In previous studies 

where RewP amplitudes were modulated in social competitive scenarios (Czeszumski et al., 

2019; Luo et al., 2015), the level or type of competition (e.g. direct or indirect) was altered 

while the social context remained the same. Our results align with those found by Rigoni et al. 
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(2010), where the RewP amplitudes did not differ between a non-social and a socially 

competitive context. Together, these results suggest that the type of competition, e.g. 

comparison vs direct competition, is the modulating factor in RewP amplitude. Further studies 

could more comprehensively unpack the relationship between competition/comparison type 

and social context to elucidate the respective contributions to RewP activity. 

The amplitudes of the N170 and P3 components, but not the RewP, were modulated by SV 

in both types of auctions, with greater amplitudes for high- than low-value auction items. The 

insensitivity of the RewP to SV as dictated by bid value is in line with findings from our 

previous VA study, where the RewP was indifferent to the market value of the auction items 

(Newton-Fenner et al., 2022). The more positive P3 amplitude potentials following high SV 

outcomes compared to low SV items may be linked to attentional engagement (Nieuwenhuis, 

Aston-Jones, et al., 2005; San Martin, 2012; Yeung & Sanfey, 2004). Our results indicate that 

high-value item trials were deemed more salient and consequently garnered greater attentional 

resources in the outcome processing period. The participants were more invested in the 

outcomes of the trials where they had bid higher, and this increase in engagement was reflected 

in the initial neural response. 

Finally, it is important to note that, while this study builds on previous research conducted 

in our lab and provides new insights into outcome processing in risky economic contexts, it is 

also limited by a potential confound in the outcome stimuli. The additional information when 

items were won resulted in a luminance difference between win and no-win outcomes. While 

this was necessary to convey the details of the final price paid to the participant, it may have 

impacted early low-level visual components. Our previous VA study found an impact of final 

price paid in win trials on RewP but not P3 amplitude, and so future studies could explore the 
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interaction of social context and final price paid to further understand this information’s role 

as a valid social signal of shared SV. 

To conclude, the present study showed that two event-related components differentiated 

between Vickrey and BDM auctions. An unanticipated N170 component, and P3 amplitudes 

for high-value items, were enhanced in the VA compared to the BDM. Findings suggest that 

automatic feedback processing as early as 176 ms post-feedback onset is facilitated by the 

presence of a human competitor, and that later processing of outcome feedback is modulated 

by social context and subjective value. Further, our results align with previous investigations 

that found reward-related components are differentially sensitive to outcome valence and 

salience. This study progresses the neural characterization of the impact of social context on 

reward processing in risky environments. 
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6.6. Supplementary Materials 

 

 

Figure 6.6.1. The topographic maps of the VPP and N170 components overlaid on the 

3D volume rendering of a human head, shown at time point 176ms post-feedback onset. 
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7. General Discussion 

Research in the field of neuroeconomics has focused on unpacking the intricacies of 

complex decision-making representation in the vast dopaminergic brain valuation system, and 

how the characteristics of this representation align with economic models of consumer 

behaviour. The overall aim of this thesis was to explore the neural mechanisms of subjective 

valuation and reward processing in an incentive-compatible economic context. The meta-

analysis of fMRI studies and two primary EEG experiments described in the previous chapters 

used two demand-revealing SPSB auction paradigms, the VA and BDM, to characterise the 

spatiotemporal characteristics of decision-making involving social competition and risk and 

uncertainty. 

 

7.1.  Summary of findings 

• WTP elicited by the BDM positively correlated with BOLD activity in the left vmPFC, 

bilateral VS, right dlPFC, right IFG, and right AI (Chapter 4). 

• The left vmPFC and the left OFC demonstrated consistent activation in line with WTP 

regardless of task relevance, indicating the automaticity of valuation processing 

(Chapter 4). 

• Meanwhile, the right IFG, right dlPFC and right caudate showed preferential 

engagement during concurrent (as opposed to consecutive) fMRI scanning and BDM 

performance (Chapter 4). 

• Reward-related ERP components were elicited in the outcome-processing stage of VA 

and BDM trials (Chapters 5 & 6). 
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• FRN (RewP) amplitudes differentiated between less favourable (snatch) and more 

favourable (bargain) wins in the VA (Chapter 5), but were not modulated by retail price, 

auction task or SV (Chapters 5 & 6). 

• P300 (P3) amplitudes were sensitive to value as defined by retail price (Chapter 5) and 

by bid value (Chapter 6), and differentiated between win and no-win outcomes in the 

VA but not in the BDM task (Chapters 5 & 6). 

• Individual loss aversion level did not correlate with the strength of the FRN during the 

VA (Chapter 5). 

• An N170 and accompanying VPP component exhibited larger amplitudes in the VA 

than the BDM, and was also sensitive to outcome and SV (Chapter 6).  

 

7.2.  Themes of findings 

7.2.1. Unitary system of value related processing 

Neuroeconomic research using fMRI imaging has found evidence of a domain general 

valuation network that linearly encodes subjective value across reward types, supporting the 

hypothesis of a common currency mechanism (Chib et al., 2009; Levy & Glimcher, 2012; 

Peters & Buchel, 2009; Sescousse et al., 2015). In line with this, across all experimental studies 

in this thesis there were systematic patterns of brain activity present regarding valuation 

processing (H1). It has also been suggested that the representation of SV during the initial 

valuation and outcome evaluation stages of decision-making is computed by the same neural 

system incorporating the vmPFC and the VS (Kable & Glimcher, 2009; Rangel et al., 2008). 

Results from Chapters 5 and 6 confirmed that the temporal characteristics of reward-related 
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neural processing in the VA is comparable to simpler and more constrained paradigms common 

in the literature, such as 2AFC tasks, validating its use as an investigative tool of SV (H3).  

Furthermore, Chapter 5 and 6 showed that value, as defined by market price or WTP, 

impacted the amplitude of several ERP components during outcome evaluation, in particular 

the P300. These findings complement and extend previous work which investigated ERP 

activity during the initial valuation period of BDM auctions (Roberts et al., 2018; Tyson-Carr 

et al., 2018; Tyson-Carr et al., 2020). Tyson-Carr et al. (2018) and Roberts et al. (2018) both 

found that low value items were preferentially encoded during the N2 component latency, with 

enhanced activation in the AI and OFC, irrespective of task relevance. Conversely, high value 

products produced increased, and sustained, activation in the P300 latency interval, sometimes 

referred to as the LPP (Hajcak, Dunning, & Foti, 2009; Hajcak & Foti, 2020). The P300 and 

LPP have been proposed as indexing preference during product valuation (Hakim & Levy, 

2019). In the outcome processing period, the current results align with the role of the P300 as 

processing stimulus significance, defined as a response of appetitive and aversive motivational 

systems (Hajcak & Foti, 2020). 

In addition to performing value computations during different stages of decision-

making, previous studies have highlighted that the brain valuation system automatically 

encodes value independent of task relevance (Lebreton et al., 2009; Levy et al., 2011). Results 

from Chapter 4 largely support the proposition of automatic economic valuation processes 

(H2): the majority of the activated areas, including the vmPFC and the VS, showed increasing 

levels of BOLD activity in line with SV regardless of whether the participant was engaged in 

active valuation. However, it should also be noted that the use of BDM auctions in the meta-

analysis in Chapter 4 revealed some distinctions in processing that were modulated by factors 

such as task relevance. Certain structures were preferentially activated during active valuation 
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processing, namely the right IFG, right dlPFC and right caudate. Previous work has linked the 

IFG and dlPFC to behavioural control modulation, which is engaged during decision-making 

to help modulate the decision-making circuitry to regulate choices (Hutcherson et al., 2012). It 

may therefore be the case that the IFG and dlPFC regulate the influence of parts of the brain 

valuation system during decision-making, but are not commonly included as part of the 

valuation system itself in the literature. 

 

7.2.2. The FRN, salience and reward prediction error 

The ERP results from Chapters 5 & 6 contribute to a more general literature on 

reinforcement learning during outcome processing. The results in Chapters 5 and 6 confirm 

and extend previous findings in situations of direct competition and comparison during 

independent performance, showing that FRN amplitudes were not sensitive to value (as 

denoted by either market price or WTP) or social context (Qiu et al., 2010; Y. Wu et al., 2012) 

when processing auction outcomes. Further, the differentiation of snatch vs bargain conditions 

in the FRN is opposed to the suggestion that the FRN reflects a binary differentiation between 

good and bad outcomes (Hajcak et al., 2006; Holroyd, Hajcak, & Larsen, 2006; Yeung & 

Sanfey, 2004; Yu & Zhou, 2006). The differentiation between a quite-good and a very-good 

win outcome suggests that the FRN may encode the outcome prediction error on a linear scale, 

instead of the coarse division of good and bad.  

Modulations of the FRN have conventionally been thought to reflect operations 

underlying reinforcement learning by expressing a binary reward prediction error through 

dopaminergic projections to the ACC. However, there is a growing discussion in the 

neuroeconomic literature about whether the FRN actually signals a prediction error regarding 
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motivational salience as opposed to outcome valence (Glazer & Nusslock, 2022; Moser & 

Simons, 2009; Talmi et al., 2013). Several studies have observed increased RewP amplitudes 

after unexpected absences in punishment conditions equivalent to that of unexpected gains in 

reward conditions (Heydari & Holroyd, 2016; Hird, El‐Deredy, Jones, & Talmi, 2018; Talmi 

et al., 2013). Both SV and social context are posited to modulate the motivational salience of 

the received outcome (Hauser et al., 2014; Pfabigan et al., 2019; Pfabigan & Han, 2019). 

Therefore, the observed insensitivity of the FRN to these factors does not support the 

hypothesis of the FRNs role as denoting a salience prediction error. Furthermore, we can 

understand the distribution of outcome expectations to be different between the two SPSB 

auctions. With the BDM, there is an equal distribution of likelihood across the entire range of 

opponent bid values, and this does not change, and so the participant can adapt their 

expectations of winning or not winning a given trial through their bid value. However, in the 

VA there is not an equal distribution of outcome likelihoods across the range of bid values. 

The participant has no information about what the given likelihood of either outcome is, and 

can only use their own SV as an anchoring figure. Therefore, there is an expectation that their 

human opponent’s SVs will align with theirs to a certain degree, and this will be reflected 

similar bidding patterns. This has the consequence of the participant having an expectation of 

a normal distribution of opponent preferences around their own bid value, where the greater 

deviation of opponent bid from the participant’s own results in a greater violation of 

expectation.  

This is a possible explanation for the difference seen in Chapter 5 between bargain and 

snatch FRN difference waveforms. The Bargain condition was not only a greater financial win, 

but it was also the more unexpected outcome: this could be explained by the value function in 

Prospect theory (see Figure 1.1.1.1), where the outcome that is further away from the original 

reference point is more cognitively impactful (Schwartz et al., 2008; Werner & Zank, 2019). 
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Salience is linked to probability expectation, and so the insensitivity of the FRN to the 

differences between tasks is further evidence that the FRN may not purely represent a salience 

prediction error. However, the interpretation of the present results is limited, as the SPSB 

auctions operate in the gain domain and so salience prediction errors and reward-prediction 

errors cannot be fully disentangled. In a similar way to the hypothetical profiles for regional 

BOLD activity as a function of SV proposed by Bartra and colleagues (see Figure 1.2), salience 

and reward prediction errors would both increase from neutral to reward outcomes, and so can 

only be separated through the elicitations of aversive predictions errors.  

7.2.3. Social competition impact on outcome ERPs 

The research presented in Chapters 5 and 6 sheds light on the differential effects of 

social competition on outcome processing ERPs. Comparatively little neuroeconomic research 

has investigated the impact of direct social competition on decision-making, with the majority 

of social neuroscience focusing on pro-social collaborative behaviours. Behavioural economic 

research has found that winning against an opponent holds its own utility, which is distinct 

from the utility of the item or good that has been won, termed the “joy of winning”. fMRI 

studies have indicated increased activity in the VS and vmPFC in line with the “joy of winning” 

(Delgado, Schotter, et al., 2008; van den Bos et al., 2013). This added utility often leads to 

deviations in logical behaviour, such as overbidding, which can result in the ‘winner’s curse’. 

Despite consistent reports of differentiations between bidding behaviours during the BDM and 

VA in the economic literature, no overall difference in bidding behaviour was observed 

between the two auctions in Chapter 6. It is possible that the participant sample size was too 

small to reliably elicit any group behavioural differences. Despite this, there were robust 

differences in how the rewards were processed in the brain.  
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In support of H5, the inclusion of a socially competitive dimension in the SPSB auction 

context resulted in differential encoding of reward outcomes in the P300 and an unexpected 

N170 component. The P300 is thought to reflect motivational significance and attention 

allocation processing: the findings in the experimental chapters align with this understanding 

as higher amplitudes were elicited for higher value, which indicates higher salience (Hajcak & 

Foti, 2020; Polich, 2012; Wang et al., 2015). The results also suggest that this is applicable in 

situations where value is defined as the internal subjective state and also as the objective market 

price, which could have significant commercial implications (Schmidt & Bijmolt, 2020).  

The N170 is typically posited as an early bottom-up automatic perceptual processing 

mechanism of facial features (Rossion & Jacques, 2012); however, there is evidence that it is 

face-sensitive as opposed to face-specific (Gauthier, Tarr, Anderson, Skudlarski, & Gore, 

1999). Recent studies have associated the N170 with feedback processing in medial temporal 

lobe (MTL) during immediate and delayed reward feedback (Arbel, Hong, Baker, & Holroyd, 

2017; Yin, Wang, Zhang, & Li, 2018). The feedback in VA is a valid social signal, with 

information which the participant can build a profile about their opponent and use it to predict 

their future behaviours. In line with this, the enhanced amplitude of the N170 in the VA 

compared to the BDM may be a potential marker of MTL activation reflecting enhanced active 

learning (Arbel et al., 2017).  

There are two major competing theoretical schemas for how the brain may determine 

the value of social and non-social factors during decision-making (Ruff & Fehr, 2014). The 

'extended common currency schema' assumes that a single neural circuit determines the 

motivational significance of both social and non-social events, while the 'social-valuation-

specific schema' proposes that social aspects of the environment are processed by a separate, 

specialised neural circuitry. The presence of enhanced N170 and VPP amplitudes in the VA 
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compared to the BDM suggests the selective implementation of the fusiform gyrus and other 

facial processing brain regions in social contexts (Deffke et al., 2007; Hinojosa, Mercado, & 

Carretié, 2015; Joyce & Rossion, 2005; Rossion & Jacques, 2012). This is suggestive of a 

specialised neural circuitry recruited specifically for social value processing. Recent studies 

have found an inconsistent association of the N170 with delayed feedback processing in the 

MTL (Arbel et al., 2017; Yin et al., 2018). An unexplored factor in the VA task was the delayed 

response caused by the “waiting for opponent bid” jitter, which may have led to increased 

feelings of anticipation of the final outcome. Therefore, interpretation of the unexpected 

finding of the N170 is limited here, but this potential confound could be explored in future 

research. Further, the topography and latency of the other ERPs from Chapter 6 were 

comparable in the social and non-social context, giving evidence of a single neural circuit 

providing a 'common motivational currency' for social and non-social information.  

7.2.4. Risk, uncertainty and Loss aversion 

The role of risk as a static and known probability factor in decision-making has been 

investigated extensively (Dhar & Simonson, 2003; Ernst & Steinhauser, 2017; Kreussel et al., 

2012; Little et al., 2012; San Martin, 2012; Yeshurun, Carrasco, & Maloney, 2008). The results 

from the studies conducted in this thesis add to the understanding of loss aversion computation 

in the brain, and have begun to unpack the respective influences of conditions of risk and 

uncertainty on decision-making.  

Previous work has found that the FRN amplitude is modulated by individual attitudes 

to loss aversion in 2AFC monetary gambling tasks (Kokmotou et al., 2017). Despite this, 

results from Chapter 5 showed no correlation between FRN amplitude and individual 

differences in loss aversion during outcome processing in the VA, not supporting H4 of this 
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thesis. It was discussed that as SPSB auctions operate only in the gain domain, it is possible 

that the incentives were insufficient to engage loss aversion mechanisms. Sokol-Hessner et al. 

(2009) proposed that loss aversion by default requires the potential of loss outcomes, whereas 

risk aversion can occur without the prospect of potential loss. In previous research, risk 

aversion and loss aversion often co-occur and are commonly confounded variables, but they 

represent distinct properties of Prospect theory and can be isolated.  

People are typically risk averse in the gain domain but risk seeking in the loss domain 

(De Martino, Kumaran, Seymour, & Dolan, 2006). In line with this, the lateralized activation 

patterns of the IFG and dlPFC, shown in Chapter 4 may be linked to the engagement of risk 

aversion mechanisms in the SPSB tasks (Levy et al., 2010). Previous fMRI studies have found 

correlations between individual levels of risk aversion and increasing IFG activity to low risk 

and safe options during risky decision-making (Christopoulos, Tobler, Bossaerts, Dolan, & 

Schultz, 2009). Disruptive transcranial magnetic stimulation (TMS) over the right dlPFC has 

been shown to increase risky decisions and diminishes sensitivity to changes in risk (Fecteau 

et al., 2007; Knoch, Gianotti, et al., 2006; Knoch, Pascual-Leone, Meyer, Treyer, & Fehr, 

2006). Additionally, patients with predominantly right-sided prefrontal lesions demonstrate 

lower levels of risk aversion (Clark, Manes, Antoun, Sahakian, & Robbins, 2003). In the gain 

domain of SPSB auctions, it may be the case that the dlPFC and IFG engage cognitive 

regulation mechanisms to regulate risky choices.  

Furthermore, the ACC and AI have also been linked to ambiguity and uncertainty 

processing. Ambiguity and uncertainty are common factors in real-life decision-making, where 

the respective probabilities of the outcomes are unknown or unclear, but do not typically feature 

in simple lab-based decision-making tasks such as the 2AFC. Activation in the AI is related to 

increased subjective uncertainty (Mohr et al., 2010; Platt & Huettel, 2008; Rutledge et al., 
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2010) and ACC activation is modulated by the individual's level of risk tolerance during 

uncertainty (Behrens, Hunt, Woolrich, & Rushworth, 2008; Sanfey et al., 2003). As the ACC 

is posited to be the neural generator of the FRN, it is possible that the FRN could be modulated 

by risk attitudes and individuals’ aversion to uncertainty.  

7.3. Thesis limitations 

The primary limitation of the fMRI meta-analysis in Chapter 5 was the relatively small 

sample size of the final cohort. Less stringent inclusion and exclusion criteria may have allowed 

for a larger final cohort. However, the stringent inclusion criteria al lowed for the clean 

definition and investigation of the concepts of interest. Furthermore, the sample was 

comfortably above the minimum number of 17 advised for ALE analysis (Eickhoff et al., 

2016). The sample size was also comparable to those employed in previous fMRI meta -

analyses of related issues (Jauhar et al., 2021; Martins et al., 2021; Morelli et al., 2015; 

Silverman et al., 2015). Nevertheless, it should be acknowledged that analysis of a cohort of 

this size may not possess the statistical power to perform robust contrast analyses or elucidate 

weak or subtle effects. Meanwhile, the primary limitation of the EEG research conducted in 

this thesis, and EEG research generally, is the insufficient spatial resolution necessary to locate 

the neural generators of reward processing in the brain (Luck, 2014). The gap in the reward 

literature was identified to be specifically the spatiotemporal aspects of outcome processing in 

SPSB auctions, and as such EEG was deemed to be the most appropriate method due to its 

excellent temporal resolution.  

Regarding the task parameters of the VA and BDM tasks conducted in this thesis, there 

were some logistical limitations which should be addressed. Firstly, there is a question of 

ecological validity in all lab-based tasks. While the SPSB auctions are more complex and more 

reflective of real-life economic decision-making than many other simplified paradigms such as 
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2AFC tasks, the constraints of neuroimaging research require some deviations from real -life. 

For example, participants were required to partake in 300 auctions in one sitting in the EEG 

studies, and were required to lie supine for the in-scanner fMRI BDM tasks. Secondly, the price 

range of the auction items in the EEG studies were constrained by budget restr ictions. While 

the market price range of the auction items was deliberately increased for the ERP study in 

Chapter 6 (from £3 – £9 to £3 – £12), the stimuli items may still have had limited incentive to 

the participants, and therefore limited the salience of the outcome responses. It would be 

interesting for future research to expand on the current findings by utilizing a greater price 

range than what was possible here. Thirdly, the EEG study in Chapter 6 defined high and low 

SV categories by splitting stimuli into two equally sized conditions according to bid value. The 

dichotomising of the data was deemed a necessary step, as EEG data is difficult to investigate 

on a single-trial level due to the restricted signal-to-noise ratio (Luck, 2005). Therefore, 

transforming SVs from continuous into categorical data was done in an effort to retain the 

maximum number of trials possible.  

Finally, it should be acknowledged that the majority of participants recruited in the two 

EEG studies were predominantly undergraduate and postgraduate students, and the average 

ages reported in the meta-analysis cohort indicate a similar participant pool. Thus, findings 

might not be generalizable to populations of different cultures and ages (Henrich, Heine, & 

Norenzayan, 2010). In particular, perception of risky decision-making outcomes may be 

different between those of different socio-economic status, as individual differences in wealth 

may greatly influence subsequent risk attitudes and reference points for risky decision-making. 

While a previous study using the BDM did not find an impact of socioeconomic status on 

bidding behaviour (Roberts et al., 2018), their participant pool was also largely made up of 

students. The replication of the studies presented in this thesis with different cultural and 

socioeconomic groups would therefore help to extend, clarify and confirm findings. 
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7.3.1. Refuting an FRN-N200 confound 

N200 is an important confound of FRN, and researchers must ensure that they do not 

mistake differences in N200 amplitudes as evidence for modulation of the FRN (Glazer et al., 

2018; Krigolson, 2018). The difference between an outcome vs a no-outcome trial drives the 

N200 amplitude, and importantly, supresses or cancels out the positive waveform of the FRN 

in win conditions, leading to the appearance of a negative deflection in loss outcomes (Holroyd 

et al., 2008; Proudfit, 2015). In the current thesis, trials where participants bid 0 were treated 

as a no-outcome trial, as it was reasoned that they were not invested in the auction outcome. 

However, as in the BDM and VA paradigms a no-win outcome means that the participant wins 

nothing and loses nothing, it is conceptually very similar to a no-outcome trial seen in other 

tasks. Therefore, it is plausible that the amplitude of the FRN was modulated by the N200 

component, and we must address this concern. In Chapter 5 the probability of win / no-win 

outcomes were predetermined and not dependent on the bid value of the participant, and this 

is reflected in comparable average bid values (£3.24 for no-win outcomes and £3.47 for win 

outcomes). The similarity of the average bid values suggests comparable levels of investment 

and attention given to the two outcome conditions in this case. In Chapter 6, there was a 

difference in average bid values between win / no-win outcomes (£3.18 for No-win outcomes 

and £6.83 for win outcomes), which was to be expected as the bid value altered the likelihood 

of each outcome. However, the average bid value of no-win outcomes in Chapter 6 is 

comparable to both the win and no-win average bid values in Chapter 5, and sufficiently distinct 

from a bid value of 0. From this evidence, we can be confident in participant engagement during 

the no-win trial outcomes, and that the FRNs found in this thesis were not due to contamination 

by a N200. 
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7.4.  Suggestions for future research 

The data presented in the current thesis characterised the spatiotemporal dynamics 

underpinning economic decisions in SPSB auctions through two separate neuroimaging 

methodologies. The inclusion of the meta-analysis of fMRI studies employing a BDM task to 

the EEG findings in this thesis afforded the opportunity to compare and synthesise findings 

across methodologies. Future research could formalize and expand on this work by conducting 

simultaneous EEG-fMRI recordings of decision-making during VA and BDM auctions, 

allowing the elucidation of the relationship between the haemodynamic correlates and the 

timing and strength of reward-related ERPs (Mullinger & Bowtell, 2011). 

Furthermore, the study presented in Chapter 5 established that the FRN was not impacted 

by individual differences in loss aversion level during the VA auction. Unlike many gambling 

paradigms, SPSB auctions are situations of risky decision-making but do not involve the 

potential for real financial loss. Therefore, it is possible that the monetary gambling task used 

to establish individual loss aversion levels actually measured the inappropriate metric. In 

previous decision-making research, risk and loss aversion often co-occur and are frequently 

confounded (Sokol-Hessner et al., 2013). Furthermore, the majority of the type of uncertainty 

in real-life decision making is ambiguity, where each given outcome probability is either 

unknown or an interval estimation (Zhu, Pan, Wang, Li, & Wang, 2019). “Ambiguity 

avoidance” is a robust phenomenon where known risk is preferred over ambiguity (Bach et al., 

2011; Camerer & Weber, 1992). As the two SPSB auction paradigms discussed here are 

delineated by the type of uncertainty, risk in the BDM and ambiguity in the VA, these 

paradigms afford the opportunity to dissociate the two. Previous studies have shown that 

activation in the lateral OFC and vlPFC is greater for ambiguity compared to risk processing, 

and this difference correlating with individual level of ambiguity aversion (Hsu et al., 2005). 
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Therefore, future studies could potentially use SPSB auction paradigms to investigate 

associations between risk aversion and brain data, while disentangling risk aversion, ambiguity 

avoidance and loss aversion dynamics (Chen et al., 2007). 

Future studies could also endeavour to create more realistic experimental SPSB auction 

paradigms by using real human participants as auction opponents. Previous research has found 

that interpersonal relationships impact outcome processing in comparative situations (Leng & 

Zhou, 2010, 2014; Zhang et al., 2021), and that emphasis on competition in first price auctions  

increases bidding behaviour (van den Bos et al., 2008) and activity in the VS and vmPFC (van 

den Bos et al., 2013). Therefore, it would be of merit to determine how altering various auction 

parameters, such as number of opponents or playing against a friend vs. a stranger, can impact 

the temporal dynamics of outcome processing. Related to this point, another possibility would 

be to further investigate the behaviour of the N170 in social but non-face viewing settings. The 

elicitation of a stronger N170 component in the VA than BDM task found in Chapter 6 was not 

hypothesised, and while interesting it was not the primary focus of the present thesis. It would 

be interesting to see whether the N170 would be modulated by factors such as real human vs. 

computer components, particularly if players are told that they are playing against another 

person in both contexts. Future studies could further explore the dynamics of this component 

in online or anonymous social contexts to better understand top-down and bottom-up facial or 

‘personhood’ processing.  

Finally, in acknowledging that the data collected in this thesis came from a fairly 

homogenous and healthy sample, investigation of reward processing in SBSP auctions would 

benefit from replications in other populations (Henrich et al., 2010). In addition to different 

cultural and socioeconomic groups, exploring reward processing in clinical samples may 

increase understanding of impaired approach and avoidance behaviours and decision-making 
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deficits often seen in disorders such as depression (Hikosaka, 2010; Luo, Jiang, Chen, Zhang, 

& You, 2019; Proudfit, 2015; Tucker, Luu, Frishkoff, Quiring, & Poulsen, 2003), addiction 

(Hewig et al., 2010; Kamarajan et al., 2010; Oberg, Christie, & Tata, 2011; Turel et al., 2011) 

and schizophrenia (Deco, Rolls, Albantakis, & Romo, 2013; Hikosaka, 2010; Horat et al., 

2018; Morris, Heerey, Gold, & Holroyd, 2008).  

 

7.5.  Concluding remarks 

The current thesis advances understanding of the spatiotemporal neural dynamics 

underpinning economic decision-making under conditions of risk and uncertainty. The superior 

spatial resolution of fMRI and superior temporal resolution of EEG were combined to 

holistically investigate the characteristics of economic value-related processes during SPSB 

auctions. 

Despite extensive interest in human computation of value from economists and 

neuroscientists, the vast majority of neuroeconomic experiments on valuation use non-

incentive-compatible paradigms, and ill-defined conceptualisations of value. This can lead to 

heterogeneity and contradictions in results, and a lack of real-world applicability in marketing 

and consumer environments. The results presented in this thesis advance our understanding of 

the involvement of the brain valuation system during risky economic decisions by using a real, 

demand-revealing purchasing scenario, with the impacts of SV, outcome valence and salience 

on the FRN and P300 reward-related ERPs discussed. The current research also contributes to 

the literature concerning the impact of a social dimension on reward processing in the brain. 

Against the predictions of traditional economic accounts but echoing behavioural findings, the 

inclusion of a rival elicited greater value related signals across the scalp in the N170 and P300 
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components, suggesting that the mentalizing of an opponent impacts the salience and valuation 

given to auction outcomes.  

In sum, the findings reported here add important contributions to the existing literature on 

economic decision-making processing, suggesting that to ensure effective goal-adaptive 

behaviour there is the swift detection of mismatches between desired and received outcome, 

mediated by adaptive expectation prediction-error mechanisms. This is succeeded by the 

updating of subjective motivational action values, necessary to adapt to new contingencies in 

the social competitive environment and to avoid future errors in behaviour as a result of non-

optimal strategies. Finally, these processes are mediated by self-control mechanisms, which 

are discriminant of risk and uncertainty as separate parameters, and regulate the value 

computation of choice options in order to maximise the utility of outcomes.  

In closing, it is hoped that the methodology and results presented in the experimental 

chapters of this thesis provide a useful insight and strong foundation for future research into 

real-world and complex value-based economic decision-making.  
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