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Abstract

Influenza poses a significant threat to public health, particularly
among the elderly, young children, and people with underlying dis-
eases. The manifestation of severe conditions, such as pneumonia,
highlights the importance of preventing the spread of influenza. An
accurate and cost-effective prediction of the host and antigenic sub-
types of influenza A viruses is essential to addressing this issue,
particularly in resource-constrained regions. In this study, we pro-
pose a multi-channel neural network model to predict the host and
antigenic subtypes of influenza A viruses from hemagglutinin and
neuraminidase protein sequences. Our model was trained on a com-
prehensive data set of complete protein sequences and evaluated on
various test data sets of complete and incomplete sequences. The
results demonstrate the potential and practicality of using multi-
channel neural networks in predicting the host and antigenic subtypes
of influenza A viruses from both full and partial protein sequences.
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1 Introduction

The impact of influenza viruses on respiratory diseases worldwide is substan-
tial, leading to severe infections in the lower respiratory tract, hospitalisations,
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and mortality. There are estimated to be ¿5 million hospitalisations annu-
ally due to influenza-related respiratory illnesses [1]. The incidence of severe
influenza-associated diseases and hospitalisation is highest among individuals
at the extremes of age and those with pre-existing medical conditions. The
virus spreads primarily through droplets, aerosols or direct contact, and up
to 50% of infections are asymptomatic [2, 3]. The influenza virus can cause
various complications associated with high fatality rates, including secondary
bacterial pneumonia, primary viral pneumonia, chronic kidney disease, acute
renal failure, and heart failure [4–6].

The influenza virus’s genome is comprised of single-stranded ribonucleic
acid (RNA) segments. It is classified into four genera differentiated primarily
by the antigenic properties of the nucleocapsid (NP) and matrix (M) proteins
[7]. Currently, the influenza virus has four types: A (IAV), B (IBV), C (IVC),
and D (IVD). Among them, IAV is the most widespread and virulent, capable
of triggering major public health disruptions and pandemics, as demonstrated
by the Spanish Flu of 1918–1919 that resulted in an estimated 20–100 million
deaths [8]. IAV is further subtyped by the antigenic properties of its hemag-
glutinin (HA) and neuraminidase (NA) surface glycoproteins, with 18 HA and
11 NA subtypes currently known [9]. The avian influenza viruses, including
H5N1, H5N2, H5N8, H7N7, and H9N2, can also spread from birds to humans
with potentially deadly consequences, although this rarely occurs.

The HA and NA proteins of the influenza virus play a crucial role in its
ability to infect host cells by allowing it to recognise and attach to specific
receptors on host epithelial cells, followed by replication and release into neigh-
bouring cells through the action of NA [10]. The immune system can respond
to the virus by attacking and destroying infected tissue, although death can
sometimes result from organ failure or secondary infections. The continuous
evolution of the virus through point mutations in the genes encoding HA and
NA can result in antigenic drift, leading to seasonal influenza, or the rarer anti-
genic shift, resulting in the emergence of new viruses with a significant change
in HA and NA production that can trigger pandemics [11].

In this study, we aim to predict IAV subtypes and hosts using a multi-
channel neural network (MC-NN) approach comprising a combination of
convolutional neural networks (CNNs), bidirectional gated recurrent units
(BiGRUs), and transformer models. The models are trained on a large-scale
integrated protein sequence data set collected before 2020 and evaluated on
both a post-2020 data set and a data set containing incomplete sequences. The
study includes a broad range of hosts. Its results demonstrate the superiority
of our multi-channel approach, with the transformer model achieving 83.39%,
99.91% and 99.87% F1 scores for the host, HA subtype and NA subtype pre-
diction, respectively, in the post-2020 data set. Furthermore, its performance
on incomplete sequences reached 76.13%, 95.37% and 96.37% F1 scores for the
host, HA subtype and NA subtype prediction, respectively.
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2 Related Work

The detection of IAV hosts and subtypes can enhance the surveillance of
influenza and mitigate its spread. However, traditional methods for virus
subtyping, such as nucleic acid-based tests (NATs), are labour-intensive and
time-consuming [12]. To address this issue, researchers have explored various
supervised machine learning-based methods for predicting IAV hosts or sub-
types. These include using CNNs [11, 13, 14], support vector machines (SVM)
[15–17], decision trees (DT) [15, 18], and random forests (RF) [17, 19, 20].

In order to train machine learning models, the protein sequences need to
be transformed into numerical vectors. This transformation has been achieved
through various methods, including one-hot encoding [11, 19, 21], pre-defined
binary encoding schemes [22], ASCII codes [13], Word2Vec [16], and the use
of physicochemical features [20, 23–25]. However, using handcrafted feature
sets or physicochemical features requires a feature selection process, which can
be time-consuming. This study used word embedding to allow the models to
learn features from the training data since this approach is more convenient
and efficient. Previous studies have focused on either higher classification (i.e.
avian, swine, or human) or a single class of hosts from a single database. In
contrast, this study collects data from multiple databases and focuses on a
broad range of hosts.

MC-NNs have been used in various applications, such as face detection [26],
relation extraction [27], entity alignment [28], emotion recognition [29], and
haptic material classification [30]. To our knowledge, few studies have used
MC-NNs for infectious disease predictions. In this study, we propose using
three MC-NN architectures to simultaneously predict IAV hosts and subtypes
rather than training separate models for each task.

3 Materials and Methods

3.1 Data Preparation

3.1.1 Hemagglutinin and Neuraminidase Protein Sequences

Complete hemagglutinin (HA) and neuraminidase (NA) sequences were
acquired from two sources: the Influenza Research Database (IRD) [31] and
the Global Initiative on Sharing Avian Influenza Data (GISAID) [32] . The
initial data collection process yielded 381,369 HA sequences and 338,631 NA
sequences (completed on 13 December 2022). ). To maintain the uniqueness
of each strain, redundant and multi-label sequences were filtered, resulting in
a unique HA and NA sequence pair for each strain in the final data set. To
prevent duplicates, the integration process involved removing sequences from
GISAID if they were already present in IRD. Additionally, strains belong-
ing to the H0N0 subtype, which have an uncleaved HA0 protein that is not
infectious, were also removed from the data set. The process of data curation
also involved eliminating sequences with erroneous or ambiguous metadata
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Table 1 Summary statistics of data sets.

Data Set (alias) # Total Pairs # Seqs from IRD # Seqs from GISAID

< 2020 (pre-20 ) 33,159 41,940 24,378

2020 - 2022 (post-20 ) 4,488 3,232 5,744

Incomplete (incomplete) 8,525 11,111 5,939

labels. For example, A/American Pelican/Kansas/W22-200/2022 (isolated ID:
EPI ISL 14937098) was inaccurately labelled as ‘host’. Subsequently, the final
outcome comprised 46,172 unique pairs of complete and partial HA and NA
sequences

The criterion for defining the completeness of A sequence was consid-
ered complete if its length was equivalent to that of the actual genomic
sequence [32] or the complete coding region defined by The National Center for
Biotechnology Information (NCBI) [31]. The completeness annotation cannot
be explicitly obtained from the metadata of the strain. Therefore, incomplete
sequences were obtained by filtering the complete sequences from the full
influenza database, which comprises both complete and incomplete sequences
(all sequences = complete sequences ∪ incomplete sequences).

The pre-trained model was trained using a training data set comprising
sequences of strains isolated before 2020. Conversely, the sequences of strains
isolated from 2020 to 2022 were used solely to evaluate the performance of the
models during testing; the testing data set also included incomplete sequences.
The characteristics of the data sets used in this study are presented in Table 1.

3.1.2 Label Reassignment

While the GISAID and IRD databases recorded ¿300 hosts, only 30% were
consistent across both databases. This issue could be attributed to the blended
use of animals’ common and scientific names. We regrouped the viral hosts
into 25 categories based primarily on the biological family classification of the
animals; the distribution of reassigned hosts is presented in Fig. 1. We also
moved a few subtypes in the data set into other subtypes (i.e. H15, H17, H18,
N10, and N11), as shown in Fig. 2.

3.2 Protein Sequence Representation

Neural networks are mathematical operators that operate on inputs and gener-
ate numerical outputs. However, the raw input sequences must be represented
as numerical vectors before the neural network can process them. One popular
method of vectorising sequences is one-hot encoding. In natural language pro-
cessing (NLP), the length of the one-hot vector for each word is determined
by the size of the vocabulary, which comprises all unique words or tokens in
the data. When representing amino acids, the length of the one-hot vector for
each amino acid depends on the number of unique amino acids. This results in
a sparse matrix for large vocabularies, which is computationally inefficient. An
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alternative and more powerful approach are to represent each word as a dense
vector through word embedding. Word embedding learns the representation of
a word by considering its context, allowing similar words to have similar rep-
resentations. It has been used successfully in the extraction of features from
biological sequences [33].

The word embedding process can be incorporated into a deep learning
model without relying on manually-crafted feature extraction techniques. A
protein’s amino acid sequence is usually written as a string of letters but can
also be represented as a set of tripeptides, also known as 3-grams. In NLP,
N -grams refer to N consecutive words in a text, and similarly, N -grams of
a protein sequence refer to N consecutive amino acids. For example, the 3-
grams of the sequence ”AAADADTICIG” would be ‘AAA’, ‘AAD’, ‘ADA’,
‘DAD’, ‘ADT’, ‘DTI’, ‘TIC’, ‘ICI’, and ‘CIG’. N was set to 3 based on previous
research findings [34, 35].

4 Neural Network Architectures

In this study, we propose a multi-channel neural network (MC-NN) archi-
tecture that incorporates two inputs, namely HA trigrams and NA trigrams,
and produces three outputs, specifically host, HA subtypes, and NA subtypes.
The neural network models utilized in this research encompass bidirectional
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gated recurrent unit (BiGRU), convolutional neural network (CNN), and
transformer.

4.1 Bidirectional Gated Recurrent Unit

The Bidirectional Gated Recurrent Unit (BiGRU) is a model designed to han-
dle sequential data by considering both past and future information at each
time step. This model is composed of two separate Gated Recurrent Unit
(GRU) layers, one for processing the input sequence in the forward direction
and the other for processing the input sequence in the backward direction. The
outputs of these two layers are then concatenated and utilised for prediction
purposes.

GRUs, similar to Long Short-Term Memory (LSTM) units, possess a reset
gate and an update gate [36]. The reset gate determines the amount of previous
information that needs to be forgotten, while the update gate decides the
proportion of information to discard and the proportion of new information
to incorporate. Due to fewer tensor operations, GRUs are faster in terms of
training speed when compared to LSTMs.

The utilisation of a BiGRU provides the advantage of considering both the
past and future context at each time step, thereby leading to more informed
predictions. This is particularly useful in sequential data processing where
context plays a crucial role in prediction accuracy.

4.2 Transformer

The Transformer neural network architecture has had a significant impact in
the field of NLP [37]. It was initially designed to facilitate machine transla-
tion, however, the scope of its application can be broadened to encompass
other areas such as addressing protein folding dilemmas [38]. The Transformer
architecture serves as the cornerstone for the advancement of contemporary
natural language processing models, including BERT [39], T5 [40], and GPT-
3 [41]. One of the most significant benefits that a Transformer possesses over
conventional Recurrent Neural Networks (RNNs) is its capability to process
data in a parallel manner. This attribute allows for the utilisation of Graphics
Processing Units (GPUs) to optimise the speed of processing and effectively
handle extensive text sequences.

The Transformer neural network presents a breakthrough in the field
of deep learning through its incorporation of positional encoding and self-
attention mechanism. The positional encoding feature serves as a means of
preserving the word order information in the data, thereby enabling the neural
network to learn and understand the significance of the order. The atten-
tion mechanism, on the other hand, allows the model to effectively translate
words from the source text to the target text by determining their relative
importance. The self-attention mechanism, as implied by its name, allows
the neural network to focus on its own internal operations and processes.
Through this mechanism, the neural network can comprehend the contextual
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meaning of words by analysing their relationships and interactions with sur-
rounding words. Furthermore, the self-attention mechanism enables the neural
network to not only differentiate between words but also reduce computational
requirements, thus improving its efficiency.

4.3 Convolutional Neural Network

A Convolutional Neural Network (CNN) was designed to work with image and
video data. It is an artificial neural network that uses convolutional layers to
extract features from raw data. These convolutional layers analyse the spatial
relationship between pixels and learn to recognise patterns in the data. The
concept behind Convolutional Neural Networks (CNNs) is based on the visual
processing mechanism of the human brain, where neurons are selectively acti-
vated in response to various features present in an image, such as edges. In
CNNs, two primary types of layers are utilised, namely convolution layers and
pooling layers. Convolution layers are the core of the CNN architecture, per-
forming convolution operations on the input image and filters. On the other
hand, pooling layers perform down-sampling on the image in order to minimise
the number of learnable parameters. This study implements one-dimensional
convolution layers to process sequence data.

5 Implementation and Evaluation Methods

All of the models in this study were built using Keras and trained on pre-20
data sets. They were then tested on both post-20 and incomplete data sets.
The architecture of the multi-channel neural network used in this study is
illustrated in Figure 3. The Transformer architecture used here is the encoder
presented in [37].

In some cases, there is confusion regarding the role of validation and test
sets, leading to the tuning of model hyperparameters using the testing set
instead of a separate validation set. This increases the risk of data leakage
and reduces the credibility of the results. To avoid this issue, nested cross-
validation (CV) is used instead of classic K-fold CV. In nested CV, an outer
CV is used to estimate the generalisation error of the model and an inner CV
is used for model selection and hyperparameter tuning. The outer CV splits
the data into a trainingouter set and a testing set, while the inner CV splits the
training outer set into a traininginner set and a validation set. The model is
trained only on the traininginner set, its hyperparameters are tuned based on
its performance on the validation set, and its overall performance is evaluated
on the testing set. In this study, the outer fold kouter was set to 5 and the inner
fold kinner was set to 4. The hyperparameters settings for the neural network
architectures used in this study are presented in Table 2.,

The present study utilises data sets that exhibit a high degree of imbal-
ance, and as such, the application of conventional evaluation metrics such
as accuracy and receiver operating characteristic (ROC) curves can lead to
misleading results, as demonstrated in prior research [42, 43]. Precision-recall
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Fig. 3 The multi-channel neural network architecture: positional encoding is only employed
along with Transformer.

Table 2 Hyperparameter Settings

Models Hyperparameters

CNN

kernel size = 3, 4, 5

embedding size = 50, 100, 150, 200

learning rate = 0.01, 0.005, 0.001, 0.0001

BiGRU
embedding size = 50, 100, 150, 200

learning rate = 0.01, 0.005, 0.001, 0.0001

Transformer

embedding size = 32, 64, 128

learning rate = 0.01, 0.005, 0.001, 0.0001

num heads = 1, 2, 3, 4, 5

curve (PRC), on the other hand, has been demonstrated to be more informa-
tive when addressing highly imbalanced data sets and has been widely adopted
in the research [44–47].

The utilisation of linear interpolation to calculate the area under the
precision-recall curve (AUPRC) has been shown to be inappropriate [43]. An
alternative approach that has been demonstrated to be effective in such cases
is the calculation of the average precision (AP) score[48]. Furthermore, this
study also employs conventional evaluation metrics F1 score, with the formulas
for these metrics provided below:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)
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F1 = 2× Precision×Recall

Precision+Recall
(3)

AP =
∑
n

(Recalln −Recalln−1Precisionn) (4)

where TP, FP, TN, FN stand for true positive, false positive, true negative
and false negative. If positive data is predicted as negative, then it counts as
FN, and so on for TN, TP and FP.

The evaluation of the overall performance of the models was conducted
using the results obtained from the Basic Local Alignment Search Tool
(BLAST) as a baseline because BLAST is a commonly employed benchmark
in computational biology and bioinformatics.

6 Results

6.1 Overall Performance

The model’s performance on various data sets is shown in Figures 4 to 6.
The metrics used, such as average precision (AP), have been developed for
binary classification but can be adapted to multi-class classification using a
one-vs-all approach. This approach involves designating one class as positive
and all others as negative. AP, F1 score, precision, and recall values were used
to compare the models to a baseline model, the Basic Local Alignment Search
Tool (BLAST), with its default parameters. The BLAST results were obtained
through five-fold cross-validation and are indicated by the solid black line in
the figures. All models outperformed the baseline model, with the MC-BiGRU
and MC-CNN models achieving particularly notable results. The results also
showed that the host classification task was more challenging than the subtype
classification task with all models.

The models were trained solely on the pre-20 data set and tested on the
post-20 and incomplete data sets. The pre-20 and post-20 data sets only
contained complete sequences, while the incomplete data set contained both
complete and incomplete sequences. There was no significant difference in the
performance of all models on the pre-20 data set. The best-performing model
was the MC-CNN, achieving an AP of 94.61% (94.22%, 94.99%), and a F1 score
of 93.20% (92.86%, 93.54%) on the post-20 data set. The MC-Transformer per-
formed best on the incomplete data set, achieving an AP of 91.63% (91.41%,
91.85%), and a F1 score of 89.29% (88.80%, 89.78%).

6.2 Performance on Single Sequence Input

The proposed MC-NN uses two inputs. However, it cannot be guaranteed that
the required HA and NA pairs will always be obtainable for every strain. We
conducted additional experiments on two data sets, one comprising 23,802
HA protein sequences and the other 5,142 NA protein sequences. The results
of these experiments are presented in Table 3. The results indicated reduced
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Fig. 6 Comparison of Overall Performance Between Models (NA Subtypes): the baseline
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performance for all models when corresponding H/N sequence pairs were miss-
ing. However, the MC-Transformer model outperformed the MC-CNN and
MC-BiGRU models on both data sets.

7 Conclusion and Discussion

The rapid mutation of influenza viruses leads to frequent seasonal outbreaks,
although they infrequently result in pandemics. However, these viruses can
exacerbate underlying medical conditions, elevating the risk of mortality. In
this study, we present a novel approach to predict the viral host at a lower
taxonomic level and subtype of the Influenza A virus (IAV) by utilising multi-
channel neural networks.
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Table 3 The overall performance of MC-NN on data sets with single HA or NA sequences.

Algorithms
Single HA Single NA

AP % (95% CI) F1 % (95% CI) AP % (95% CI) F1 % (95% CI)

CNN 76.38 (56.90, 95.86) 65.04 (55.21, 74.87) 79.60 (74.84, 84.36) 62.10 (54.66, 69.55)
BiGRU 80.52 (77.26, 83.79) 56.26 (46.20, 66.31) 76.79 (74.96, 78.62) 59.47 (53.37, 65.57)

Transformer 89.75 (87.96, 91.54) 76.61(69.79, 83.42) 83.56 (81.22, 85.91) 70.96 (66.14, 75.78)

Our approach differs from traditional methods, as it employs a neural net-
work architecture that can learn the embedding of protein trigrams instead
of manually encoding protein sequences into numerical vectors. The multi-
channel nature of our network eliminates the need for separate models for
similar tasks, as it can take multiple inputs and produce multiple outputs. We
evaluated the performance of our approach using various algorithms, includ-
ing CNN, BiGRU, and Transformer, and found that Transformer performed
better than the other algorithms. In addition to our previous experiments,
we carried out further evaluations to assess the performance of the models
in the absence of matching H/N sequence pairs. The results showed that the
MC-Transformer model consistently displayed superior performance.

This method could greatly benefit resource-poor regions where labora-
tory experiments are cost-prohibitive. However, our approach is limited by its
reliance on supervised learning algorithms and the need for correctly labelled
data, which may result in the poor predictive ability for labels with insuffi-
cient data. Further research is needed to address these limitations, including
the prediction of cross-species transmissibility and leveraging insufficient data.
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