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Abstract

Programmable matter is a recently developed research area tasked with investigating

the properties of systems made up of small, weak computing entities co-operating as

components of a single coherent object to accomplish non-trivial tasks. A key char-

acteristic of programmable matter systems is the dynamics, whether the computers in

the system act independently or react to changes in the environment. In this thesis,

we study active models of programmable matter, meaning that at control lies with the

computing entities. We are interested in exploring the capabilities of these systems and

defining which tasks can be solved by them. We investigate the rotation model, a model

where the entities form a shape on a 2D grid and move by rotating around each other.

Previous work introduced the RotC-Transformability problem, where shapes must be

transformed without any of the entities disconnecting from the shape at any point. We

solve this problem for the nice and orthogonally convex classes of shapes by providing

algorithms to transform between shapes in the same class.

In Chapter 2, we define the rotation model, as well as some other preliminaries.

In Chapter 3, we present our nice shapes construction result by exploiting the

concept of canonical shapes to transform a line into a nice shape, and then demonstrate

that the transformation of nice shapes into any other nice shape through the canonical

shape is possible. We exploit the concept of seeds, which are small shapes added to

the main shape to aid construction. This is justified by the presence of shapes which

cannot be transformed without external aid. We use the seed to construct a robot, a

subset of the computing entities, to move the components of the shape efficiently.

In Chapter 4, we give our orthogonally convex shapes result by using the same

method. However, the result is much more technically complex, with traversal results

which were harder to establish due the larger space of local shape configurations which

needed to be considered, including a larger number of edge cases. To make this work,

we needed to make use of two types of canonical shapes, an intermediate one and a

final one, which was necessary to ensure certain difficult shapes could be transformed

without breaking connectivity. This class of shapes is richer in structure than nice

shapes, and therefore the result moves closer to the goal of universal transformation,

the ability to transform any shape into any other shape.
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Chapter 1

Introduction

1.1 Dynamic Systems of Programmable Entities

The theory of programmable matter is a research area within the theoretical computer

science field investigating the algorithmic properties of models used to represent pro-

grammable entities, groups of identical objects, referred to as nodes throughout. They

exist within an environment and are co-ordinated by one or more programs, computing

decisions over a set of potential actions to decide which actions the objects should take.

These objects in turn form a single coherent object, with the preservation of connec-

tivity, the physical connections between nodes which keep the object coherent, one of

the defining characteristics of programmable matter.

Research in this area is increasingly popular, motivated by the existence of systems

which can be represented by programmable matter models. For example, within nature

there are systems consisting of subcomponents capable of autonomous behaviour like

the regeneration of tissue in biological organisms. The operations of biological pro-

cesses such as these can be represented by algorithms within a programmable matter

model. The algorithms and models developed with this method can be used to enable

and expediate the development of efficient centralised or decentralised algorithms and

programmable matter systems, the results of which can then be applied to existing

technologies.

A key property of these systems is the control of the dynamics, or the changes which

take place within the system. These changes are represented as a transition between

states. A programmable matter system is actively dynamic if all change is the result of

actions which the objects make through the execution of a predetermined algorithm.

Examples of systems with active dynamics include reconfigurable robots, such as mole-

cubes [1] which can move around and change the structure of the system. In addition,

systems which rely on large collectives of identical robots have been developed, for ex-

ample the Kilobot system [2] and the Robot Pebbles system [3]. Another interesting

implementation is Millimotein [4], a system where programmable matter folds itself

into arbitrary 3D shapes. The Catoms system [5–7] is a further implementation which

1
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constructs 3D shapes by first creating a “scaffolding structure” as a basis for construc-

tion. A more recent variant is Datom, which relies on the robot deforming its shape to

move [8, 9].

Programmable matter systems in turn have theoretical models to represent them.

There are models for programmable matter which are actively dynamic, for example

the SILBOT model [10], and the nubot model [11]. There is also extensive research

into the amoebot model [12–15], where finite automata on a triangular lattice follow

a distributed algorithm to achieve a desired goal, including a recent extension [16] to

a circuit-based model and another extension [17] which introduced concurrency con-

trol. There is also research into the potential for fault tolerance in the model [18].

It is expected that applications in further domains such as molecular computers and

self-repairing machines may become apparent in the long-term. Another model is the

Crystalline robots model [19], where unit-cube atoms move by extending and contract-

ing arms, which can attach to and detach from neighbours.

Programmable matter is closely related to actively dynamic networks. These are

more general network structures which give the nodes within the network control over

the dynamics, for example the ability to place and remove edges in the network graph.

In a sense, programmable matter is the geometric equivalent of these kinds of networks,

with a greater emphasis on the close proximity of the nodes. A recent paper [20] defines

complexity measures for measuring the costs of creating and maintaining networks in

this scenario, and provides algorithms both for reconfiguring the network and solving

a general task on it. Applications, both theoretical and in systems, include peer-to-

peer networks [21], wireless communication networks [22] and transportation networks

[23]. There may be potential applications for a hybrid system, where nodes alternate

between programmable matter and dynamic network models depending their proximity

to each other.

Another related area of study is swarm robotics. These are systems for organising

a group of robots which operate as a decentralised swarm, as opposed to acting as

subcomponents of a coherent object. The result is more relaxed rules for movement

which are independent of other robots, rather than relative to other robots as in pro-

grammable matter. There are models and algorithms for gathering [24, 25], deployment

[26, 27], geometric pattern formation [28, 29] and connectivity preservation [30]. A hy-

bridisation of these models with programmable matter would yield models of systems

where nodes can alternate between the formation of a coherent object and more inde-

pendent behaviour. A similar concept is that of programmable matter models which

allow nodes to break connectivity, as in [31].

On the other hand, a programmable matter system is passive if the dynamics are

external to the system, and therefore outside of its control. For example, the behaviour

of a system which monitors woodland to detect fires depends on the state of the area
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it is monitoring. Other examples include self-assembling programmable materials, such

as the Abstract Tile Assembly Model [32–34] and self-assembling DNA molecules [35,

36], which form bonds based on the random interaction of components (see also a

general survey in [37]). Another interesting example is slime molds, which are able to

solve computational problems [38, 39] by foraging for food according to predetermined

behaviour. Recent work has resulted in a system of particles which use DNA sequences

to merge, with the properties of both the particles and the DNA sequences able to be

customised to create unique materials [40].

In models of these systems, the environment imposes events on the system, and the

system reacts according to a predetermined algorithm. More specifically, the events

which occur are selected from a pool of potential events by a scheduler. There are

various types of scheduler, for example the uniform random scheduler, which selects

events uniformly at random, and the adversarial scheduler, which selects the event

which creates the least progress towards a goal specified when the algorithm is defined.

Such schedulers are almost always required to be fair, meaning that they select every

possible event infinitely often, so that trivial loops do not prevent the algorithm from

operating correctly. An example of a model representing the properties of passively

dynamic programmable matter systems is the population protocols model of Angluin

et al. [41, 42], where nodes are only capable of changing state in response to (typically

pairwise) interactions with other nodes. Another is the model by Kuhn et al. [43]

where nodes in a network have potential connections which are controlled by an adver-

sarial scheduler. Michail et al. [44] extended the latter model to the case of possibly

disconnected dynamic networks, in which connectivity is only guaranteed in a temporal

sense. The Tile Automata model [45] is a recent model combining features of both

cellular automata and the 2-Handed model of self-assembly. There is also the model by

Emek and Uitto inspired by multicellular biological processes, where nodes must try to

confine changes to their immediate neighbourhood [46]. There are several applications

for passive systems, for example the modelling of chemical reaction networks [47, 48]

and epidemics [49].

Some programmable matter systems are hybrid systems. In models of these systems,

the nodes exist within an environment which imposes events on the system, however,

the nodes have the ability to take actions which alter the environment, in turn altering

the events it imposes in a kind of feedback loop. Nodes may even be able to create

structures which the environment cannot control. An example of a hybrid system is

the tile line system, where a line of passive tiles is maintained by an active robot [50].

Examples of hybrid models include the network constructors model introduced by

Michail and Spirakis [51], an abstract model of distributed network construction where

the network dynamicity is the same as in population protocols but now the finite-

state entities can additionally activate and deactivate pairwise connections upon their
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interactions. These connections in turn change the events which occur, as the outcome

of events can differ depending on whether or not a connection exists between the nodes

when an interaction occurs. This is naturally motivated by molecular interactions

where, for example, proteins can bind to each other, forming structures and maintaining

their stability despite the dynamicity of the solution in which they reside. This model is

similar to the mediated population protocols model [52], which differs from the former

model by having a constant-size set of states for connections, not just a binary for

existence. This shift, from constant edge-states to binary edge-states, is due to the

change in focus away from computation problems and towards network construction.

Then Michail [53] studied a geometric variant of network constructors, in which the

entities can only form geometrically constrained shapes in 2D or 3D space. Another

interesting hybrid dynamic network model is the one by Gmyr et al. [54], in which the

entities have partial control over the connections of an otherwise worst-case passively

dynamic network, following the model of Kuhn et al. [43].

The foundations of programmable matter are based on work with algorithms which

represent the capabilities of a generic programmable matter system. For example,

Czyzowicz et al. [55] provide a bound on the speed that a generic active system can

construct compact structures where the robot is a deterministic finite automaton. In

addition, work on a generic model of programmable matter called “self-organising par-

ticle systems” has provided insights into fundamental properties such as compression of

nodes in space [56], the election of “leader” nodes for breaking symmetry in algorithms

[57], and other algorithms such as shape formation and shape recognition [58]. There

is also work on universal coating, or covering the whole surface of a shape with nodes

[59]. The impact of energy constraints on behaviour, inspired by natural systems, has

also been explored [60]. Programmable matter systems have been shown to be able to

mimic the operations of CAD programs [61]. On the side of passively dynamic mod-

els, work on DNA self-assembly and abstract tile assembly is inherently algorithmic,

as the passive nature of these systems mean they follow an algorithm in response to

events, which act as inputs, imposed by the environment. Population protocols have

been shown to be able to compute semilinear predicates [62], and simulate a Turing

machine via the use of a “phase clock”, which propagates phases of a computation like

an epidemic [63]. Population protocols usually assign an initial configuration to the

population as part of the input. Self-stabilisation, or the ability of populations with

arbitrary initial configurations to perform computations, has been investigated, with

populations able to construct spanning trees in regular graphs using O(logD) memory,

where D is the diameter of the graph [64]. Finally, populations protocols can be made

to tolerate O(1) crash failures, given some preconditions on the inputs [65].

Actively dynamic models can be classified depending on where the algorithmic con-

trol over the decision making lies. In centralised models, this control lies with a single
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central computer which implements a centralised algorithm. The central computer

usually has full knowledge of the state of the system. It therefore takes advantage of

this to reconfigure the state of the programmable matter system with the benefit of

global knowledge and the ability to efficiently co-ordinate nodes. The result is an op-

timal solution, provided that the problem is computationally tractable. For examples,

see [19, 66]. By contrast, the control in decentralised models lies with each individual

node, which must compute its actions and act independently of other nodes, for exam-

ple by following a “look-compute-move” (LCM) cycle. In this setting, the ability of the

nodes to co-ordinate and communicate information is emphasised. Examples include

the aforementioned amoebot model [12] and the nubot model [11]. Real-life applica-

tions of programmable matter rely on decentralised models, as they usually do not have

access to a single central computer, especially in use cases where the properties of pro-

grammable matter are valuable. However, the investigation of centralised algorithms

for programmable matter is also valuable as they give a bound on what problems are

feasible for decentralised algorithms to solve, as well as giving insights on how decen-

tralised solutions to problems can be developed. They can also act as a simpler model

for testing physical or mechanical properties from an engineering perspective without

the need to give nodes computation and sensing capabilities. In this work, we explore

the centralised setting with active dynamics.

In the future, as the cost of computational power continues to decline, there is the

possibility that programmable materials capable of sensing, actuating, computing and

communicating, will be mass-produced. This in turn could lead to applications as a

form of highly sophisticated “smart material” [67]. Such materials would be able to

change shape automatically and precisely, alternating between fluidity and rigidity as

the situation requires. Items such as clothes and furniture would be able to change

structure as the user desires. This will place emphasis on the ability of programmable

matter models to represent the formation of complex 3D shapes. This could be accom-

plished with non-homogenous robots which specialise in forming separate components

or are divided into categories based on properties such as material and size. Models may

also have to incorporate more complex elements such as physical laws, as they move

away from the abstract and towards the concrete representation of robots in physical

space. From the perspective of passive systems, there is much recent work in dynamic

networks using various models, and in the future there may be a focus on unifying these

models into a single model which can represent every kind of network. There is also the

possibility of using real systems as they are developed to inform the models of networks

in highly dynamic environments [68].

In the following sections, we give a brief overview of our model and the results.

The detailed definitions of the model, main properties and problems are presented in
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Chapter 2, and the detailed analysis, related work and results are presented in the

corresponding chapters.

1.2 Actively Dynamic Models

In this thesis, we consider an actively dynamic and centralised model where there is

a set of n nodes which exist within cells on a square grid. Note that programmable

matter models need not exist on a square grid, for example Walter et al. [69] uses a

hexagonal grid, the amoebot model mentioned earlier uses a triangular grid, and there

are even models using continuous 3D space [70]. These nodes are capable of making

a single minimal movement, the rotation of one node around another. In addition, all

nodes must form a single connected shape during and after every move. This rotation

model was established in a previous work [31]. The motivation for this model is the

possibility of representing systems of reconfigurable robots, with each robot only able to

perform a minimal operation due to resource constraints, and dependent on connections

with the other robots to perform tasks.

The problem we consider for the model in those chapters is the RotC-Transformability

problem, established in [31]. In this problem, the nodes form an initial connected shape

A on the square grid, and the goal is to transform the shape A into another shape B.

This occurs via a series of rotation movements, with each rotation changing the config-

uration, the specific layout of the nodes on the grid. Time is represented sequentially

as the number of rotation movements which the algorithm causes to occur. This is pos-

sible due to the assumption that the algorithm is centralised, with each node moving

sequentially, and that computation time is negligible. If the nodes could make paral-

lel moves, then a parallel representation of time would be necessary. More formally,

RotC-Transformability is a centralised computational problem, where the goal is to de-

cide for an arbitrary number of time steps t, the existence of a series of configurations

C0, C1, . . . , Ct, where C0 = A, Ct = B and for all Ci, for 0 ≤ i ≤ t, the nodes form a

connected shape. If this sequence exists, it returns the sequence of moves necessary to

transition between the configurations. All rotation movements are reversible, a common

property of actuation mechanisms in programmable matter models and a fact we take

advantage of in our theorems. The rotation movement naturally divides the square

grid into two sets of cells, resembling the checker pattern of a chess board, with nodes

incapable of moving from one set to the other. We refer to these sets and the nodes

which occupy them by the colours red and black.

The shapes we consider in Chapter 3 are those from a class called nice shapes, first

defined in [71] as a class containing any shape S which has a central line L where for

all nodes u in S either u ∈ L or u is connected to L by a line of nodes perpendicular

to L. Our goal is to solve the RotC-Transformability problem for any arbitrary pair of
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nice shapes, so long as they are colour consistent, meaning the number of red and black

nodes in both shapes is the same. This is a necessary condition for transformation,

as nodes are incapable of changing their colour in the rotation-only setting. We first

show that some shapes are blocked, meaning that they cannot meaningfully transform

under the conditions of the problem. We therefore introduce a seed, also referred

to as “musketeers”, a group of nodes in a shape S which are placed in empty cells

neighbouring a shape A to create a new connected shape which is the unification of

S and A. Seeds allow shapes which are blocked or incapable of meaningful movement

to perform otherwise impossible transformations. A seed consisting of x nodes will be

called an x-node seed throughout the thesis. The use of seeds was established in a

previous work [31], and more recently shown to enable universal reconfiguration in the

context of connectivity preserving transformations [72]. By assuming a minimal seed

of size 4, we show that there is a solution to RotC-Transformability for any pair of

colour-consistent nice shapes.

In Chapter 4, we continue with the same model and problem, but this time we turn

our attention to a class of shapes which we call orthogonally convex shapes, defined

intuitively as all shapes where for each horizontal and vertical line containing nodes

there is no empty cell between two cells occupied by nodes. This is a fundamentally

different class of shapes to that of nice shapes, and more difficult to transform. It

cannot easily be compared to the class of nice shapes. A diagonal line of nodes in the

form of a staircase belongs to the class of orthogonally convex shapes but not the class

of nice shapes. Any nice shape containing a gap between two of its columns is not an

orthogonally convex shape. Finally, there are shapes like a square of nodes which belong

to both classes. By moving to orthogonally convex shapes, we move towards universal

transformation, because the class seems richer in structure than that of nice shapes

thanks to the absence of a central line. If universal transformation turns out not to be

possible, we at least move towards an improved understanding of which transformations

are possible in the model.

Studies of systems of programmable agents on a grid which are capable of both

rotation and sliding movements, where sliding is the movement of one node over two

neighbouring nodes, have existed for over a decade. These are referred to as metamor-

phic systems [66, 73, 74]. An important property of these systems is the reversibility

of movement, meaning that for any action a which causes the configuration C0 to be-

come C1, there is a corresponding action b which causes C1 to become C0 again. In

research on these systems, it is common for the problem of transforming shapes to be

expressed as that of transforming from an initial shape A which belongs to a specific

class of shapes, into a shape B from a designated class of shapes, which are referred to as

canonical shapes. Since the movements are reversible, it trivially follows from any proof

that an arbitrary shape in a class of shapes can transform into a canonical shape that
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the reverse is possible, and therefore, that the transformation of any shape of the class

under consideration into any other shape of the same class is possible, provided that

they consist of the same number of agents. The most popular type of canonical shape

is the line [69, 71, 75], which is also considered in Chapter 3 of our results, however

there are other types of shapes such as squares [76], and we consider a line-with-leaves

in Chapter 4. There are even recent efforts to avoid the use of canonical shapes for the

sake of minimising shape-to-shape transformation complexity [77].

There are some important results in metamorphic systems which lead directly into

our work. These systems are generally assumed to maintain connectivity. A first paper

[73] focuses on moving shapes across the grid as fast as possible, and provides bounds

on the speed of movement, defined using the number of cells traversed and time. It

also does not focus exclusively on square grids, but considers hexagonal grids as well.

A second paper [74] shows that the question of whether or not a motion maintains

connectivity is decidable, and also whether or not a goal configuration is reachable

from a given state. This in turn leads to the question of whether or not these systems

are capable of universal transformation, the ability to transform any arbitrary shape

into any other arbitrary shape with the same number of nodes. This was later shown

to be possible in two independently developed proofs [31, 66]. One question left open

by this result is whether or not universal transformation is possible with only one of

the two movements considered.

The RotC-Transformability problem was defined as an extension of the Rot-Transfo-

rmability problem, which is not constrained by the need to maintain connectivity. They

introduce the concept of colouring nodes to represent the properties of rotation-only

movement, which we used extensively in all our work in actively dynamic models. They

also introduce the concept of blocked shapes, demonstrating that universal transforma-

tion is not possible with rotation only, leading to the necessity of the use of seeds.

They introduce the Minimum-Seed-Determination problem, that of determining the

minimum seed necessary to make the transformation between two shapes A and B fea-

sible. They show that universal transformation is possible in the Rot-Transformability

setting, provided that a 2-node seed is placed on the outside of the shape, and that it

is in P . They then define the RotC-Transformability problem and show that RotC-

Transformability is in PSPACE. They then move to a rotation and sliding model.

As previously mentioned, they give a proof for universal transformation in this model,

and then a Θ(n2) time bound for transformation in the worst case. Finally, they show

that it is possible to use parallelisation to speed up the transformation, leading to a

O(n) parallel time bound, where one time step in parallel time is equal to one move-

ment for every node in the shape. We built on this work by developing transformation

results in the RotC-transformability setting, with the ultimate goal being a universal

transformation result similar to that in the Rot-transformability setting.
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This left the open question of universal transformation with connectivity preserva-

tion, with preliminary work in an arxiv draft [78] of the paper. Our work continues

from that open question towards the goal of demonstrating the feasibility of universal

transformation in the setting. We believe this is a valuable goal for the development

of programmable matter systems which rely on connectivity to be feasible, or for the

completion of complex tasks.

Figure 1.1: An example of a clockwise rotation movement. A node on the black dot
(in row y − 1) and empty cells at positions (x + 1, y) and (x + 1, y − 1) are required

for this movement.

There is also recent work into three dimensional systems, usually variants of sys-

tems which are more typically presented as occupying 2D space. This usually takes the

form of extending results from the 2D model to a 3D variant, for example bounds on

transformations imposed by symmetry have been extended to 3D models [79]. Results

for the exploration of finite 2D square grids [80] have also been extended to 3D equiv-

alents [81]. The parallel reconfiguration of robots in the crystalline robots model [82]

has also been extended to a 3D model [19]. However, there are also problems unique

to 3D models, for example the plane formation problem [70], where robots must all

enter a common plane. It can been seen that results in 3D space are generally inci-

dental extensions of 2D results, a necessary consequence of the focus on 2D systems

which are generally easier to analyse. In the future, as more real-world applications

for programmable matter systems are developed, there may be an increase in demand

for solutions to problems encountered which cannot easily be solved by systems which

assume existence within 2D space. This would naturally lead to a shift in emphasis

towards 3D systems.

1.2.1 Centralised Transformations for Nice Shapes

As stated earlier, in Chapter 3, we consider the problem of transforming nice shapes into

each other. We first show that there exist blocked shapes which cannot be meaningfully

transformed. This is an extension of the blocked shapes set considered in [31], as it

considers all shapes which are blocked due to the need to maintain connectivity, not

just the line. We use this to justify the introduction of a seed to aid the transformation.

We initially use a seed of size 3 to transform a line of nodes into a nice shape. We prove
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Figure 1.2: Two examples of blocked shapes.

this by using an algorithm, DepositNode, which uses the seed to raise nodes from the

line and place them, constructing the nice shape node by node. We first prove this is

possible for a subset of nice shapes where each of the lines perpendicular to the central

line L are of even length. We then extend this result to all nice shapes, and show

via lower and upper bounds that this takes Θ(n2) time steps, and that this bound is

optimal. However, because we must discard a node at the end of the transformation,

it is not reversible. We therefore increase the size of the seed to 4 to get a reversible

transformation of the line to any nice shape. It follows that by using the line as a

canonical shape the transformation from any nice shape to any other nice shape is

possible. The same time bounds apply to this transformation as well.

There were some technical challenges to overcome in the process of achieving this

result. One of the first things to contend with when transforming nice shapes is that

there are some which are blocked, meaning that they cannot meaningfully transform

under the conditions of the problem. For example, a nice shape which consists solely of

a line can only rotate the two ends of the line. It therefore naturally follows that some

form of aid will be necessary if the transformation of any nice shape is to be accom-

plished in this setting. In addition, any strategy for the transformation of nice shapes

must contend with the potential existence of gaps between the lines perpendicular to

L. Furthermore, the central line L naturally bisects the shape in two, which hints at

a strategy of treating each half separately. Our goal for this chapter was to show that

there is a solution for these problems, one which we define algorithmically and describe

with the help of figures.

1.2.2 Transformations for Orthogonally Convex Shapes

The goal in Chapter 4 is to show that the transformation of orthogonally convex shapes

into each other is possible. We first define construction and destruction, which are re-

spectively a series of node placements and removals, which either create a shape or

completely remove it without breaking connectivity at any point in the process. We

then show that a 6-robot, a group of 6 nodes, is capable of traversing the perimeter

of any orthogonally convex shape, and that the same holds for 7-robots. We do this

by using a set of cases which represents all of the possible situations which the robots
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Figure 1.3: Two examples of orthogonally convex shapes. The blue line is the
perimeter of the shape, used later in the paper.

can encounter when attempting to move, and demonstrating that it can always make

progress, defined with the help of an invariant. We traverse the perimeter as the 6-

robot, remove nodes from the shape according to a shape elimination sequence, traverse

as a 7-robot, and place nodes according to a shape generation sequence. By repeating

this process we can eliminate and generate shapes. We use this to transform an orthog-

onally convex shape into a shape we call the diagonal line-with-leaves, named after its

resemblance to the line-with-leaves, a shape which consists of a line with extra nodes

[31]. We use a diagonal version to maintain orthogonal convexity. We transform it via

an intermediate shape which we call the extended staircase. We show this by using a

series of algorithms. ExtendedStaircase creates the shape generation sequence for the

extended staircase which will be built, OConvexToExtStaircase transforms the convex

shape into an extended staircase, and ExtStaircaseToDLL transforms that into a diago-

nal line-with-leaves. By reversibility, we can transform orthogonally convex shapes into

each other, treating the diagonal line-with-leaves as a canonical shape. There is a series

of technical issues involved in showing that the transformation is feasible. For example,

the connection of the extended staircase to the shape, which is not orthogonally convex

but can still be traversed, as we prove in the chapter. The transformation begins with

the addition of a minimal 3-node seed, to deal with blocked shapes as before. This

seed forms a 6-node robot which performs the transformations by moving nodes from

one cell to another, traversing the perimeter of the shape in the process. By following

an algorithm which controls this process, it is possible to transform any orthogonally

convex shape A into any other orthogonally convex shape B which is colour-consistent

with A. We leave the extension of our methods to universal transformation, and the

creation of a decentralised variant of our solution as natural open problems.

The results of this chapter are significantly more complex than those of the previous

chapter, as a result of the need to traverse the perimeter of a shape which is not a trivial

line, as it is in a nice shape which is under construction. In addition, there were a much

larger number of edge cases than in the nice shapes scenario.
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1.3 Roadmap

We consider centralised models in this thesis which allows us to make statements about

feasibility. Chapter 3 and Chapter 4 contribute the transformation of classes of shapes

into other classes of shapes within a programmable matter framework. The first con-

cerns the transformation of nice shapes into other nice shapes, which is significant as it

acts as a stepping stone towards universal transformation. The second shows that the

transformation of orthogonally convex shapes into other shapes within the same class

is possible, which is significant for moving much closer towards universal transforma-

tion, due to the absence of a central line allowing for much more complex structures.

Both results reinforce each other in the sense that the two classes of shapes are not

comparable.

In Chapter 2, we describe in detail the model of programmable entities that we used

in our research. We also compare the model to other, similar models. In Chapter 3, we

give the results of the first research question related to programmable matter, whether

or not it is possible to transform a nice shape into another nice shape with the aid of

a seed in the RotC-Transformability setting. In Chapter 4 we give the results of the

second research question related to programmable matter, our investigation into the

transformation of orthogonally convex shapes into other orthogonally convex shapes

with the aid of a seed in the same RotC-Transformability setting. In Chapter 5 we

conclude and give directions for potential future research.
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Chapter 2

Model, Problems and Basic

Properties

In this chapter, we provide all the notations and definitions which are used throughout

this thesis. We begin by defining the centralised rotation model, used in Chapter 3 and

Chapter 4. We then compare the rotation model to other, similar models.

We begin by formally defining in Section 2.1 the centralised model considered in

this thesis, which we refer to as the rotation model, and provide definitions of the

problems we later study. We provide definitions of the algorithmic concepts used by

the model in 2.1.1, and follow this with some definitions of geometric concepts in 2.1.2.

We then define blocked shapes, the set of shapes where meaningful transformation is

not possible, in 2.1.3 as this justifies the use of seeds for transformations. We define

the concept of canonical shapes, used in both chapters on the active model, in 2.1.4.

We then define the target shapes of each chapter, nice shapes and orthogonally convex

shapes, in 2.1.5. We define shape elimination and generation sequences in 2.1.6. Finally,

in Section 2.2, we end with a comparison between the model and other, similar models

in the literature.

2.1 The Rotation Model

2.1.1 Model and Problem Definitions

In the rotation model we consider in this thesis, programmable matter systems are

organised via a graph G = (V,E), where V is the set of nodes within a 2D square grid.

Each cell is uniquely referred to by its x ≥ 0 and y ≥ 0 co-ordinates. The system itself

consists of a set S of n modules, called nodes throughout. Each node may be viewed as

a spherical module fitting inside a cell. At any given time, each node u ∈ S occupies a

cell in the grid o(u) = (ox(u), oy(u)) = (x, y) (where x corresponds to a column and y to

a row of the grid) and each cell can be occupied by at most one node at a time. At any

15
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given time t, the positioning of nodes on the grid defines an undirected neighbouring

relation E(t) ⊂ S × S, where {u, v} ∈ E iff oy(u) = oy(v) and |ox(u) − ox(v)| = 1 or

ox(u) = ox(v) and |oy(u)−oy(v)| = 1, that is, if u and v are either horizontal or vertical

neighbours on the grid, respectively. We say that two nodes are edge-adjacent if such

a relation exists between them. A more informative and convenient way to define the

system at any time t is the mapping Pt : N≥0 × N≥0 → {0, 1}, where Pt(x, y) = 1 iff

cell (x, y) is occupied by a node. At any given time t, P−1
t (1) defines a shape. Such

a shape is called connected if (S,E(t)) defines a connected graph. A configuration of

a shape is an arrangement of the nodes of the shape on a 2D grid where each node is

uniquely identifiable.

Let A and B be two connected shapes. We say that A transforms to B via a rotation

r, denoted A
r→ B, if there is a node u in A such that if u applies r, then the shape

resulting after the rotation is B. We say that A transforms in one step to B (or that

B is reachable in one step from A), denoted A→ B, if A
r→ B for some rotation r. We

say that A transforms to B (or that B is reachable from A) and write A⇝ B, if there

is a sequence of shapes A = C0, C1, ..., Ct = B, such that Ci → Ci+1 for all 0 ≤ i < t.

Rotation is a reversible movement, a fact that we use in our results.

A line is a connected shape where every node lies on the same column or the same

row. This basic shape is used frequently in our analyses.

Consider a black and red checkered colouring of the 2D grid, like that of a checker-

board. See Figure 2.1 for an example. Then any shape S consists of b(S) nodes which

lie on black cells and r(S) nodes which lie on red cells. Two shapes A and B are colour

consistent if b(A) = b(B) and r(A) = r(B). Because rotations are the only permissible

move, it is impossible for a node to change colour. This is depicted in Figure 2.2. It

follows from this that it is impossible to transform a shape A into a shape B if they are

not colour consistent. For any shape S of n nodes, the parity of S is the colour of the

majority of nodes in S. If there is no strict majority, we pick any as the parity colour.

We use non-parity to refer to the colour which is not the parity.

We consider the problem of transforming shapes into each other via rotation move-

ments. In this setting, this means there exists an initial shape A, and a centralised

algorithm selects a node from A to be rotated as well as the rotation to be performed,

generating the next configuration. Each individual rotation movement takes a time

step, implying that time is sequential and that the number of movements and number

of time steps to perform a transformation are equivalent. The number of time steps

to transform shapes in the rotation only setting has a lower bound of Ω(n2), following

from Theorem 7 of [31] which provides the same bound for a stronger model. The

centralised algorithm then terminates when the final configuration is reached, which is
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equivalent to the target shape B. Transformation problems are therefore decision prob-

lems over whether or not a centralised algorithm exists which is capable of performing

these transformations within the constraints of the problem.

We consider the following problems, first defined in [31]:

Definition 2.1. Rot-Transformability. Given a connected initial shape A and a con-

nected target shape B, decide whether A can be transformed to B (equivalently, a

translated and/or rotated variant of B) using only a sequence of rotation movements.

Definition 2.2. RotC-Transformability. The special case of Rot-Transformability in

which A and B are again connected shapes and connectivity must be preserved through-

out the transformation.

The ultimate goal in the long run is to prove universal transformation for these

problems, meaning that both A and B are any arbitrary colour-consistent shapes. As

already stated in Chapter 1, universal transformation for the first problem was already

proven in the paper which defined it. Our main focus, therefore, is on the latter problem.

Figure 2.1: An example of the checkerboard pattern, used to represent the colouring
of the 2D grid.

2.1.2 General Geometric Definitions

We now define some basic geometric notions which we will refer to extensively through-

out this thesis. For example, the proofs in Chapter 4 require shapes to traverse other

shapes, and in this section we define the geometry necessary to discuss this kind of

movement.
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Figure 2.2: An example of a clockwise rotation movement. A node on the black dot
(in row y − 1) and empty cells at positions (x + 1, y) and (x + 1, y − 1) are required

for this movement. Red nodes, used throughout the paper, appear grey in print.

Definition 2.3. Let A be a connected shape. Mark each cell of the grid that is occupied

by a node of A. A cell (x, y) is part of a hole of A if every infinite length single path

starting from (x, y) (moving only horizontally and vertically) necessarily goes through

an occupied cell. Mark every cell that is part of a hole of A as well, to obtain a compact

shape of marked cells A′. Consider now polygons defined by unit-length line segments of

the grid. Define the perimeter of A as the minimum-area such polygon that completely

encloses A′ in its interior. The fact that the polygon must have an interior and an

exterior follows directly from the Jordan curve theorem [86].

All shapes considered in our results are compact, that is, lacking any holes, unless

otherwise stated.

Definition 2.4. Any cell of the grid that has contributed at least one of its line segments

to the perimeter and has not been marked (i.e., is not occupied by a node of A) is the

cell perimeter of shape A. See Figure 2.3 for an example.

Definition 2.5. The external surface of a connected shape A, is a shape B, not nec-

essarily connected, consisting of all nodes u ∈ A such that u occupies a cell defining at

least one of the line segments of A’s perimeter.

Definition 2.6. The extended external surface of a connected shape A, is defined

by adding to A’s external surface all nodes of A whose cell shares a corner with A’s

perimeter.

2.1.3 Blocked Shapes and Infeasible Transformations

In this section, we cover a series of transformations which are infeasible, meaning that

they rely on the ability to move O(n) nodes but exist in a scenario where moving at

most O(1) is possible. We first define the class of shapes which are blocked, meaning

there is no potential movement available for any node. We then define the class of k-

blocked shapes, where the set of potential transformations has at most k configurations

before any configuration is repeated. We only consider shapes for k = 0. Note however,
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Figure 2.3: The light-blue dashed line is the perimeter of the shape. The red squares
are the cell perimeter, or the set of empty cells which contribute at least one side to
the perimeter. All nodes which share a side with the cell perimeter are part of the

exterior, and all cells enclosed by the exterior constitute the interior.

that the end points of a straight line are blocked for k = 2, and the whole line for k = 8.

We show that it is necessary for a seed to have at least 3 nodes if it is to be connected

and to enable the movement of more than 5 nodes in a horizontal line. Finally, we

provide a lower bound of Ω(n2) movements for the problem of transforming a line into

a nice shape.

Two nodes are corner-adjacent if their cells have corners which are adjacent to each

other. A node w is an interior node if for each of the cells x edge-adjacent to w either

there is a node occupying x or there are two nodes y and z such that y and z are

edge-adjacent to x and corner-adjacent to w. A node is an exterior node if it is not

an interior node. These relations are depicted in Figure 2.4. Note that when rotating

nodes around each other, we use a special abbreviation, depicted in Figure 2.5.

Figure 2.4: Examples of adjacency and interior/exterior nodes. The black nodes in
the first image are edge-adjacent to the red node and corner-adjacent to each other.
The black node in the second image is an interior node surrounded by exterior nodes.

The black node in the middle in the third image is also an interior node.
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Figure 2.5: The rotation on the left is an abbreviated version of the rotations on the
right, used throughout the paper. The numbers represent the order of rotations.

Lemma 2.7. In the Rot-Transformability setting, a shape is blocked if and only if there

is only 1 node or every exterior node has no edge connections to any other exterior node.

Proof. A shape with one node is trivially blocked because there is nothing for it to

rotate around. Otherwise, a shape consists of interior nodes connected to each other

with the possibility of one-node gaps, surrounded by exterior nodes which form diagonal

lines due to the edge-adjacency restriction. Interior nodes are blocked by the nodes that

surround them, either because the grid space is filled by an edge-adjacent node or the

two corner-adjacent nodes block the rotation movement. Exterior nodes can only rotate

around nodes which are edge-connected, which must be interior nodes. The nodes which

surround an interior node, whether edge or corner connected, always block an exterior

node from moving, regardless of whether they are interior or exterior nodes themselves.

Conversely, if there is an exterior node which is edge-connected to an exterior node,

the exterior node can rotate into the empty space which it provides.

This creates a shape which is similar to one or more overlapping rhombuses, for

example Figure 2.6. Furthermore, with the additional condition of connectivity preser-

vation, it is possible for these shapes to be connected by straight lines resembling a

geometric cactus form of a cactus graph with these shapes instead of cycles.

Let S be an arbitrary shape with B1 ∪ B2 ∪ . . . ∪ Bk = B ⊆ S as the set of all

shapes which are blocked under the conditions of Lemma 2.7 which exist within S.

Each shape Bi is maximal, meaning that Bi ∪ S′ is a non-blocked shape, for all S′ ⊂ S

edge-adjacent to Bi. Let G(S) be a graph formed by first introducing one vertex for

every Bi ⊂ B and then one vertex for every other node in S. For all vertices u and v

in G(S), add an edge between them iff their corresponding nodes or blocked shapes in

S are edge-adjacent.

Theorem 2.8. An arbitrary shape S is blocked under the condition of connectivity

preservation if the graph G(S) is a tree, and every leaf in G is a blocked shape.

Proof. By Lemma 2.7, each of the blocked shapes is incapable of movement. Because G

is a tree, any vertex v in G which does not correspond to a blocked shape cannot be part

of a cycle. Because every leaf is a blocked shape, all such v must be interior vertices with

at least two edges. When a node rotates, it can only maintain edge connectivity with the
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node it rotates around. Therefore, the rotation of any of the corresponding nodes would

violate connectivity, equivalent to bisecting G into two disconnected components.

We define a connected seed to be a seed which is a connected shape by itself. We

next show that a connected seed of size s < 3 on a line of length n occupying the grid

spaces (0, 0) to (n − 1, 0) can only move a constant number of nodes, 5 nodes to be

precise. Note that if the seed is disconnected a 2-node seed is able to enable non-trivial

movement by taking positions such that they can work with both ends of the line at the

same time. The position of the seed can also be symmetrical so long as the destination

of the pairs is also mirrored.

Figure 2.6: Examples of blocked shapes.

Lemma 2.9. Any line of nodes S of length n can move at most five nodes from the

line with any k-node seed of size k < 3 nodes.

Proof. A line without seeds, with the connectivity preserving condition and with only

rotation movements cannot do anything other than rotate the two nodes at each end

point. With a 1-node seed, the only possible action is for the node to be positioned in

the cell (2, 1) (or any equivalent symmetrical position) and rotate the end node at (0, 0)

to (1, 1) to form a pair. This is equivalent to having a 2-node seed on a line of length

n−1. With a 2-node seed, it can only interact with an end node and with each node in

the positions (0, 1), (1, 1) or (1, 1), (2, 1) (or any symmetrical position). In the former
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case, the end node can only rotate around the node in (0, 1) because it depends on it

to maintain connectivity. In the latter case, the end node can rotate to (0, 1). This

allows the node in (1, 0) and the node next to it (i.e. in (2, 0)) to rotate. However, they

cannot move much without breaking connectivity thanks to a reliance on the nodes in

(3, 0) and (3, 1) for connectivity which restricts movement.

Therefore, if we start with a 1-node seed, form a two node pair, rotate the node in

(0, 1) to (2, 1), move the two nodes in (1, 0) and (2, 0) and the node at the other end of

the line, we have exhausted all possibilities to maximise the number of moving nodes

without using a seed of size k ≥ 3.

2.1.4 Canonical Shapes

When performing transformations between two arbitrary shapes in the same class, it is

difficult to demonstrate that direct transformation is possible, as any algorithm which

performs this must take any shape in the class as an input and return any other shape

as output. Canonical shapes solve this problem by exploiting the property that any

transformation is reversible. These shapes act as a single “target” shape for the shapes

to transform into. If it is proven that any shape in the class can transform into the

canonical shape, then it follows by reversibility that this shape can transform into

any shape in the class, and since transformation is a transitive process it follows that

transformation from any shape in the class to any other shape is possible. One key

downside of the use of canonical shapes is that the transformation between shapes via

such a shape may be much slower that the fastest transformation possible. Another

is that a direct transformation between shapes may not need assistance in the form

of a seed, but the transformation into the canonical shape does. In an extreme case,

a transformation which requires only one rotation in the direct case may require a

large seed and transformations between multiple shapes if transforming via a canonical

shape.

An important property in the case of coloured shapes is whether or not the canonical

shape is capable of being colour consistent with the target shape. For example, a line

of nodes consists of alternating black and red nodes, with at most one more node of one

colour than the other. This makes it incapable of acting as a canonical shape for shapes

which are more imbalanced than that. In [31], the authors show that a connected shape

with k black nodes has at least ⌈(k − 1)/3⌉ and at most 3k + 1 red nodes. The same

bounds hold when the colours are inverted. The maximum bound is the result of giving

each black node 4 red nodes as neighbours, and having them share the minimal number

of red nodes necessary to form a connected shape, which is k−1 for k black nodes. The

lower bound is reached by inverting the colours in the same shape. This shape, which

maximises the imbalance between the two colours, is called the line-with-leaves.
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The two canonical shapes which we use in our work are the line, a series of connected

nodes sharing the same column or row, and the diagonal line-with-leaves. The former

can represent any shape where the number of black nodes and red nodes is equal or

almost equal. We now show that the latter, a variant of the line-with-leaves, can

represent any orthogonally convex shape.

Lemma 2.10. For all n ≥ 3, the maximum colour-difference of a connected orthogo-

nally convex shape of size n is n− 2⌊n/3⌋.

Proof. We shall perform a column-based analysis of the maximum colour-difference of

a shape S, assuming w.l.o.g. that the majority colour is black. By Proposition 2.16,

every column is a consecutive sequence of nodes. This implies that every even-length

column has an equal number of blacks and reds, and thus does not contribute to the

colour-difference of S. It also implies that every odd-length column can contribute at

most 1 (−1) to the colour-difference and a contribution of 1 (−1, resp.) happens iff

that column starts and ends with a black (red, resp.), including the case of single-

node columns. As a consequence, for a shape to maximise its colour-difference it must

be maximising the number of black-parity odd-length columns while minimising the

number of red-parity odd-length columns.

Consider any internal (i.e., which is not the leftmost or the rightmost) black-parity

column cx of S of length 1. Due to connectivity of S, the single black node (x, y)

forming cx must have the red neighbours (x − 1, y) and (x + 1, y). Note now that

cx−1 and cx+1 cannot both have nodes above y nor both below y, as any of these would

violate horizontal convexity of S. If only one of these two columns has additional nodes,

then the contribution to the colour-difference by these 3 columns is 1 by using 5 nodes.

If both columns have additional nodes, then let w.l.o.g. cx−1 have nodes above y and

cx+1 below y. Then, again, the best contribution to the colour-difference is 1 by using

5 nodes, obtained by adding one black to each column. Adding more nodes to any of

these cases cannot improve the 1/5 ratio.

Next, over all columns of odd length at least 3, the maximum contribution is

obtained by the length-3 column (black, red, black), which contributes to the colour-

difference 1 per 3 nodes.

Consequently, given n ≥ 3 nodes, a shape maximising the colour-difference is the

one consisting of ⌊n/3⌋ columns of length 3 and n − 3⌊n/3⌋ ≤ 2 terminal single-node

columns, for a maximum colour-difference of ⌊n/3⌋ + n − 3⌊n/3⌋ = n − 2⌊n/3⌋, as

required. This shape, which we call the diagonal line-with-leaves, is depicted in Figure

2.8.
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Figure 2.7: The line.

Figure 2.8: The diagonal line-with-leaves shape on n nodes, consisting of k red nodes
and 2k black nodes arranged in ⌊n/3⌋ columns of length 3, plus at most 2 terminal

single-node columns at the left and right ends.

2.1.5 Target Shapes

We now present the classes of shapes which are our target shapes, meaning that they

are the shapes we wish to transform to and from within our setting. In Chapter 3, our

goal is to construct nice shapes. These shapes were first defined by Almethen et al. in

[71]. For an example, see 2.9. We define the concept of waste, which we use in Chapter

3 to allow for the transformation from one shape into another shape which is smaller

than the first. This simplifies some of the transformations by removing the need to

place every node from the initial shape in the new shape. We present the definition for

this type of shape below.

Definition 2.11. If S is not a target shape and S = A∪B where A is a target shape,

we call B the waste of the shape S and say that B is |B| waste.

Definition 2.12. A nice shape N is defined as a shape which has a central line L where

for all nodes u either u ∈ L or u is connected to L by a line of nodes perpendicular to

L.

Definition 2.13. Let Nn−w = S ∪ T be the class of shapes with n nodes, where S is

a target shape of size n− w and T is w waste.
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Figure 2.9: An example of a nice shape.

We now define Orthogonally convex shapes, the class of shapes considered in Chapter

4 together with some basic properties about them that will be useful later.

Definition 2.14. A shape S is said to belong to the family of orthogonally convex

shapes, if, for any pair of distinct nodes (x1, y1), (x2, y2) ∈ S, x1 = x2 implies (x1, y) ∈
S for all min{y1, y2} < y < max{y1, y2} while y1 = y2 implies (x, y1) ∈ S for all

min{x1, x2} < x < max{x1, x2}.

Observation 1. Any discrete convex shape S is also orthogonally convex.

Observe now that the perimeter of any connected shape is a cycle drawn on the

grid, i.e., a path where its end meets its beginning. This follows from the definition of a

perimeter. The cycle is drawn by using consecutive grid-edges of unit length, each being

characterized by a direction from {up, right, down, left}. For each pair of opposite

directions, (up, down) and (left, right), the perimeter always uses an equal number of

edges of each of the two directions in the pair and uses every direction at least once.

For the purposes of the following proposition, let us denote {up, right, down, left} by
{d1, d2, d3, d4}, respectively. The perimeter of a shape can then be defined as a sequence

of moves drawn from {d1, d2, d3, d4}, w.l.o.g. always starting with a d1. Let also Ni

denote the number of times di appears in a given perimeter.

Proposition 2.15. A shape S is a connected orthogonally convex shape if and only if

its perimeter satisfies both the following properties:

� It is described by the regular expression

d1(d1 | d2)∗d2(d2 | d3)∗d3(d3 | d4)∗d4(d4 | d1)∗

under the additional constraint that N1 = N3 and N2 = N4.

� Its interior has no empty cell.
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Proof. We begin by considering the forward direction, starting from a connected orthog-

onally convex shape S. For the first property, the Ni equalities hold for the perimeter

of any shape, thus, also for the perimeter of S. In the regular expression, the only

property that is different from the regular expressions of more general perimeters is

that, for all i ∈ {1, 2, 3, 4}, di−2, where the index is modulo 4, does not appear between

the first and the last appearance of di.

Assume that it does, for some i.

Then di−2 must have appeared immediately after a di−1 or a di+1, because a di−2

can never immediately follow a di. If it is after a di−1, then this forms the expression

di(di−1 | di)∗di−1di−2, which always has did
+
i−1di−2 as a sub-expression. But for any

sub-path of the perimeter defined by the latter expression, the nodes attached to its

first and last edges would then contradict Definition 2.14, as the horizontal or vertical

line joining them goes through at least one unoccupied cell, i.e., one of the cells external

to the d+i−1 part of the sub-path. The di+1 case follows by observing that, in this case,

the sub-expression satisfied by the perimeter would be di−2d
+
i+1di, which would again

violate the orthogonal convexity of S.

The second property follows immediately by observing that if (x, y) is an empty cell

within the perimeter’s interior, then the horizontal line that goes through (x, y) must

intersect the perimeter at two distinct points, one to the left of (x, y) and one to its

right. Thus, these three points would contradict the conditions of Definition 2.14.

For the other direction, let S be a shape satisfying both properties. For the sake of

contradiction, assume that S is not orthogonally convex, which means that there is a

line, w.l.o.g horizontal and of the form (xl, y), (xl + 1, y), . . . , (xr, y), where (xl, y) and

(xr, y) are occupied by nodes of S while (xl+1, y), . . . , (xr−1, y) are not. Observe first

that any gap in the interior would violate the second property, thus (xl+1, y), . . . , (xr−
1, y) must be cells in the exterior of the perimeter of S and (xl, y), (xr, y) nodes on

the perimeter. There are two possible ways to achieve this: d3d
+
2 d1 and d1d

+
4 d3. These

combinations are impossible to create with the regular expression, thus contradicting

that S satisfies the properties. Similarly for vertical gaps. It follows that any shape

fulfilling the two properties must belong to the family of connected orthogonally convex

shapes.

Let cx denote the column of a given shape S at the x co-ordinate, i.e., the set of all

nodes of S at x. Let ymax(x) (ymin(x)) be the largest (smallest) y value in the (x, y)

co-ordinates of the cells which nodes of a column cx occupy.

Proposition 2.16. For any connected orthogonally convex shape S, all the following

are true:

� Every column cx of S consists of the consecutive nodes

(x, ymin(x)), (x, ymin(x) + 1), . . . , (x, ymax(x)).
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Figure 2.10: An example of two orthogonally convex shapes, with the directions of
the perimeter labelled.

� There are no three columns cx1, cx2, and cx3 of S, x1 < x2 < x3, for which both

ymax(x1) > ymax(x2) and ymax(x3) > ymax(x2) hold.

� There are no three columns cx′
1
, cx′

2
, and cx′

3
of S, x′1 < x′2 < x′3, for which both

ymin(x
′
1) < ymin(x

′
2) and ymin(x

′
3) < ymin(x

′
2) hold.

All the above hold for rows too in an analogous way.

Proof. For the first property, observe that any discontinuity would violate vertical con-

vexity of column cx of S, thus, vertical convexity of S. Next, assume that the sec-

ond property does not hold, that is, that there are columns cx1 , cx2 , and cx3 of S,

x1 < x2 < x3, for which both ymax(x1) > ymax(x2) and ymax(x3) > ymax(x2) hold true.

Let w.l.o.g. ymax(x3) ≤ ymax(x1). Then the horizontal line joining (x3, ymax(x3)) and

(x1, ymax(x3)) passes through an empty cell above (x2, ymax(x2)), thus contradicting

orthogonal convexity of S. A symmetrical argument holds for the third property. The

proof for rows is identical, by rotating the whole system 90°.

2.1.6 Elimination and Generation Sequences

Here we define some preliminary aspects of elimination and generation sequences for

shapes. These are used extensively in our proofs for Chapter 4. They represent the ad-

dition and removal of nodes to shapes in the process of construction and deconstruction,

and we exploit this to show that transformations which can simulate the generation and

elimination sequences of shapes can construct and deconstruct those shapes.

For convenience, we define F (S) = {R1, Rp, C1, Cq} as the set containing the first

and last rows and columns of a given shape S (omitting S when clear from context),

called terminal rows/columns, and adjacent : F → F ′, where F ′ = {R2, Rp−1, C2, Cq−1},
as a function mapping R1 to R2, Rp to Rp−1, C1 to C2 and Cq to Cq−1.

Recall that, by Proposition 2.16, every row/column of an orthogonally convex shape

is a line.
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Let S be a connected orthogonally convex shape. A shape elimination sequence

σ = (u1, u2, . . . , un) of S is a permutation of the nodes of S satisfying the following

properties. Let St = St−1 \ {ut}, where 1 ≤ t ≤ n and S0 = S. Observe that Sn

is always the empty shape. The first property is that, for all 1 ≤ t ≤ n − 1, St

must be a connected orthogonally convex shape. Moreover, for all 1 ≤ t ≤ n, ut

must be a node on the external surface of St−1. Essentially, σ defines a sequence

S = S0[u1]S1[u2]S2[u3] . . . Sn−1[un]Sn = ∅, where, for all 1 ≤ t ≤ n, a connected

orthogonally convex shape St is obtained by removing the node ut from the external

surface of the shape St−1.

A row elimination sequence σ of S is an elimination sequence of S which consists

of p sub-sequences σ = σ1σ2 . . . σp, each sub-sequence σi, 1 ≤ i ≤ p, satisfying the

following properties. Sub-sequence σi consist of the k = |Ri| nodes of row Ri, where

u1, u2, . . . , uk is the line formed by row Ri. Additionally, σi is of the form σi = σ1
i σ

2
i ,

where (i) σ1
i = (u1, . . . , uk) or σ

1
i = (uk, . . . , u1) and σ2

i is empty or (ii) there is a uj ∈ Ri,

for 2 ≤ j < k, such that σ1
i = (u1, . . . , uj) and σ2

i = (uk, . . . , uj+1) or (iii) there is a

uj ∈ Ri, for 1 ≤ j < k − 1, such that σ1
i = (uk, . . . , uj+2) and σ2

i = (u1, . . . , uj+1).

We shall call any such sub-sequence σi an elimination sequence of row Ri. A column

elimination sequence of S can be obtained by rotating the whole system by 90°.

Given a connected orthogonally convex shape S of n nodes, a shape generation

sequence σ = (u1, u2, . . . , un) of S is a permutation of the nodes of S satisfying the

following properties. Let St = St−1 ∪ {ut}, where 1 ≤ t ≤ n and S0 = ∅. Observe

that Sn = S. Any shape generation sequence also satisfies the following properties,

which it shares with the shape elimination sequence. The first property is that, for

all 1 ≤ t ≤ n − 1, St must be a connected orthogonally convex shape. Moreover, for

all 1 ≤ t ≤ n, ut must be placed in the cell perimeter of St−1. Essentially, σ defines

a sequence ∅ = S0[u1]S1[u2]S2[u3] . . . Sn−1[un]Sn = S, where, for all 1 ≤ t ≤ n, a

connected orthogonally convex shape St is obtained by adding the node ut to the cell

perimeter of St−1.

2.2 Model Comparison

The most obvious model to compare to the rotation model is the rotation and sliding

model. This model was established in pushing squares around [66], which showed

that universal transformation is possible in O(n2) sequential time in the model, and

a recent paper [31] has shown that universal transformation can be parallelised and

solved in O(n) parallel time. There are also results for heterogenous systems with the

same movement, which have also achieved O(n2) sequential time transformations with

a centralised model [87], by which they argue that space and not time is the “critical

resource” for solving reconfiguration problems.
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Figure 2.11: An example of a pivot movement.

A second type of model which is similar to the rotation model is a model with

pivoting movements [88, 89], which represent nodes using squares which pivot on a

single corner when moving cells. For an example, see Figure 2.11. Pivoting movements

take more space to perform than rotations, as the pivoting node must temporarily

enter cells close to the movement. However, pivoting allows nodes to replicate slide

movements, and therefore nodes which pivot can move between cells of a different

colour, unlike in the rotation model. A recent result [72] showed that the pivoting

model also has blocked shapes, and when a shape is aided by up to 5 additional nodes

and connectivity is preserved through the corners of nodes, universal transformation is

possible in O(n2) time.





Chapter 3

Centralised

Connectivity-Preserving

Transformations for Nice Shapes

3.1 Introduction

In this chapter, we consider the rotation model, an active and centralised model where

there is a set of n nodes which exist within cells on a square grid and are only capable

of rotating around each other. Each time step, a single node rotates once.

The goal is to transform an initial shape A into the target shape B without breaking

connectivity. The specific shapes we consider in this chapter are nice shapes, defined,

as in Chapter 2, as a shape S which has a central line L where for all nodes u in S either

u ∈ L or u is connected to L by a line of nodes perpendicular to L. Our goal is to solve

the RotC-Transformability problem for transformations between any arbitrary pair of

nice shapes, so long as they are colour consistent, previously defined as the condition

that the number of red and black nodes in both shapes is the same.

One of the first things to contend with when transforming nice shapes is that there

are some which are blocked and cannot meaningfully transform under the conditions

of the problem. For example, no nodes in a rhombus shape can perform any rotation

movements. Also, some shapes are blocked in bounded sets of reachable configurations

due to the need to maintain connectivity, for example, a nice shape which consists

solely of a line can only rotate the two ends of the line. It therefore naturally follows

that some form of aid will be necessary if the transformation of any nice shape is to be

accomplished in this setting.

We assume the existence of a seed, to allow shapes which are blocked or incapable

of meaningful movement to perform otherwise impossible transformations. The use

of seeds was established in a previous work [31], and more recently shown to enable

31
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universal reconfiguration in the context of connectivity preserving transformations [72],

however to our knowledge there has been no attempt to investigate this problem using a

seed which is a connected shape fully introduced before the transformation is initiated.

Any strategy for the transformation of nice shapes must contend with the potential

existence of gaps between the lines perpendicular to L. In addition, the central line

L naturally bisects the shape in two, which hints at a strategy of treating each half

separately. Our goal for this chapter is to show that there is a solution for these issues,

one which we define algorithmically and describe with the help of figures.

We show that it is possible to transform such a line into a nice shape of n− 1 nodes

using a 3-node seed in O(n2) time. We then demonstrate that it is possible to transform

nice shapes of size n into other nice shapes of size n by using the canonical shape of

a line and a 4-node seed in O(n2) time. We provide an algorithm to implement this

transformation and give time bounds for it.

In the next section we give our algorithm for the construction of nice shapes where

the colour of nodes added to each side of the line always alternates, then generalise to

all nice shapes.

3.2 Transformation for Nice Shapes

In this section, we investigate the possibilities related to the transformation of shapes

which are connectivity preserving. We focus on the problem of converting a nice shape

of O(n) nodes into any other nice shape of O(n) nodes using an O(1) seed. We do this

by showing we can transform the canonical shape of a line with O(n) nodes into any nice

shape. Due to reversibility, it follows that any nice shape can be transformed into such

a line, and then into another nice shape. More specifically, we first provide a solution

for the variant of this problem (which we call M) where all the lines perpendicular to

a central line L in the nice shape are such that the node at the end of each line is the

opposite colour to the node at the end of its nearest neighbouring lines. We then prove

that slight modifications to the method of construction allow for the class of all nice

shapes to be constructed. Our methods construct a shape which is a union of a nice

shape with constant waste O(1).

We start with a shape S which is a line of length n occupying the cells (0, 0) to

(n− 1, 0). We are allowed to attach at an arbitrary position a k-node seed forming an

arbitrary connected shape of size k to the line. We use a 3-node seed as this is the

minimum size which allows us to move more than 5 nodes without breaking connectivity.

This initial configuration is depicted in Figure 3.1. It is possible for our results to apply

to a disconnected 2-node seed with a slightly modified procedure but with higher waste.

We place the seed in a specific position as the connected 3-node seed is incapable of

movement. We sketch the line to nice shape proof in the following subsection.
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Figure 3.1: The line with the seed attached.

Definition 3.1. Let Nn−w = S ∪ T be the class of shapes with n nodes, where S is a

nice shape of size n− w and T is w waste.

Definition 3.2. Let Mn−w = S ∪ T be the class of shapes with n nodes, where S is a

nice shape of size n− w and T is w waste for which the following properties hold: For

all lines l1, l2, . . . , lk perpendicular to L, where L is the central line of S, the node at

the end of each li, where 1 < i < k, is the opposite colour to the node at the end of the

lines li−1 and li+1. For l1 and lk, The node at the end should be the opposite colour to

the node at the end of l2 and lk−1, respectively.

3.2.1 Line to Nice Shape

We begin by considering the transformation of a line into a shape from Mn−w. The

restriction of this class guarantees that no node with the “wrong” colour is ever in the

position to block construction. The process of construction is therefore simpler. A

method of dealing with these nodes, introduced later, will allow the restriction to be

dropped, yielding the construction of Nn−w. Our first result is the following theorem:

Theorem 3.2. A line of length n can be transformed to any given nice shape in the

class Mn−1 using a 3-node seed in O(n2) time.

To solve this problem, we follow a strategy of having nodes rotate onto the horizontal

line with the help of the 3-node seed and then constructing lines perpendicular to the

horizontal line using the nodes. Additionally, we move 4 nodes below the line and on

the opposite side to the seed. These nodes can then replicate the behaviour of the seed

on the other side of the line, allowing for construction to occur below as well as above

the line. Because their behaviour is the same, we refer to the seed and the group of

nodes on the other side of the line as builders. As a result, the horizontal line becomes

the central line L of the nice shape, and the vertical lines become the lines of nodes

perpendicular to L. Finally, the seed and a single node which aid construction cannot

be incorporated into the final shape and are discarded as waste.

To prove that this is possible, we define three algorithmic procedures. The first

procedure, RaiseNodes, allows a builder to move two nodes at a time from the horizontal

line. These nodes combine with the builder to form a 5-node cluster. This cluster can be

broken if necessary into a 3-node line and a 2-node line, allowing the 2-node line to move

by having each node rotate around the other. The second procedure, MirrorSeed, is
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the procedure for creating the second builder below the horizontal line. It accomplishes

this by moving two of the 2-node lines to the end of the horizontal and then rotating

nodes in such a way that the four nodes are “pushed” through the horizontal and to the

other side. The final procedure, DepositNodes, collects nodes from the horizontal line

and deposits them in any reachable location. We will show that the set of reachable

locations enables the construction of any nice shape.

As a result, we end up with nice shapes where the central column L corresponds to

what is left of the original horizontal line. However, the resulting nice shapesM⊂ N ,

where N is the set of all nice shapes, have only even lines. This is due to the con-

struction procedures, which place two nodes at a time. We therefore provide additional

movements that allow us to expand the set of nice shapes which can be constructed to

include all nice shapes. We perform this for a special case and then generalise to drop

this assumption and get any nice shape.

3.2.2 RaiseNodes

We use a 3-node seed in the cells (2, 1), (3, 1), (4, 1) for our operations as, by Lemma

2.9, a two node seed is incapable of helping nodes to move.

We call the first operation RaiseNodes. For this operation we use the 3-node seed

to move nodes from the horizontal line such that they are on top of the horizontal line.

In the process, the 3-node seed moves along the horizontal line such that each node

moves from its original position (x, 1) to (x+ 2, 1).

We can raise two nodes at a time as a pair. The result can also be interpreted as

a shape consisting of 5 nodes, which we refer to as a 5-node seed. Moving the pair of

nodes once they are on the line is a trivial process. Each node rotates around the other

node, alternating their relative positions within the two node shape.

The following lemma shows that these operations are possible.

Lemma 3.2. Using a 3-node seed in the cells (2, 1) to (4, 1), it is possible to move 2

nodes from the line such that the 3-node seed is converted into a 5-node seed.

Proof. The seed can only be placed in the cells specified as a three node line is incapable

of translating to another position.

First, the leftmost node of the horizontal line at (0, 0) must rotate above the line.

Then the third node in the seed at (3, 1) can rotate right, creating a space for the node

just raised from the line, which then takes its place. By moving the two nodes in (4, 1)

and (2, 1) one space right in the same manner, the four nodes above the line have moved

two spaces to the right, creating room for another node to be raised from the line.

Figure 3.2 depicts the process.
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Figure 3.2: Raising nodes from the line. All numbers refer to the sequence of
operations. Multiple rotations around the same node are represented by a single long

arrow.

In addition, we can move the 5-node line to the right by following a series of specific

rotations (see Figure 3.3). Furthermore, the technique of moving the 4-node line to the

right from Lemma 3.2 can be used to move any line of even length. We can therefore

move any line of odd length to the right by first splitting it into a 5-node line and a

line of even length and then moving them separately. As a result, the process of raising

nodes from the line can be repeated indefinitely so long as the nodes on the line have

the space to be moved out of the way of the operation.

Figure 3.3: Moving a line of 5 nodes. Figures should be read vertically.
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3.2.3 MirrorSeed

We now use RaiseNodes for our next operation, MirrorSeed, to place four nodes at the

opposite side of the line (i.e. (n− 4, 1) to (n− 1, 1)) and then push them through and

below the line, creating a four node mirror of our original seed in the cells (n− 4,−1)
to (n − 1,−1). Having a mirror of the original seed allows us to perform construction

operations on the bottom of the horizontal line. We do this in 3 steps: raise four nodes

using RaiseNodes twice to create a 7-node line, position four of the nodes at the end of

the line and rotate the nodes and those at the end of the line such that the four nodes

move through (not around) the line and to the other side.

Lemma 3.3. Using a 3-node seed in the cells (1, 1) to (3, 1), above a line L of length n

it is possible to create a 4-node line in the cells immediately below the nodes (n− 4, 0)

to (n− 1, 0).

Proof. We first move the 4 leftmost nodes in S, S0 to S3 to the top of the line. We

do this by raising S0 and S1, and then repeat the procedure a second time with the

next two nodes S2 and S3. We now have 4 nodes a square above the end of the line.

By rotating them around each other in pairs we can place them in the cells (n − 4, 1)

to (n − 1, 1). We can then “push” the nodes to the other side of S by following the

procedure depicted in Figure 3.4. The result is four nodes in the cells (n − 4,−1) to

(n− 1,−1)

Figure 3.4: Pushing the nodes through the line.
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3.2.4 DepositNode

Next, we present DepositNode, a sub-procedure using the 3-node seed to create a 5-node

shape and move a node from the horizontal line to any empty cell which the shape can

reach, provided the 5-node shape has the correct colouring, defined as having 3 nodes

of the colour which will fill the cell.

We raise two nodes from the line, use this shape to deposit a node and move the

other 4 nodes as a square back to the left. By leaving the cells above and below the

two leftmost nodes in the line empty we can rotate the leftmost node, merging with the

square to create a new 5-node shape. We can therefore repeat the process of moving for

each node one at a time. In addition, this sub-procedure can be applied to the builder

on the other side of the line.

We provide pseudo-code to describe this process. We input an instance of the nice

shape which is under construction and the co-ordinates of a destination. The algorithm

then moves the nodes such that a node is placed in the destination by the relevant

builder, creating the output. In this way, the construction of the nice shape takes place

over a series of phases, where each phase 1 ≤ x ≤ j corresponds to the movement of

the xth node to the xth destination.

If the seed nodes are making their first transfer then they need to raise two nodes

to become a builder with 5 nodes. After that, they only need to raise one node at

a time. getLineHead() gets the node which is currently leftmost in the line. move()

causes the builder to transfer one of its node to the destination. It must be the same

colour but does not need to be the exact node. getParity() gets the colour of the node

which must be placed first. rotateBlacks(seed) rotates each of the black coloured nodes

in the seed rightwards. badParity occurs when the leftmost node of the line is not the

colour which must be placed next. This situation represents a worst case scenario for

node placement.

Our strategy is to demonstrate that the moves each builder can make are sufficient

to be able to construct a nice shape. For ease of understanding, we provide visual

representations of the movement we intend to accomplish. In this example, we show

that it is possible to deposit the node at the end of the horizontal line.

Lemma 3.4. A 3-node seed on any line S of length n, where n is an even number, can

transfer a node the other end of the line.

Proof. We position the 3-node seed in the same grid spaces as in Lemma 3.3. We can

then follow the process in Figure 3.5 to achieve our result. Note that we must raise

three nodes from the line to deposit a node successfully, as we must be able to choose

which colour is deposited first. We do this by using the RaiseNodes process such that

three nodes are raised from the line. The other node is then the first node selected by

getLineHead(). The process of moving right two spaces is repeatable, these repetitions
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Algorithm 1 DepositNode

1: destination← (x, y) //co-ordinates node will be deposited on
2: //If this is the first transfer for the seed nodes
3: if (badParity) == true then
4: pair ← RaiseNodes
5: //If the first node must be red
6: if getParity() == “red” then
7: //the node at the front when the seed is formed
8: node← seed[3]
9: else

10: //rotate the black nodes to place one at the front
11: rotateBlacks(seed)
12: //the node at the front after the rotation
13: node← seed[2]

14: else
15: //the current leftmost node of the line
16: node← getLineHead()

17: move(node, destination)

are omitted. This entire process can be performed symmetrically by the nodes at the

bottom of the line by only raising two nodes from the line.

In this way, we can place a node of the colour we prefer onto both sides of the line. It

is then possible to (see Figure 3.6) transfer the builder to a vertical line. By positioning

the builder carefully we can ensure that the movement is equivalent to crossing a line

of even length. Therefore the process of adding another node can be performed on

vertical lines, such as the ones we will build for our nice shapes.

To build any vertical line, we must first show that it is possible for DepositNode to

construct lines of length 4 above the horizontal line. After that, because it is possible

for the builders to shift onto a 4-node line, the situation becomes that of depositing a

node at the end of a line.

Lemma 3.5. Using a 3-node seed in the cells (1, 1) to (3, 1), above a line L of length

n it is possible to create another line of length 4 above any ui ∈ L.

Proof. For this situation we have two scenarios: one where the colouring is correct and

another where it is incorrect. We first consider the correct colouring and then show

how to deal with the incorrect colouring.

For the first node, we simply deposit the node using DepositNode above ui. The

next node is deposited above ui−1 and rotated to be above the first. The next two

nodes are more difficult, so we have provided Figure 3.7 to illustrate the process.

In the case where the colouring is incorrect, we deposit the incorrect node anywhere

to the right directly above L and collect a second node from L. We can then merge the
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Figure 3.5: Moving a node across the line. To reach the second configuration in the
left column, we raise three nodes by using the RaiseNodes process twice and stopping
the second process early. In this figure, we place the black node. If we want to place
the red node somewhere on the line, we can omit the first rotation in the second

subfigure and create a 5-node seed with a red node at the front.
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Figure 3.6: An example of moving the builder onto a vertical line. When the sequence
of colours in the line is more convenient, a much simpler process can be used.
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5-node shape with the node we deposited temporarily to create 6-node shape. Then

5 nodes of the correct colouring can split from the shape we created and deposit the

node.

The 4-node square can then return to the node that was left behind and use it as

the next node for depositing. In this way, the 5-node shape is capable of “selecting” its

colouring.

The next step we must take is to show that we can select the parity of the construc-

tion. This is a necessary process to guarantee that the initial processes of construction

do not result in a scenario where two nodes of the same colour must be placed at the

same time.

Lemma 3.6. Using a 3-node seed in the cells (1, 1) to (3, 1), above a line L of length

n it is possible to construct a two node line above L regardless of the colour of the node

in (0, 0).

Proof. We begin by raising two nodes from L. We then use four of these nodes to form

a 4-node square. We do this such that the node which is not part of the square is the

opposite colour to the node at the end of L (i.e. in (2, 0)) We then have two scenarios

depending on whether the first node we intend to place is the colour of the node on the

line or the node in (2, 0). If it is the same as the node on the line, we place the node

on the line in the correct position and then place the node from the line above it. If

the first node is different, we take the node from the line and form a 6-node block with

the other five on the line. We can then place both nodes in the correct order.

3.2.5 Construction of a Subset of Nice Shapes

We now have all of the lemmas that are necessary to prove that it is possible to construct

a specific subset of the class of nice shapes. We first present an upper bound on the

time for constructing nice shapes using our algorithm. We then prove that using our

sub-procedures we can construct a nice shape using a line and a 3-node seed, and finally

we show that process is reversible using a 4-node seed.

Lemma 3.7. The transformation of a horizontal line of n nodes into any nice shape

requires O(n2) time steps.

Proof. The RaiseNodes and MirrorSeed algorithmic procedures perform a sequence of

specific movement and as such are O(1) time. The DepositNode procedure moves 5

nodes, deposits a node and returns with 4 nodes. Therefore we must perform 5n+ 4n

moves to transfer one node, and in the worst case, we must build a vertical line of

length n above the last node (n − 1, 0) in the horizontal line. This means each node

must move past n− 1 nodes to reach their destination.
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(a) Adding the third node

(b) Adding the fourth node

Figure 3.7: Adding the last two nodes.

Therefore the process is bound by the speed of DepositNode, which is (5n + 4n) ·
(n− 1) = O(n2) time steps.

Theorem 3.8. A line of length n can be transformed to any given nice shape in the

class Mn−1 using a 3-node seed in O(n2) time.

Proof. The seed is positioned above the second, third and fourth nodes in the horizontal

line, at (1, 1), (2, 1), and (3, 1). We first use RaiseNodes twice to raise 4 nodes from

the line and then use MirrorSeed to create a 4 node builder below the horizontal line.

Then, we use DepositNode to construct the 5 node builder.

The 5 node builder can deposit a node in the construction area and move back to

the end of the line by having each node rotate around each other. It is then able to
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take another node from the horizontal line by positioning itself two node spaces away

from the end of the line and rotating the last node such that it is connected to the seed.

We are therefore able to follow a procedure for constructing vertical lines one node

at a time. The construction proceeds for each side of L in phases 0 ≤ i ≤ |L|, where
phase i corresponds to the construction of the column above the node Li.

The entire process is mirrored for the bottom of the shape using DepositNode for

the builder on the bottom. The builder on the bottom waits until the builder on the

top is finished and then starts lifting nodes from the same side of the line. By moving

the other builder slightly it is possible to avoid the situation where it disconnects from

the line.

Finally, one of the builders places the nodes of the other builder, and is then dis-

carded, leading to a waste of 1 node. By Lemma 3.7, the whole process is completed

in O(n2) time.

Theorem 3.9. A nice shape in the class Mn can be transformed to any given nice

shape from Mn using a 4-node seed in O(n2) time.

Proof. The transformation can be made reversible by assuming that the 4 nodes which

are discarded at the end of the transformation constitute a 4 node seed for transforming

the nice shape into a line. We can then construct a line of length n by following the

process in reverse, and from there construct a nice shape of size n.

3.2.6 Construction of any Nice Shape

We now show how to extend this to the class of all nice shapes. We follow a broadly

similar procedure to the one in Theorem 3.8. The key difference is that we first create

the foundation, a layer of nodes above and below the horizontal line. We place a node at

the start of every vertical line which starts with the same node colour that the previous

vertical line built would end with. We then proceed as normal. First we prove that

the foundation is sufficient for constructing any colour-consistent nice shape. Then we

prove that the 5 node builder is capable of crossing the foundation to deposit nodes.

Lemma 3.10. For any nice shape constructed from a line, for all lines perpendicular

to L with an odd number of nodes there is at most one line which cannot be paired with

another line which ends in the other colour.

Proof. We have the initial line which is either odd or even. We can move nodes out in

pairs to build lines. It is possible to build lines which are odd by splitting a pair and

distributing its nodes between two odd lines. Such lines can therefore be paired.

However, there are two ways that an extra odd line can be created. First, when the

horizontal line is odd, we can support one odd vertical line by extracting the extra node.

Second, when the horizontal line is even, we can also split a pair with the horizontal,
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making it odd. If both are attempted at the same time the resulting lines will end in

different colours and therefore can be paired. As a result, at most one line which is odd

cannot be paired.

Lemma 3.11. Any 5 node builder which is constructing lines can cross the foundation

to do so.

Proof. When moving a builder carrying a node across the foundation, there are 3 sce-

narios the builder can encounter.

In the first scenario, there is a node in (x, y) which is the same colour as the node

being carried in (x− 2, y). In this case, the builder must deposit the node in (x− 4, y)

and collect the node it has encountered. Then, when the builder is returning without

carrying a node, it must shift the node it deposited from (x− 4, y) to (x, y).

In the second scenario, the node at (x, y) is a different colour and the cell (x+1, y)

is empty. For this scenario, the node which is being carried rotates into (x+1, y). Then

the builder’s nodes rotate around each other to be above (x−1, y−1) and (x−2, y−1).

Then the top two nodes in (x − 1, y + 1) and (x − 2, y + 1) rotate around each other

such that the node in (x+ 1, y) is the node being carried by the 5 node builder.

In the third scenario, there is a series of nodes beginning with the node (x, y), with

alternating colours blocking the builder. In this case, we first identify the node n which

is the node furthest right in the series with the same colour as the node the builder is

carrying. Then the top two nodes of the builder in (x − 2, y + 1) and (x − 3, y + 1)

rotate until they are positioned such that they form a 5 node builder with n.

Each of these processes are depicted in Figure 3.8.

Any foundation must consist of any of these three scenarios arranged in a sequence.

Therefore, by following the correct process in the scenario the builder crosses the founda-

tion and places a node of the correct colour. Then while returning any nodes deposited

can be shifted, creating a new foundation which is equivalent to the original.

We are now in the position to prove our main result, that it is possible to construct

any nice shape from any other nice shape using a seed of size 4. Let Nn be the subclass

of nice shapes which is colour consistent to a line of length n.

Theorem 3.12. A line of length n can be transformed to any given nice shape Nn−1

using a 3-node seed in O(n2) time.

Proof. The initial steps of the procedure are as in Theorem 3.8. When we have created

both builders, we then create the foundation by placing each node in the foundation

from right to left. We alternate between the builders as necessary. By Lemma 3.10,

we know that the scenario where the colours we need to place do not match what is

available will never occur. By Lemma 3.11, we know that the existence of the foundation
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does not impede construction. We are then able to follow a procedure for constructing

vertical lines as before. Finally, the last builder is discarded as before.

Theorem 3.13. A nice shape of n nodes can be transformed to any given nice shape

Nn using a 4-node seed in O(n2) time.

Proof. By Theorem 3.12, we can construct a nice shape from a line using a 3-node seed

with 1 node as waste. By reversibility, we can start with a 4-node seed and construct a

line of length n. It is then possible to construct another nice shape using the line.
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(a) The case where the colouring is the same.

(b) The case where the colouring is different.

(c) The case where the colours alternate.

Figure 3.8: Moving the builder across the foundation.



Chapter 4

Transformations for Orthogonally

Convex Shapes

4.1 Introduction

In this chapter, we investigate the same RotC-Transformability problem with the rota-

tion model as the previous chapter, this time with the goal of transforming orthogonally

convex shapes, defined in Chapter 2. We again assume the existence of a seed. As in

Chapter 3, we move towards a solution which is based on connectivity-preservation and

the tighter constraints of rotation-only movement of [31] while aiming to (i) widen the

characterization of the class of transformable shapes and (ii) minimise the seed required

to trigger those transformations. By achieving these objectives for orthogonally convex

shapes, we make further progress towards the ultimate goal of an exact characterisation

(possibly universal) for seed-assisted RotC-Transformability.

We study the transformation of shapes of size n with orthogonal convexity, the

property that for any two nodes u, v in a horizontal or vertical line on the grid, there

is no empty cell between u and v, into other shapes of size n with the same property,

via the canonical shape of a diagonal line-with-leaves. For our proofs, we partition the

diagonal line-with-leaves into a group of components, the main being a series of 2-node

columns where each column is offset such that the order of the nodes is equivalent to

a line, and two optional components: two 1-node columns on either end of the shape

and additional nodes above each column, making them into 3-node columns.

The transformation of orthogonally convex shapes is challenging because of the high

level of structural variety, especially compared to nice shapes. While the latter can be

represented as a line with other lines of arbitrary length perpendicular to it, the former

is intuitively understood as a shape divided into quarters, with the perimeter of the

shape represented as a series of alternating horizontal and vertical lines of arbitrary

length, following a fixed pattern for direction depending on the quarter and enclosing

47
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an area filled with nodes, as an empty cell would violate orthogonal convexity. Any

transformation algorithm must deal with the potential complexity of the perimeter, as

well as the fact that the transformation process must make the shape which is being

transformed into a shape which violates orthogonal complexity, with the result that the

shape is even more complex and difficult to transform algorithmically.

We show that transforming an orthogonally convex shape of n nodes into a diagonal

line-with-leaves is possible and can be achieved by O(n2) moves using a 3-node seed.

This bound on the number of moves is optimal for the considered class, due to a

matching lower bound from [31] on the distance between a line and a staircase, both

of which are orthogonally convex shapes. A seed is necessary due to the existence of

blocked orthogonally convex shapes, an example being a rhombus. As shown in Chapter

2, any seed with less than 3 nodes is incapable of non-trivial transformation of a line

of nodes. Since a line of nodes is orthogonally convex, the 3-node seed employed here

is minimal.

The class of orthogonally convex shapes cannot easily be compared to the class of

nice shapes. A diagonal line of nodes in the form of a staircase belongs to the former

but not the latter. Any nice shape containing a gap between two of its columns is not

an orthogonally convex shape. Finally, there are shapes like a square of nodes which

belong to both classes. Nevertheless, the nice shapes that are not orthogonally convex

have turned out to be much easier to handle than the orthogonally convex shapes that

are not nice. We hope that the methods we had to develop in order to deal with

the latter class of shapes, will bring us one step closer to an exact characterisation of

connectivity-preserving transformations by rotation.

In Section 4.2, we present preliminary work related to shape generation and elimina-

tion sequences which leads into our algorithm. In Section 4.3, we provide our algorithm

for the construction of the diagonal line-with-leaves which, through reversibility, can

be used to construct other orthogonally convex shapes and give time bounds for it.

4.2 Preliminaries

Recall that in Chapter 2 we defined shape generation and shape elimination sequences.

We now build on these definitions with some additional preliminaries.

Let S be an extended staircase of n nodes. An extended staircase generation sequence

σ = (u1, u2, . . . , un) of S is a generation sequence of S which consists of q sub-sequences

σ = σ1σ2 . . . σq, where each σi contains the nodes of the column Ci of S, ordered such

that they do not violate the properties of a shape generation sequence. A diagonal

line-with-leaves generation sequence is an extended staircase generation sequence where

the repository of the constructed extended staircase is ∅. See Figure 4.1 for an example.
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Figure 4.1: An example of an extended staircase. The hollow circles represent the
black and red repositories, spaces which can be used to hold black and red nodes

during construction.

Lemma 4.1. Every connected orthogonally convex shape S has a row (and column)

elimination sequence σ.

Proof. Let R1 be the bottom-most row of S, u1, u2, . . . , uk being the line formed by row

R1. It is sufficient to prove that there is an elimination sequence σ1 of R1, as this can

then be applied repeatedly to each subsequent bottom-most row Ri, 2 ≤ i ≤ p, until S

becomes empty, σ then being obtained by σ = σ1, σ2, . . . , σp.

If there is a single node uj in R1 which is adjacent to a node v in R2, then, if 2 ≤ j ≤
k−1, σ1 = (u1, . . . , uj , uk, . . . , uj+1) is an elimination sequence of R1 and, if j = 1 or j =

k the same holds for σ1 = (uk, . . . , u1) and σ1 = (u1, . . . , uk), respectively. This holds

because, in all these cases, only removing uj+1 before the last step in the sequence could

disconnect the shape, thus, connectivity is preserved. Moreover, orthogonal convexity

is not violated by any removal as this would contradict either the assumption that R1

is bottom-most or the fact that nodes are only removed from the current endpoints of

R1.

Finally, observe that if multiple nodes in R1 are adjacent to distinct nodes in R2,

then these must necessarily be consecutive, otherwise orthogonal convexity would be

violated in R2. Setting any of those nodes of R1 as the uj+1 of the previous case, will

again give elimination sequences of R1.

Lemma 4.2. For any connected orthogonally convex shape S of n nodes, given a row

elimination sequence σ of S and a diagonal line-with-leaves generation sequence σ′ of

a fixed parity which is colour-order preserving w.r.t σ, the maximum imbalance of any

prefix of size m ≤ n of σ′ is at most O(2m/3).
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Proof. Assume w.l.o.g that the parity of σ is black. If S is a diagonal line-with-leaves

with the red parity, where each column in S has 3 nodes, then every prefix of σ′ of

m nodes will have an imbalance of 2 red nodes for every black node for all m nodes,

leading to the maximum imbalance of O(2m/3).

Lemma 4.3. For any diagonal line-with-leaves generation sequence σ generating a

shape S with a fixed parity column by column, for any sub-sequence σ′ which is a prefix

of σ, the number of non-parity nodes in σ′ cannot exceed the number of parity nodes by

more than 2.

Proof. Assume that there is such a σ′, constructing a diagonal line-with-leaves S′ of q

columns C1, C2, . . . , Cq. It must be the case that, in the process of constructing S, the

shape generation sequence generates the shape constructed by σ′. We assume w.l.o.g.

that the parity of σ (and by extension σ′) is black. Therefore, each column Ci in S′

constructed by σ′ must have at least one black node neighbouring every red node to

preserve connectivity. Therefore, σ′ has two possible locations to store additional red

nodes without increasing the number of black nodes: by placing one red node in C1 and

by placing another in Cq. Placing any more red nodes violates the structure of a black

parity diagonal line-with-leaves by making the lowest node in any Ci the non-parity

colour, and is therefore impossible.

For the next proof, we ignore the trivial shape of a node surrounded by four other

nodes.

Lemma 4.4. Let S be a connected orthogonally convex shape. Then there is a row

(column) elimination sequence of S which has no single-coloured 3-sub-sequence.

Proof. Assume that every row (column) elimination sequence σ has such a single-

coloured 3-sub-sequence σ′ = (ui, ui+1, ui+2). Assume there is a row R of S such

that ui, ui+1, ui+2 ∈ R. Recall that a row elimination sequence for a given row R is of

the form σ1σ2 resulting from the partitioning of R into two consecutive lines, where at

most one can be empty. It follows that σ′ cannot be a sub-sequence of σ1 or σ2 because

each is an alternating sequence of colours. So, σ′ must be spanning the switching point

from σ1 to σ2, sharing a 2-sub-sequence with either the suffix of σ1 or the prefix of

σ2. But that 2-sub-sequence cannot be single-coloured because each of σ1 and σ2 is an

alternating sequence of colours.

Next, we consider the situation where σ′ spans multiple rows. Note that if S is a

series of one node rows, then σ′ cannot contain nodes belonging to different rows of

S because any row elimination sequence must switch colour to move between rows. If

there are two rows R1 and R2, then if R2 is even then we can select the colour by

selecting between σ1 and σ2. If R2 is odd, then both sequences can start with the
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same colour, but because each alternates there cannot be a 3-sub-sequence unless one

is immediately followed by the other. This is only possible if R2 is a 3 node line and

there is a third line R3 with one node. Because we ignore the trivial shape, there must

be an R4, and by rotating the row elimination sequence we can get a σ without σ′.

Given an extended staircase S, an empty slot is a cell in the cell perimeter of S

which can be occupied by a node u such that T = S ∪ {u} is an extended staircase.

We now present an algorithm (see Algorithm 2), which when given a row elimination

sequence σ returns an extended staircase generation sequence σ′. The algorithm, which

is stated in more general terms and works for a larger set of bi-coloured sequences, first

constructs a prefix of 4-5 nodes (4 plus an optional repository for a black node) and

then extends it by placing nodes on the staircase. If this is not possible, then it places

nodes in the repository corresponding to the colour of the node.

The following is an informal description of Algorithm 2. By assumption, it expects

the first two nodes of the input sequence to form a bicolour pair, the third node to be

black, and no single-colour 3-sub-sequence to ever arrive. The algorithm positions the

pair vertically and the black to its right at (xl, yd). If the fourth node is black, it goes to

an optional single-black repository to the left of the pair and the fifth node must then

be red. Otherwise the fourth node is red. In both cases, a red will be placed over the

(xl, yd) black. Thus, the prefix of the shape constructed by the algorithm always consists

of two vertical pairs and the possibility of a black stored at the single-black repository

to their left. If the next node is a red it will be stored in the first red repository position

at (xl, yd−1). If not, it is a black. In both cases the next black will start a new column to

the right and the algorithm has finished the construction of the prefix having reached its

invariant configuration. The invariant satisfies the following properties. New columns

always start with the placement of a black. The red repository position of that column

below the black and the black repository of the previous column are unoccupied at that

point. Any nodes that alternate colours keep growing the staircase part of the shape,

preserving the above invariant conditions. If two consecutive nodes of the same colour

ever arrive, the second of these nodes will be stored to the first available position of

the repository corresponding to its colour. This keeps growing a staircase extended

with an upper black and a lower red repository. Both repositories are diagonal lines of

consecutive nodes attached to the staircase, starting from its bottom left and having

no gaps. The current length of the staircase is an upper bound on the length of the red

repository and on the length of the black repository plus 1.

The following assumptions are made by Algorithm 2. The third node is always

a black node. This is a necessary technical assumption that we shall later ensure is

always satisfied by our transformations. Variables NB, NR are assumed to be always
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set to the current #nodes in the black, red repository, respectively. The single-black

repository at (xl − 2, yd), not counted in NB, stores the fourth node if both the third

and the fourth node of the sequence are black.

Algorithm 2 ExtendedStaircase(σ)

Input: row elimination sequence σ = (u1, u2, . . . , un)
Output: extended staircase generation sequence σ′ = (u′1, u

′
2, . . . , u

′
n) which is colour-

order preserving w.r.t. σ

NB, NR: current #nodes in the black and red repository, respectively

if c(u1) = red and c(u2) = black then ▷ 1st and 2nd are always a bicolour pair
u′1 = (xl − 1, yd), u

′
2 = (xl − 1, yd + 1)

else
u′1 = (xl − 1, yd − 1), u′2 = (xl − 1, yd)

u′3 = (xl, yd) ▷ Assumption that 3rd is always black

if c(u4) = black then
To be stored at the single-black repository
u′5 = (xl, yd + 1) ▷ 5th must be red
i = 6

else
u′4 = (xl, yd + 1)
i = 5

for all remaining i ≤ n do
If first of new column, then u′i = (xr + 1, yu) ▷ this is always black
if c(ui) ̸= c(ui − 1) then

if c(ui) = black then
u′i = (xr + 1, yu)

else
u′i = (xr, yu + 1)

else
if c(ui) = black then

u′i = (xl +NB, yd +NB + 2)
else

u′i = (xl +NR, yd +NR − 1)

Lemma 4.5. Let σ be a bicoloured sequence of nodes that fulfills all the following

conditions:

� The set of the first two nodes in σ is not single-coloured.

� The third node of σ is black.

� σ does not contain a single-coloured 3-sub-sequence.
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Then there is an extended staircase generation sequence σ′ = (u′1, u
′
2, . . . , u

′
n) which is

colour-order preserving with respect to σ.

Proof. The sequence σ′ is the one obtained by applying Algorithm 2 to σ. The algorithm

begins by placing the first 4 or 5 nodes of σ′, depending on whether u3 is red or black

respectively. The result is a shape-prefix with 4 nodes, possibly with an extra black in

the repository, with 2 empty black slots and 2 empty red slots neighbouring the nodes

in (xl, yd) and (xl, yd + 1). We now begin to follow the loop of Algorithm 2. When we

extend the staircase by one node, this creates a new column with two empty slots for

the opposite colour, one in the new column and another in the repository of a third

column. When we add a node of that colour to the column, we create two new empty

slots for the first colour in the same manner. As a result, the number of empty slots in

the repositories only rises as the staircase extends. Therefore, the 3 node restriction of

the second condition for σ is the minimum necessary for the worst case where we have

only 2 empty slots, and the σ′ derived from such a σ by the construction algorithm

generates an extended staircase as required.

ExtendedStaircase is an algorithm which creates an extended staircase generation

sequence from a row elimination sequence of a connected orthogonally convex shape.

Lemma 4.6. For an extended staircase generation sequence σ generated by Extended-

Staircase, every shape generated by a prefix of σ is orthogonally convex.

Proof. Observe that an extended staircase consists of 4 diagonal lines of nodes: the two

diagonals of Stairs, and the two nodes which connect to and extend them, BRep and

RRep. The construction of Stairs never has a gap between nodes as the lines of the

algorithm which add nodes to it require the colour of the nodes to alternate and the

algorithm alternates between creating a new column and adding another node to it.

The diagonal lines BRep and RRep grow node by node from the first column of Stairs

to the last. Their sizes are therefore upper bounded by the size of Stairs, and there

can be no vertical or horizontal gap.

Lemma 4.7. For any connected orthogonally convex shape S of n nodes, given a row

elimination sequence σ = (u1, u2, . . . , un) of S where the set of the first two nodes in σ is

not single-coloured and u3 is black, there is an extended staircase generation sequence

σ′ = (u′1, u
′
2, . . . , u

′
n) which is colour-order preserving w.r.t σ and such that, for all

1 ≤ i ≤ |σ|, Di = {u′1, u′2, . . . , u′i} is a connected orthogonally convex shape.

Proof. By Lemma 4.4, σ will not have a single-coloured 3-sub-sequence. Therefore, by

our assumption about σ and Lemma 4.5 we have a σ′. We can then place the nodes of σ′

as in Algorithm 2. By Lemma 4.6, all prefixes σ′
i of σ

′ construct an orthogonally convex

shape (excluding the black repository), and therefore all Di are connected orthogonally

convex shapes.
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Observation 2. For any connected orthogonally convex shape S of n nodes, if the set

of the first two nodes in the row elimination sequence σ = (u1, u2, u3, . . . , un) is single-

coloured, u3 is black and there is an empty cell c of the opposite colour in the cell

perimeter of S such that if c is occupied by v then S ∪ {v} is an orthogonally convex

shape, then S ∪ {v} \ u1 has a row elimination sequence σ′ where the set of the first

two nodes in σ′ is not single-coloured.

The anchor node of the shape S of p rows R1, R2, . . . , Rp is the rightmost node in the

row Rp, counting rows from bottom to top. ExtendedStaircase is an algorithm which

creates an extended staircase generation sequence from a row elimination sequence of

a connected orthogonally convex shape.

Lemma 4.8. Let S be a connected orthogonally convex shape of n nodes divided into

p rows R1, R2, . . . , Rp, and σ = (u1, u2, . . . , un) a row elimination sequence from R1

to Rp of S. If the bottom node of the first two nodes placed by ExtendedStaircase is

fixed to (xc, yc + 1), where (xc, yc) are the co-ordinates of the anchor node of S, the

shape Ti = ExtendedStaircase(σi), where σi = (u1, u2, . . . , ui), 1 ≤ i ≤ n, fulfills the

following properties:

� S ∪ Ti is a connected shape.

� S ∩ T = ∅.

� excluding the single-black repository, Rp ∪ Ti is an orthogonally convex shape.

Proof. Let u1, u2, . . . , ui be the nodes in the sequence σi. If the first node is black,

Algorithm 2 places a node in (xl − 1, yd − 1), otherwise it places it in (xl − 1, yd). By

Lemma 4.6, all σi generate an orthogonally convex shape, so Ti cannot be a disconnected

shape. Therefore, the shape S ∪ Ti is connected. In addition, the co-ordinates (xl −
1, yd − 1) and (xl − 1, yd) represent the two potential bottom-left corners of the shape

T . Therefore, there can be no overlap (i.e. placement of nodes in occupied cells) as the

existence of a node of S in the space T is constructed in would contradict the definition

of an anchor node. In addition, the cell (xl − 2, yd) (the single-black repository) is

always empty as a node in that cell would have the y co-ordinate yd, which is above

the anchor node at yd−2 or yd−1, violating the definition of the anchor node. Finally,

since the nodes u1 and u2 construct a column, and every node u3, . . . , un (excluding

the single-black repository) is necessarily to the right of this column, there cannot be

a violation of orthogonal convexity with the row Rp.

Lemma 4.9. For any extended staircase W ∪T of n nodes, where W is the Stairs, T ⊆
{BRep∪RRep} and k = |T |, given a shape elimination sequence σ = (u1, u2, . . . , uk) of

T , there is a diagonal line-with-leaves generation sequence σ′ = (u′1, u
′
2, . . . , u

′
k) which
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is colour-order preserving w.r.t σ and such that, for all 1 ≤ i ≤ |σ|, Di = W ∪
{u′1, u′2, . . . , u′i} is a connected orthogonally convex shape.

Proof. We use a shape elimination sequence σ of T which alternates between taking

nodes from the black repository BRep and the red repository RRep. It does this until

only one repository remains. We can then use σ′ to place the nodes of D as in the

for loop of Algorithm 2, effectively extending W . If we maximise the size of σ then

the resulting Dk, a Stairs with only one repository, is equivalent to a diagonal line-

with-leaves. By Lemma 4.6, all prefixes Di generated by σ′ are connected orthogonally

convex shapes (excluding the black repository).

4.3 The Transformation

In this section, we present the transformation of orthogonally convex shapes, via an

algorithm (Algorithm 3) for constructing a diagonal line-with-leaves from any orthog-

onally convex shape S. For the first step of the algorithm, we generate a 6-robot from

the seed and the shape, which we then use to transport nodes. By using a row elim-

ination sequence of S and an extended staircase generation sequence, we convert the

initial shape S into an extended staircase. We then use appropriate elimination and

generation sequences focused on the repositories of the extended staircase, to convert

the latter into a diagonal line-with-leaves. Given any two colour-consistent orthogo-

nally convex shapes A and B and their diagonal line-with-leaves D, our algorithm can

be used to transform both A into D and B into D and, thus, A into B, by reversing the

latter transformation. This transformation applies to all orthogonally convex shapes

with 3 nodes. A 2-node shape can trivially transform by rotating one node around the

other and a 1-node shape cannot transform at all.

Our transformations rely on the use of a k-robot, a shape with k nodes which is

responsible for transporting nodes. The k-robot extracts a node u if it is positioned

such that u rotates around a node of the robot and the result is a k + 1-robot where u

is the load of the robot. The k + 1-robot places its load in the cell c if it is positioned

such that the load rotates into c and the result is a k-robot.
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Algorithm 3 OConvexToDLL(S,M)

Input: shape S ∪M , where S is a connected orthogonally convex shape of n nodes
and M is a 3-node seed on the cell perimeter of S, row elimination sequence
σ = (u1, u2, . . . , un) of S, extended staircase generation sequence of W ∪ T = σ′ =
(u′1, u

′
2, . . . , u

′
n) which is colour-order preserving w.r.t. σ, shape elimination sequence

σ = (u1, u2, . . . , u|T |) of T , shape generation sequence of X = σ′ = (u′1, u
′
2, . . . , u

′
|T |)

which is colour-order preserving w.r.t. σ
Output: shape G = W ∪X ∪M , where G is a diagonal line-with-leaves and M is a
connected 3-node shape on the cell perimeter of S.
R← GenerateRobot(S,M)
σ ← rowEliminationSequence(S)
σ′ ← ExtendedStaircase(σ)
W ∪ T ← OConvexToExtStaircase(S,R, σ, σ′)
σ ← repsEliminationSequence(W ∪ T )
σ′ ← stairExtensionSequence(W ∪ T )
G← ExtStaircaseToDLL(W ∪ T,R, σ, σ′)
TerminateRobot(G,R)

Algorithm 4 OConvexToExtStaircase(S,R, σ, σ′)

Input: shape S ∪ R, where S is a connected orthogonally convex shape of n nodes
and R is a 6-node robot on the cell perimeter of S, row elimination sequence σ =
(u1, u2, . . . , un) of S, extended staircase generation sequence σ′ = (u′1, u

′
2, . . . , u

′
n)

which is colour-order preserving w.r.t. σ
Output: shape T ∪R, where T is the extended staircase generated by σ′

for all 1 ≤ i ≤ n do
source← σi
dest← σ′

i

while R cannot extract source do
if R can climb then

Climb(R)
else

Slide(R)

Extract(R, source)
while R cannot place its load in dest do

if R can climb then
Climb(R)

else
Slide(R)

Place(R, dest)
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Algorithm 5 ExtStaircaseToDLL(W,R, σ, σ′)

Input: extended staircase W = Stairs ∪ {BRep ∪ RRep} and a 6-robot R on its cell
perimeter, shape elimination sequence σ = (u1, u2, . . . , u|T |) of T ⊆ {BRep∪RRep},
shape generation sequence σ′ = (u′1, u

′
2, . . . , u

′
|T |) which is colour-order preserving

w.r.t. σ
Output: shape Stairs′∪R′, where Stairs′ \Stairs is an extension of Stairs generated
by σ′ and R′ is a 6-robot which is colour-consistent with R.
for all 1 ≤ i ≤ |T | do

source← ui
dest← u′i
while R not at source do

if R can climb then
ClimbTowards(R, source)

else
SlideTowards(R, source)

Extract(R, source)
while R not at dest do

if R can climb then
ClimbTowards(R, dest)

else
SlideTowards(R, dest)

Place(R, dest)

4.3.1 Robot Traversal Capabilities

6-Robot Movement

We first show that for all S in the family of orthogonally convex shapes, a connected

6-robot is capable of traversing the perimeter of S. We prove this by first providing a

series of scenarios which we call corners, where we show that the 6-robot is capable of

making progress past the obstacle that the corner represents. We then use Proposition

2.15 to show that the perimeter of any S is necessarily made up of a sequence of such

corners, and therefore the 6-robot is capable of traversing it.
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(a) The height 1 cases, with widths 1 and 2+.

(b) The height 2 case.

(c) The height 3+ case.

(d) An extreme version of the partial quadrant,
when a quadrant consists of a single line.

Figure 4.2: The five cases considered in the proof, four corner cases and one edge
case where a section of the perimeter does not correspond to a corner case due to its
structure. Striped circles represent the nodes on the exterior of the shape. Hollow
circles represent potential space for additional nodes for corner scenarios which are

not in this set (due e.g. to having longer horizontal/vertical lines).

We define progress as the movement of the 6-robot upwards and to the right of its

starting position, i.e. any change in the position of the shape such that the shape is in

the same a× b formation but the co-ordinates of all of the nodes have increased. This

is equivalent to being able to traverse the relevant section of a perimeter. Our goal is

to show that attaining the maximum progress (i.e. the movement which maximises the

increase in the co-ordinates while preserving the formation) for each corner is possible.

Since we can construct a series of corners where every corner follows from the point

of maximum progress of the previous corner, it follows that for such a series we can

make progress indefinitely. By rotating the robot and the quadrant as necessary, we

can make the same argument for progress in any direction, which is equivalent to being
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able to traverse a perimeter indefinitely, provided we also show that the perimeter is

necessarily made up of such corners.

We begin by considering the up-right quadrant, that is any cells which neighbour

the section of the perimeter defined by the regular expression d1(d1 | d2)∗d2 (d2 | d3)∗d3,
where d1, d2 and d3 are up, right and down respectively, as our base case.

Let C be a set of orthogonally convex shapes, where each shape is a corner scenario

for the up − right quadrant, depicted in Figure 4.4. Given a corner-shape scenario

C ∈ C consisting of a horizontal line (xl, yd), (xl + 1, yd), . . . , (xr, yd) and a vertical line

(xr, yd), (xr, yd + 1), . . . , (xr, yu), as depicted in Figure 4.4, we define its width w(C) =

|xr − xl|, i.e., equal to the length of its horizontal line, and its height h(C) = |yu − yd|,
i.e., equal to the length of its vertical line, excluding in both cases the corner node

(xr, yd).

Figure 4.3: A visual representation of the variables we use in our proof.
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(a) The height 1 cases, with widths 1 and 2+.

(b) The height 2 case.

(c) The height 3+ case.

Figure 4.4: The four basic corner scenarios of C.

Lemma 4.10. For any orthogonally convex shape S, the extended external surface

defined by the regular expression d1(d1 | d2)∗d2 (d2 | d3)∗d3 of the shape can be divided

into a series of shapes S0, S1, . . ., where all Si ∈ C.

Proof. By Proposition 1, there is the section of the perimeter of orthogonally convex

shapes which is defined by the regular expression d1(d1 | d2)∗d2 (d2 | d3)∗d3, where
d1, d2 and d3 are up, right and down respectively. This section of the perimeter forms

a “quadrant” where all movement is in the up and right directions, terminated by

the first d3, as can be seen in the examples in 2.10, the example shapes with labelled

perimeters from Chapter 2. By the regular expression, the nodes on the perimeter

must necessarily form alternating horizontal and vertical lines. We can therefore divide

this section of the perimeter into a series of subsections, where in each subsection we

have a horizontal line which connects to a vertical line via the right-most node on the

horizontal line. The cases in Figure 4.4 cover all potential widths and heights where

this vertical line positioning constraint holds. This even holds for the edge cases where

a vertical ending at (xr, yu) is immediately followed by another vertical starting at

(xr +1, yu), provided we allow (xr, yu) to act both as (xr, yu) and (xl, yd) for each case

respectively. Therefore, they cover all potential cases in the quadrant, and since the

quadrant is made up of these cases, it covers the extended external surface of the whole

quadrant.
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Given that the quadrant is made up of cases from C, if the 6-robot is able to move

from one vertical to another for all Si ∈ C, it is able to do so for any up-right quadrant

of the perimeter until it runs into the d3 line. We now show that this movement is

possible, first for this quadrant and later for all four quadrants.

Lemma 4.11. For all shapes C ∈ C, if a 2× 3 shape (the 6-robot) is placed in the cells

(xl − 2, yd + 1), (xl − 1, yd + 1), (xl, yd + 1), (xl − 2, yd + 2), (xl − 1, yd + 2), (xl, yd + 2),

it is capable of translating itself to (xr − 2, yu + 1), (xr − 1, yu + 1), (xr, yu + 1), (xr −
2, yu + 2), (xr − 1, yu + 2), (xr, yu + 2).

Proof. For our proof strategy, we present a series of motions which for all shapes C ∈ C
lead the 6-robot from the leftmost node of the horizontal to the topmost node of the

vertical. We group some of these motions into high-level motions (i.e. moving the

whole 6-robot by moving individual nodes). We begin by noting that we can perform

repetitive motions to traverse a horizontal or vertical line to the end. Our first motion

is sliding, depicted in Figure 4.5, where pairs of nodes rotate around each other to

slide across a line. By reorienting the shape, the 6-robot and its movement vertically, it

follows that the 6-robot can slide up vertical lines as well. The second action is a special

version of the slide depicted in Figure 4.6. This slide is slower but allows the object

to preserve connectivity in the situation where only one or two nodes are connected to

the line. We are therefore already able to claim that moving across and onto lines is

possible. What remains is the intersection of horizontal and vertical lines.

Our first is the case where the 6-robot lies on a horizontal of arbitrary width, and

attempts to climb a vertical of height 3. It does by following the series of rotations in

Figure 4.7. The result is that the robot lies on top of the vertical line, and is therefore

able to use the slide and/or special slide movements (if necessary) to move across the

horizontal line at the top (not depicted) to the next vertical. This climbing procedure

can be performed no matter how long the first horizontal (i.e. the one the robot lies

on initially) is. In addition, there is a section of the movement which puts the seed in

the position to slide vertically (see Figure 4.8), allowing a modified version the same

procedure to climb verticals of arbitrary height.

Finally, there are the solutions for the cases where the height is 2 (Figure 4.9) and

where the height is 1 (Figure 4.10 and 4.11). Note that unlike the former movement,

the latter movements vary depending on the width (2+ and 1 respectively).
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Figure 4.5: Sliding across a horizontal
line.

Figure 4.6: Sliding onto a horizontal line.
The steps are repeated after the third con-
figuration to reach the fourth configura-

tion.

Theorem 4.12. For any orthogonally convex shape S, a 6-robot is capable of traversing

the perimeter of S.

Proof. By Lemma 4.11 we have shown for the up-right quadrant firstly that it is possible

to slide across a horizontal of arbitrary width no matter the robot’s initial position, that

it is possible to climb a height 3 vertical, that part of this movement can be repeated

indefinitely to climb verticals of arbitrary height, that special movements exist for

smaller verticals and that all of this is possible no matter how long the horizontal line

the object lies on is.

By rotating the robot and the quadrant as necessary, we are able to replicate our

movements for all other quadrants: d4(d4 | d1)∗ (the left-up quadrant) d2(d2 | d3)∗ (the

right-down quadrant) and d3(d3 | d4)∗ (the left-down quadrant). All that remains is

the transition between the quadrants.

There are two cases. In the first case, the next quadrant consists of multiple lines. In

this case, when the line signifying the end of the current quadrant is met it is sufficient

to begin movements appropriate to travelling in the next quadrant. However, there is
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an edge case where a quadrant consists of a single line. In this case, a unique movement

is necessary (see Figure 4.12) to transfer the 6-robot onto the line. These movements

are then followed by special slides to put the object into position for the next quadrant.

Naturally, these transformations are reversible and can be mirrored as well. We are

therefore able to deal with any quadrant transition, even rotating the 6-robot around

a single node.

Therefore, because we can move through any variant of all quadrants and transition

between them, a 6-robot can traverse the perimeter of any orthogonally convex shape.
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Figure 4.7: Climbing a height 3 vertical with a width 1 horizontal. All figures are
read as pairs of columns, top-down.

Figure 4.8: Climbing a vertical of arbitrary height with an arbitrary width horizontal.
The process starts as in Figure 4.7, and the upwards slide in the first column of
snapshots can be repeated for as long as necessary to climb the wall. This corresponds

to case (c) of Figure 4.4.
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Figure 4.9: Climbing a height 2 vertical with an arbitrary width horizontal. This
corresponds to case (b) of Figure 4.4.

Figure 4.10: Climbing a height 1 vertical with a width 1 horizontal. This corresponds
to the first (a) case of Figure 4.4.
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Figure 4.11: Climbing a height 1 vertical with a width 2+ horizontal. This corre-
sponds to the second (a) case of Figure 4.4.

Figure 4.12: Movement into a new quadrant consisting of a line of length 1.
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7-Robot Movement

We consider once again the up-right quadrant, and generalise to other quadrants later.

We say a cell c = (x, y) is behind the robot if x is smaller than the x-co-ordinate of

every node in the robot.

The load of a 7-robot S is any node u such that S\{u} is a 2×3 shape. The position

of the robot is an offset of the y axis (see yd from Figure 4.3) for the purpose of the

initial positioning of the 7-robot. For our transformations, we maintain the invariant

that the 7-robot, after any of its high-level movements, will return to the structure of a

2×3 shape with a load. For this invariant, we assume that the load is always behind the

2× 3 shape (while remaining connected). We will show in the proof why the situation

where the load is positioned differently does not need to be considered. We therefore

use (x, y|y′) to refer to the co-ordinates of the two cells (x, y) and (x, y′) behind the

robot which can contain the load, keeping it attached to the robot while the latter is a

2 × 3 shape. The colouring of a 7-robot is good if the load is in the higher of the two

possible positions, and bad if it is in the lower position. Bad colouring usually means

the resulting transformations are more difficult.

Lemma 4.13. For all shapes C ∈ C, if a 2× 3 shape with a load (the 7-robot) is placed

in the cells (xl−3, yd+1|yd+2), (xl−2, yd+1), (xl−1, yd+1), (xl, yd+1), (xl−2, yd+

2), (xl − 1, yd + 2), (xl, yd + 2), it is capable of translating itself to (xr − 3, yu + 1|yu +

2), (xr−2, yu+1), (xr−1, yu+1), (xr, yu+1), (xr−2, yu+2), (xr−1, yu+2), (xr, yu+2).

Proof. We present a series of motions which for all shapes C ∈ C lead the 7-robot from

the leftmost node of the horizontal to the topmost node of the vertical. As in Lemma

4.11, we group some of these motions into high-level motions (i.e. moving the whole

7-robot by moving individual nodes).

Our first motion is sliding, depicted in Figures 4.13 and 4.14. The 7-robot can

alternate between these two transformations to slide over the horizontal line of C.

Alternating between the two is possible because the final configuration of each has the

form required by the initial configuration of the other. The second motion is also a

version of sliding, called special sliding, depicted in Figures 4.15-4.17. The purpose of

special sliding is to bring the 7-robot “onto” the horizontal line, when it starts from

an extreme position from which the sliding motion does not apply. Figures 4.15 and

4.16 cover the cases where only the bottom-right node of the 7-robot is attached to the

horizontal line, while Figure 4.17 the case where there are two points of attachment but

the robot colouring is bad. By special sliding, the 7-robot can move onto the horizontal

line and sliding can then be used to move it across the horizontal, until its bottom-right

node is at (xr − 1, yd + 1), i.e., in one of the initial configurations of Figures 4.18 and

4.20 (disregarding the height of the vertical). This covers the horizontal part of C. It

remains to be shown that the 7-node seed can then climb up and then onto the vertical
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part of C. We do this with a motion which we refer to as climbing, which covers a few

sets of cases.

For the first set of cases, we consider the situations where the height of the vertical

is 1. If the colouring is good, then we can rotate the load above the vertical. This

is depicted in Figure 4.18. Note that the load necessarily takes the higher of the two

possible cells behind the robot at the start of the translation. If the colouring is bad,

then the movements depend on the width of the horizontal, which can be 1 (Figure

4.19), and 2+ (Figure 4.20). Note that these movements always deposit the 7-robot in

the position for a special slide, and the load always remains behind the robot.

For the next set of cases, we consider the situations where the height of the vertical

is 2. Our first is the case where the colouring is bad. In this case, we follow the

rotations of Figure 4.21. When the colouring is good, we have two additional cases.

We can follow the rotations of Figure 4.22 and Figure 4.23 to climb up and onto the

vertical, respectively.

Finally, we consider the cases where the height of the vertical is at least 3. When

the height is exactly 3 and the colouring is bad, we can follow Figure 4.24 to reach the

top of the vertical and then Figure 4.23 to climb onto it. In the good colouring case,

we can repeat the rotations of Figure 4.22 and Figure 4.25 until we reach the top of

the vertical, and then perform the rotations of Figure 4.18 or Figure 4.23, depending

on whether the load is in the higher or lower of the two possible positions. We do the

same for when the height is over 3 and the colouring is bad, but begin with the Figure

4.24 rotation.

We have thus shown how the 7-robot can climb up and onto verticals of any possible

length. Putting everything together, starting from one of the initial positions specified

by the lemma statement relative to the horizontal line of C, the 7-robot can use special

sliding to move onto the horizontal, followed by sliding to move across it, and finally

climbing to move up and onto the vertical, for all possible widths and heights of C.

Moreover, the final position of the 7-robot relative to the vertical is as required by the

statement.

Theorem 4.14. For any orthogonally convex shape S, a 7-robot is capable of traversing

the perimeter of S.

Proof. By Lemma 4.13 we have shown for the up-right quadrant firstly that it is possible

to slide across a horizontal of arbitrary width no matter the robot’s initial position, that

it is possible to climb a height 2 vertical, that part of this movement can be repeated

indefinitely to climb verticals of arbitrary height, that special movements exist for the

height 1 vertical and that all of this is possible no matter how long the horizontal line

the object lies on is, nor whether the 7-robot is red or black.
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By rotating the robot and the quadrant as necessary, we are able to replicate our

movements for all other quadrants: d4(d4 | d1)∗ (the left-up quadrant) d2(d2 | d3)∗ (the

right-down quadrant) and d3(d3 | d4)∗ (the left-down quadrant). All that remains is

the transition between the quadrants.

There are two cases. In the first case, the next quadrant consists of multiple lines. In

this case, when the line signifying the end of the current quadrant is met it is sufficient

to begin movements appropriate to travelling in the next quadrant. However, there is

an edge case where a quadrant consists of a single line. In this case, a unique movement

is necessary (see Figure 4.26 and Figure 4.27) to transfer the 7-node object onto the line,

with the exact movement depending on whether the first node of the line is the same or

a different colour from the load. These movements are then followed by special slides

to put the object into position for the next quadrant. Naturally, these transformations

are reversible and can be mirrored as well. We are therefore able to deal with any

quadrant transition, even rotating the 7-node object around a single node.

Therefore, because we can move through any variant of all quadrants and transition

between them, a 7-robot can traverse the perimeter of any orthogonally convex shape.

Figure 4.13: Sliding across a line with a 7-node robot - case 1
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Figure 4.14: Sliding across a line with a 7-node robot - case 2

Figure 4.15: Sliding on a line with a 7-node robot - case 1
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Figure 4.16: Sliding on a line with a 7-node robot - case 2

Figure 4.17: Sliding on a line with a 7-node robot - case 3. The transformation of
Figure 4.13 can be applied for further movement.
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Figure 4.18: Climbing on top of a vertical when the load is in the upper cell.

Figure 4.19: Climbing a height 1 vertical with a width 1 horizontal and bad colouring
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Figure 4.20: Climbing a height 1 vertical with a width 2+ horizontal and bad
colouring

Figure 4.21: Climbing on top of a vertical of height 2 from position 0 with bad
colouring.
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Figure 4.22: Climbing a vertical of height 2+

Figure 4.23: Climbing on top of the vertical from position 1 when the load is in the
lower cell.
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Figure 4.24: Climbing a vertical of height 3 from position 0 with bad colouring.

Figure 4.25: Climbing a vertical of height 3+ from position 2+.
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Figure 4.26: Movement into a new quadrant consisting of a line of length 1 when
the perimeter node is not the same colour of the load. To reach the configuration after

the dots, the operation is repeated in an inverted manner.
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Figure 4.27: Movement into a new quadrant consisting of a line of length 1, with
the perimeter node the same colour as the load. To reach the configuration after the

dots, we follow a rotated version of the transformation in Figure 4.23.
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Repository Traversal

Whenever the single-black repository is occupied, the robot may need to traverse a

non-convex region when moving between S and the extended staircase. The following

lemma shows that this is not an issue.

Lemma 4.15. If the single-black repository of the extended staircase is occupied, then

both the 6-robot and the 7-robot are able to traverse past it.

Proof. We present a series of motions which for all variants of the shapes C ∈ C created
by the addition of a node to the left of the vertical lead both the 6-robot and the 7-robot

to the point where further movement to the topmost node of the vertical is equivalent

to movement across an orthogonally convex shape. We refer to the gap as the set of

empty cells between the single-black repository and the node below it. As before, we

group some of these motions into high-level motions (i.e. moving the whole robot by

moving individual nodes). When there is no node below the single-black repository,

then the shape is orthogonally convex and therefore, by Theorem 4.12 and Theorem

4.14, the robot can traverse past the single-black.

Our first motion is sliding. If there is a 1-cell gap, then the robot can still traverse

past the cell by using the special slide (Figure 4.6) for the 6-robot and the slides (Figure

4.13 and Figure 4.14) for the 7-robot, because these movements do not depend on the

existence of a node in (xl − 2, yd − 1) to provide connectivity. If there is a gap of 2 or

more cells, then the robot must use special movements (Figure 4.28, Figure 4.29, Figure

4.30, Figure 4.31 and Figure 4.32) to traverse past it. The next motion is climbing.

There are special movements (Figure 4.33) which allow the 6-robot to climb a gap of

size 2, 3 and 4+. There are more movements for the 7-robot, when the gap is of size 2

(Figure 4.34), 3 (Figure 4.35) and 4+ (Figure 4.37).

We have thus shown how both types of robot can climb up and onto verticals with

the additional node of any possible length. Putting everything together, the robot can

use special sliding to move across a 1-cell gap, followed by special motions for larger

gaps, and finally another set of special motions to climb a vertical, for all possible

widths and heights. Moreover, the final position of the robot allows for the resumption

of regular movement i.e. those which allow the robot to traverse an orthogonally convex

shape.
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Figure 4.28: Sliding a 6-robot on a line with a black repository with a gap of size
2 and 3+. All movement after the final positions is equivalent to orthogonally convex

movement.
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Figure 4.29: Sliding a 7-robot on a line with a black repository with the load in the
high position, with a gap of size 2.

Figure 4.30: Sliding a 7-robot on a line with a black repository with the load in
the high position, with a gap of size 3+. Note the movement after the dots can be

repeated for gaps larger than 3.
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Figure 4.31: Sliding a 7-robot on a line with a black repository with the load in the
low position, with a gap of size 2.

Figure 4.32: Sliding a 7-robot on a line with a black repository with the load in the
low position, with a gap of size 3+. Note the movement after the dots can be repeated

for gaps larger than 3.
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Figure 4.33: Climbing a 6-robot on a line with a black repository, with a gap of size
2, 3 and 4+.
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Figure 4.34: Climbing a 7-robot on a line with a black repository with a gap of size
2.
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Figure 4.35: Climbing a 7-robot on a line with a black repository with a gap of size
3.
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Figure 4.36: Climbing a 7-robot on a line with a black repository with the load in
the high position, with a gap of size 4+.

Figure 4.37: Climbing a 7-robot on a line with a black repository with the load in
the low position, with a gap of size 4+.
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4.3.2 Initialisation

Robot Generation

We now prove that we can generate a 6-robot from the orthogonally convex shape S

with the help of a connected seed M of 3 nodes, which we refer to as the 3 musketeers.

Lemma 4.16. Let S be a connected orthogonally convex shape. Then there is a con-

nected shape M of 3 nodes (the 3 musketeers) and an attachment of M to the bottom-

most row of S, such that S∪M can reach a configuration S′∪M ′ satisfying the following

properties. S′ = S \ {u1, u2, u3}, where {u1, u2, u3} is the 3-prefix of a row elimination

sequence σ of S starting from the bottom-most row of S. M ′ is a 6-robot on the perime-

ter of S′.

Proof. Let Ri, i ≥ 1, be the ith row of S counting bottom up. Assume first that |R1| ≥ 5

and that the elimination sequence σ can start from the rightmost node (x, y) of R1 (the

leftmost case is symmetric). If σ can continue without switching direction for at least 3

steps, then placing M as a horizontal line at (x, y− 1), (x− 1, y− 1), (x− 2, y− 1) gives

the required 6 robot. If not, then for at least one of the two endpoints, σ can make 2

steps before switching, let that endpoint w.l.o.g. be again the rightmost node. Placing

M at (x− 2, y− 1), (x− 3, y− 1), (x− 4, y− 1) allows it to lift the two rightmost nodes,

become a 5-node seed, travel to the other endpoint and lift it, thus becoming a 6-robot.

Next, let |R1| ∈ {3, 4}. Then, aligning the 3 nodes of M below the rightmost 3

nodes of R1 immediately gives the required 6-robot.

If on the other hand |R1| = 2 or |R1| = 1, then M can be placed so that a 5-

node seed or a 4-node seed, respectively, is attached to the bottom of row R2. If it

is a 5-node seed then it can reach the rightmost/leftmost endpoint of R2 and lift that

node, thus becoming a 6-robot. If it is a 4-node seed then if |R2| ≥ 2 it can reach

the rightmost/leftmost endpoint of R2 and lift two nodes, possibly one node from each

endpoint, thus becoming a 6-robot. The only remaining case is when a 4-node seed is

attached to R2 and |R2| = 1. In that case, the configuration of the 4-node seed and

the single node of R2 can be transformed into a 5-node seed attached to the bottom of

row R3, from which the previous case can again be applied.

Some example placements can be seen in Figure 5.1.
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Figure 4.38: Some seed placements. The striped circles represent the orthogonally
convex shape S.

Prefix Construction

The x-gradient and y-gradient of two neighbouring nodes is the difference in the x and

y co-ordinates of the two nodes, respectively. A parity rhombus is a shape where every

line is of odd length and the same colour, and the x-gradient and y-gradient of every

node on the end of every line is at most 1.

To construct the extended staircase from an orthogonally convex shape S, we must

first retrieve a sequence of 3 nodes u1, u2, u3 from S, where u3 is black. We assume

w.l.o.g. that S is a black parity shape. We now show with the following 4 lemmas that

this is possible, even in the edge case where S is a parity rhombus.

Lemma 4.17. For any shape S ∪M , where S is a black parity rhombus of n nodes

divided into p rows, R1, R2, . . . , Rp and M is a 6-robot, it is possible for M to extract

two black nodes and a red node u1, u2, u3 from S.

Proof. We extract these nodes by following the procedure of Figure 4.39 and Figure

4.40. This example is for a rhombus with 5 rows but, by Theorem 4.12 and Theo-

rem 4.14, additional rows can be navigated and so do not fundamentally change the

procedure.

An orthogonally convex shape S divided into p rows, R1, R2, . . . , Rp is line-like if

the first node in Ri is above the last node in Ri−1 for all 0 < i ≤ p.

A line l blocks an empty cell c in an orthogonally convex shape S if there is a node

in l such that adding a node to c would cause S to lose orthogonal convexity.

Lemma 4.18. For any shape S∪R where S is a non-red parity connected orthogonally

convex shape of n nodes divided into p rows, R1, R2, . . . , Rp and R is a 6-robot, it is

possible for R to extract a bicolour pair of nodes u, v from S, where the resulting shape

S′ = S \ {u, v} is a connected orthogonally convex shape.

Proof. We divide our proof into cases. In the first case, S is line-like and the rows R1

and Rp have black nodes which can be extracted. In this case, we can extract the node

and then the following node, which is necessarily of the opposite colour. If only one of

R1 and Rp has a black node which can be extracted, we can rotate S by 180◦ to ensure

that the row containing the black does not contain the anchor node and then extract
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Figure 4.39: Converting a black parity rhombus. The figure should be read in
columns, left to right (continued in Figure 4.40).

Figure 4.40: A continuation of Figure 4.39.
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from it. If neither row has a black node which can be extracted, then the line-like shape

has a red parity, which violates our assumption of a black parity shape.

If S is not line-like, then we consider the row Rp. If Rp is of length ≥ 4, then we can

extract two nodes from Rp without breaking connectivity by extracting from the side

furthest from the point where Rp−1 connects to Rp. If Rp is of length 3 and Rp−1 is of

length ≥ 2, then we can extract two nodes from Rp, leaving one connected to Rp−1. If

Rp is of length 3 and Rp−1 is of length 1, then we can extract 2 nodes unless Rp−1 is

connected to the middle node of Rp. In this case, Rp−2 to R1 must be a single node

and we can extract from the other end of the line starting with R1 as the existence of

a column after Rp−1 would violate convexity. If Rp is of length 2, then we can extract

Rp. If Rp and Rp−1 are of length 1 each, then we can extract them. This leaves the

cases where Rp is of length 1 and Rp−1 is of length ≥ 1. If Rp−1 is of length ≥ 4 then

we can move Rp if necessary and extract two nodes from Rp−1. If Rp−1 is of length

2 then we can rotate Rp into Rp−1 and the resulting situation is equivalent to Rp of

length 3.

If S has a single red node in Rp and Rp−1 is of length 3, then for S to have a black

parity ≥ 0, there must be some row Ri which is an odd length black line. We can move

the node in Rp to either end of this line, unless there is a row Rj which blocks this,

by extending further than the ends of Ri. If Rj = Ri+1 or Rj = Ri−1, then Rj cannot

block Ri. If Rj is an odd length black line or even length line, we can place Rp on it. If

Rj is an odd length red line, then to maintain parity, there must be another odd length

black line. If there is a line Rk which neighbours Ri and has a greater length than it,

then Rj cannot block Ri. Therefore, given b odd length black lines, for every line to be

blocked there must be at least r = b+1 odd length red lines, one long line to block the

nodes and b lines to connect them together into a shape. Including Rp, such a shape

would have a red parity of at least 2, and is therefore impossible via assumption. We

can therefore move Rp, creating a new situation where extraction of two nodes from

Rp−1 is possible.

If S has a single black node in Rp and Rp−1 is of length 3, then if Rp−2 is of length 2

we can move the node in Rp to it and extract from Rp−1. If Rp−2 is also of a length ≥ 3

then unless S is a black parity rhombus it is possible for the 6-robot to extract the node

in Rp and move away from Rp−1. After that, the red node from Rp−1 can be rotated.

The robot can then store the black node it is carrying on the red node by moving around

the perimeter of the shape, which is still orthogonally convex. Finally, the 6-robot can

extract both the black node and the red node. If S is a black parity rhombus then by

Lemma 4.17 we can extract two nodes from it using special movements.

Lemma 4.19. For any shape S∪M , where S is a non-red parity connected orthogonally

convex shape of n nodes divided into p rows, R1, R2, . . . , Rp and M is a 6-robot, it is
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possible for M to extract a black node u from S, where the resulting shape S′ = S \ {u}
is a connected orthogonally convex shape.

Proof. We consider two cases for when the black nodes are the majority, and when they

are exactly n/2.

In the first case, since S is majority black by assumption, there must be at least one

row Ri which is a single black node or a line of odd length which begins and ends with

a black node. We can extract a black node from this line, unless such an extraction

will violate orthogonal convexity. This occurs if the neighbouring lines Ri−1 and Ri+1

are of the same length. For S to have black parity, this implies the existence of another

odd length line from which a black node can be extracted. More generally, given x odd

length lines which end in reds, by the pigeonhole principle there must be x+1 odd length

lines ending in blacks, implying at least one can be extracted from without violating

orthogonal convexity. Moreover, the removal cannot break connectivity, because this

would imply Ri−1 and Ri+1 are single red nodes on either end of Ri, which also implies

the existence of another odd length line to maintain the ratio of black to red nodes.

In the second case, we try to extract a black node from the bottom row Rp. If this

is not possible, it implies either that Rp is an odd length line with red parity or Rp is an

even length line and Rp−1 is a single red node connected to the black node at the end of

Rp. In either case, the existence of a row which is of red parity implies the existence of

an odd length line of black parity to maintain the overall parity of the shape. A similar

pigeonhole principle argument to the first case follows, both for orthogonal convexity

and connectivity.

There is a special case where the black node to be extracted happens to be the

anchor node. In this scenario, we simply rotate the shape 180◦, giving us an equivalent

scenario where the black node is in Rp and thus guaranteed to be accessible.

Lemma 4.20. For any shape S∪M , where S is a non-red parity connected orthogonally

convex shape of n nodes divided into p rows, R1, R2, . . . , Rp and M is a 6-robot, it is

possible for M to extract a sequence of nodes (u1, u2, u3) from S, where u1, u2 is a

bicolour pair, u3 is black, and S \ {u1, u2, u3} is a connected orthogonally convex shape.

Proof. By Lemma 4.18, we can extract two nodes from a S. The 6-robot places these

nodes on the anchor node. By Lemma 4.19 we can then extract a black node from S.

The 6-robot places this node as well.

4.3.3 Transformations Between Shapes

In this section, we show that, given our previous results, we are now in the position

to convert an orthogonally convex shape into another such shape. We begin with the
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conversion of an extended staircase into a diagonal line-with-leaves, then the orthogo-

nally convex shape to the diagonal line-with-leaves, and then our main result follows

by reversibility.

Transforming S to Extended Staircase

Lemma 4.21. Let S be a connected orthogonally convex shape with n nodes divided

into p rows R1, R2, . . . , Rp. Given a row elimination sequence σ = (u1, u2, . . . , un) of

S, an extended staircase generation sequence σ′ = (u′1, u
′
2, . . . , u

′
n) which is colour-order

preserving w.r.t. σ, and a 6-robot placed on the external surface of S, for all 1 ≤ i < n

the 6-robot is capable of picking up the node ui, moving as a 7-robot to the empty cell

u′i and placing it, and then returning as a 6-robot to ui+1.

Proof. We follow the procedure of Algorithm 4. By Theorem 4.12 and Theorem 4.14,

the 6-robot R and 7-robot R∪ ui can climb and slide around the external surface of S.

We use this to move to each ui, extract it, move to the cell for u′i and then place a node

of the same colour as ui in it, substituting ui for a node in R as necessary to create a

new 6-robot. By Lemma 4.8, so long as we approach Ti from Rp, we can climb onto

and off Ti to place the nodes using the same movements as the previous theorems. By

Lemma 4.15, placing a black node in the repository cell does not inhibit movement.

Transforming Extended Staircase to Diagonal Line-with-Leaves

Lemma 4.22. Let W ∪ T ∪R be the union of the Stairs of an extended staircase W ,

T ⊆ {BRep ∪ RRep} from the extended staircase and a 6-node robot R on the cell

perimeter of S ∪ T . Given a shape elimination sequence σ = (u1, u2, . . . , un) of T , a

diagonal line-with-leaves generation sequence σ′ which is colour-order preserving w.r.t.

σ and a 6-robot placed on the external surface of S, for all 1 ≤ i ≤ n the 6-robot is

capable of picking up the node ui, moving as a 7-robot to u′i and placing it, and then

returning as a 6-robot to ui+1.

Proof. We follow the procedure of Algorithm 5. By Theorem 4.12 and Theorem 4.14,

the 6-robot R and 7-robot R ∪ ui can climb and slide around the external surface of

S ∪ T . We use this to move to each ui, extract it, move to the cell for u′i and then

place a node of the same colour as ui in it, substituting ui for a node in R as necessary

to create a new 6-robot. Since the placement of u′i is extending Stairs, the resulting

shape is always orthogonally convex for all 1 ≤ i ≤ n.
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Transforming S to Diagonal Line-with-Leaves

Lemma 4.23. Let S be a connected orthogonally convex shape. Then there is a con-

nected shape M of 3 nodes (the 3 musketeers) and an attachment of M to the bottom-

most row of S, such that S ∪M can reach the configuration D, where D is a diagonal

line-with-leaves which is colour-consistent with S.

Proof. We follow the procedure of Algorithm 3. By Lemma 4.16 we can form a 6-robot

from S ∪M . By Lemma 4.21, we can build an extended staircase from the resulting

shape. By Lemma 4.22, we can then build a diagonal line-with-leaves. Finally, by

reversibility, we can place R such that the removal of 3 nodes leaves a larger diagonal

line-with-leaves D which is colour-consistent with S.

4.3.4 Time Analysis and Wrapping Up

Lemma 4.24. For any connected orthogonally convex shape S of n nodes, there exists

a corresponding diagonal line-with-leaves T such that our strategy transforms S to T in

O(n2) time steps.

Proof. To construct T , we transfer nodes using the robot to the anchor node. In the

worst case, S is a staircase, and the robot must move nodes from one end to the other. It

must therefore make O(cn2) moves, where c is the constant number of rotations needed

for the robot to move one step. When the extended staircase has been constructed,

it is converted into a diagonal line-with-leaves. In the worst case every column in the

staircase has 4 nodes, and the robot must extend Stairs until one repository has a

single node. Therefore, the robot must make O(2cn2) moves to travel on both sides of

Stairs. Combining the worst cases of both procedures therefore takes O(3cn2) = O(n2)

time steps.

Proposition 4.25. For any two connected orthogonally convex shapes S and T which

are colour-consistent, Algorithm 3 generates the diagonal line-with-leaves D and G such

that D = G.

Theorem 4.26. Let S and S′ be connected colour-consistent orthogonally convex shapes.

Then there is a connected shape M of 3 nodes (the 3 musketeers) and an attachment

of M to the bottom-most row of S, such that S ∪M can reach the configuration S′ in

O(n2) time steps.

Proof. By Lemma 4.23, we can convert S into a diagonal line-with-leaves T . By re-

versibility, we can convert T into S′. By Lemma 4.24, this procedure takes O(n2) time

steps.



Chapter 5

Conclusions and Future Work

There are some open problems which follow from the findings of our work. The most

obvious is expanding the class of shapes which can be constructed to achieve universal

transformation. An example of a challenging instance is the “double spiral”, which

is a line forming two connected spirals, where each of the two endpoints of the line

is concealed at the centre of a spiral and the removal of any other node would break

connectivity. In this case, preserving connectivity after the removal of a node requires

the robot to get to the centre of a spiral, which may not be possible without a special

procedure to “dig” into it without breaking connectivity. Finally, successfully switch-

ing to a decentralised model of transformations will greatly expand the utility of the

results, especially because most programmable matter systems which model real-world

applications implement programs in this way. This in turn could lead to real-world

applications for the efficient transformation of programmable matter systems.

Figure 5.1: An example of the double spiral shape.

93





Bibliography

[1] Zykov V, William P, N. Lassabe, and Hod Lipson. Molecubes extended: Diversify-

ing capabilities of open-source modular robotics. In IEEE Robotics and Automation

Society Self-Reconfigurable Robotics Workshop, 01 2008.

[2] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-

assembly in a thousand-robot swarm. Science, 345(6198):795–799, August 2014.

ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1254295.

[3] Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter mod-

ules for programmable matter through self-disassembly. In 2010 IEEE Interna-

tional Conference on Robotics and Automation, pages 2485–2492, May 2010. doi:

10.1109/ROBOT.2010.5509817. ISSN: 1050-4729.

[4] Ara N. Knaian, Kenneth C. Cheung, Maxim B. Lobovsky, Asa J. Oines, Peter

Schmidt-Neilsen, and Neil A. Gershenfeld. The Milli-Motein: A self-folding chain

of programmable matter with a one centimeter module pitch. In 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 1447–1453, Oc-

tober 2012. doi: 10.1109/IROS.2012.6385904. ISSN: 2153-0866.

[5] Pierre Thalamy, Benoit Piranda, and Julien Bourgeois. Distributed Self-

Reconfiguration using a Deterministic Autonomous Scaffolding Structure. In Pro-

ceedings of the 18th International Conference on Autonomous Agents and Multi-

Agent Systems, AAMAS ’19, pages 140–148, Montreal QC, Canada, May 2019.

International Foundation for Autonomous Agents and Multiagent Systems. ISBN

9781450363099.
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[17] Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The Canon-

ical Amoebot Model: Algorithms and Concurrency Control. Technical Report

arXiv:2105.02420, arXiv, May 2021. URL http://arxiv.org/abs/2105.02420.

arXiv:2105.02420 [cs] type: article.

[18] Irina Kostitsyna, Christian Scheideler, and Daniel Warner. Brief Announce-

ment: Fault-Tolerant Shape Formation in the Amoebot Model. In James Asp-

nes and Othon Michail, editors, 1st Symposium on Algorithmic Foundations

of Dynamic Networks (SAND 2022), volume 221 of Leibniz International Pro-

ceedings in Informatics (LIPIcs), pages 23:1–23:3, Dagstuhl, Germany, 2022.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 9783959772242.

doi: 10.4230/LIPIcs.SAND.2022.23. URL https://drops.dagstuhl.de/opus/

volltexte/2022/15965.

[19] Greg Aloupis, Sebastien Collette, Erik D. Demaine, Stefan Langerman, Vera Sac-

ristan, and Stefanie Wuhrer. Reconfiguration of 3D Crystalline Robots Using

O(log n) Parallel Moves, August 2009. URL http://arxiv.org/abs/0908.2440.

arXiv:0908.2440 [cs].

[20] Othon Michail, George Skretas, and Paul G. Spirakis. Distributed computation

and reconfiguration in actively dynamic networks. Distributed Computing, 35(2):

185–206, April 2022. ISSN 1432-0452. doi: 10.1007/s00446-021-00415-5. URL

https://doi.org/10.1007/s00446-021-00415-5.

[21] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.

http://arxiv.org/abs/2105.02420
https://drops.dagstuhl.de/opus/volltexte/2022/15965
https://drops.dagstuhl.de/opus/volltexte/2022/15965
http://arxiv.org/abs/0908.2440
https://doi.org/10.1007/s00446-021-00415-5


Bibliography 98

ACM SIGCOMM Computer Communication Review, 31(4):149–160, August 2001.

ISSN 0146-4833. doi: 10.1145/964723.383071. URL https://doi.org/10.1145/

964723.383071.

[22] Thorsten Götte, Kristian Hinnenthal, and Christian Scheideler. Faster construction

of overlay networks. In 26th International Colloquium on Structural Information

and Communication Complexity (SIROCCO), pages 262–276, 2019.

[23] David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and Inference

Problems for Temporal Networks. Journal of Computer and System Sciences,

64(4):820–842, June 2002. ISSN 0022-0000. doi: 10.1006/jcss.2002.1829. URL

https://www.sciencedirect.com/science/article/pii/S0022000002918295.

[24] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Solving

the Robots Gathering Problem. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim

Parrow, and Gerhard J. Woeginger, editors, Automata, Languages and Program-

ming, Lecture Notes in Computer Science, pages 1181–1196, Berlin, Heidelberg,

2003. Springer. ISBN 9783540450610. doi: 10.1007/3-540-45061-0\ 90.

[25] Evangelos Kranakis, Danny Krizanc, and Euripides Markou. Multiple Agent Ren-

dezvous in a Ring. In Evangelos Kranakis, Danny Krizanc, and Euripides Markou,

editors, The Mobile Agent Rendezvous Problem in the Ring, Synthesis Lectures

on Distributed Computing Theory, pages 27–33. Springer International Publish-

ing, Cham, 2010. ISBN 9783031019999. doi: 10.1007/978-3-031-01999-9\ 3. URL
https://doi.org/10.1007/978-3-031-01999-9_3.

[26] Masahiro Shibata, Toshiya Mega, Fukuhito Ooshita, Hirotsugu Kakugawa, and

Toshimitsu Masuzawa. Uniform Deployment of Mobile Agents in Asynchronous

Rings. In Proceedings of the 2016 ACM Symposium on Principles of Distributed

Computing, PODC ’16, pages 415–424, New York, NY, USA, July 2016. Asso-

ciation for Computing Machinery. ISBN 9781450339643. doi: 10.1145/2933057.

2933093. URL https://doi.org/10.1145/2933057.2933093.

[27] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Comput-

ing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing

Theory. Springer International Publishing, Cham, 2012. ISBN 9783031008801

9783031020087. doi: 10.1007/978-3-031-02008-7. URL https://link.springer.

com/10.1007/978-3-031-02008-7.

[28] Ichiro Suzuki and Masafumi Yamashita. Distributed Anonymous Mobile Robots:

Formation of Geometric Patterns. SIAM Journal on Computing, 28(4):1347–1363,

January 1999. ISSN 0097-5397. doi: 10.1137/S009753979628292X. URL https:

//epubs.siam.org/doi/10.1137/S009753979628292X.

https://doi.org/10.1145/964723.383071
https://doi.org/10.1145/964723.383071
https://www.sciencedirect.com/science/article/pii/S0022000002918295
https://doi.org/10.1007/978-3-031-01999-9_3
https://doi.org/10.1145/2933057.2933093
https://link.springer.com/10.1007/978-3-031-02008-7
https://link.springer.com/10.1007/978-3-031-02008-7
https://epubs.siam.org/doi/10.1137/S009753979628292X
https://epubs.siam.org/doi/10.1137/S009753979628292X


Bibliography 99

[29] Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita. Forming

sequences of geometric patterns with oblivious mobile robots. Distributed Comput-

ing, 28(2):131–145, April 2015. ISSN 1432-0452. doi: 10.1007/s00446-014-0220-9.

URL https://doi.org/10.1007/s00446-014-0220-9.

[30] Alejandro Cornejo, Fabian Kuhn, Ruy Ley-Wild, and Nancy Lynch. Keeping

Mobile Robot Swarms Connected. In Idit Keidar, editor, Distributed Comput-

ing, Lecture Notes in Computer Science, pages 496–511, Berlin, Heidelberg, 2009.

Springer. ISBN 9783642043550. doi: 10.1007/978-3-642-04355-0\ 50.

[31] Othon Michail, George Skretas, and Paul G. Spirakis. On the transformation

capability of feasible mechanisms for programmable matter. Journal of Computer

and System Sciences, 102:18–39, June 2019. ISSN 0022-0000. doi: 10.1016/j.jcss.

2018.12.001.

[32] Erik Winfree. Algorithmic self-assembly of DNA. PhD thesis, California Institute

of Technology, June 1998.

[33] Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-

assembled squares (extended abstract). In Proceedings of the thirty-second an-

nual ACM symposium on Theory of computing, STOC ’00, pages 459–468, Port-

land, Oregon, USA, May 2000. Association for Computing Machinery. ISBN

9781581131840. doi: 10.1145/335305.335358.

[34] Matthew J. Patitz. An introduction to tile-based self-assembly and a sur-

vey of recent results. Natural Computing, 13(2):195–224, June 2014. ISSN

1572-9796. doi: 10.1007/s11047-013-9379-4. URL https://doi.org/10.1007/

s11047-013-9379-4.

[35] David Doty. Theory of algorithmic self-assembly. Communications of the ACM,

55(12):78–88, December 2012. ISSN 0001-0782. doi: 10.1145/2380656.2380675.

[36] Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Na-

ture, 440(7082):297–302, March 2006. ISSN 1476-4687. doi: 10.1038/nature04586.

[37] Damien Woods. Intrinsic universality and the computational power of self-

assembly. Philosophical Transactions. Series A, Mathematical, Physical, and

Engineering Sciences, 373(2046):20140214, July 2015. ISSN 1471-2962. doi:

10.1098/rsta.2014.0214.

[38] Ke Li, Kyle Thomas, Louis F. Rossi, and Chien-Chung Shen. Slime Mold In-

spired Protocol for Wireless Sensor Networks. In 2008 Second IEEE International

Conference on Self-Adaptive and Self-Organizing Systems, pages 319–328, October

2008. doi: 10.1109/SASO.2008.58. ISSN: 1949-3681.

https://doi.org/10.1007/s00446-014-0220-9
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1007/s11047-013-9379-4


Bibliography 100

[39] Vincenzo Bonifaci, Kurt Mehlhorn, and Girish Varma. Physarum can compute

shortest paths. Journal of Theoretical Biology, 309:121–133, September 2012. ISSN

0022-5193. doi: 10.1016/j.jtbi.2012.06.017. URL https://www.sciencedirect.

com/science/article/pii/S0022519312003049.

[40] Devleena Samanta, Wenjie Zhou, Sasha B. Ebrahimi, Sarah Hurst Petrosko, and

Chad A. Mirkin. Programmable Matter: The Nanoparticle Atom and DNA Bond.

Advanced Materials, 34(12):2107875, March 2022. ISSN 0935-9648, 1521-4095.

doi: 10.1002/adma.202107875. URL https://onlinelibrary.wiley.com/doi/

10.1002/adma.202107875.
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https://doi.org/10.1007/s00373-005-0640-1
https://www.science.org/doi/10.1126/science.1261689
https://www.science.org/doi/10.1126/science.1261689
https://doi.org/10.1145/3156693
https://doi.org/10.1145/3060272


Bibliography 104

Renssen, and Vera Sacristán. Universal Reconfiguration of Facet-Connected Mod-

ular Robots by Pivots: The O(1) Musketeers. Algorithmica, 83(5):1316–1351, May

2021. ISSN 1432-0541. doi: 10.1007/s00453-020-00784-6.

[73] Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Formations for

Fast Locomotion of Metamorphic Robotic Systems. The International Journal

of Robotics Research, 23(6):583–593, June 2004. ISSN 0278-3649, 1741-3176. doi:

10.1177/0278364904039652. URL http://journals.sagepub.com/doi/10.1177/

0278364904039652.

[74] A. Dumitrescu, I. Suzuki, and M. Yamashita. Motion planning for metamorphic

systems: feasibility, decidability, and distributed reconfiguration. IEEE Transac-

tions on Robotics and Automation, 20(3):409–418, June 2004. ISSN 2374-958X.

doi: 10.1109/TRA.2004.824936.

[75] Abdullah Almethen, Othon Michail, and Igor Potapov. Distributed Transforma-

tions of Hamiltonian Shapes Based on Line Moves. In Leszek Gasieniec, Ralf Klas-

ing, and Tomasz Radzik, editors, Algorithms for Sensor Systems, Lecture Notes

in Computer Science, pages 1–16, Cham, 2021. Springer International Publishing.

ISBN 9783030892401. doi: 10.1007/978-3-030-89240-1\ 1.

[76] Abdullah Almethen, Othon Michail, and Igor Potapov. On efficient connectivity-

preserving transformations in a grid. Theoretical Computer Science, 898:132–148,

January 2022. ISSN 0304-3975. doi: 10.1016/j.tcs.2021.11.004. URL https:

//www.sciencedirect.com/science/article/pii/S0304397521006514.

[77] Irina Kostitsyna, Tom Peters, and Bettina Speckmann. Fast reconfiguration for

programmable matter. In The 38th European Workshop on Computational Geom-

etry, pages 365–371, 2022.

[78] Othon Michail, George Skretas, and Paul G. Spirakis. On the Transformation

Capability of Feasible Mechanisms for Programmable Matter. Technical Report

arXiv:1703.04381, arXiv, March 2017. URL http://arxiv.org/abs/1703.04381.

arXiv:1703.04381 [cs] type: article.

[79] Yukiko Yamauchi. Symmetry of Anonymous Robots. In Paola Flocchini, Giuseppe

Prencipe, and Nicola Santoro, editors, Distributed Computing by Mobile Enti-

ties: Current Research in Moving and Computing, Lecture Notes in Computer

Science, pages 109–133. Springer International Publishing, Cham, 2019. ISBN

9783030110727. doi: 10.1007/978-3-030-11072-7\ 6. URL https://doi.org/10.

1007/978-3-030-11072-7_6.

http://journals.sagepub.com/doi/10.1177/0278364904039652
http://journals.sagepub.com/doi/10.1177/0278364904039652
https://www.sciencedirect.com/science/article/pii/S0304397521006514
https://www.sciencedirect.com/science/article/pii/S0304397521006514
http://arxiv.org/abs/1703.04381
https://doi.org/10.1007/978-3-030-11072-7_6
https://doi.org/10.1007/978-3-030-11072-7_6


Bibliography 105

[80] Keisuke Doi, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Ex-

ploration of Finite 2D Square Grid by a Metamorphic Robotic System. In

Taisuke Izumi and Petr Kuznetsov, editors, Stabilization, Safety, and Secu-

rity of Distributed Systems, Lecture Notes in Computer Science, pages 96–110,

Cham, 2018. Springer International Publishing. ISBN 9783030032326. doi:

10.1007/978-3-030-03232-6\ 7.

[81] Ryonosuke Yamada and Yukiko Yamauchi. Search by a Metamorphic Robotic

System in a Finite 3D Cubic Grid: 1st Symposium on Algorithmic Foundations

of Dynamic Networks, SAND 2022. 1st Symposium on Algorithmic Foundations

of Dynamic Networks, SAND 2022, April 2022. doi: 10.4230/LIPIcs.SAND.

2022.20. URL http://www.scopus.com/inward/record.url?scp=85130775621&

partnerID=8YFLogxK.
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