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ABSTRACT12

The interval discrete Fourier transform (DFT) algorithm can propagate signals carrying interval13

uncertainty. By addressing the repeated variables problem, the interval DFT algorithm provides14

exact theoretical bounds on the Fourier amplitude and estimates of the power spectral density15

(PSD) function, whilst running in polynomial time. Thus, the algorithm can be used to assess16

the worst-case scenario in terms of maximum or minimum power, and to provide insights into17

the amplitude spectrum bands of the transformed signal. To propagate signals with missing data,18

an upper and lower value for the missing data present in the signal must be assumed, such that19

the uncertainty in the spectrum bands can also be interpreted as an indicator of the quality of the20

reconstructed signal. For missing data reconstruction, there are a number of techniques available21

that can be used to obtain reliable bounds in the time domain, such as Kriging regressors or interval22

predictor models. Alternative heuristic strategies based on variable – as opposed to fixed – bounds23

1



can also be explored. This work aims to investigate the sensitivity of the algorithm against interval24

uncertainty in the time signal. The studies are conducted in different case studies using signals of25

different lengths generated from the Kanai-Tajimi PSD function, representing earthquakes, and the26

JONSWAP PSD function, representing sea waves as a narrowband PSD model.27

INTRODUCTION28

The consideration and quantification of uncertainties in real data records are of paramount29

importance for the design and simulation of buildings and structures and in engineering in gen-30

eral (Schuëller 2007; Kiureghian and Ditlevsen 2009; Nikolaidis et al. 2004). Even small mea-31

surement errors can lead to a wrong consideration of the input data and result in a disastrous32

interpretation of the simulation results, e.g. if an actually catastrophic result is shifted into an33

acceptable range by not taking uncertainties into account. Uncertainties should therefore be con-34

sidered in any case and included in the simulation, also in order to determine possible safety margins.35

An overview of methods to model and quantify uncertainties is given, for instance in (Beer et al.36

2013; Faes and Moens 2020).37

In order to safely design or to assess the reliability and robustness of buildings and structures38

that are subject to environmental processes such as wind, earthquakes or waves and thus exhibit a39

dynamic behaviour, simulations are indispensable. Specifically in random vibrations (Soong and40

Grigoriu 1993; Roberts and Spanos 2003; Lutes and Sarkani 2004), spectral analysis (Priestley41

1982; Newland 2012) and stochastic and structural dynamics (Lin and Cai 1995; Chopra 1995; Li42

and Chen 2009), the determination of the dynamic characteristics of such an environmental process43

is very important. In this regard, the power spectral density (PSD) function is an important tool as44

it is used to determine the governing frequencies of a signal and their amplitude. In the stationary45

case, the PSD function is based on the discrete Fourier transform (DFT), see for instance (Sneddon46

1995). Therefore, the DFT is used ubiquitously when determining the spectral properties of a47

random signal and decomposing it into its harmonic components. The probably most famous48

implementation is the fast Fourier transform (FFT), first appeared in (Cooley and Tukey 1965;49

Cooley 1987).50
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However, if an uncertain signal is now to be transformed via the DFT, this cannot be accom-51

plished with absolute certainty, since the DFT is not defined for non-discrete signals. Therefore,52

accounting for uncertainties in the data, such as missing data, should be combined with the DFT53

to obtain reliable results. Missing data in a signal, if not properly accounted for, can lead to severe54

erroneous results, as the spectral characteristics of the signal could thus be incorrectly determined.55

In particular, the estimation of the PSD function and the subsequent simulation of a structure can56

lead to incorrect results if the spectral characteristics, such as the peak frequency, are not determined57

correctly. Quantifying uncertainties of such a signal after transformation to the frequency domain58

is therefore of utmost importance.59

Missing data in a signal can be reconstructed either by discrete points or in certain bounds60

represented by intervals. Such methods can be, for instance, least squares methods (Levenberg61

1944), compressive sensing (Comerford et al. 2016; Comerford et al. 2017), autoregressive meth-62

ods (Naghizadeh and Sacchi 2007; Naghizadeh and Sacchi 2010), interval predictor models (Campi63

et al. 2009; Sadeghi et al. 2019; Rocchetta et al. 2021) or Kriging (De Rubeis et al. 2005; Lin and Li64

2020). However, since none of these advanced methods can guarantee, that the original data point65

is reconstructed with absolute certainty, a residual uncertainty remains. In fact, the DFT is very66

sensitive against small changes in the input signal, which will result in uncertain determination of67

the spectral characteristics of said signal. Therefore, only a simple reconstruction of the missing68

data may not be reliable enough and other methods must be sought which are capable of effectively69

transforming an uncertain signal to the frequency domain.70

Some approaches for estimating PSD functions from signals with missing data have already71

been developed. In particular, approaches treating missing data as Gaussian distributed random72

variables and propagating them through the DFT (Comerford et al. 2015b; Zhang et al. 2017), while73

artificial neural networks are used in (Comerford et al. 2015a). Another approach was presented74

by (Liu and Kreinovich 2010), where the FFT and convolution were studied for signals with interval75

and fuzzy uncertainty. An algorithm to propagate interval signals through the DFT to obtain exact76

bounds on the Fourier amplitude, the so-called interval DFT algorithm, was derived by the authors77
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of this work in (De Angelis et al. 2021), while the algorithm is described in details and applied to78

an example involving a dynamic structural analysis in (Behrendt et al. 2022b). Further insights can79

be found in (de Angelis 2022). The algorithm enables the quantification of uncertainties in time80

signals and to project them into the frequency domain by using interval arithmetic (Moore 1966;81

Moore 1979; Moore et al. 2009; Alefeld and Herzberger 2012). No assumptions are made about82

the dependence and distribution of the error over the time steps. The interval DFT algorithm fully83

addresses the repeated variables problem. Thus, the exact bounds on the Fourier amplitude and on84

an estimation of a PSD function can be computed, which can be used to analyse system responses85

in the frequency domain, taking into account these uncertainties.86

The objective of this work is to investigate the capabilities of the interval DFT algorithm in87

missing data problems. It also aims to determine the severity of the missing data and the impact88

on the interval DFT algorithm and thus on the resulting bounds. The quantity used to measure89

uncertainty in this work is the area between the upper and lower bounds. An uncertain signal has an90

area between an estimation of the PSD function bounds greater than zero, whereas a PSD function91

without uncertainty has an area equal to zero, i.e. a discrete-valued PSD function. In addition, the92

findings of this work can be used to determine if a signal is considered insufficiently reliable to be93

used for frequency analysis. Preliminary studies on this work were conducted in (Behrendt et al.94

2022a).95

This work is organised as follows: Some theoretical background that is relevant for this work,96

such as the interval DFT algorithm, is provided in Section 2, while the problem of missing data97

is elaborated in Section 3. The capabilities of said algorithm in combination with missing data98

problems are explored in Section 4. The final conclusions are given in Section 5.99

PRELIMINARIES100

This section introduces some fundamental theoretical concepts that will be required in this101

work.102
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Interval analysis103

An interval 𝑥 ∈ R is defined as104

𝑥 = [𝑥, 𝑥] = {𝑥 ≤ 𝑥 ≤ 𝑥}, (1)105

where 𝑥 and 𝑥 define the lower and upper bound, respectively. Every value between those bounds106

is a possible value. The interval is further defined by the interval midpoint107

𝑚𝑥 =
𝑥 + 𝑥

2
(2)108

and the interval width109

ℎ𝑥 = 𝑥 − 𝑥. (3)110

Power spectral density estimation111

Given a signal 𝑥𝑛, represented as a zero mean stochastic process. To examine the signal for its112

frequency components, it can be transformed into the frequency domain using the periodogram.113

The periodogram is the squared absolute value of the Fourier transform and reads as follows114

𝑆𝑋 (𝜔𝑘 ) =
Δ𝑡2

𝑇

�����𝑁−1∑︁
𝑛=0

𝑥𝑛 · 𝑒−
2𝜋𝑖𝑘𝑛
𝑁

�����2 , (4)115

where Δ𝑡 is the time step size, 𝑇 is the total length of the record, 𝑛 describes the data point index116

in the record, 𝑁 is the total number of data points in the signal and 𝑘 is the frequency number of117

𝜔𝑘 =
2𝜋𝑘
𝑇

.118

Generation of artificial time signals119

To generate an artificial time signal for simulation purposes, the Spectral Representation Method120

(SRM) can be utilised (Shinozuka and Deodatis 1991). The SRM generates a time signal 𝑋𝑡 based121

on an underlying PSD function 𝑆𝑋 while carrying the spectral characteristics of this PSD function.122
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The SRM is123

𝑋𝑡 =

𝑀−1∑︁
𝑚=0

√︁
4𝑆𝑋 (𝜔𝑚)Δ𝜔 cos(𝜔𝑚𝑡 + 𝜑𝑚), (5)124

with 𝜔𝑚 = 𝑚Δ𝜔, 𝑚 = 0, 1, 2, . . . , 𝑀 − 1, where 𝑀 is the total number of frequency points, 𝑡 as125

time coordinate and 𝜑𝑚 as uniformly distributed random phase angles in the range [0, 2𝜋].126

As the underlying PSD function, a spectrum derived within the Joint North Sea Wave Ob-127

servation Project (JONSWAP) (Hasselmann et al. 1973) will be used throughout this work. The128

JONSWAP PSD function is an extension of the Pierson-Moskowitz PSD function (Pierson Jr. and129

Moskowitz 1964) and is utilised to describe the dynamic behaviour of sea waves in the frequency130

domain. The PSD function reads as follows131

𝑆𝐽 (𝜔) = 𝛼𝑔2

𝜔5 exp
(
−5

4

(𝜔𝑝
𝜔

)2
)
𝛾𝑟 (6)132

with133

𝑟 = exp

(
−(𝜔 − 𝜔𝑝)2

2𝜎2𝜔2
𝑝

)
.134

In these equations𝛼 describes a spectral energy parameter, 𝑔 is the gravity acceleration,𝜔𝑝 describes135

the peak frequency, 𝛾𝑟 is the peak enhancement factor and 𝜎 the spectral width parameter. An136

example for the JONSWAP PSD function with 𝛼 = 0.0081, 𝑤𝑝 = 0.7, 𝛾 = 3.3 and137

𝜎 =


0.7 𝜔 ≤ 𝜔𝑝

0.9 𝜔 > 𝜔𝑝

138

is given in Fig. 1. The JONSWAP PSD function is characterised by its narrow band in the frequency139

domain and the very strong and sharp peak, thus many values distant from this peak are close to or140

equal to zero.141

A second PSD function is used for verification, namely the Kanai-Tajimi PSD function, which142
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Fig. 1. Example for the JONSWAP PSD function.

is as follows143

𝑆𝐾𝑇 (𝜔) = 𝑆0

1 + 4b2 𝜔2

𝜔2
𝑝(

1 − 𝜔2

𝜔2
𝑝

)2
+ 4b2 𝜔2

𝜔2
𝑝

. (7)144

In this expression, 𝑆0 = 0.45 is a constant, 𝜔𝑝 = 2𝜋 describes the peak frequency and b = 0.25145

indicates the sharpness of the peak (Kanai 1957; Tajimi 1960). Furthermore, the upper cut-off146

frequency is defined to be 𝜔𝑢 = 4𝜋 rad/s. The Kanai-Tajimi PSD function with parameters147

𝑆0 = 0.45, 𝜔𝑝 = 2𝜋 and b = 0.25 is given in Fig. 2. In contrast to the JONSWAP spectrum, the148

Kanai-Tajimi spectrum has a broader range in the frequency domain and has only few values close149

to zero.150

To investigate the sensitivity of the interval DFT algorithm, the two above PSD functions 𝑆𝐽151

and 𝑆𝐾𝑇 with the respective given parameters are used hereafter. For the investigations, two PSD152

functions with different shapes are used to find similarities or differences in the resulting bound153

PSD functions. With only one form of PSD function, drawing conclusions becomes more difficult.154

In particular, the two PSD functions mentioned are used because one of them has many values155

close to 0 and a sharp peak, and the other has many values distant from 0.156
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Fig. 2. Example for the Kanai-Tajimi PSD function.

The interval DFT algorithm157

The DFT is applied to study the signal in the frequency domain. The DFT converts a signal158

𝑥 = 𝑥0, 𝑥1, ..., 𝑥𝑁−1 to a Fourier sequence 𝑧 = 𝑧0, 𝑧1, ..., 𝑧𝑁−1 for 𝑘 = 0, ..., 𝑁 − 1. Since many159

signals are subject to missing data, these must be taken into account during the transformation in160

order to obtain reliable results. One possibility is to reconstruct the data before the transformation.161

However, since the DFT is very sensitive to changes in the signal, as shown in Section 3, it is162

more reasonable to fill the missing data gaps with intervals and propagate them through the DFT.163

However, since the DFT is not able to transform such uncertainties, an algorithm was proposed164

that is capable to propagate interval uncertainties through the DFT and thus calculate exact bounds165

on the Fourier amplitude. This interval DFT algorithm is briefly described here, for a detailed166

explanation and examples the reader is referred to (Behrendt et al. 2022b).167

Based on the interval extension of the DFT, obtained by replacing the real signal with their168

interval values for each frequency number 𝑘169

𝑧
𝑘
=

𝑁−1∑︁
𝑛=0

𝑥
𝑛
𝑒−

𝑖2𝜋
𝑁
𝑘𝑛 =

𝑁−1∑︁
𝑛=0

𝑥
𝑛
·
[
cos

(
2𝜋
𝑁
𝑘𝑛

)
− 𝑖 · sin

(
2𝜋
𝑁
𝑘𝑛

)]
, (8)170

the algorithm computes two vertices for each iteration 𝑛 of the sum in Eq. 8, resulting from the171
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interval values of the 𝑛-th data point of the signal. In each iteration step, the vertices are added to172

the previous vertices. These vertices are represented in the 2-dimensional complex plane, where173

the real component is the x-coordinate and the imaginary component is the y-coordinate. From174

these vertices the convex hull is calculated, thus a polygon remains. The vertices of the convex175

hull are passed on to the next iteration step, while the remaining vertices have no influence on the176

calculation and are discarded. Once all data points of the signal have been iterated, the minimum177

and maximum distance of the convex hull to the origin of the coordinate system is determined,178

which defines the interval bounds of the absolute value of the transform179

𝐴𝑘 = |𝑧
𝑘
| =

√√√√[
𝑁−1∑︁
𝑛=0

𝑥
𝑛

cos
(
2𝜋
𝑁
𝑘𝑛

)]2

+
[
𝑁−1∑︁
𝑛=0

𝑥
𝑛

sin
(
2𝜋
𝑁
𝑘𝑛

)]2

. (9)180

The absolute values of the vertices in the convex hull are calculated for this purpose. If the origin of181

the coordinate system is within the convex hull, the lower bound is 0, otherwise it is defined by the182

minimum absolute value. The upper bound is always determined by the maximum absolute value.183

Thus, an upper and lower bound of the Fourier amplitude can be computed for each frequency184

number 𝑘 .185

MISSING DATA186

A common problem when using real data records is that of missing data. The causes of missing187

data range from simple measurement errors to total sensor failure. It is possible that the sensor is188

damaged by the event it is supposed to record, e.g. an earthquake, and makes incorrect recordings189

or stops recording completely. In addition, the sensors may be temporarily unavailable due to190

maintenance. If the period of unavailability is sufficiently short, intervals can be used to bridge191

this gap. These causes introduce uncertainty into the time signal. Although there are various192

reconstruction methods available, as mentioned in Section 1, only simple reconstruction methods193

are used here. The main objective of this work is to investigate the performance and sensitivity of194

the interval DFT algorithm. Finding a suitable reconstruction method or assessing the quality of195

the reconstruction methods is not the aim of this work.196
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The reconstructed data are represented by intervals, accounting for uncertainties induced197

through the reconstruction. Thus, the reconstructed signal is passed to the interval DFT algorithm198

as an interval signal. Fig. 3 shows the signal under investigation, generated from the JONSWAP199

PSD function, with two examples each with missing data.
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Fig. 3. A time signal generated from the JONSWAP PSD function (Eq. 6) with SRM (Eq. 5)
consisting of 64 data points (top). The lower left plot has five missing data points, while the lower
right plot has three missing data gaps with eight missing data points each.

200

If a signal in time domain is certainly known, it can be transformed to the frequency domain via201

the DFT without loss of information. In fact, the DFT is sensitive to small changes in the signal.202

To demonstrate the sensitivity of the spectrum to the missing data problem, the signal in Fig. 3,203

consisting of 64 data points, is investigated. The target PSD function, i.e. the PSD function of204

the signal without missing data computed with Eq. 4, is depicted with the PSD functions of the205

same signal with 5%, 10% and 25% missing data, which are reconstructed by linear interpolation206

between the two adjacent non-missing data points, see Fig. 4. The position of the missing data is207
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randomly chosen. The interpolated values are treated as discrete values instead of intervals first.208

Although linear interpolation is not considered as a reconstruction method in this work, it can be209

used to illustrate the aforementioned sensitivity. It can be clearly seen that the transformations have210

the same shape and peak frequency, but are in part very different from the target spectrum and are211

not as smooth. Since reconstructed data accordingly do not allow a reliable transformation into the
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Fig. 4. Influence of the linear interpolation on the amplitude of the DFT.

212

frequency domain and do not take uncertainties into account, it is reasonable to derive bounds in213

which the actual spectrum may be located. The algorithm presented in Section 2 is applicable for214

this purpose.215

In this work, two reconstruction methods are employed:216

1. A method based on artificial inflation of the “true” data point using the sample standard217

deviation 𝑠 (Eq. 10) of the entire signal before removing data. An interval whose width is218

[−𝑠, 𝑠] replaces the missing data.219

2. A method that replaces the missing data by an interval determined by the minimum and220

maximum value of the entire signal.221
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The sample standard deviation 𝑠 of the signal is defined as222

𝑠 =

√√√√√𝑁−1∑
𝑛=0

(𝑥𝑛 − 𝑥)2

𝑁 − 1
, (10)223

where 𝑥 is the sample mean of the signal, 𝑛 is the data point index and 𝑁 the total number of data224

points.225

Both methods serve only as very simple tools for determining the sensitivity of the interval226

DFT for signals with missing data. In practical applications, these methods should be replaced by227

advanced reconstruction methods, see examples in Section 1.228

CASE STUDIES229

In this section, the influence of missing data on the bounds of the estimated PSD function230

is investigated. Specifically, interval width, the number of missing data, the gap length, and the231

distribution of missing data within the signal are examined. The study is conducted as part of a232

Once-at-a-time (OAT) sensitivity analysis, such that only one of the above-mentioned influence233

factors is changed while the others are kept constant. The signal under investigation is generated234

by SRM (Eq. 5) with the underlying PSD function in Eq. 6 from (Hasselmann et al. 1973). The235

positions of the missing data in the signal are simulated in random order, uniformly within the236

length of the signal. A study is also conducted to investigate the influence of the position of the237

missing data, comparing the uniformly distributed missing data with binomially distributed missing238

data. In order to obtain the best possible comparison, the same signal is used in all studies of this239

work.240

Sensitivity to interval width241

Let ℎ𝑥 be the width of the interval gap, thus this determines the interval uncertainty. To242

investigate the sensitivity of the interval uncertainty ℎ𝑥 in time domain to the interval uncertainty in243

the frequency domain, missing data gaps of length 𝑙𝑔 ∈ {1, 3, 5, 7, 9, 11} are randomly generated,244

where the gap length is given as the number of missing time points.245
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The interval uncertainty ℎ𝑥 of these gaps is successively increased from 0.1 to 10. To determine246

the sensitivity, the area between the upper and lower bound of the resulting PSD is determined.247

The results are depicted in Fig. 5 for two signals generated from the JONSWAP PSD function with248

64 and 128 data points.249

The area between the bounds has a linear trend in the beginning which turns into a non-linear250

trend even with low interval uncertainty and small gaps. This non-linearity becomes stronger the251

larger the gap becomes. At many frequency points, the lower bound has already reached 0. For252

larger gaps, the lower bound is mostly zero, which explains why in Fig. 5 the start of the non-linear253

behaviour is appreciated for lower interval uncertainty.
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Fig. 5. Area between upper and lower bound for a signal with 64 data points (left) and a signal
with 128 data points (right) for increasing interval uncertainty ℎ𝑥 and different lengths of the gap
𝑙𝑔 ∈ {1, 3, 5, 7, 9, 11} for the JONSWAP PSD function.

254

The same investigations are carried out for the Kanai-Tajimi PSD function, see Fig. 6. Two255

signals are considered, which were generated from the Kanai-Tajimi PSD function. One signal256

with 64 data points and the other one with 128 data points. As in the JONSWAP example before,257

first a linear trend can be observed, which turns into a non-linear trend as soon as the lower bound258

reaches 0. It should be noted, however, that in all cases the non-linear trend starts later and that it259

is not as strong as in the previous example with the JONSWAP PSD function (Fig. 5). This is due260

to the fact that fewer values of the lower bound of the PSD reach 0. In addition, these values need261

a relatively high interval uncertainty in the signal to reach zero in the frequency domain, since the262

target spectrum is significantly farther from 0 than, for example, the JONSWAP target spectrum.263

Therefore, the non-linear trend is not as significant.264
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Fig. 6. Area between upper and lower bound for a signal with 64 data points (left) and a signal
with 128 data points (right) for increasing interval uncertainty ℎ𝑥 and different lengths of the gap
𝑙𝑔 ∈ {1, 3, 5, 7, 9, 11} for the Kanai-Tajimi PSD function.

Number of missing data265

In the following example, the interval uncertainty has been kept constant and corresponds to266

the sample standard deviation 𝑠 of the signal (Eq. 10). The number of missing data points, on267

the other hand, has been gradually increased to investigate the influence of the number of missing268

data on the bounds of the PSD function. In Fig. 7, the reconstructed signals and the bounds of the269

estimated PSD functions are shown for 5%, 10%, 25% and 50% missing data in the signals, which270

consist of 64 and 128 data points, respectively. The results show that a small amount of missing271

data (e.g. 5% or 10%) can be captured well with the interval DFT algorithm. The bounds enclose272

the estimated PSD function of the discrete signal relatively tightly and are therefore very useful for273

quantifying the uncertainties. Also, the bounds of the PSD function for a higher amount of missing274

data in the signal (up to 50% in this example) can still be considered, despite the relatively wide275

bounds, e.g. for a worst-case consideration where only the upper bound is used.276

In the following, the same example is shown, but the data was reconstructed using method (2),277

see Fig. 8 for the reconstructed signals and the bounds of the PSD functions in frequency domain.278

The results also show here that small amounts of missing data can be mapped well in the279

frequency domain even with reconstruction method (2). With higher numbers of gaps, however,280

the determination of the bounds in the frequency domain reaches its limitation, as the computed281

bounds are very high and can no longer be used for practical purposes. For example, the bounds282

from the previous example with 50% missing data have a lower interval uncertainty than the signal283
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Fig. 7. Signal with 5%, 10%, 25% and 50% missing data (top to bottom) reconstructed using
method (1) and corresponding bounded JONSWAP PSD function. On the left is the signal with 64
data points and the corresponding bounded PSDs, on the right is the signal with 128 data points
and the corresponding bounded PSDs.

with 25% missing data in this example. This yields in particular that if there is little missing data,284

reconstruction can be carried out conservatively with wide intervals. Conversely, if the number of285

missing data is large, a method with a more accurate reconstruction is required.286

The values for the given examples of the JONSWAP PSD function (Figs. 7 and 8) and longer287

signals are given in Table 1 for a comparison.288

As a measure for uncertainty, the area between upper and lower bound is utilised. Fig. 9 shows289

this for an increasing number of missing data reconstructed with the two methods for the signal290

with 64 data points and 128 data points. Due to possible random fluctuations, as the position of291

missing data is randomly chosen, this simulation was carried out 100 times in order to average out292

these fluctuations. As expected, there is a significantly higher area between the bounds when using293

reconstruction method (2) compared to reconstruction method (1).294
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Fig. 8. Signal with 5%, 10%, 25% and 50% missing data (top to bottom) reconstructed using
method (2) and corresponding bounded JONSWAP PSD function. On the left is the signal with 64
data points and the corresponding bounded PSDs, on the right is the signal with 128 data points
and the corresponding bounded PSDs.
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Fig. 9. Area between upper and lower bound investigated for the number of missing data for the
JONSWAP PSD function. On the left for the signal with 64 data points, on the right for the signal
with 128 data points.

The same investigations are carried out for a signal with 64 data points and a signal with 128295

data points, generated from the Kanai-Tajimi PSD function. First, the sample standard deviation296

was utilised to reconstruct the missing data. The results are given in Fig. 10. Also, in these297
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TABLE 1. Area between upper and lower bound for the JONSWAP PSD function for the investi-
gations on the number of missing data.

Signal length 5% 10% 25% 50%

reconstruction method (1)

64 8.2261 18.3467 58.4300 150.0321
128 12.3274 25.5648 76.5203 182.8820
256 18.0512 37.1025 102.6569 241.2242
512 228.5536 525.4112 2036.9685 6674.7539
1024 674.2047 1678.9022 7233.0551 25114.9873

reconstruction method (2)

64 24.5173 59.7119 241.4550 719.4045
128 34.5642 79.4739 288.2805 835.8317
256 50.3423 109.8055 362.3446 1031.7899
512 912.6849 2594.6585 13055.5258 47189.8391
1024 4044.5176 13196.6865 71951.7682 270806.8143

examples it can be observed, that a lower number of missing data leads to practical usable results.298

For instance, a proportion of 5% or 10% missing data results in a bounded PSD with a moderate299

uncertainty. However, if the proportion is increased, the bounds can be very wide and are no longer300

useful for practical purposes, except for some worst-case scenario investigations. This becomes301

particularly clear in the examples with 50% missing data, since the bounds are very distant from the302

target spectrum and the shape of these bounds also barely shows similarities to the target spectrum.303

In the second example, reconstruction method (2) was utilised for reconstructing the missing304

data in the signals. Again, the two identical signals with 64 data points and 128 data points as305

in the previous example are utilised. The results are depicted in Fig. 11. As expected, due to a306

higher uncertainty in the signal, the bounds of the PSD function also exhibit a higher uncertainty.307

Thus, the bounds are much wider. For low proportions of missing data, such as 5%, useful results308

can be obtained. However, with an increasing number of missing data the bounds become quickly309

very wide and are not useful anymore. The example with 10% missing data might be used for a310

worst-case scenario, more interval uncertainty in the signal will result in bounded PSD functions311

which are no longer practical.312

An interesting observation is that already with a small amount of missing data (e.g. 5% or313

10%) the resulting transformations become very spiky. This is specifically evident in the results of314

the signal with 128 data points. The reason for this could be that only a single missing data point315
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Fig. 10. Signal with 5%, 10%, 25% and 50% missing data (top to bottom) reconstructed using
method (1) and corresponding bounded Kanai-Tajimi PSD function. On the left is the signal with
64 data points and the corresponding bounded PSDs, on the right is the signal with 128 data points
and the corresponding bounded PSDs.

reconstructed with extreme values leads to a large distortion of the actual signal and its spectral316

characteristics. This result corresponds to the sensitivity analysis in Section 3, see Fig. 4, where317

the influence of linearly interpolated missing data points was investigated. In this example, the318

reconstruction with 25% missing data is also very spiky.319

For better overview, the values for the examples of the Kanai-Tajimi PSD function (Figs. 10320

and 11) and longer signals are given in Table 2.321

Again, the area between the upper and lower bound is used as a measure of uncertainty. In322

Fig. 12 this is depicted for an increasing number of missing data reconstructed using the two323

methods for the signal with 64 data points and 128 data points. Also as expected, the range between324

the bounds is significantly larger for reconstruction method (2) than for reconstruction method (1).325
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Fig. 11. Signal with 5%, 10%, 25% and 50% missing data (top to bottom) reconstructed using
method (1) and corresponding bounded Kanai-Tajimi PSD function. On the left is the signal with
64 data points and the corresponding bounded PSDs, on the right is the signal with 128 data points
and the corresponding bounded PSDs.
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Fig. 12. Area between upper and lower bound investigated for the number of missing data for the
Kanai-Tajimi PSD function. On the left for the signal with 64 data points, on the right for the signal
with 128 data points.
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TABLE 2. Area between upper and lower bounds for the Kanai-Tajimi PSD function for the
investigations on the number of missing data.

Signal length 5% 10% 25% 50%

reconstruction method (1)

64 23.3376 50.2520 136.9106 344.2631
128 32.1355 67.9602 188.7277 424.1079
256 46.3055 94.7233 256.1252 547.8648
512 589.2857 1245.5312 4547.8639 14423.2745
1024 1660.4582 3862.1247 15926.0403 53660.1195

reconstruction method (2)

64 61.6042 141.5591 522.5090 1628.4539
128 81.9223 183.2325 663.2781 1927.7293
256 120.1866 251.0239 755.2968 2022.6513
512 2060.5408 5638.1834 27860.8249 100661.0096
1024 7744.4521 24390.7841 129894.5636 481486.4526
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Gap size of missing data326

Recall that gap size is given as the number of missing time points, and it is also referred to as gap327

length. To determine the influence of the gap length, different scenarios were evaluated. The gap328

lengths 𝑙𝑔 ∈ {1, 20, 40, 60} were artificially inserted into the signals generated with the JONSWAP329

PSD function with a length of 64 data points and 128 data points. After the gaps were reconstructed330

using method (1), the corresponding transformations were computed. These are shown in Fig. 13.331

It can be seen that small gaps filled with the intervals provide a good transformation and the bounds
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Fig. 13. Signals with a gap of length 𝑙𝑔 ∈ {1, 20, 40, 60} of missing data (top to bottom) recon-
structed by method (1) and corresponding bounded JONSWAP PSD function. On the left is the
signal with 64 data points and the corresponding bounded PSDs, on the right is the signal with 128
data points and the corresponding bounded PSDs.

332

are relatively tight around the target PSD function. The interval DFT algorithm can also handle333

larger gaps well, although the bounds of the transformation are comparatively large. Nevertheless,334

these can be used, for example, to design for a worst-case when only the upper bound with the335

largest power content is used for planning and simulation.336
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For completeness, the same investigations are carried out with reconstruction method (2). The337

same length of gaps 𝑙𝑔 as in the previous example were inserted in the signal but reconstructed338

with minimum and maximum of the signal as intervals. The signals and transformations are given339

in Fig. 14. The reconstruction with the minimum and maximum of the signal already reaches its
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Fig. 14. Signals with a gap of length 𝑙𝑔 ∈ {1, 20, 40, 60} of missing data (top to bottom) recon-
structed by method (2) and corresponding bounded JONSWAP PSD function. On the left is the
signal with 64 data points and the corresponding bounded PSDs, on the right is the signal with 128
data points and the corresponding bounded PSDs.

340

limitations for smaller gaps. Although the interval DFT algorithm provides exact bounds, these are341

very large due to the highly conservative reconstruction method. Even a gap with 20 data points342

provides bounds that are very distant from the target PSD function. For even larger gaps, the shape343

of the exact transformation is no longer reflected. It is shown again in this example that too large344

intervals in the time domain lead to extremely large bounds in the frequency domain. To counteract345

this behaviour, the intervals in the time signal should be chosen reasonably.346

The values for the examples of the JONSWAP PSD function (Figs. 13 and 14) and longer signals347
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are given in Table 3 for a comparison.

TABLE 3. Area between upper and lower bounds for the JONSWAP PSD function for the
investigations on the length of the gap size.

Signal length 1 20 40 60

reconstruction method (1)

64 3.2585 77.0459 209.5725 407.5691
128 3.5751 97.3246 245.7535 450.3334
256 6.2338 134.1172 317.1225 558.9399
512 7.9715 81.8397 381.5804 641.9508
1024 11.5807 114.8309 501.2821 814.2205

reconstruction method (2)

64 8.8466 307.5685 1004.9875 2079.0797
128 9.4480 376.9863 1144.8863 2307.9452
256 16.7009 481.9337 1380.5991 2738.6998
512 22.5879 258.8454 1646.1033 3193.1749
1024 39.9040 439.4282 2612.9817 4969.5717

348

In the following, the area between upper and lower bound is determined for an increasing gap349

size. Since the length of the gap naturally corresponds to the number of missing data, no significant350

differences between Fig. 15 and Fig. 9 in the previous section can be detected. This indicates that351

the position of the missing data has a minor role in determining the uncertainty, but the number has352

a major role.
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Fig. 15. Area between upper and lower bound investigated for the length of the gap for the
JONSWAP PSD function. On the left for the signal with 64 data points, on the right for the signal
with 128 data points.

353

The investigations on the influence of the gap size are carried out for the Kanai-Tajimi PSD354

function as well. First, missing data with a length of 𝑙𝑔 ∈ {1, 20, 40, 60} is simulated in the signals355

with length 64 and 128. Next, those missing data gaps are reconstructed using method (1). As it356
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can be seen in Fig. 17, only small gaps, such as 𝑙𝑔 = 1, will lead to useful results. Contrary to the357

example with the JONSWAP PSD function, a gap size of 𝑙𝑔 = 20 can only be used for a worst-case358

scenario a the bounds are already very distant from the target PSD function. Even larger gaps only359

reflect roughly the shape of the target PSD function, but the bounds are far too wide to use them360

meaningfully in simulations.
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Fig. 16. Signals with a gap of length 𝑙𝑔 ∈ {1, 20, 40, 60} of missing data (top to bottom) re-
constructed by method (1) and corresponding bounded PSD functions for the Kanai-Tajimi PSD
function. On the left is the signal with 64 data points and the corresponding bounded PSDs, on the
right is the signal with 128 data points and the corresponding bounded PSDs.

361

The same investigations are carried out with reconstruction method (2). As it can be seen in362

Fig. 17, only small gaps reconstructed with extreme values can be used in practical application.363

Even a reconstructed signal with a gap of 𝑙𝑔 = 20 missing data may only be used for a worst-case364

scenario. In this example it can be observed again that the reconstruction with extreme values leads365

to a very spiky transformation, see for comparison Fig. 11. In addition, however, it can be observed366

that the signal with 60 missing data points in Fig. 11 is very smooth after reconstruction, as all367

24



intervals are identical. Although the reconstructed signal has nothing in common anymore with368

the original signal, it can be seen that the corresponding transformation looks much smoother than369

the transformations of signals with less missing data. These observations support the assumption370

that the spectral characteristics are distorted by the reconstruction with extreme values.371
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Fig. 17. Signals with a gap of length 𝑙𝑔 ∈ {1, 20, 40, 60} of missing data (top to bottom) re-
constructed by method (2) and corresponding bounded PSD functions for the Kanai-Tajimi PSD
function. On the left is the signal with 64 data points and the corresponding bounded PSDs, on the
right is the signal with 128 data points and the corresponding bounded PSDs.

The values for the examples of the Kanai-Tajimi PSD function (Figs. 16 and 17) are given in372

Table 4 for a comparison.373

The area between the bounds for an increasing gap size was investigated for the two signals with374

length of 64 and 129 data points generated for the Kanai-Tajimi PSD function. The results are given375

in Fig. 18. As for the example with the JONSWAP PSD function before, no significant differences376

between the length of the gap (Fig. 18) and the number of missing data (Fig. 12) can be observed.377

Thus, it can be concluded that the position of the missing data is of minor importance and rather378
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TABLE 4. Area between upper and lower bounds for the Kanai-Tajimi PSD function for the
investigations on the length of the gap size.

Signal length 1 20 40 60

reconstruction method (1)

64 8.6220 181.6365 467.8687 889.8082
128 10.4224 237.4579 560.9135 1006.6424
256 15.6008 322.9332 706.4987 1217.2839
512 23.2987 223.0909 938.6201 1517.6868
1024 32.1328 316.5083 1287.7693 1993.7773

reconstruction method (2)

64 19.3471 690.8520 2236.9974 4527.3797
128 27.7411 868.6494 2639.2345 5291.6959
256 40.1799 990.6577 2717.2864 5366.6247
512 66.4938 649.1612 3744.2217 7133.9498
1024 101.7266 1026.0292 5302.0325 9771.2658

the number of missing data points has the decisive influence. Nevertheless, for completeness the379

influence of the position and the distribution of the missing data will be investigated in the next380

section.381
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Fig. 18. Area between upper and lower bound investigated for the length of the gap for the Kanai-
Tajimi PSD function. On the left for the signal with 64 data points, on the right for the signal with
128 data points.

Position and distribution of missing data382

As expected, the position of the missing data can influence the shape and subsequently the383

area between the bounds. Although this will not affect a subsequent simulation and its results384

significantly, it is important to investigate this phenomenon. For the sake of brevity, this first385

investigation is carried out only for the JONSWAP PSD function and reconstruction method (1) as386

it has been shown in the previous sections that reconstruction method (2) cannot be used for real387

26



phenomena if the number of missing data is sufficiently high.388

For this analysis, the signal generated from the JONSWAP PSD function with 64 data points389

was utilised in four different scenarios. In each of them, a single missing data point was randomly390

generated and reconstructed with method (1), i.e. the position of the the missing data is different391

in each of the four simulations, but due to the utilisation of reconstruction method (1) the interval392

uncertainty of this point is identical. As it can be seen in Fig. 19, each of the computation yields393

a slightly different shape of the bounds. The reason for this fluctuation in the bounds may be, that394

each point carries different information in terms of the spectral characteristics. Therefore, it is395

reasonable to expect a different shape of the bounds, if another point is missing. However, as the396

interval uncertainty is kept constant in each of the experiments, the bounds yield roughly the same397

area between the bounds, which corresponds to a similar total potential power of the PSD function.398
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Fig. 19. Examples for different resulting bounded PSD functions depending on the position of the
missing data point. Each transformed signal has exactly one reconstructed data point with identical
interval uncertainty at different positions.

The impact of the position of the missing data serves as a motivation for the following in-399

vestigation, namely the influence of the distribution of the missing data within a signal. For the400
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investigations a uniform distribution and a binomial distribution were utilised to simulate the miss-401

ing data and to investigate their influence on the transformation to the frequency domain. The402

bounded PSD functions of the reconstructed signal with 4, 8, 16 and 32 missing data are depicted403

in Fig. 20. It can be seen that the influence of the position of the missing data is of minor rel-
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Fig. 20. Influence of the distribution of missing data within the signal for 4, 8, 16 and 32 missing
data (top to bottom) reconstructed with method (1) for the JONSWAP PSD function. In the left
column the corresponding bounded PSDs with uniformly distributed missing data, in the right
column the corresponding bounded PSDs with binomially distributed missing data.

404

evance. Although the transformed signals shown are only specific cases, they are nevertheless405

representative for the general case. This statement can be supported by the fact that this simulation406

has been carried out several times, but the results are always identical. The interval transforms407

look almost identical in each case, regardless of the distribution of the missing data. In addition,408

the area between the bounds is also almost identical, see Table 5. Thus, these results support the409

assumptions on the position of the missing data in the beginning of this section.410

The same investigations as above are carried out for the Kanai-Tajimi PSD function. Again, a411
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TABLE 5. Area between upper an lower bound for the JONSWAP PSD function for the distribution
of the missing data within the signal.

4 16 32 64
uniform distribution 12.382 24.784 57.840 153.712
binomial distribution 11.228 25.341 57.155 144.959

uniform distribution and a binomial distribution were utilised. The missing data were randomly412

generated within the signal for the scenarios of 4, 8, 16 and 32 points and reconstructed with method413

(1). The results of the bounded PSDs are given in Fig. 20. Similar to the previous example no major414

differences between the bounds can be observed. However, small fluctuations are evident. This is415

due to the position of the missing data within the signal. As the determined area between those416

bounds confirm, see Table 6, the differences are relatively small. Therefore, it can be concluded417

that the distribution of missing data has a similar effect as in the previous example. The position of418

the missing data has an influence in the sense that, depending on the spectral characteristics of the419

respective missing data points, they are passed on to the PSD bounds in a distorted way.420

TABLE 6. Area between upper an lower bound for the Kanai-Tajimi PSD function for the
distribution of the missing data within the signal.

4 16 32 64
uniform distribution 29.015 64.227 137.103 345.842
binomial distribution 33.780 67.749 140.664 337.467

Although the values between the distributions in Tables 5 and 6 are not identical, a clear trend421

can be seen. This is because, as mentioned earlier, the exact position of the missing data point has422

an influence on the area between the bounds. The results of this investigations confirm that this423

influence is negligible, see Fig. 21 for a visual assessment.424
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Fig. 21. Influence of the distribution of missing data within the signal for 4, 8, 16 and 32 missing
data (top to bottom) reconstructed with method (1) for the Kanai-Tajimi PSD function. In the
left column the corresponding bounded PSDs with uniformly distributed missing data, in the right
column the corresponding bounded PSDs with binomially distributed missing data.

Interaction between number of missing data and interval width425

As it was found that the number of missing data and the interval width of the reconstruction426

in the input signal have the highest influence on the area between the bounds of the PSD after427

propagation, the interaction between both is investigated in this section as a last case study. Again,428

for the sake of brevity, the investigations are carried out only for the signal with 64 data points for429

both, the JONSWAP PSD function and the Kanai-Tajimi PSD function. As per a space product,430

the missing data was increased and for each number of missing data, the interval uncertainty was431

successively increased from 0.1 to 10, similarly as in Section 4.432

In Fig. 22 the results of the area between upper and lower bound for the JONSWAP PSD433

function are given. As it can be seen, a relatively low number of missing data combined with a434

low interval uncertainty in the signal will result in useful results. Also, a high number of missing435
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data combined with a low interval uncertainty or a low number of missing data combined with a436

high interval uncertainty still provides useful results. However, when both quantities take on high437

values, a non-linear trend quickly produces results that are no longer useful for practical purposes.438

The corresponding area between the bounds is simply too large to obtain reasonable conclusions439

and meaningful results in subsequent simulations.440

Fig. 22. Combination of number of missing data and interval uncertainty for the JONSWAP PSD
function.

In Fig. 23 the results of the area between upper and lower bound for the Kanai-Tajimi PSD441

function are given. The rough shape of the surface is qualitatively identical to that of the JONSWAP442

PSD example (Fig. 22), so the same conclusions can be drawn. However, an interesting observation443

is the significant quantitative difference between the two surfaces. The reason for this might be444

that the Kanai-Tajimi PSD function has many values distant from zero in its analytical form. Thus,445

the nonlinear trend starts later, i.e. with a higher number of missing data and/or a higher interval446

uncertainty. While in the JONSWAP PSD function, many values are close to zero and the lower447

bound is thus very quickly zero, this non-linear trend starts much earlier. This results in a higher448

area between the bounds for the JONSWAP PSD function.449
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Fig. 23. Combination of number of missing data and interval uncertainty for the Kanai-Tajimi PSD
function.

CONCLUSIONS450

In this work, the interval DFT algorithm has been investigated for its ability to transform signals451

with missing data reconstructed by intervals. Different scenarios have been considered, such as the452

influence of the interval width, the number of missing data, the length of the gap of missing data and453

the distribution of the missing data in the signal. It was shown, that the largest influence was exerted454

by the interval uncertainty in the signal and the number of missing data, while the distribution of455

the missing data and their position is of minor importance. In addition, no indications could be456

found of an influence whether the data are missing at individual points or appear as a large gap. It457

was found that too large intervals often lead to extremely wide bounds, which are usually no longer458

usable for practical purposes. If the number of missing data is sufficiently small, however, a useful459

transformation can be computed even with a conservative estimation of the intervals, in which the460

bounds are close to the actual spectrum. With a larger number of missing data or larger gaps, it461

is also possible to plan for the worst-case by considering only the upper bound as this results in a462

total higher power of the spectrum, provided that the reconstruction method is not too conservative463

in determining wide interval widths. It has also been shown that the potential power content of the464

PSD function can change significantly depending on the choice of interval uncertainty. The results465
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of this work can also be used to assess whether a signal and its reconstruction are considered overly466

uncertain to be used in practical applications. Further, it can be determined whether a sensor should467

be replaced to record a signal if its precision is too poor and the corresponding bound PSD yields468

too wide bounds. In summary, the interval DFT algorithm provides significant and conclusive469

results for signals with reconstructed data. It should be noted that the results are dependent on the470

quality of the reconstruction of the data. Thus, it is highly recommended that in the case of missing471

data, the interval DFT algorithm should be employed with an advanced reconstruction method in472

order to obtain practical in addition to reliable results.473
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