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ABSTRACT
Connected and autonomous vehicles (CAVs) can realize many revolu-
tionary applications, but it is expected to have mixed-traffic including
CAVs and human-driving vehicles (HVs) together for decades. In this
paper, we target the problem of mixed-traffic intersection manage-
ment and schedule CAVs to control the subsequent HVs. We develop
a dynamic programming approach and a mixed integer linear pro-
gramming (MILP) formulation to optimally solve the problems with
the corresponding intersection models. We then propose an MILP-
based approach which is more efficient and real-time-applicable than
solving the optimal MILP formulation, while keeping good solution
quality as well as outperforming the first-come-first-served (FCFS)
approach. Experimental results and SUMO simulation indicate that
controlling CAVs by our approaches is effective to regulate mixed-
traffic even if the CAV penetration rate is low, which brings incentive
to early adoption of CAVs.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; Embedded software.
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1 INTRODUCTION
Due to the advances of vehicle-to-everything communication, sens-
ing and control capability, and artificial intelligence, connected and
autonomous vehicles (CAVs) can realize many revolutionary applica-
tions. CAVs present great potentials to improve safety and traffic per-
formance and thus draw the attention of recent research. Particularly,
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intersection management for CAVs, including modeling, protocol de-
sign, scheduling, and analysis, is one of the highly-researched areas,
due to the fact that intersections are themain sources of collisions and
jams in urban traffic [4]. Furthermore, the similarity between inter-
sections and other traffic scenarios called dynamic intersections [2],
such as merging points, unprotected turns, single-track lanes, and
construction zones, provides great extensibility to intersection man-
agement.

Related Work. Zheng et al. proposed a CAV protocol for intersec-
tion management [19], which introduces delay-awareness and verifi-
cation capability into vehicular networked intersections. Zhao et al.
proposed a scheduling method in an unsignalized intersection that
takes multiple objectives to its scheduling purpose [18]. However,
the aforementioned studies and many other CAV-related studies [5,
10, 17] assume that the traffic consists of CAVs only, without any
human-driving vehicle (HV), which is unlikely in the near future [6].
Considering the principle that HVs do not change their behaviors to
accommodate the presence of CAVs [1], it is challenging to fully uti-
lize CAVs’ potentials. Aoki et al. [3] proposed a mixed-traffic intersec-
tion protocol where the system falls back to a signalized intersection
whenever an HV is present. Similarly, CAVs in other mixed-traffic
intersection protocols [7, 11] also suffer performance loss due to the
presence of HVs since the systems have to reserve all possible tra-
jectories of HVs or add more restrictions. Furthermore, if there exist
non-connected vehicles in a mixed-traffic environment, scheduling is
more difficult as only a portion of the traffic is cooperative. Therefore,
some studies [14, 16] that aim to further improve safety or traffic
performance in a mixed-traffic environment focus on optimizing the
single-vehicle control of a CAV rather than cooperative scheduling
which is more effective with pure CAV traffic.

Motivations. Inspired by the study that utilizes CAVs to stabilize
traffic [13], we intend to schedule CAVs to control (block, in some
sense) the subsequent HVs formixed-traffic intersectionmanagement.
Combining the observation in the previous studies of mixed-traffic
intersection management where the presence of HVs hinders the
performance of CAVs, we see an opportunity for the blocking strategy
to mitigate the performance loss, if we can reduce the interference
fromHVswith CAVs. An example is illustrated in Figure 1(a).Without
the blocking strategy, CAVA passes through the intersection first as it
arrives at the intersection first (in a first-come-first-served manner),
leaving CAVs B, C, and D to pass through the intersection with
the presence of HV E, as shown in Figure 1(b), and resulting in
performance loss (CAVs B, C, and D need to move slower). However,
as shown in Figure 1(c), if we control CAV A to block HV E (which is
behind CAV A), CAVs B, C, and D can pass through the intersection
without the presence of HV E, and the overall performance (e.g., the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Chen et al.

E A

((  ))

((
  )

) B

((  ))

C

((  ))

D

((  ))

E A

((  ))

((
  )

) B
((  ))

C
((  ))

D
((  ))

"CAVs B, C, and D 

pass through the 

intersection first."

((
  )

) B

((  ))

C

((  ))

D

((  ))

E A

((  ))

"CAV A passes through 

the intersection first" 

(CAVs B, C, and D slow 

down due to HV E)

((  ))

Intersection

Manager

Conflict

Zone

CAV

HV

((  ))

(a) (b) (c)

Figure 1: (a) An example of mixed-traffic intersection management. (b) Without the blocking strategy, CAV A passes through
the intersection first as it arrives at the intersection first (first-come-first-served), leaving CAVs B, C, and D to pass through the
intersection with the presence of HV E, and resulting in performance loss. (c) If we control CAV A to block HV E, CAVs B, C, and D
can pass through the intersection first without the presence of HV E, and the overall performance can be improved.

average delay of all vehicles) can be improved (CAVs B, C, and D can
move faster).

Contributions. In this paper, we target the problem of mixed-
traffic intersection management consisting of CAVs and HVs. We
consider a single conflict zone model and a general trajectory-based
model for intersections. The main contributions include:

• We schedule CAVs to control the subsequent HVs. We develop
a dynamic programming approach to the single conflict zone
model and a MILP formulation for the trajectory-based model.
Both of them solve the corresponding problems optimally.

• We propose an MILP-based approach which is more efficient
and real-time-applicable than solving the optimal MILP for-
mulation, while keeping good solution quality as well as out-
performing the first-come-first-served (FCFS) approach.

• Experimental results and SUMO simulation [9] indicate that
controlling CAVs by our approaches is effective to regulate
mixed-traffic even if the CAV penetration rate is low, which
brings incentive to early adoption of CAVs.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 introduces the system models and the problems. Section 3
presents our approaches to the problems. Section 4 demonstrates the
experimental results. Section 5 concludes this paper.

2 SYSTEM MODELS AND PROBLEMS
In this section, we first introduce a single conflict zone intersection
model and then present a general trajectory-based intersectionmodel,
where vehicles with non-conflicting trajectories can pass through the
intersection at the same time to better match real-world scenarios.

2.1 Single Conflict Zone Model
As shown in Figure 1, the intersection is modeled as one conflict zone
with overtaking-prohibited mixed-traffic including CAVs and HVs.
The intersection behaves depending on whether there exists an HV at
the head (as the first vehicle) on at least one lane. If yes, the CAVs have
to use an HV-compatible protocol due to the uncertain behaviors of
HVs; otherwise, CAVs use amore efficient CAV protocol.With a single
conflict zone, only a single vehicle can pass through the intersection
at the same time. An HV passes through the intersection once it is the
earliest arrived vehicle among the vehicles which have not passed

through the intersection. A CAV follows the instructions from the
intersection manager (according to the HV-compatible protocol and
the CAV protocol) and passes through the intersection. We assume
that the intersection manager knows the numbers and types (CAV
or HV) of vehicles on each lane as well as the estimated arrival time
of each vehicle.

We define the 𝑖-th vehicle on lane 𝑙 as a𝑙,𝑖 . The following parame-
ters are given:

• 𝑁 : the total number of vehicles.
• 𝐿: the number of lanes.
• 𝑁𝑙 : the number of vehicles on lane 𝑙 .
• 𝐻𝑙,𝑖 : 1 / 0 if a𝑙,𝑖 is an HV / CAV.
• 𝐴𝑙,𝑖 : the estimated arrival time of a𝑙,𝑖 .
• 𝐺 : the time gap for the next passing vehicle if there is no HV
at the head on each lane (when using the CAV protocol).

• 𝐺+: the time gap for the next passing vehicle if there exists
an HV at the head on a lane (when using the HV-compatible
protocol).

Due to the uncertain behaviors of HVs, 𝐺+ is larger than 𝐺 .
Given the given parameters above, the problem is to decide the

entering time of each vehicle, which is the time that the vehicle enters
the intersection:

• 𝑡𝑙,𝑖 : the entering time of a𝑙,𝑖 .
The objective is to minimize the entering time of the last pass-

ing vehicle (which represents the performance of the intersection
processing all vehicles):

min
(

max
1≤𝑙≤𝐿,1≤𝑖≤𝑁𝑙

𝑡𝑙,𝑖

)
. (2.1)

The following constraints need to be satisfied. First, overtaking is
not allowed:

∀(𝑙, 𝑖), (𝑙 ′, 𝑖 ′), 𝑙 = 𝑙 ′ ∧ 𝑖 > 𝑖 ′ =⇒ 𝑡𝑙,𝑖 ≥ 𝑡𝑙 ′,𝑖′ . (2.2)

Second, the entering time of a vehicle must be after the estimated
arrival time of the vehicle:

∀(𝑙, 𝑖), 𝑡𝑙,𝑖 ≥ 𝐴𝑙,𝑖 . (2.3)

Third, the gap of the entering times of two consecutive vehicles
must be large enough to maintain a safe time gap which depends on
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whether there exists an HV at the head (as the first vehicle) on at
least one lane:

∀(𝑙, 𝑖), (𝑙 ′, 𝑖 ′), IsNext(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) =⇒
𝑡𝑙,𝑖 − 𝑡𝑙 ′,𝑖′ ≥ TimeGap(𝑙, 𝑖), (2.4)

where

IsNext(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) =
{
1, a𝑙,𝑖 is the next passing vehicle after a𝑙 ′,𝑖′ ;
0, otherwise,

(2.5)

TimeGap(𝑙, 𝑖) =


𝐺+, there exists an HV at the head

on a lane when a𝑙,𝑖 is passing;
𝐺, otherwise.

(2.6)

Last, we can only schedule CAVs, not HVs, so if an HV arrives at the
intersection first compared to another vehicle, it does not yield:

∀(𝑙, 𝑖), (𝑙 ′, 𝑖 ′), 𝐴𝑙,𝑖 < 𝐴𝑙 ′,𝑖′ ∧ 𝐻𝑙,𝑖 =⇒ ¬IsAtHead(𝑙, 𝑖, 𝑙 ′, 𝑖 ′), (2.7)

where

IsAtHead(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) =


1, a𝑙,𝑖 is at the head on its lane when

a𝑙 ′,𝑖′ is entering the intersection;
0, otherwise.

(2.8)

2.2 Trajectory-Based Model
The single conflict zone model restricts that only a single vehicle
can pass through the intersection at the same time. The trajectory-
based model allows vehicles with non-conflicting trajectories to pass
through the intersection at the same time to better match real-world
scenarios. We denote the pairs of non-conflicting vehicles as a set:

• Γ: the set of (𝑙, 𝑖, 𝑙 ′, 𝑖 ′) where a𝑙,𝑖 and a𝑙 ′,𝑖′ have no trajectory
conflict.

We then adjust the passing time in Equation (2.4) in the previous
section to:

∀𝑙, 𝑙 ′, 𝑖, 𝑖 ′, IsAfter(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) =⇒
𝑡𝑙,𝑖 − 𝑡𝑙 ′,𝑖′ ≥ TimeGap′(𝑙, 𝑖, 𝑙 ′, 𝑖 ′), (2.9)

where

IsAfter(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) =
{
1, a𝑙,𝑖 passes not before a𝑙 ′,𝑖′ ;
0, otherwise,

(2.10)

TimeGap′(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) =
{
TimeGap(𝑙, 𝑖), if (𝑙, 𝑖, 𝑙 ′, 𝑖 ′) ∉ Γ;
0, if (𝑙, 𝑖, 𝑙 ′, 𝑖 ′) ∈ Γ.

(2.11)

Note that a strict passing order does not exist in the trajectory-
based model, so we replace IsNext(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) in Equation (2.4) by
IsAfter(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) to consider all vehicles (not only the next vehicle)
after a passing vehicle.

3 APPROACHES
In the following sections, we present a dynamic programming ap-
proach to the single conflict zone model and solve the trajectory-
based model by an MILP formulation as well as an efficient and
real-time-applicable MILP-based approach.

3.1 Dynamic Programming
The dynamic programming approach in this section solves the single
conflict zone model in Section 2.1 optimally. For lane 𝑙 , we denote
the number of vehicles which have passed through the intersection
as \𝑙 . Given a state Θ = (\1, \2, . . . , \𝐿), the previous state must be
Θ′ = (\ ′1, \

′
2, . . . , \

′
𝐿
) with exactly one 𝑙 such that \ ′

𝑙
= \𝑙 −1 and each

other 𝑙 ′ such that \ ′
𝑙 ′
= \𝑙 ′ . The transition from Θ′ to Θ means that

a𝑙,\𝑙 passes through the intersection, and the objective only depends
on the time gap for a𝑙,\𝑙 . Therefore, the optimality holds with the
subproblems.

If all vehicles are CAVs, we can use dynamic programming to solve
the subproblem OBJ(Θ):

min
𝑙

(
max

(
𝐴𝑙,\𝑙 ,OBJ

(
Θ′
𝑙

)
+ TimeGap

(
Θ′
𝑙
, 𝑙

)))
, (3.1)

where OBJ(Θ) is the maximum entering time of a1,\1 , a2,\2 , . . . , a𝐿,\𝐿 ,
and the time gap depends on the types of the passing vehicle and the
vehicles at the heads on the other lanes:

TimeGap(Θ, 𝑖) =


𝐺+, 𝐻1,\1+1 ∨ 𝐻2,\2+1 ∨ · · · ∨ 𝐻𝑖,\𝑖∨

𝐻𝑖+1,\𝑖+1+1 ∨ · · · ∨𝐻𝐿,\𝐿+1;
𝐺, otherwise.

(3.2)

Note that𝐻𝑙,𝑁𝑙+1 = 0, meaning that all vehicles on lane 𝑙 have passed
through the intersection. OBJ((𝑁1, 𝑁2, . . . , 𝑁𝐿)) provides the optimal
solution to the overall problem.

However, we can only schedule CAVs as Equation (2.7), and thus
some state transitions are not allowed. Therefore, we need to adjust
the subproblem OBJ(Θ):

min
𝑙

(
max

(
𝐴𝑙,\𝑙 ,OBJ

(
Θ′
𝑙

)
+ TimeGap

(
Θ′
𝑙
, 𝑙

)
, Legal

(
Θ′
𝑙
, 𝑙

)))
,

(3.3)
where

Legal(Θ, 𝑖) =
{
∞, ∃ 𝑗, 𝑗 ≠ 𝑖, 𝐻 𝑗,\ 𝑗+1 ∧

(
𝐴 𝑗,\ 𝑗+1 < 𝐴𝑖,\𝑖+1

)
;

0, otherwise.
(3.4)

Similarly, OBJ((𝑁1, 𝑁2, . . . , 𝑁𝐿)) provides the optimal solution to the
overall problem. The time complexity of this algorithm is𝑂 (𝑁1 ·𝑁2 ·
· · · · 𝑁𝐿).

3.2 MILP Formulation
The MILP formulation in this section solves the trajectory-based
model in Section 2.2 optimally, where vehicles with non-conflicting
trajectories can pass through the intersection at the same time. In the
MILP formulation below,𝑀 represents a sufficient large constant.

3.2.1 Variables. The variables in the MILP formulation include:
• 𝑡𝑙,𝑖 : the entering time of a𝑙,𝑖 .
• ℎ𝑙,𝑖,𝑙 ′,𝑖′ : the binary variable indicating whether a𝑙 ′,𝑖′ is at the
head on its lane when a𝑙,𝑖 is passing through the intersection.

• ℎ𝑙,𝑖,𝑙 ′,𝑁𝑙′+1: the binary variable indicating whether all vehicles
on lane 𝑙 ′ have passed through the intersection when a𝑙,𝑖 is
passing through the intersection.

• 𝑜𝑙,𝑖,𝑙 ′,𝑖′ : the binary variable indicating whether a𝑙,𝑖 passes be-
fore a𝑙 ′,𝑖′ .

• 𝑟𝑙,𝑖 : the binary variable indicating whether there exists an HV
(including a𝑙,𝑖 itself) at the head on at least one lane when a𝑙,𝑖
is passing through the intersection.

• 𝑧𝑙,𝑖 : the binary variable indicating whether a𝑙,𝑖 is the last pass-
ing vehicle.
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The variable ℎ𝑙,𝑖,𝑙 ′,𝑖′ is set by:

∀(𝑙, 𝑖), ℎ𝑙,𝑖,𝑙,𝑖 = 1; (3.5)

∀(𝑙, 𝑖), 𝑙 ′ ≠ 𝑙,
∑︁

𝑖′,1≤𝑖′≤𝑁𝑙′+1
ℎ𝑙,𝑖,𝑙 ′,𝑖′ = 1; (3.6)

∀(𝑙, 𝑖), 𝑙 ′ ≠ 𝑙,
∑︁

𝑖′,1≤𝑖′≤𝑁𝑙′

𝑜𝑙 ′,𝑖′,𝑙,𝑖 + 1 =
∑︁

𝑖′,1≤𝑖′≤𝑁𝑙′+1
𝑖 ′ℎ𝑙,𝑖,𝑙 ′,𝑖′ . (3.7)

The variable 𝑜𝑙,𝑖,𝑙 ′,𝑖′ is set by, for all different (𝑙, 𝑖), (𝑙 ′, 𝑖 ′), (𝑙 ′′, 𝑖 ′′):
𝑜𝑙,𝑖,𝑙 ′,𝑖′ + 𝑜𝑙 ′,𝑖′,𝑙,𝑖 = 1, 𝑜𝑙,𝑖,𝑙 ′,𝑖′ + 𝑜𝑙 ′,𝑖′,𝑙 ′′,𝑖′′ − 1 ≤ 𝑜𝑙,𝑖,𝑙 ′′,𝑖′′ . (3.8)

The variable 𝑟𝑙,𝑖 is set by:

∀(𝑙, 𝑖),
∑︁
𝑙 ′,𝑖′

𝐻𝑙 ′,𝑖′ℎ𝑙,𝑖,𝑙 ′,𝑖′ ≤ 𝑀𝑟𝑙,𝑖 . (3.9)

The variable 𝑧𝑙,𝑖 is set by:∑︁
𝑙,𝑖

𝑧𝑙,𝑖 = 1; ∀(𝑙, 𝑖),
∑︁
𝑙 ′,𝑖′

ℎ𝑙,𝑖,𝑙 ′,𝑖′ +𝑀
(
𝑧𝑙,𝑖 − 1

)
≤ 0. (3.10)

3.2.2 Objective. The objective of the MILP formulation is:

min max
𝑙

(
𝑡𝑙,𝑁𝑙

)
. (3.11)

Note that it can be transformed to min𝑍 , where 𝑡𝑙,𝑁𝑙
≤ 𝑍 for all 𝑙 .

3.2.3 Constraints. The four constraints in Section 2 are transformed
to the following constraints in the MILP formulation. Equation (2.2)
is transformed to:

∀(𝑙, 𝑖), (𝑙, 𝑖 ′), 𝑖 < 𝑖 ′, 𝑜𝑙,𝑖,𝑙,𝑖′ = 1, 𝑜𝑙,𝑖,𝑙,𝑖 = 0. (3.12)

This means that overtaking is not allowed. Equation (2.3) is trans-
formed to:

∀(𝑙, 𝑖), 𝑡𝑙,𝑖 ≥ 𝐴𝑙,𝑖 . (3.13)
This means that the entering time of a vehicle must be after the
estimated arrival time of the vehicle. Equation (2.9) which updates
Equation (2.4) for the trajectory-based model is transformed to two
cases. When there is no HV at the head on each lane:

∀(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) ∉ Γ, 𝑡𝑙 ′,𝑖′ − 𝑡𝑙,𝑖 +𝑀
(
1 − 𝑜𝑙,𝑖,𝑙 ′,𝑖′

)
+𝑀𝑧𝑙,𝑖 ≥ 𝐺 ; (3.14)

∀(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) ∈ Γ, 𝑡𝑙 ′,𝑖′ − 𝑡𝑙,𝑖 +𝑀
(
1 − 𝑜𝑙,𝑖,𝑙 ′,𝑖′

)
+𝑀𝑧𝑙,𝑖 ≥ 0. (3.15)

When there exists an HV at the head on at least one lane:

∀(𝑙, 𝑖, 𝑙 ′, 𝑖 ′) ∉ Γ, (3.16)
𝑡𝑙 ′,𝑖′ − 𝑡𝑙,𝑖 +𝑀

(
1 − 𝑜𝑙,𝑖,𝑙 ′,𝑖′

)
+𝑀𝑧𝑙,𝑖 ≥ 𝐺+ +𝑀 (𝑟𝑙,𝑖 − 1) .

The two cases mean that the gap of the entering times of two con-
secutive vehicles must be large enough to maintain a safe time gap
which depends on whether there exists an HV at the head on at least
one lane. Equation (2.7) is transformed to:

∀(𝑙, 𝑖), (𝑙 ′, 𝑖 ′), 𝑙 ≠ 𝑙 ′, 𝑀
(
ℎ𝑙,𝑖,𝑙 ′,𝑖′𝐻𝑙 ′,𝑖′

)
+
(
𝐴𝑙,𝑖 −𝐴𝑙 ′,𝑖′

)
≤ 𝑀. (3.17)

This means that an HV does not yield another vehicle if it arrives at
the intersection first.

3.3 MILP-Based Approach
The MILP-based approach in this section solves the trajectory-based
model in Section 2.2 in a more efficient and real-time applicable way,
but it cannot guarantee the optimality. The fundamental concept
of the MILP-based approach is to split the MILP formulation into
smaller subproblems, solve them, and merge the results.

We generalize the MILP formulation in Section 3.2 as MILP(𝑉 ,𝑇 ),
where 𝑉 is a subset of all vehicles and 𝑇 is a timing constraint such
that:

∀(𝑙, 𝑖), 𝑡𝑙,𝑖 ≥ 𝑇 . (3.18)

It is clear that the MILP formulation in Section 3.2 is a special case
where 𝑉 is the set of all vehicles and 𝑇 = 0.

The MILP-based approach works as follows. Given MILP(𝑉 ,𝑇 ), if
|𝑉 | is small enough, we solve MILP(𝑉 ,𝑇 ) as the MILP formulation
in Section 3.2 with the timing constraint (Equation (3.18)). Other-
wise, if |𝑉 | is large, we set 𝑉 ′ as a subset of 𝑉 , where 𝑉 ′ consists
of |𝑉 ′ | vehicles with the least estimated arrival times in 𝑉 (to sat-
isfy Equations (3.12) and (3.17).) Then, we solve MILP(𝑉 ′,𝑇 ) and
MILP(𝑉 \𝑉 ′,𝑇 ′) where 𝑇 ′ is the objective of MILP(𝑉 ′,𝑇 ) plus 𝐺+.
The MILP-based approach cannot guarantee the optimality, but it
provides a linear time complexity to |𝑉 | as long as |𝑉 ′ | is a positive
constant.

4 EXPERIMENTAL RESULTS
In this section, we demonstrate the experimental results. The exper-
iments were run on a laptop with 1.8GHz Intel Core i7-8550U pro-
cessor and 16GB memory. We use Gurobi as the MILP solver. Due to
uncontrollable HVs in mixed-traffic, existing studies on mixed-traffic
focus on protocol design (e.g., switching to signalized intersection
management with the presence of HVs) or single-vehicle control
rather than system-wide scheduling. Therefore, we will compare our
approaches with the FCFS approach. The FCFS approach is optimal
for the single conflict zone model when all vehicles are of the same
type.

4.1 Single Conflict Zone Model
We consider 4 lanes as shown in Figure 1, 10 vehicles on each lane,
𝐺 = 1 (second), 𝐺+ = 3 (second), and a Poisson arrival with _ = 0.5
vehicle per second. We compare our dynamic programming approach
with the FCFS approach which schedules vehicles according to their
estimated arrival times.

Figure 2(a) shows the experimental results. The dynamic pro-
gramming approach returns an optimal approach and has a better
objective when the HV ratio is between 0.1 and 0.9 because it tends
to group CAVs together and prevents them from being interrupted
by HVs which require a larger time gap. When the HV ratio is 0 or 1,
where all vehicles’ time gaps are𝐺 or all vehicles are not controllable,
both approaches are optimal. The average runtime of the dynamic
programming approach is 0.51 second.

We further observe that the objective of the dynamic programming
approach with respect to the HV ratio is rather linear, compared with
the FCFS approach. This brings the insight that even early adoption
of CAVs, scheduled by the dynamic programming approach (not by
the FCFS approach which starts to gain clear benefit when the CAV
penetration rate is up to 0.5), can significantly improve the traffic
performance.

4.2 Trajectory-Based Model
4.2.1 MILP Formulation. We consider 4 lanes, 5 vehicles on each
lane, 𝐺 = 1 (second), 𝐺+ = 3 (second), and a Poisson arrival with
_ = 0.5 vehicle per second. We compare our MILP formulation with
the FCFS approach. We are also interested in how effective CAVs
are to support mixed-traffic intersection management, so we also
perform experiments assuming that HVs are controllable as CAVs.

Figure 2(b) shows the experimental results. The MILP formula-
tion returns an optimal solution and has a better objective than the
FCFS approach when the HV ratio is between 0.1 and 0.9. Similar
to the dynamic programming approach in the previous section, the
objective of the MILP formulation with respect to the HV ratio is also



Mixed-Traffic Intersection Management Utilizing Connected and Autonomous Vehicles as Traffic Regulators Conference’17, July 2017, Washington, DC, USA

(a) (b) (c)
Figure 2: (a) Comparison between the FCFS approach and the dynamic programming (DP) approach for the single conflict zone
model. (b) Comparison between the FCFS approach and the MILP formulation (including experiments assuming that HVs are
controllable as CAVs, marked as MILP*) for the trajectory-based model. (c) The average waiting times of CAVs and HVs in the
MILP formulation. The objective is the entering time of the last vehicle.

(a) (b) (c)
Figure 3: (a) Comparison between the FCFS approach, the MILP formulation, and the MILP-based approach with small test cases
for the trajectory-based model. (b) Comparison between the FCFS approach and the MILP-based approach with large test cases for
the trajectory-based model. (c) The objective ratio of the MILP-based approach to the FCFS approach. The objective is the entering
time of the last vehicle. A number in the parentheses is the subproblem size of the MILP-based approach.

rather linear, supporting early adoption of CAVs again. Furthermore,
if HVs are controllable, the objective is reduced significantly only
when the HV ratio is above 0.5, bringing the insight that controlling
half vehicles, with our blocking strategy, is almost as effective as
controlling all vehicles.

Figure 2(c) shows the average waiting times (𝑡𝑙,𝑖 −𝐴𝑙,𝑖 for `𝑙,𝑖 ) of
CAVs and HVs in the MILP formulation. We can observe that the
waiting time of CAVs is larger than that of HVs. This is because, when
the waiting time of an HV increases, it means that the HV is blocked
by a CAV and implies that the waiting time of the CAV also increases.
This indicates that our MILP formulation controls CAVs which suffer
extra waiting times but improves the overall traffic performance.

The average runtime of solving the MILP formulation is 0.42 sec-
ond. It should be noted that we have also modified the dynamic pro-
gramming approach by introducing a time state as Wu et al. [15] to fit
in the trajectory-based model. The modified approach also returns an
optimal solution as the MILP formulation but takes about 1 minute.
Due to the much longer runtime and the limitation of space, we do
not consider the modified approach in the following experimental
results.

4.2.2 MILP-Based Approach (Small Test Cases). We consider 4 lanes
and 5 vehicles on each lane with the same parameters as above. We
compare our MILP-based approach with the FCFS approach and the

MILP formulation. Figure 3(a) shows the experimental results. When
the subproblem size increases, the objective decreases (is better) for
the MILP-based approach, which is expected. It should be noted that
when the subproblem size is the number of vehicles, the MILP-based
approach is equivalent to the MILP formulation which returns an
optimal solution. TheMILP-based approach significantly outperforms
the FCFS approach in almost all cases, especially when the HV ratio
is not 0 or 1. The average runtimes of the MILP-based approach with
subproblem sizes 5 and 10 are 0.01 and 0.05 second, respectively,
which are much more efficient than solving the MILP formulation
with 0.48 second.

4.2.3 MILP-Based Approach (Large Test Cases). The average runtime
of solving the MILP formulation grows exponentially as the number
of vehicles increases. When the number of vehicles reaches 32, the
average runtime is about 1 minute, making the MILP formulation
inapplicable in large test cases. Here, We consider 4 lanes and 10 vehi-
cles on each lane with the same other parameters as above. We com-
pare our MILP-based approach with the FCFS approach. Figure 3(b)
shows the experimental results. Similarly, when the subproblem size
increases, the objective decreases (is better) for the MILP-based ap-
proach. The MILP-based approach also significantly outperforms
the FCFS approach in all cases, except when the HV ratio is 0 or 1.
Figure 3(c) shows the objective ratio of the MILP-based approach
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Table 1: SUMO Simulation Parameters.

Type Parameter Value

Simulation Simulation Step 0.1 (s)
Road Length 500 (m)

Intersection Sensing Range 100 (m)
Manager Scheduling Period 1 (s)

Vehicle

Max Speed 16 (m/s)
Max Acceleration/Deceleration 3/-4.5 (m/s2)

Min Gap 2.5 (m)
Vehicle-Following Model Krauss Model [12]

Figure 4: Simulation results on SUMO. SUMO* is the SUMO
unsignalized intersection [8] with modifications using TraCI
to fit our assumption that CAVsmove slower with the presence
of HVs.

to the FCFS approach when the numbers of vehicles are 12 and 36.
When the HV ratio is low, the improvement over the FCFS approach
is more significant, which is also consistent with the results above.
The average runtimes of the MILP-based approach with subproblem
sizes 4, 12, and 20 are 0.01, 0.08, and 0.42 second, respectively, which
are real-time applicable.

4.2.4 SUMO Simulation. We perform simulation on SUMO [9] and
consider 4 lanes as shown in Figure 1. The parameters are listed in
Table 1, and _ = 0.1 vehicle per second is set for the Poisson arrival
of vehicles (the arrival rate needs to be lower than the previous ex-
periments due to additional safety constraints and vehicle dynamics
on SUMO). As the traffic is coming continuously in the simulation,
we measure the average waiting time of vehicles. We implement the
MILP-based approach and control vehicles according to the computed
entering times by the traffic control interface (TraCI) on SUMO. We
compare it with the SUMO unsignalized intersection [8] with modi-
fications using TraCI to fit our assumption that CAVs move slower
with the presence of HVs. Figure 4 shows the simulation results, and
the MILP-based approach significantly outperforms the counterpart.
We believe that the results can be further improved if the model can
consider the additional safety constraints and vehicle dynamics of
SUMO, but it will also trade off the computational efficiency.

5 CONCLUSION
In this paper, we targeted the problem of mixed-traffic intersection
management and scheduled CAVs to control the subsequent HVs.
We developed a dynamic programming approach and a mixed in-
teger linear programming (MILP) formulation to optimally solve
the problems with the corresponding intersection models. We then
proposed an MILP-based approach which is more efficient and real-
time-applicable than solving the optimal MILP formulation, while
keeping good solution quality as well as outperforming the first-
come-first-served (FCFS) approach. Experimental results and SUMO

simulation indicated that controlling CAVs by our approaches is ef-
fective to regulate mixed-traffic even if the CAV penetration rate is
low, which brings incentive to early adoption of CAVs. Future direc-
tions include management with specific lanes for CAVs and HVs and
management considering different dynamics of CAVs and HVs.
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