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1 Introduction and Motivation

We discuss a simple, yet general family of models, namely Random Intersec-
tion Graphs (RIGs), initially introduced by Karoski et al. [4] and Singer-Cohen
[10]. In such models there is a universe M of labels and each one of n vertices
selects a random subset of M. Two vertices are connected if and only if their
corresponding subsets of labels intersect. A formal definition is given below:

Definition 1 (Random Intersection Graph - Gn,m,p [4, 10]). Consider a
universeM = {1, 2, . . . ,m} of labels and a set of n vertices V . Assign indepen-
dently to each vertex v ∈ V a subset Sv of M, choosing each element i ∈ M
independently with probability p and draw an edge between two vertices v 6= u if
and only if Sv∩Su 6= ∅. The resulting graph is an instance Gn,m,p of the random
intersection graphs model.

In this model we also denote by Li the set of vertices that have chosen label
i ∈M . Given a random instanceGn,m,p of the random intersection graphs model,
we will refer to {Li, i ∈ M} as its label representation, and the corresponding
matrix R with columns the incidence vectors of label sets assigned to vertices
is called the representation matrix. Furthermore, we refer to the bipartite graph
with vertex set V ∪M and edge set {(v, i) : i ∈ Sv} = {(v, i) : v ∈ Li} as the
bipartite random graph Bn,m,p associated to Gn,m,p. Notice that the associated
bipartite graph is uniquely defined by the label representation.

It follows from the definition of the model that the (unconditioned) probabil-
ity that a specific edge exists is 1− (1− p2)m. Therefore, if mp2 goes to infinity
with n, then this probability goes to 1. We can thus restrict the range of the
parameters to the “interesting” range of values mp2 = O(1) (i.e. the range of
values for which the unconditioned probability that an edge exists does not go
to 1). Furthermore, as is usual in the literature, we will assume that the number
of labels is some power of the number of vertices, i.e. m = nα, for some α > 0.

It is worth mentioning that the edges in Gn,m,p are not independent. For ex-
ample, there is a strictly positive dependence between the existence of two edges
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that share an endpoint (i.e. Pr(∃{u, v}|∃{u,w}) > Pr(∃{u, v})). This depen-
dence is stronger the smaller the number of labels M includes, while it seems
to fade away as the number of labels increases. In fact, by using a coupling
technique, the authors in [3] proved the equivalence (measured in terms of to-
tal variation distance) of uniform random intersection graphs and Erdős-Rényi
random graphs, when m = nα, α > 6. This bound on the number of labels was
improved in [5], where it was proved that the total variation distance between
the two models tends to 0 when m = nα, α > 4. Furthermore, [9] proved the
equivalence of sharp threshold functions among the two models for α ≥ 3. Sim-
ilarity of the two models has been proved even for smaller values of α (e.g. for
any α > 1) in the form of various translation results (see e.g. Theorem 1 in
[8]), suggesting that some algorithmic ideas developed for Erdős-Rényi random
graphs also work for random intersection graphs (and also weighted random in-
tersection graphs). These results suggest that random intersection graphs are
quite general and that known techniques for random graphs can be used in the
analysis of random intersection graphs with a large number of labels.

Motivation. Random intersection graphs may model several real-life applica-
tions quite accurately. In fact, there are practical situations where each commu-
nication agent (e.g. a wireless node) gets access only to some ports (statistically)
out of a possible set of communication ports. When another agent also selects a
communication port, then a communication link is implicitly established and this
gives rise to communication graphs that look like random intersection graphs.
RIG modeling is useful in the efficient blind selection of few encryption keys
for secure communications over radio channels ([1]), as well as in k-Secret shar-
ing between swarm mobile devices (see [2]). Furthermore, random intersection
graphs are relevant to and capture quite nicely social networking. Indeed, a so-
cial network is a structure made of nodes tied by one or more specific types of
interdependency, such as values, visions, financial exchange, friends, conflicts,
web links etc. Other applications may include oblivious resource sharing in a
distributed setting, interactions of mobile agents traversing the web, social net-
working etc. Even epidemiological phenomena (like spread of disease between
individuals with common characteristics in a population) tend to be more accu-
rately captured by this “proximity-sensitive” family of random graphs.

From an average case analysis algorithmic perspective, the number of la-
bels m may be viewed as a parameter controlling the clique cover size of input
graphs. It is worth noting that some combinatorial problems that are consid-
ered to be hard when the input is drawn from the Erdős-Rényi random graphs
model are easily solved when the input is drawn from the random intersection
graphs model and the representation matrix R is explicitly provided as part
of the input (rather than just giving the constructed graph instance as input).
One such example is the problem of finding a maximum clique in Gn,m,p, in the
dense case m = nα, α < 1. Furthermore, there are combinatorial optimization
problems that can be naturally described as graph theoretical problems in gen-
eralizations of the aforementioned model of random intersection graphs. In this
talk, we discuss some structural and algorithmic results regarding random inter-
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section graphs and we present an interesting connection between the problem of
discrepancy in random set systems and the problem of Max Cut in weighted
random intersection graphs.

2 Maximum Cliques in Random Intersection Graphs

We discuss the Single Label Clique Theorem (SLCT) from [6], which states that
when the number of labels is less than the number of vertices, any large enough
clique in a random instance of Gn,m,p is formed by a single label. This statement
may seem obvious when p is small, but it is hard to imagine that it still holds

for all “interesting” values for p. Indeed, when p = o
(√

1
nm

)
, it can be proved

that Gn,m,p almost surely has no cycle of size k ≥ 3 whose edges are formed by
k distinct labels (alternatively, the intersection graph produced by reversing the
roles of labels and vertices is a tree). On the other hand, for larger p a random
instance of Gn,m,p is far from perfect4 and thus the proof of the SLCT is based on
a careful contradiction argument regarding the non-existence of large multi-label
cliques.

3 Maximum Cut and Discrepancy in Random Set
Systems

A natural weighted version of the random intersection graphs model was intro-
duced in [7], where to each edge {u, v} we assign weight equal to the number of
common labels chosen by u and v, namely |Su ∩ Sv|. In particular, the weight
matrix of a random instance of the weighted random intersection graphs model
Gn,m,p is equal to RTR, where the columns of R are the incidence vectors of
label sets assigned to vertices; we denote the corresponding random instance by
G(V,E,RTR).

We initially present some results from [7] regarding the concentration of
the weight of a maximum cut of G(V,E,RTR) around its expected value, and
then show that, when the number of labels is much smaller than the number
of vertices (in particular, m = nα, α < 1), a random partition of the vertices
achieves asymptotically optimal cut weight with high probability. Furthermore,

in the case n = m and constant average degree (i.e. p = Θ(1)
n ), we show that

with high probability, a majority type randomized algorithm outputs a cut with
weight that is larger than the weight of a random cut by a multiplicative constant
strictly larger than 1.

Finally, we present a connection between the computational problem of find-
ing a (weighted) maximum cut in G(V,E,RTR) and the problem of finding
a 2-coloring that achieves minimum discrepancy for a set system Σ with inci-
dence matrix R (i.e. minimum imbalance over all sets in Σ). This connection

4 A perfect graph is a graph in which the chromatic number of every induced subgraph
equals the size of the largest clique of that subgraph. Consequently, the clique number
of a perfect graph is equal to its chromatic number.
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was exploited in [7] by proposing a (weak) bipartization algorithm for the case

m = n, p = Θ(1)
n that, when it terminates, its output can be used to find a

2-coloring with minimum discrepancy in a set system with incidence matrix R.
In fact, with high probability, the latter 2-coloring corresponds to a bipartition
with maximum cut-weight in G(V,E,RTR).
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