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SUMMARY 

Background 

Individual plasma proteins have been identified as minimally invasive biomarkers for lung cancer 
diagnosis with potential utility in early detection. Plasma proteomes provide insight into contributing 
biological factors; we investigated their potential for future lung cancer prediction. 

Methods 

The Olink® Explore-3072 platform quantitated 2941 proteins in 496 Liverpool Lung Project plasma 
samples, including 131 cases taken 1-10 years prior to diagnosis, 237 controls, and 90 subjects at 
multiple times. 1112 proteins significantly associated with haemolysis were excluded. Feature 
selection with bootstrapping identified differentially expressed proteins, subsequently modelled for 
lung cancer prediction and validated in UK Biobank data. 

Findings 

For samples 1-3 years pre-diagnosis, 240 proteins were significantly different in cases; for 1-5 year 
samples, 117 of these and 150 further proteins were identified, mapping to significantly different 
pathways. Four machine learning algorithms gave median AUCs of 0·76-0·90 and 0·73-0·83 for the 1-
3 year and 1-5 year proteins respectively. External validation gave AUCs of 0·75 (1-3 year) and 0·69 (1-
5 year), with AUC 0·7 up to 12 years prior to diagnosis. The models were independent of age, smoking 
duration, cancer histology and the presence of COPD.  

Interpretation 

The plasma proteome provides biomarkers which may be used to identify those at greatest risk of lung 
cancer. The proteins and the pathways are different when lung cancer is more imminent, indicating 
that both biomarkers of inherent risk and biomarkers associated with presence of early lung cancer 
may be identified. 

Funding 

Janssen Pharmaceuticals Research Collaboration Award; Roy Castle Lung Cancer Senior Research 
Fellowship. 
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Research in context 

Evidence before this study 

Differences in specific plasma protein levels have been previously shown to be indicative for lung 
cancer diagnosis, or related to imminent lung cancer. However, more comprehensive plasma protein 
profiling over longer time periods pre-diagnosis has not been studied. 

Added value of this study  

The findings in this paper have confirmed the predictive power of plasma protein profiling for 
prediction of future lung cancer diagnosis, identifying potential protein biomarkers for early 
detection. That biomarker proteins selected using longer pre-diagnostic time points only partially 
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overlap those selected using samples from later time points, and represent different molecular 
pathways, suggests that both biomarkers for inherent cancer risk and occult tumour detection can 
be identified. This is further supported by the differing longitudinal levels across multiple time 
points, including at diagnosis. 

Implications of all the available evidence 

When considering the value and utility of plasma protein biomarkers, future studies should consider 
the relationship between plasma levels and the possibility of undiagnosed tumours or the 
association of protein levels with biological manifestation of risk of future cancer. Whilst the former 
facilitates earlier diagnosis, the latter contributes to the stratification of high-risk individuals for 
screening, or targeted preventative measures. 

 

Introduction 

Lung cancer continues to be the largest cause of cancer deaths worldwide, representing 18% of all 
cancer deaths, an estimated 2·2 million new cancer cases and 1·8 million deaths.1 This is closely 
related to the fact that most lung cancers are detected at a late stage,2 when more effective 
treatment options such as surgery are not available and outcomes are poor.3 Low-dose CT screening 
has been shown to detect a higher proportion of early-stage disease than traditional symptomatic 
diagnosis, leading to improved outcomes.4-6 However, it is currently limited to those with a 
significant history of smoking, since this is used as a key decision-making factor for screening. 
However, selection for LDCT on the basis of smoking and age alone, does not fully account for the 
differing risk amongst smokers due to genetic or environmental factors.7 

Lung cancer risk assessment (based not just on smoking, but other demographic variables and 
medical history) attempts to identify those most likely to suffer from lung cancer in the future, e.g. 
the next 5-6 years. Effective tools are available and have proved useful, e.g. in identification of those 
who benefit most from lung cancer screening, contributing to cost effectiveness of diagnostic 
intervention.5,7 However, many lung cancers are still missed, either because they are in those 
currently excluded from screening, or because screening uptake is sub-optimal. Biological 
assessment of risk, utilising minimally invasive biomarkers, may widen the applicability of LDCT 
screening, or encourage greater uptake by re-enforcing personal risk awareness.  

Lung cancer risk biomarkers (indicating a predisposition to lung cancer) overlap significantly with 
diagnostic biomarkers (indicating a likelihood of current disease). A variety of different biomarkers 
have been demonstrated to aid early diagnosis of lung cancer, either alongside 8 or in the absence of 
LDCT screening,9 but there are still unmet clinical needs 10 and technical challenges. Nevertheless, 
the addition of diagnostic plasma protein biomarkers has been demonstrated to improve current 
risk scores 11,12 and new, more comprehensive discovery platforms provide further opportunities to 
identify further biomarkers for lung cancer risk prediction. Risk assessment may also help to identify 
those who will benefit from preventative medical intervention; plasma proteins may be particularly 
advantageous, as they provide biological insights into the potential preventative treatment 
approaches.13 

Here we have identified a case-control cohort from the Liverpool Lung Project observational study 
that includes subjects with samples taken 1 or more years prior to their lung cancer diagnosis; with 
controls matched for age, sex and smoking history. We identify plasma proteins significantly 
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associated with lung cancer status, build models predicting lung cancer diagnosis and validate them 
in an independent observational dataset. 

 

Methods  

LLP cohort 
Samples, risk questionnaires and clinical data from Liverpool Lung Project (LLP) participants 14 were 
obtained following voluntary informed consent, in accordance with the Declaration of Helsinki. 
Ethical approval was obtained from the Liverpool Central Research Ethics Committee (ref 97/141). 
Lung cancer cases were identified through NHS Digital (now NHS England) via the National Cancer 
Registration and Analysis Service or through case note review. Individual level healthcare data is 
available only for restricted purposes and must be governed by a data sharing agreement, so is only 
available upon request.  

EDTA plasma samples from LLP subjects were collected by standardised protocols (between 1998 
and 2016), with a single cell depletion centrifugation (2200g, 15 min.) prior to storing at -80oC and a 
further cell depletion spin after thawing, before being aliquoted for Olink studies and refrozen for 
shipment. 

The cases and controls for this study were selected retrospectively as a nested case-control cohort 
from the LLP population cohort (Supplemental Figure S1). LLP population cohort subjects without 
lung cancer at the time of recruitment, but with subsequent diagnosis of primary lung cancer within 
5 years were identified for the primary discovery cohort (cases, Table 1). Non-small cell lung cancer 
cases included almost equal numbers of adenocarcinoma (n= 53) and squamous cell carcinoma (n= 
49) and were either early stage (45%) or late stage (52%) at the time of diagnosis (Supplementary 
Table S1). Samples at diagnosis (n=23), 1-3 years prior to diagnosis (n=21), 3-5 years prior to 
diagnosis (n=30) or 5-10 years prior to diagnosis (n=33), were identified for longitudinal studies from 
42 cases (Table S2), along with 110 longitudinal samples at the same time points from 48 controls.  

For each case, sex (self-reported as sex assigned at birth) and age at plasma sample were used to 
match control subjects (2 per case for discovery cohort and 1 per case for longitudinal studies). 
Controls were also selected to have the same smoking status (current/former/never) at the time of 
sampling and similar lifetime smoking duration (based on all forms of tobacco). Where multiple 
longitudinal bio-specimens were available from cases, controls were identified with multiple samples 
at approximately the same intervals. Most subjects were smokers at the time of initial blood 
collection, with only 10 never smokers, but 24 had quit smoking at the time of the last sample used.  

 

Olink platforms  
Pre-diagnosis plasma proteomics was assessed in a cross-sectional sub-cohort (292 subjects, 1-5 
years before diagnosis), and a longitudinal sub-cohort (246 samples from 144 subjects, 5-10 years 
before diagnosis, 2-5 years before diagnosis, and at time of diagnosis). We generated plasma 
proteomics data using the Olink Explore 3072 platform (2941 proteins), which consists of 8 separate 
panels: Oncology, Oncology II, Cardiometabolic, Cardiometabolic II, Inflammation, Inflammation II, 
Neurology, and Neurology II. We generated PCA plots with all proteins and samples, and filtered 6 
samples with > 5 standard deviations from the mean. We then generated PCA for each panel 
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separately, and filtered an additional 5 samples with > 5 standard deviations from the mean. Data 
was also generated using the Olink Target 96 platform (panels: Cardiometabolic, Cardiovascular II, 
Cardiovascular III, Cell Regulation, Development, Immune Response, Inflammation, Metabolism, 
Neuro Exploratory, Neurology, Oncology II, Oncology III, Organ Damage). 

 

Haemolysis 
Haemolysis is known to contribute to increased levels of some proteins in plasma 15. To avoid 
potential false-positives results due to haemolysis-associated signals, we systematically removed 
proteins that were found to be significantly associated with haemolysis (Supplementary Table S3). 
Each sample in the LLP cohort had a haemolysis score assigned ranging from 0 to 4. A linear model 
was generated to identify proteins significantly associated with haemolysis, with 1112 proteins out 
of 2941 proteins measured by Olink Explore identified based on FDR < 0·01. These proteins were 
filtered out from further analysis.  

 

UK Biobank 
Olink data was generated in UK Biobank (UKB) data as part of the UK Biobank Pharma Proteomics 
Project 16; the UK Biobank population (age 40 to 69 years) is younger than the LLP population (age 48 
to 84 years) . We analysed the initial batch of data which was generated using the Olink Explore 
1536 platform (1472 proteins) on 54,306 UKB participants. We extracted future cancer cases from 
UK Biobank cancer registry. We defined lung cancer cases using the ICD10 code of C34. Cancer cases 
are restricted to the first occurrence, have future cancer from the baseline blood draw, and have 
Olink data. After applying our selection criteria, the total number of cases is 392 (Supplementary 
Figure S2, Supplementary Table S4). 

Controls were defined as individuals with no record of cancer, who did not self-report any previous 
cancer incidents, and if deceased cancer was not the cause of death. We matched controls to cancer 
cases by age, sex, smoking status and race, using the K-nearest neighbour method to generate 
matching controls. Two patient-to-control ratios were implemented; one is a balanced ratio where 
the ratio of cancer to control is 1:1, and the second represents the risk of getting lung cancer as 1 
cancer : 14 controls (392 cases and 5500 controls).  

For pan-cancer analysis, we repeated the above process for each cancer type then we combined 
control samples from different cancer types into one pooled control sample; ICD 10 cancer codes: 
Prostate, C61; Breast, C50; Colorectal, C18 & C19; Uterine Cancer, C44; Kidney Cancer, C64; 
Pancreatic, C25; Bladder, C67; Stomach, C16; Liver, C22. 

 

Machine Learning 
Feature selection was performed on the discovery cohorts (Table 1) by bootstrapping differential 
expression on a random set of 50% of the dataset 1000 times using a linear model with age, sex, and 
pack years as covariates, and significant proteins were defined as being differentially expressed 
between cases and controls (P < 0·05 linear model anova) at least 100 times. Proteins associated 
with haemolysis were then filtered out. Four different machine learning algorithms were trained 
[Elastic Net,17 Random Forest,18 Support Vector Machine,19 XGBoost 20] as a binary model to predict 
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cancer vs. control either at 1-3 years before diagnosis or 1-5 years before diagnosis of lung cancer. 
Receiver operating characteristic area under the curve values (AUCs) from the models are reported 
as the median AUC from 5-fold cross validation repeated 5 times. To predict future cancer in UKB 
individuals, we intersected selected proteins with proteins available in UKB data and trained Support 
Vector Machine (SVM) classifiers using this set of proteins.  

 

Pathway Enrichment 
For GO biological process pathways gene set enrichment, 7658 gene sets were downloaded from 
msigdb (www.gsea-msigdb.org), and the list was filtered to only include proteins measured by the 
Olink Explore platform (2941 proteins). Hypergeometric tests were performed separately on 
proteins higher or lower in lung cancer cases from the 1-3Y and 1-5Y models, with the background as 
the 2941 proteins measured by Olink.  

 

Role of the funding source 
This work was supported by Janssen Pharmaceuticals through a Research Collaboration Agreement 
with the University of Liverpool.  Writing of the manuscript and the decision to submit it for 
publication was a joint undertaking by members of the research team from both parties. Scientists 
from both parties were involved in study design, data collection from analytical tests, analysis of 
anonymous data, and interpretation of results, but only University of Liverpool researchers were 
responsible for patient recruitment or identifiable personal healthcare data. 

The Liverpool Lung Project has also been funded by the Roy Castle Lung Cancer Foundation, but the 
they had no direct role in production of this manuscript. 

 

Results 

Lung cancer associated plasma proteins 
We combined patient samples taken 1-3 years before diagnosis (1-3Y) from the cross-sectional and 
longitudinal sub-cohorts to build models to predict development of future lung cancer. We identified 
422 proteins that were differentially expressed between healthy subjects and future lung cancer 
cases 1-3Y prior to diagnosis. 240/422 proteins were kept for further analysis (158 up in cases and 82 
down) after filtering out proteins that were significantly associated with haemolysis (Supplementary 
Table S3). A subset of these proteins was also measured on the Olink Target 96 platform and these 
correlated well with the Olink Explore platform; 262/265 of the overlapping proteins had a 
significant correlation with FDR < 0·05 (Supplemental Figure S3 and Supplemental Table S6). 

 

Machine Learning 
Training four different machine learning algorithms on the LLP cohort (Elastic Net, Random Forest, 
Support Vector Machine, XGBoost, 5-fold cross validation repeated 5 times) using the 240 proteins 
in the 1-3Y cohort generated median AUCs from the cross validation ranging from 0·76 to 0·90 
(Figure 1a).  
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Combined z scores were generated from the differentially expressed proteins at 1-3Y before 
diagnosis and were plotted over time, including additional longitudinal samples (Figure 1b). The 
difference between cases and controls was greater closer to diagnosis. The 1-3Y combined z score 
differentiated between controls and cases at 1-3 years before diagnosis, but not at 3-5 years or 5-10 
years before diagnosis. Individual patient trajectories of the combined z scores indicate that patients 
that developed cancer were more likely to have an upward trajectory of their z score over time 
(Supplemental Figure S4).  

The combined z scores did not differ between stage of cancer at time of diagnosis (Figures 2a). The 
only significant difference between stages was at 5-10 years before diagnosis, where it was higher 
for stage I than stage IV. However, at this time point the healthy and lung cancer z-scores didn’t 
demonstrate a difference overall. The combined z scores also did not correlate with pack years 
regardless of time before diagnosis, whether looking at healthy or lung cancer subjects (Figures 2b). 
The z score had a stronger signal in squamous cell carcinoma 3-5 years before diagnosis, had no 
correlation with age in pre-diagnostic samples, and had no association with diagnosis of COPD 
(Supplemental Figure S5).  

 

UK Biobank validation 
These 1-3Y trained model was tested on samples in the UK Biobank using SVM, which was the model 
that had the best performance in the training cohort. Only proteins that were measured in both LLP 
and UKB were used in the models since the UKB cohort measured a smaller panel of proteins using 
the Olink Explore platform: 107/240 for the 1-3Y model. We constructed a UK biobank cohort that 
includes 392 future lung cancer cases and 5500 cancer-free controls (see Methods). Our 1-3Y model 
proteins gave an AUC from the cross validation of 0·75 for predicting cancer 1-3Y before diagnosis 
(Figures 1c). An AUC of ~0·7 was retained for predicting cohorts that included patients 12 years prior 
to diagnosis (Figure 1d). We also demonstrate that our model is highly specific to lung cancer; when 
we try to predict other types of cancer using our model AUCs were around 0·5 (Figure 1e). Sub-
cohort analysis indicated that the model retained performance in non-smokers, patients younger 
than the age from the recommended screening guidelines and both sexes (Table 2); it also 
performed similarly for different histological subtypes (Supplementary Table S7). 

 

Longer term prediction 
We further investigated the ability of plasma proteins to predict lung cancer by repeating our 
analysis using sample taken 1-5 years (1-5Y) prior to diagnosis and matched controls. We identified 
489 proteins 1-5Y before diagnosis that were differentially expressed between future lung cancer 
and healthy subjects. After filtering out proteins that were significantly associated with haemolysis, 
267/493 proteins were kept for further analysis (119 up in cases and 148 down). Of these, 117 of 
these were also identified for the 1-3Y analysis, 69 up in cases and 48 down in cases (Supplementary 
Table S5). Hence, over half of those plasma proteins significantly altered in the future lung cancer 
cases 1-5Y before diagnosis were not identified as significantly altered 1-3Y before to diagnosis (n = 
150, 50 up in cases and 100 down in cases). 

The combined z score for the 1-5Y proteins had the same relationship to histology, COPD (Figure S5) 
and smoking pack year histology as the 1-3Y proteins. However, in contrast to 1-3Y proteins (Figure 
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1b), the 1-5Y combined z score differentiated between controls and cases at both 1-3Y and 3-5Y 
before diagnosis (Figure 3b), had no relationship to stage (Figure S5f) and had a negative correlation 
with age in pre-diagnostic cancer cases and healthy controls (Figure 3c). 

Training four different machine learning algorithms (with 5-fold cross validation repeated 5 times) 
using these 267 1-5Y proteins generated median AUCs from the cross validation ranging from 0·73 to 
0·83, as shown in Figure 3a. During external validation, the model based on the 129 1-5Y proteins 
measured in the UKB data gave an AUC of 0·69 for predicting lung cancer 1-5Y before diagnosis, 
which was not significantly different to the 1-3Y model. As with the 1-3Y model, AUC remained 
around 0·7 even for samples up to 12 years prior to diagnosis.  

 

Biological pathways 
Gene enrichment analysis was performed to investigate potential biological pathways implicated in 
the risk of future lung cancer, being either increased in plasma (over-represented in cases) or 
decreased in plasma (under-represented in cases). For the top 20 pathways enriched for proteins 
either higher or lower in cases, there was limited overlap between 1-3Y and 1-5Y cohorts (Figure 4); 
only 3 pathways over-represented in cases and 3 pathways under-represented in cases were shared 
between the 1-3Y and 1-5Y proteins. Of those pathways with higher plasma protein levels in cases, 
of the 152 pathways with P<0·05 for either cohort, 57 were significant for 1-5Y only, 83 for 1-3Y only 
and only 12 for both (Supplementary Table S8a). For proteins with lower levels in cases, of the 138 
pathways with P<0·05 for either cohort, 55 were significant for 1-5Y only, 74 for 1-3Y only and only 9 
for both (Supplementary Table S8b).  

That individual proteins may be associated with different aspects of lung cancer risk and/or presence 
of undetected lung cancer is exemplified by looking at how levels change over time (Supplemental 
Figure S6) in those cases and controls with longitudinal samples (Table S2). Some increase (e.g. 
PDIA4, RBPMS2) or decrease (e.g. ENPP6) the closer the sample is taken to diagnosis; others are 
consistently higher (e.g.  CEACAM5) or lower (e.g. MFGE8) varying less over time, but many exhibit a 
combination of both traits. 

 

Discussion 

We have performed comprehensive plasma protein discovery, using the Olink® Explore 3072 
platform, on plasma samples from the Liverpool Lung Project (LLP) 14 taken at various times prior to 
lung cancer diagnosis. This provides insight into early predictive biomarkers and how they change 
over time. The plasma proteome provides protein biomarkers which may be used to identify those 
at greatest risk of lung cancer, 5 or more years prior to diagnosis.  This approach may provide an 
opportunity to identify patients who would benefit from novel preventative approaches (for 
pharmaceutical or vaccination interventions) or who would be eligible for lung cancer screening 
despite not conforming to current smoking-related selection criteria. 

Selecting proteins by bootstrapping differential expression, we identified 425 and 493 proteins 
respectively in the 1-3Y and 1-5Y cohorts. However, we also noted that many of these proteins were 
associated with haemolysis. As haemolysis-associated proteins would give potential false positive 
signals if any healthy samples were haemolysed, and it is possible that haemolysis is more often 
seen in lung cancer patients than healthy individuals, we chose to remove any proteins that were 
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associated with haemolysis, leaving 240 (1-3Y) and 267 (1-5Y) proteins with each panel combined in 
a z score to investigate relationships with clinical and epidemiological factors. We found no 
association with smoking (pack years or duration) or with a history of COPD; a negative association 
with age was seen for pre-diagnostic samples and controls for the 1-5Y z score only. Hence, the 
plasma proteins are not directly related to known risk factors for cancer, meaning they are more 
likely to provide additional useful information when used in conjunction with lung cancer risk scores 
and be unrelated to smoking-induced inflammation. Furthermore, there was no association with 
stage of disease at diagnosis (apart from the 1-3Y z score association with early stage, albeit at 5-10 
years pre-diagnosis, when not significantly different to control samples) and only a weak association 
with histological type specifically at 3 - 5 years before diagnosis. These results indicate that the 
identified proteomic signals are likely to be useful for prediction of any sub-type of non-small cell 
lung cancer, regardless of stage.  

Although we have identified 240 plasma proteins differentially expressed 1-3 years prior to diagnosis 
and 267 proteins 1-5 years prior to diagnosis, only 117 of the total 390 proteins (30%) were 
identified in both analyses. This is noteworthy, as the plasma proteome reflects not just the 
presence of an occult, pre-diagnosis tumour (with signals most likely closer to diagnosis), but 
immune response to pre-malignant disease and the biological response to inflammation associated 
smoking and environmental factors (risk factors that are not necessarily higher at time of diagnosis). 
Furthermore, when mapped on to pathways by gene set enrichment analysis, there was limited 
overlap between the top pathways from 1-3Y and 1-5Y (only 21 pathways of 290 with significant 
enrichment), indicating different biological pathways drive the signal for long-term and short-term 
risk. Pathway analysis provides valuable insight into potential biological mechanisms underpinning 
the differential expression, potentially providing insights into targets for preventative treatment for 
those at high risk of lung cancer. However, it should be noted that although extensive, the Olink 
panels have been carefully curated to reflect specific pathways. Hence these will be over-
represented in any subsequent pathway analysis, potentially biasing results.  

As might be expected, the z score based on those selected based on 1-5Y samples showed a greater 
differential expression at 3-5 years prior to diagnosis than that based on 1-3Y protein. Nevertheless, 
four different machine learning algorithms demonstrated that both the 1-3Y and 1-5Y proteins were 
able to predict lung cancer up to 5 years prior to diagnosis (AUCs of 0·76-0·90 for the 1-3Y models 
and 0·73-0·83 for the 1-5Y models). Remarkably, in the UK Biobank validation it was shown that 
either set of proteins were able to predict lung cancer to the same extent (AUC = 0·7) up to 12 years 
prior to diagnosis. It is important to note that this cancer prediction was exclusive to lung cancers, 
with other future cancers in the UK Biobank cohort not predicted, indicating that both the 
predisposing factors and the tumour-released proteome are likely distinctive for different tumours. 
Furthermore, in the UK Biobank validation, we observed that the predictive power was maintained 
to some extent in never smokers (AUC = 0·62) compared to smokers (AUC = 0·69) and was also 
predictive in those aged 40-55 years (AUC 0·78), who would not usually be eligible for LDCT lung 
cancer screening; there was also some evidence that it performed better in males (AUC 0·72) than 
females (AUC 0·66). It is therefore possible that plasma proteome biomarkers might help to expand 
lung cancer prediction risk scores for better utility within groups currently excluded from the benefit 
of LDCT screening. However, this would need to be tested in larger populations of younger subjects 
and never smokers, as these groups are under-represented in most lung cancer cohorts. 
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Looking at longitudinal samples, the combined z score for the 1-3Y proteins rises significantly 
towards diagnosis. However, for the 1-5Y protein, differences extend to earlier in disease 
progression and the levels of some proteins were not increased to as great an extent closer to 
diagnosis. This indicates that they may represent marker of risk, being indicative of either genetic 
predisposition or smoking-related damage, rather than being tumour-released or tumour-reactive 
proteins. Risk biomarkers, rather than being used for early diagnosis, may allow one to identify those 
who would benefit most from preventative measures, including therapeutic-prevention. For 
example, inflammation has been shown to be a potential target when post-hoc analysis of the 
CANTOS trial of Canakinumab (an anti-interleukin-1β monoclonal antibody), for prevention of 
recurrent vascular events in patients with a persistent pro-inflammatory response, demonstrated a 
protective effect on lung cancer incidence and mortality 21; although subsequent trails in treatment 
of existing cancers have so far proved inconclusive. 

Plasma proteins have been shown to provide a means to predict those most at risk of future lung 
cancer.11,12 Similarly, the models we have identified could be considered as candidates for inclusion 
in risk profiling for LDCT screening, or for expedited referral of symptomatic patients. However, the 
cost-effectiveness of this approach will have to be validated in the context of LDCT screening and/or 
primary care referrals. One limitation of our analysis is the retrospective nature of the analysis, 
although this is unavoidable given the need for sufficient follow-up to identify both the cancer cases 
and to establish that the controls are cancer free. Retrospective validation of risk prediction in 
similar prospectively collected cohorts such as UK Biobank, should be supplemented with 
prospective validation. A further limitation of our analysis is that we did not attempt to reduce our 
relative protein level analysis to a plasma protein biomarker that might more reasonably be 
measured cheaply using technologies employed in routine clinical diagnosis. This is likely to be more 
feasible for a smaller number of proteins and to require absolute (fully quantitative) measurement 
with external validation at population level. It would also be potentially worthwhile incorporating 
clinical, lifestyle and environmental risk factors into a joint model. Whilst that requires larger 
datasets, it is notable that there were no strong positive associations between the plasma protein 
models we identified and other known risk factors such as age, smoking and COPD. 

A number of other biomarker platforms have been used to improve lung cancer diagnosis in 
asymptomatic patients, with a view towards early detection based on circulating tumour DNA 
including DNA methylation22, fragmentomics23  and genomics approaches.24,25 Unlike the plasma 
protein biomarkers described here, these rely predominantly on detecting nucleic acids released 
from cancer cells into the circulation, the concentration of which increase as tumour grow or spread. 
This underlies the relatively poor performance seen for some tests in early stage disease (e.g. a 
sensitivity for Grail test of only 21.9% for stage I, but 79.5% for stage II, 90.7% for stage III and 95.2% 
for IV).22 However, it should be noted that Grail is a multi-cancer test and these sensitivities might be 
improved by careful selection of lung cancer specific methylation biomarkers.26 Those tests that rely 
on biomarkers released by cancer cells will always face the challenge of low levels in early stage 
disease and they are also less likely to reflect inherent cancer risk in the same way as biomarkers 
that capture host factors (such as smoking-induced damage or immune-response to precursor 
lesions and early tumours). 

We have demonstrated that some proteins are associated with longer-term risks, rather than 
increasing closer to diagnosis (and presumably either being tumour-released or indirectly associated 
with tumour burden). Other research groups have also demonstrated associations between specific 
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proteins and lung cancer risk within 1 year of diagnosis,27 but our discovery study provides data on a 
much wider range of proteins. Other biomarkers may include contributions from host cells, including 
lipidomics28 and miRNA.29 The lipidomics approach taken by Wang et al. is predicated on altered lipid 
metabolism in cancer cells and identified levels of 9 lipids in plasma that were highly accurate for 
lung cancer, predominantly early stage, in an independent LDCT screening cohort (more than 90% 
sensitivity and 92% specificity). Profiling miRNA has been validated to an even greater extent in 
Italian LDCT screening studies, including for diagnosis30 and personalising screening intervals.31  

By contrast our results are preliminary and we did not attempt to reduce our relative protein level 
analysis to a plasma protein biomarker that could be tested cost effectively using technologies 
employed in routine clinical diagnosis. This is potentially feasible for a smaller number of validated 
proteins and requires absolute (fully quantitative) measurement with external validation at 
population level (as described by the INTEGRAL consortium).32 Nevertheless, our data adds 
significantly to such studies, providing longer-term data and longitudinal data for individuals. One 
potential advantage highlighted is that the plasma proteome could provide insight both into the 
individual’s risk of lung cancer and a means of detecting imminent early stage disease. 

In conclusion, the plasma proteome analysis, performed on pre-diagnostic samples from lung cancer 
patients and lung cancer free controls, identified two partially overlapping panels of proteins from 
samples 1-3 years or 1-5 years prior to cancer. These panels mapped to predominantly different 
pathways, but both were predictive for lung cancer on internal and external validation. That samples 
further from diagnosis displayed different patterns of predictive plasma proteins may indicate that 
they reflect biological risk, rather than tumour-associated changes. The latter are nevertheless 
significant in both panels, the combined z scores of which are highest at diagnosis. 
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Table 1 LLP Cohorts used for 1-3 year and 1-5 year discovery  

 Cases 1-3 years prior to diagnosis  Cases 1-5 years prior to diagnosis 

 Cancer Control Total P value (test)*  Cancer Control Total P value (test)* 

Sex n (%) Female  
Male  

14 (35.0) 
26 (65.0) 

39 (38.2) 
63 (61.8) 

53 (37.3) 
89 (62.7) 

X2 0.13 
P= 0·72 (CS) 

 27 (36.0) 
48 (64.0) 

77 (41.4) 
109 (58.6) 

104 (39.8) 
157 (60.2) 

X2 0.65 
0·42 (CS) 

Age (years) 
Median (IQR)  

69.5  
(62.3 - 74.2) 

70.1 
(62.0 - 74.3) 

69.8 
(62.0 - 74.2) 

 0·96 
(MW) 

 68.3 
(62.0 - 73.3) 

68.2 
(61.9 - 73.2) 

68.1 
(62.0 - 73.2) 

0.88 
(MW) 

Smoking status n (%) current 
former 

never 
unknown  

11 (27.5) 
27 (67.5) 

1 (2.5) 
1 (2.5) 

38 (37.3) 
61 (59.8) 

3 (2.9) 
0 (0) 

49 (34.5) 
88 (62.0) 

4 (2.8) 
1 (0.7) 

X2 1.08 
P= 0.58 

(CS) 

 27 (36.0) 
43 (57.3) 

2 (2.7) 
3 (4.0) 

74 (39.8) 
104 (55.9) 

8 (4.3) 
0 (0) 

101 (38.7) 
147 (56.3) 

10 (3.8) 
3 (1.1) 

X2 0.51 
P= 0·77 

 (CS) 

Smoking duration (years)  
Median (IQR) 

44 
(33 - 48) 

43 
(35 - 50) 

43 
(34 - 49) 

0·47 
(MW) 

 44 
(34 - 49) 

44 
(35 - 49) 

44 
(35 - 49) 

0.76 
(MW) 

Smoking pack years  
Median (IQR) 

43.5 
(25.0 - 51.5) 

39.8 
(22.7 - 53.8) 

39.9 
(24.6 - 52.8) 

 0·68 
(MW) 

 41.3 
(25.5 - 51.8) 

37.5 
(21.8 - 49.2) 

38.4 
(23.3 - 50.4) 

0.19 
(MW) 

Smoking quit years  
Median (IQR) 

0 
(0 - 10) 

2 
(0 - 12.3) 

0 
(1 - 11.5) 

0·75 
(MW) 

 0 
(0 - 10) 

0 
(0 - 9) 

0 
(0 - 8) 

0·59 
(MW) 

COPD n (%) Yes 
No 

9 (22.5) 
31 (77.5) 

18 (17.6) 
84 (82.4) 

27 (19.0) 
115 (81.0) 

X2 0.44 
P= 0·51 (CS) 

 16 (21.3) 
59 (78.7) 

33 (17.7) 
153 (82.3) 

49 (18.8) 
212 (81.2) 

X2 0.45 
P= 0·50 (CS) 

Body Mass Index  
Median (IQR) 

26.6 
(26.2 - 29.3) 

26.5 
(24.3 - 28.1) 

26.6 
(24.6 - 28.2) 

0·47 
(MW) 

 26.6 
(24.8 - 27.4) 

26.6 
(24.5 - 28.1) 

26.6 
(24.5 - 28.1) 

0.86 
(MW) 

Total subjects 40 102 142   75 186 261  

Plasma samples 58 117 175   114 220 334  

IQR = Inter-quartile range; * CS = Chi-square; MW = Mann-Whitney (tests only performed for known values) 
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Table 2 Validation of 1-5Y lung cancer prediction model in UK Biobank data 

 
PPV at sensitivity of: enrichment 

at 0·05 AUC Population 
Size Cases Prevalence 

in subgroup 0·05 0·10 0·25 

Smoker 47.4 37.1 21.7 5.6 0.693 4235 356 8.41 

Non-smoker 7.7 8.1 6.6 3.9 0.615 1654 33 2 

Age 40-55 y 100 62.5 27.9 39 0.775 1913 49 2.56 

Age 55-70 y 30.4 31.5 21.3 3.5 0.683 3979 343 8.62 

Male 55.6 29.9 20.2 7.8 0.721 2878 204 7.09 

Female 31 31.7 17.6 5.0 0.663 3014 188 6.24 

Total 40.8 30 19.1 6.1 0.694 5892 392 6.65 

PPP = positive predictive value; AUC = Area under Curve ROC value 
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Figure 1: Circulating plasma proteins prediction of future lung cancer. (a) A boxplot of training AUC 
values from four different machine learning models (Elastic Net, Random Forest, Support Vector 
Machine, XGBoost, 5-fold CV repeated 5 times) trained on the LLP cohort to predict lung cancer in 
patients 1-3 years before diagnosis (53 cancer and 109 control samples). (b) Protein levels in LLP 
subjects were transformed using the z-score method and combined to generate one score. 
Combined z-scores were plotted over time in the LLP cohort for 1-3Y proteins. (c) AUROC of 1-3Y 
SVM model trained in Liverpool tested in UK Biobank samples 1-3 years before lung cancer diagnosis 
(62 cancer and 5500 control samples). (d) Performance of the 1-3Y SVM model in the UK Biobank 
across different years of diagnosis of lung cancer. Samples taken at different times prior to lung 
cancer were segregated by year (2-12 years) and the SVM model for 1-3Y was tested by ROC 
analysis. (e) Barplot for AUROC values for SVM model predicting future development of cancer for 
several cancer types from UK Biobank 1-3 years before diagnosis. The same approach as taken for 
lung cancer (see methods) was taken to identify plasma samples at least 2 years prior to other first 
cancer diagnosis (number of cases labelled on bar chart) and the AUC for ROC analysis shown. 

 

Figure 2: Combined z-score from 1-3Y in relation to cancer stage and pack years of smoking. 
Protein levels in LLP subjects were transformed using the z-score method and combined to generate 
one score. (a) Combined z-scores were plotted in time-frame categories (5-10 years, 3-5 years, 1-3 
years prior to diagnosis or at diagnosis) for healthy subjects and cases of different lung cancer stage 
for 1-3Y proteins with P-values generated using Wilcoxon signed-rank test. (b) The z-scores were also 
correlated with pack years of smoking at time of sample in the same time frame categories; 
correlation was measured using Pearson correlation coefficient. 

 

Figure 3: Circulating plasma proteins prediction of long-term future lung cancer. (a) A boxplot of 
training AUC values from four different machine learning models (Elastic Net, Random Forest, 
Support Vector Machine, XGBoost, 5-fold CV repeated 5 times) trained on the LLP cohort to predict 
lung cancer in patients 1-5 years before diagnosis (110 Cancer, 215 control samples). (b) Protein 
levels in LLP subjects were transformed using the z-score method and combined to generate one 
score. Combined z-scores were plotted over time in the LLP cohort for 1-5Y proteins. (c) The z-scores 
were also correlated with age at time of sample in the same time frame categories; correlation was 
measured using Pearson correlation coefficient. 

 

Figure 4: Gene Enrichment Analysis Top 20 pathways over- or under-represented in plasma samples 
from 1-3Y or 1-5Y models, demonstrating largely different pathways for different predictive panels 
(blue) with three shared over-represented (green) and three shared under-represented (red) 
pathways. 
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