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Enforcing Hard Constraints with Soft Barriers:
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Abstract
Reinforcement Learning (RL) has long grappled
with the issue of ensuring agent safety in un-
predictable and stochastic environments, particu-
larly under hard constraints that require the sys-
tem state not to reach unsafe regions. Conven-
tional safe RL methods such as those based on the
Constrained Markov Decision Process (CMDP)
paradigm formulate safety violations in a cost
function and try to constrain the expectation of
cumulative cost under a threshold. However, it is
often difficult to effectively capture and enforce
hard reachability-based safety constraints indi-
rectly with such constraints on safety violation
cost. In this work, we leverage the notion of bar-
rier function to explicitly encode the hard safety
chance constraints, and as the environment is un-
known, relax them to our design of generative-
model-based soft barrier functions. Based on
such soft barriers, we propose a novel safe RL ap-
proach with bi-level optimization that can jointly
learn the unknown environment and optimize the
control policy, while effectively avoiding the un-
safe region with safety probability optimization.
Experiments on a set of examples demonstrate
that our approach can effectively enforce hard
safety chance constraints and significantly outper-
form CMDP-based baseline methods in system
safe rates measured via simulations.

1. Introduction
Reinforcement learning (RL) has shown promising suc-
cesses in learning complex policies for games (Silver et al.,
2018), robots (Zhao et al., 2020; Yang et al., 2023), and
cyber-physical systems like smart buildings (Wei et al.,
2017; Xu et al., 2021a; 2022), by maximizing a cumula-
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tive reward objective as the optimization goal. However,
real-world safety-critical applications, such as autonomous
cars (Liu et al., 2022; 2023b;a), still hesitate to adopt RL
policies due to safety concerns. In particular, when the envi-
ronment is stochastic and unknown (Zhu et al., 2020; 2021),
these applications often have hard safety chance constraints
that require the probability of the system state not reaching
certain specified unsafe regions above a threshold, e.g., au-
tonomous cars not deviating into adjacent lanes or UAVs not
colliding with trees. It is very challenging to learn a policy
via RL that can meet such hard safety chance constraints.

In the literature, the Constrained Markov Decision Process
(CMDP) (Altman, 1999) is a popular paradigm for address-
ing RL safety. Common CMDP-based methods encode
safety constraints through a cost function of safety vio-
lations, and reduce the policy search space to where the
expectation of cumulative discounted cost is less than a
threshold. Various RL algorithms are proposed to adap-
tively solve CMDP through the primal-dual approach for
the Lagrangian problem of CMDP. However, it is often hard
for CMDP-based methods to enforce reachability-based
hard safety chance constraints (i.e., the probability bound
of the system state not reaching unsafe regions) with the
indirect constraints on the expectation of cumulative cost.
In particular, while reachability-based safety constraints are
defined on the system state at the time point level (i.e., each
point on the trajectory,), the CMDP constraints only enforce
the cumulative behavior in expectation at the trajectory level.
In other words, the cost penalty on the system visiting the
unsafe regions at a certain time point may be offset by the
low cost at other times. There is a recent CMDP approach
addressing hard safety constraints by using the indicator
function for encoding failure probability (Wagener et al.,
2021), but it requires a safe backup policy for intervention,
which is difficult to achieve in unknown environments. Safe
exploration with hard safety constraints has also been stud-
ied in (Wachi et al., 2018; Turchetta et al., 2016; Moldovan
& Abbeel, 2012). However, these works focus on discrete
state and action spaces where the hard safety constraints are
defined as a set of unsafe state-action pairs that should not
be visited, different from the continuous control setting we
are considering.

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
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CMDP: 
The expectation of 
cumulative cost 
looks good. 
So should be fine?

Ours: You are 
bounded by a soft 
barrier function 
along each point 
on the trajectory,  
and is highly likely 
to be safe.

“Will I collide?”

Figure 1: An RL-based robot navigation example that shows
the conceptual difference between our approach and CMDP-
based ones in encoding the hard safety chance constraints.
The satisfaction of CMDP cannot provide any safety proba-
bility for the learned policy with any initial state, while our
approach can bound/optimize the entire trajectory with a
safety probability by the soft barrier function.

On the other hand, current control-theoretical approaches for
model-based safe RL often try to leverage formal methods
to handle hard safety constraints, e.g., by establishing safety
guarantees through barrier functions or control barrier func-
tions (Luo & Ma, 2021), or by shielding mechanisms based
on reachability analysis (Huang et al., 2019; Fan et al., 2020;
Huang et al., 2022) to check whether the system may en-
ter the unsafe regions within a time horizon (Bastani et al.,
2021; Huang et al., 2020; Wang et al., 2020; 2021a;b;c;
2022). However, these approaches either require explicit
known system models for barrier or shielding construction
or an initial safe policy to generate safe trajectory data in a
deterministic environment. They cannot be applied to the
unknown stochastic environments we are addressing.

To overcome the above challenges, we propose a safe RL
framework by encoding the hard safety chance constraints
via the learning of a generative-model-based soft barrier
function. Specifically, we formulate and solve a novel bi-
level optimization problem to learn the policy with joint
soft barrier function learning, generative modeling, and
policy optimization. The soft barrier function provides
guidance for avoiding unsafe regions based on safety prob-
ability analysis and optimization. The generative model
accesses the trajectory data from the environment-policy
closed-loop system with stochastic differential equation
(SDE) representation to learn the dynamics and stochas-
ticity of the environment. And we further optimize the
policy by maximizing the total discounted reward of the
sampled synthetic trajectories from the generative model.
This joint training framework is fully differentiable and can
be efficiently solved via the gradients. Compared to CMDP-
based methods, our approach more directly encodes the
hard safety chance constraints along each point of the agent

trajectory through the soft barrier function, as shown in Fig-
ure 1. While given the unknown stochastic environment,
our approach cannot provide a hard barrier and hence no
deterministic safety guarantee, experimental results demon-
strate that in simulations, ours can significantly outperform
the CMDP-based baselines in system safe rate.

The paper is organized as follows. Section 2 introduces
related works, Section 3 presents our approach, including
the bi-level optimization formulation, our safe RL algorithm
with generative modeling, soft barrier function learning,
and policy optimization to solve the formulation and theo-
retical analysis of safety probability. Section 4 shows the
experiments and Section 5 concludes the paper.

2. Related work
Safe RL by CMDP: CMDP-based methods encode the
safety violation as a cost function and set constraints on
the expectation of cumulative discounted total cost (Yang
et al., 2021; Bharadhwaj et al.). The primal-dual approaches
have been widely adopted to solve the Lagrangian problem
of constrained policy optimization (Bai et al., 2022), such
as PDO (Chow et al., 2017), OPDOP (Ding et al., 2021),
CPPO (Stooke et al., 2020), FOCOPS (Zhang et al., 2020),
CRPO (Xu et al., 2021b), and P3O (Shen et al., 2022). Other
works leverage a world model learning (As et al., 2021) or
the Lyapunov function to solve the CMDP (Chow et al.,
2018), or add a safety layer for the safety constraint (Dalal
et al., 2018). However, the constraints in CMDP cannot
directly encode the hard time-point-level chance constraint,
which hinders its application to many safety-critical sys-
tems. A recent CMDP-based work uses the indicator func-
tion for encoding failure probability as hard safety chance
constraints, but it requires a safe backup policy for interven-
tion (Wagener et al., 2021).

Model-based Safe RL by Formal Methods: Formal analy-
sis and verification techniques have been proposed in model-
based safe RL to enforce the system not to reach unsafe
regions. Some works develop shielding mechanisms with
a backup policy based on reachability analysis (Shao et al.,
2021; Bastani et al., 2021). Other works adopt (control) bar-
rier functions or (control) Lyapunov functions for provable
safety (Emam et al., 2021; Choi et al., 2020; Cheng et al.,
2019; Wang et al., 2023; Ma et al., 2021; Luo & Ma, 2021;
Berkenkamp et al., 2017; Taylor et al., 2020). Moreover,
recent work (Yu et al., 2022) adopts reachability analysis
with CMDP to compute safe feasible sets. However, these
methods either require known dynamics, assume a deter-
ministic environment, a safe initial/backup policy, or human
intervention, and thus do not apply to our setting.

Barrier Function for Safety: Barrier function is intro-
duced as a safety certificate afflicted to the control policy for
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deterministic and stochastic systems (Prajna & Jadbabaie,
2004; Prajna et al., 2004). In classical control, finding a
barrier function is time-consuming and requires a lot of
manual effort, where a common idea is to relax the condi-
tions of the barrier function into optimization formulations
such as linear programming (Yang et al., 2016), quadratic
programming (Ames et al., 2016), and sum-of-square pro-
gramming (Wang et al., 2023). However, these optimization-
based approaches can hardly scale to high-dimensional sys-
tems. To this end, recent works have shown great promise
in jointly training barrier function and safe policy by neu-
ral network representation for better scalability (Qin et al.,
2021). Our approach leverages the paradigm of barrier func-
tion but develops the concept of a soft barrier to address
unknown stochastic environments.

RL with Generative Model: Previous works of generative-
model-based RL mainly focus on sample efficiency and
policy optimization for the total expected return (Agarwal
et al., 2020b; Li et al., 2020a; Tirinzoni et al., 2020). Some
works (HasanzadeZonuzy et al., 2021; Maeda et al., 2021)
address safe RL by CMDP with a generative model but only
solve the tabular discrete state and action space. Besides
policy optimization, the generative model in our frame-
work also plays an important role in building a soft barrier
function to facilitate the probabilistic safety analysis and
optimization.

3. Our Approach
In this section, we present our framework for safe RL in an
unknown stochastic environment that enforces hard safety
chance constraints with soft barrier functions. In Section 3.1,
we present our bi-level optimization formulation for the
problem, which maximizes a total expected return while try-
ing to avoid unsafe regions by optimizing safety probability.
Specifically, we encode the hard safety chance constraints
with a novel generative-model-based soft barrier function
in the lower problem and maximize the performance of the
policy with generative model learning in the upper problem.
We then present our safe RL algorithm to solve the bi-level
optimization formulation, by jointly learning the generative
model (Section 3.2), soft barrier function (Section 3.3), and
policy optimization (Section 3.4) via first-order gradient, as
shown in Figure 2. We conduct theoretical analysis for the
safety probability of the learned policy in Section 3.5.

3.1. Bilevel Optimization Problem Formulation for Safe
RL with Soft Barrier

We assume that the environment can be abstracted as a finite-
horizon continuous MDP Mθ ∼ (S,A,P, r, γ), where
S ⊂ Rn represents the continuous state space, A ⊂ Rm

indicates the continuous action space, and the function class
P : S ×A× S →[0, 1] denotes the unknown continuous

c

Policy

𝓜= S, A, P, R, 𝛾, 𝜋

𝒂(𝒕)

(𝒔, 𝒂 𝒓, 𝒔′)

Real Trajectory data
ෝ𝒂(t)

(ො𝒔, ෝ𝒂, ො𝒓, 𝒔′) Generative 
Model 𝓜

−∑𝜸𝒕ො𝒓(ො𝒔, ෝ𝒂))
c
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𝑩 𝒔𝟎 + 𝟏 − 𝑩 𝒔𝒖 +
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Real Environment

Generative Modeling

Policy Optimization

Barrier Training
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− 𝐥𝐨𝐠 𝑷(𝒔|𝒩(ො𝒔, 𝚺(ො𝒔)))

Figure 2: The overview of our safe RL framework based
on a generative-model-based soft barrier function. The real
environment and generative model share the learning policy
and the generative model is abstracted as a discrete-time
stochastic differential equation (SDE). We jointly conduct
generative modeling, policy optimization, and barrier learn-
ing in this framework.

and smooth stochastic environment dynamics without jump
condition. The rewards function r(s, a) : S × A → R is
known and the discount factor γ ∈ [0, 1]. A deterministic
continuous NN-based policy πθ : S → A maps the states
s(t) ∈ S to an action a(t) ∈ A at time t as a(t) = πθ(s(t)),
where s(t) is a random variable at timestep t. The environ-
ment has several known spaces, i.e., the state space S ⊂ S,
the initial space S0 ⊂ S , and the unsafe space Su ⊂ S . The
RL objective is to maximize the total discounted expected
return as

max
θ

J := Es(0)∈S0,P (s′|s,a)

[
T∑

t=0

γtr(s(t), a(t))

]
, P ∈ P.

Assumption 3.1. The dynamics of the environment is as-
sumed to be continuous and smooth. Thus, this paper does
not consider discontinuous hybrid dynamics such as contact
dynamics in Mujoco and Safety Gym. Such an assumption
is not uncommon, as it remains a challenging open problem
to learn the discontinuous dynamics (Parmar et al., 2021;
Pfrommer et al., 2021).

We address the hard safety chance constraint for RL by
requiring the control policy with a safety probability lower
bound, as defined below.
Definition 3.2. (Safety Probability Lower Bound) A
safety probability lower bound 1 − η of the entire trajec-
tory (process) τθ = {s(0), s(1), · · · , s(T )} is defined as
P (s(t) ̸∈ Su|s(0) ∈ S0,∀t ∈ [0, T ]) ≥ 1− η, η ∈ [0, 1].

RL with hard safety chance constraints vs. CMDP: Typ-
ically, the safe constraints of CMDP are at the cumulative
trajectory cost level as

max
θ

J(πθ) s.t. E

[∑
t

γtc(s(t), a(t))

]
≤ C,

3
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while our safe RL considers more challenging chance con-
straints (safety probability lower bound) at the time point
level along the entire trajectory as

max
θ

J(πθ),

s.t. P (s(t) ̸∈ Su|πθ, s(0)) ≥ 1− η,∀t ∈ [0, T ],∀s(0) ∈ S0,
(1)

where P denotes the safe probability starting from any initial
state at any time step.

Definition 3.3. (Bi-level Optimization Problem for Safe
RL) To solve the chance-constrained RL in Equation (1), we
formulate a bi-level optimization problem for our framework
as the following, where we use ˆ to denote the elements
related to the generative model:

max
θ,α

J(πθ)− λη∗(θ, α)2 − Lg(τθ, τ̂θ,α),

where η∗(θ, α) denotes the upper bound of unsafe probabil-
ity and is the optimal objective to a lower-level problem of
the generative-model-based soft barrier function with ŝ as
the synthetic state in the generative model:

min
β

η,

s.t.



Bβ(ŝ) ≥ 0,∀ ŝ ∈ S,

Bβ(ŝ) ≥ 1,∀ ŝ ∈ Su,

Bβ(ŝ) ≤ η,∀ ŝ ∈ S0,

E [Bβ(ŝ(t+ 1))|ŝ(t)] ≤ Bβ(ŝ(t)),

ŝ(t+ 1) = M̂θ,α(ŝ(t)),∀ t ∈ [0, T ].

(2)

Here θ is the parameter of policy π. α is the parame-
ter of the generative model M̂θ,α = (Ĝα, Σ̂α), which is
a stochastic differential equation (SDE) with Ĝα as the
drift function and Σ̂α as the diffusion function for the
stochasticity, as shown later in Equation (3). λ ≥ 0 is
a penalty multiplier. τθ := {s(0), s(1), · · · , s(T )} and
τ̂θ,α := {ŝ(0), ŝ(1), · · · , ŝ(T )} are the sampled realiza-
tions of stochastic processes (trajectories) from the environ-
ment and from the generative model by the policy πθ, re-
spectively. β is the parameter of the generative-model-based
soft barrier function Bβ : Rn → R+. We encode the hard
safety chance constraint by the generative-model-based soft
barrier function Bβ in the lower problem, which minimizes
η∗(θ, α) as the upper bound of the unsafe probability for
M̂θ,α in Section 3.3. The upper problem aims to optimize
the policy’s expected return J(πθ) and learn the genera-
tive model by the maximum likelihood loss Lg(τθ, τ̂θ,α)
between the processes τθ and τ̂θ,α as shown later in Equa-
tion (4). Moreover, the upper problem penalizes η∗(θ, α),
which can back propagate the gradient information through
M̂θ,α to πθ for pushing the agent to avoid Su in the MDP
Mθ as long as M̂θ,α behaves similar toMθ.

Algorithm 1 Safe RL with the Generative-model-based Soft
Barrier Function
Input: Unknown environmentMθ with an initial policy πθ

Output: Policy πθ with soft barrier function Bβ based on
generative model M̂θ,α

1: for k in 0, · · · , N do
2: for i in 0, · · · ,M do
3: Sample processes τ iθ by policy πθ withMθ and

synthetic processes τ̂ iθ,α by πθ with M̂θ,α.
4: Compute generative loss function Lg with τ iθ and

τ̂ iθ,α as in Equation (4), α← α− ∂Lg

∂α .
5: end for
6: Compute barrier function loss LB by sampling syn-

thetic τ̂kθ,α as in Equation (5).
7: Compute total discount reward Ĵ(πθ) by sampling

synthetic τ̂kθ,α as in Equation (6).

8: θ ← θ − ∂LB

∂θ + ∂Ĵ
∂θ , β ← β − ∂LB

∂β .
9: end for

We can compute the gradient from η∗(θ, α) for πθ through
M̂θ,α with current auto-differential tools. This cannot be
done in Mθ as it is unknown. Therefore, the overall bi-
level problem is end-to-end differentiable and can be solved
efficiently. Figure 2 shows how the components in our
framework interact with each other. The overall algorithm
to solve the bi-level problem is shown in Algorithm 1. Next,
we are going to introduce the details of each module.

3.2. Generative Modeling

The role of the generative model in our framework is two
folds: (1) Because the barrier function requires an environ-
ment model to encode the hard safety chance constraints,
the generative model serves as a surrogate model to build
this barrier function, where η∗(θ, α) propagates the gradient
to πθ through M̂θ,α for improving system safety. (2) The
generative model can generate synthetic process (trajectory)
τ̂θ,α to optimize the performance of the policy efficiently.

We learn the generative model M̂θ,α as a discrete-time SDE
to capture the dynamics and stochasticity of the environment
and serve as a base for the construction of the soft barrier
function:

M̂θ,α : ŝ(t+ 1) = Ĝα(ŝ(t), πθ(ŝ(t))) + Σ̂α(ŝ(t))W (t),
(3)

where Ĝα : Rn × Rm → Rn is an unknown drift function,
unknown diffusion function Σ̂α : Rn → Rn×d outputs a
n× d matrix based on ŝ, and W (t) ∈ Rd is the Brownian
motion (also known as Wiener Process) with dimension d,
encoding the stochasticity. When the environment is deter-
ministic, we can simply set the Σ̂(s) as 0. We design the
generative model to share the learning control policy with
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the real environment, as shown in Figure 2. For the infer-
ence, the generative model starts from a sample ŝ(0) ∈ S0

and rolls out by drift function Ĝα, diffusion function Σ̂α,
and policy πθ. Therefore, the computation graph contains
the learning policy; thus, the auto-differential tools can ob-
tain the gradient for the policy by back-propagating through
the generative model.
Remark 3.4. We use the fully-connected neural networks to
encode such an SDE. Due to the continuity of the neural net,
such SDE specification requires the environment dynam-
ics to be continuous and smooth. Therefore our approach
cannot handle hybrid dynamics with jump conditions such
as the contact dynamics in Mujoco and Safety Gym, as
mentioned earlier in Assumption 3.1.

The generative model training is to reduce the following
loss function:

min
α
Lg(τθ, τ̂θ,α)

= min
α
−

T∑
t=0

log
(
P
(
s(t) | N (ŝ(t), Σ̂α(ŝ(t)))

))
,

(4)

where Lg is the maximum likelihood loss,

P
(
s(t) | N (ŝ(t), Σ̂α(ŝ(t)))

)
is the likelihood proba-

bility of the observed s(t) under the normal distribution
of the SDE representation. We use torchsde (Li et al.,
2020b) to fit the data τθ = {s(0), s(1), · · · , s(T )} to the
generative model by updating its parameter α, which is
shown in Lines 2 to 5 in the Algorithm 1.

3.3. Soft Barrier Function Learning

To encode the hard chance constraint, we introduce a novel
generative-model-based soft barrier function.
Definition 3.5. (Barrier Function for SDE) Given a policy
πθ, Bβ is a generative-model-based soft barrier function for
the discrete-time SDE M̂θ,α as in Equation (3), if it is
twice differentiable and satisfies the constraints of the lower
problem in Equation (2).
Lemma 3.6. (Prajna et al., 2004) Let B(ŝ(t)) be a super-
martingale of the process ŝ(t) and B(ŝ) ≥ 0,∀ŝ ∈ S. Then
for any ŝ(0) ∈ S0, c > 0, P (supt≥0 B(ŝ(t)) ≥ c | ŝ(0) ∈
S0) ≤ B(ŝ(0))

c .
Theorem 3.7. With a barrier function as in Definition 3.5,
the generative-model SDE with policy πθ (Equation (3))
has a safety probability lower bound 1 − η∗, where η∗ is
the optimal value in the lower problem of Equation (2), as
∀t ∈ [0, T ], P (ŝ(t) ̸∈ Su|ŝ(0) ∈ S0) ≥ 1− η∗, ŝ(t+ 1) =
M̂θ,α(ŝ(t)).

Proof: With the last two conditions of the constraints in
the lower problem of Equation (2), we have

E [B(ŝ(t2))|ŝ(t1)] ≤ B(ŝ(t1)),∀T ≥ t2 ≥ t1 ≥ 0,

where ŝ(t2) is the future state of ŝ(t1) by the generative
model. This indicates that the barrier function B(ŝ) is a
supermartingale. Then by leveraging the Lemma 1 above
from (Prajna et al., 2004), we have

P (ŝ(t) ∈ Su, for some t ∈ [0, T ] | ŝ(0) ∈ S0)

≤ P (B(ŝ(t)) ≥ 1, for some t ∈ [0, T ] | ŝ(0) ∈ S0)

≤ P

(
sup

t∈[0,T ]

B(ŝ(t)) ≥ 1 | ŝ(0) ∈ S0

)
≤ B(ŝ(0)) ≤ η∗.

Therefore, the safety probability lower bound is 1− η∗, and
Theorem 3.7 holds. □

We further translate the constraints of the lower problem in
Equation (2) with their sampling mean:

min
β

η,

s.t.,



1
N

∑N
i=1 Bβ(ŝ

i(0)) ≤ η, ŝi(0) ∈ S0,
1
N

∑N
i=1 Bβ(ŝ

i
u) ≥ 1, ŝiu ∈ Su,

1
N

∑N
i=1 Bβ(ŝ

i) ≥ 0, ŝi ∈ S,
1
N

∑N
i=1 Bβ(ŝ

i(t+ 1)) ≤ Bβ(ŝ
i(t)),

ŝi(t+ 1) = M̂θ,α(ŝ
i(t)), t ∈ [0, T ].

The third non-negative condition is easy to satisfy by setting
the output activation function as Sigmoid for the barrier
neural network. The last two conditions are to make B as
a supermartingale, which is the key to deriving the lower
bound of safety probability for the trajectory. In practice,
we use a supervised-learning-based method to optimize this
problem by minimizing the following loss function:

min
θ,β
LB =

1

N

N∑
i=1

Bβ(ŝ
i(0)) +

1

N

N∑
i=1

(1−Bβ(ŝ
i
u))

+
1

N

N∑
i=1

 1

M

M∑
j=1

Bβ(ŝ
i,j(t+ 1))−Bβ(ŝ

i(t))

 ,

ŝi,j(t+ 1) = M̂θ,α(ŝ
i(t)), t ∈ [0, T ],

(5)
where ŝi,j(t + 1) is the next state of ŝi(t) sampled from
the generative model M̂θ,α with policy πθ. LB essentially
reduces the barrier mapping value on S0 (the maximum
is η∗(θ, α)) and projects the unsafe space Su to 1 with
Sigmoid output, and decreases the expectation of the bar-
rier function along with trajectory. It is worth noting that
LB cannot be approximated by the real environmentMθ

with policy πθ, as we cannot sample from any intermediate
time point s(t) to s(t+ 1) to compute the last sample mean
in Equation (5), which is relatively feasible and simple to
do with M̂θ,α as in Equation (3). The barrier training can
be terminated if the second and third sample means in Equa-
tion (5) are zero and non-positive, respectively. The soft
barrier training is shown as Line 6 in Algorithm 1.
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3.4. Policy Optimization

As stated before, we use the generative model to generate
synthetic data τ̂ iθ,α = {ŝi(0), · · · , ŝi(T )}(i ∈ [1, N ]) with
policy πθ to maximize the total expected return Ĵ(πθ) as:

max
πθ

Ĵ(πθ) = Eŝ(0),M̂θ,α

[
T∑

t=0

γtr (ŝ(t), πθ(ŝ(t)))

]
s.t. ŝ(t+ 1) = M̂θ,α(ŝ(t)),∀t ∈ [0, T ].

We use the sample mean from the synthetic trajectories as
an estimate for the expectation:

max
πθ

Ĵ(πθ) =
1

N

N∑
i=0

T∑
t=0

γtr
(
ŝi(t), πθ(ŝ

i(t))
)
,

s.t. ŝi(t+ 1) = M̂θ,α(ŝ
i(t)),∀t ∈ [0, T ].

(6)

With policy πθ in the computation graph of M̂θ,α, we can
directly obtain the backwards gradient for πθ from Equa-
tion (6). The policy optimization is shown as Line 7 in the
Algorithm 1.

3.5. Theoretical Analysis of Safety Probability under
Soft Barrier

For the final learned policy, we conduct a theoretical anal-
ysis of its safety probability (as defined in Definition 3.2),
derived from the generative-model-based soft barrier func-
tion in our framework.

Lemma 3.8. (Theorem 21 in (Agarwal et al., 2020a))
Given δ ∈ (0, 1), a learned deterministic policy πθ(s)
and assume the environment-policy transition dynamics as
P ∗(s′|s) ∈ P with the function class |P| < ∞ (s′ repre-
sents the next state of s), let the environment and policy
generate a dataset of n trajectories D := {(sj(t), sj(t +
1))}Tt=0(j = 1, · · · , n), s(t) ∼ Dt = (sj(0 : t− 1)). Note
that Dt is a martingale depending on the previous examples.
Let the generative model M̂θ,α maximize the likelihood of
the dataset by its transition dynamics P̂ via Equation (4).
Then with at least probability 1− δ, the expectation of total
variation distance between P ∗ and P̂ is bounded as:

T∑
t=0

Es∼Dt

[
dTV(P

∗, P̂ )
]

=

T∑
t=0

Es∼Dt

∥∥∥P̂ (s′|s)− P ∗(s′|s)
∥∥∥2
TV
≤ 2 log(|P|/δ)

n
.

(7)

Lemma 3.9. Given a random variable Xn ≥ 0 on a prob-
ability space Ω, if EΩ[Xn] → 0 as n → ∞, then
P (Xn = 0)→ 1.

Proof: For any m ∈ N, let Em = {ω ∈ Ω : Xn(w) >
1
m}.

Since Xn ≥ 0, we have:

EΩ[Xn] =

∫
Ω

XndP ≥
∫
Em

XndP ≥
1

m
P (Em).

Therefore, P (Em)→ 0, and then:

0 ≤ P ({ω ∈ Ω : Xn(w) ̸= 0}) = P (
⋃

Em)

= lim
m→∞

P (Em)→ 0,

P ({ω ∈Ω : Xn(w) ̸= 0})→ 0

=⇒ P ({ω ∈ Ω : Xn(w) = 0})→ 1.

Proposition 3.10. (Asymptotic Lower Bound of Safety
Probability) Given the learned policy πθ, let the generative
model fit n sample trajectories τ iθ(i = 1, · · · , n) from envi-
ronmentMθ with πθ by Equation (4), learn the generative-
model-based soft barrier function Bβ by Equation (5) with
η∗ and assume that it formally satisfies the constraints in
Equation (2), then the real environmentMθ with policy πθ

is safe with probability at least (1− η∗) when n→∞.

Proof of Proposition 3.10: Given (S,B) as the measure
spaces with S as the state space and B = {B : S →
R, ∥B∥∞ ≤ 1}, where B is a generative-model-based soft
barrier function with Sigmoid output, then according to the
definition of total variation distance and Lemma 3.8, we can
bound the expectation of the difference between the barrier
values of the real trajectory and the synthetic trajectory as

T∑
t=0

Es∼Dt

[
1

2
sup
B∈B

EP∗(s′|s)[B(s′)]− EP̂ (s′|s)[B(s′)]

]

=

T∑
t=0

Es∼Dt

[
dTV(P

∗, P̂ )
]
≤ 2 log(|P|/δ)

n
.

When n → ∞, we set δ = 1
n and let Xn =

1
2 supB∈B EP∗(s′|s)[B(s′)]−EP̂ (s′|s)[B(s′)], and therefore
E[Xn]→ 0. We know Xn ≥ 0, since Xn = 0 when P ∗ =
P̂ . Therefore, according to Lemma 3.9, P (Xn → 0)→ 1.
We then assume Dt(t ∈ [0, T ]) can uniformly cover the
space S as n→∞, thus the soft barrier becomes a true bar-
rier function for the real environment and Proposition 3.10
holds. □

Remark 3.11. (Practical Safety Probability Lower
Bound) In addition to the asymptotic safety probabil-
ity, we propose a finite-sample practical safety prob-
ability lower bound. We first sample the generative
model and the environment with the final learned policy
to quantify their maximum distance per state as ∆ =
maxt∈[0,T ],i=1,··· ,N |si(t)− ŝi(t)|, and then enlarge the un-
safe region with ∆ by Minkowski sum as S

′

u = Su

⊕
∆.

Next, we retrain another generative-model-based soft bar-
rier function B with S′

u. Finally, we conservatively report

6
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(1−max(ŝ∈τ̂ i
t ,i=1,··· ,N) B(ŝit)) as the final lower bound of

safety probability by the soft barrier function.

Remark 3.12. (During-learning Safety) The above asymp-
totic and practical safety bounds are derived for the final
learned policy. It is possible that 1− η∗ is not a valid safety
probability bound during learning, as there exists a modeling
gap between the generative model and the real environment.
However, we optimize 1 − η∗ during learning to increase
the chance of finding safer learned policies at the end, as
demonstrated in our experiments below.

4. Experimental Results
Experiment Settings and Examples: As stated in Sec-
tion 2, other model-based safe RL methods with hard
safety constraints either require known dynamics, a safe
initial/backup policy, or human intervention, and thus do not
apply to the problem setting we are considering. Therefore,
we compare our approach with two state-of-the-art open-
source model-free CMDP-based methods, PPO-L (Ray
et al., 2019) and FOCOPS (Zhang et al., 2020). For these
two baselines, we design the cost function such that the
state is safe if its cost is less than 0. It is worth noting that
PPO-L has a stronger safety constraint than FOCOPS as
we implemented the PPO-L with the expectation of cost
per state as E[c(s, a)] ≤ 0, rather than the cumulative cost
in FOCOPS as E

[∑T
t=0 c(s, a) ≤ D′

]
. In FOCOPS, We

conservatively set D′ = −60 for the 2D and cartpole exam-
ples below, and −200 for the Rocket and UAV examples, to
improve its safety. We mark this safety-oriented version as
FOCOPS*. We mainly compare the converged final policy
of each method in system safe rate measured via simula-
tions – we call it empirical safe rate. We also perform safety
probability analysis for our method (CMDP cannot provide
one), and compare different methods in total reward return.

Note that learning safe control policy for high-dimensional
systems under hard safety constraints is quite challenging.
Current state-of-the-art works of certificate-based policy
learning mainly focus on low-dimensional systems with
fewer than 9D states (Luo & Ma, 2021; Lindemann et al.,
2021; Chang et al., 2019; Berkenkamp et al., 2017; Dawson
et al., 2022). In this paper, among the four examples shown
below, we are able to test our approach on 13D UAV and
Rocket examples:

2-Dimensional SDE (Prajna et al., 2004) has the unknown
dynamics M as ṡ1 = 0.8s2,ds2 = (a − 0.3s31)dt +
0.2dW (t) (W (t), Wiener process.) Initial space S0 =
{(s1 + 2)2 + s2 ≤ 0.01}, and unsafe space Su = {s1 ∈
[−1, 0], s2 ∈ [1.2, 1.7]}. The goal is to stabilize the system
near (0, 0).

Cartpole Balancing has a 4-dimensional vector s =

[x, θ, ẋ, θ̇] as the system state, where x is the position
and θ is the angular error to the upright. The ini-
tial space S0 = {(x, θ, ẋ, θ̇)|x ∈ [−0.167, 0.033], θ ∈
[−0.6,−0.5], ẋ = −0.35, θ̇ = 0.53}, and unsafe space
Su = {(x, θ, ẋ, θ̇) | x ≤ −0.75}. The goal is to keep the
cartpole balanced upright.

Powered Rocket Landing (Jin et al., 2021) has 6 DoF (de-
grees of freedom) with 13 system states and 3 action vari-
ables. The goal is to land the rocket close to the original
point while avoiding an unsafe region. Its state vector is
s = [p v q ω] ∈ R13, where p = (x, y, z) ∈ R3 and
v = (vx, vy, vz) ∈ R3 represent the position and velocity
of the rocket, respectively. q ∈ R4 is the unit quaternion
for attitude and ω ∈ R3 is the angular velocity with respect
to the inertial frame. There are three trust forces for the
rocket as the control input u = [Tx, Ty, Tz] ∈ R3. Initial
space S0 : p = (x, y, z)(x− 10)2 + (y+8)2 + (z− 5)2 ≤
0.01, v = 0,q = (0.73, 0, 0, 0.68), ω = 0, and unsafe space
Su : p = (x, y, z)(x− 5)2 + y2 ≤ 1,−2 ≤ z ≤ 5, ∥v∥1 ≤
10, ∥ω∥1 ≤ 10.

UAV Maneuvering (Jin et al., 2021) is to maneuver a UAV
close to the original point while avoiding an obstacle. The
6-DoF UAV has 13 system states and 4 action variables.
Its state vector is s = [p v q ω] ∈ R13, same with above
Rocket example. The control input u = [T1, T2, T3, T4] ∈
R4 includes the four rotating propellers of the quadrotor.
Initial space S0 : p = (x, y, z)(x+ 8)2 + (y + 6)2 + (z −
9)2 ≤ 0.01, v = 0,q = (1, 0, 0, 0), ω = 0, unsafe space
Su : p = (x, y, z)(x+ 4.5)2 + (y + 4)2 ≤ 1,−2 ≤ z ≤ 5.

Comparison and Effectiveness of Our Approach: Table 1
shows the comparison results in simulation-based system
safe rate (based on 500 simulations for each example, with
random initial states), safety probability, and performance
for 5 individual runs. We can see that by directly enforcing
hard safety constraints via soft barrier functions, our
approach can achieve significantly higher system safe
rates than the CMDP-based baselines. Our approach
also provides a practical lower bound of safety proba-
bility, which the CMDP-based methods cannot provide.
CMDP achieves better performance (total reward return) in
some cases, but we view safety as the first priority for these
systems and the focus of this work.

Figure 3 shows the control trajectories by the learned poli-
cies from our approach and the baselines. The agent is safe
with our learned policy, while there exist unsafe cases by
both PPO-L and FOCOPS. Moreover, our generative model
behaves very similarly to the real environment, which shows
the usefulness of the generative modeling for constructing
the soft barrier function and optimizing the control pol-
icy. We also show the learning process of the soft barrier
function on the generative model and its testing in the real
environment in Figures 4-7 for all the examples. The learned
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Table 1: Comparison of our approach with CMDP-based baselines PPO-L and FOCOPS*. se is the safe rate by simulating
500 random initial states from S0. 1 − η is the practical lower bound of safety probability in our approach as (1 −
max(ŝ∈τ̂ i

t ,i=1,··· ,n) B(ŝit)), derived by Remark 3.11. We report the mean and std values (in parenthesis) for 5 individual
runs. Our approach achieves significantly higher se than the baselines. It is observed that 1− η is a lower bound of se.

Metric Methods 2D Cartpole Rocket UAV

se, empirical
safe rate

Ours 99.9(0.09)% 100% 100% 100%
PPO-L 98.9(0.08)% 89.3(5.5)% 96.4(6.3)% 100%

FOCOPS* 98.7(0.18)% 84.2(4)% 100% 91(4.2)%

1− η,
safety lower bound

Ours 97.6(1.3)% 86.6(2.9)% 89.9(1.6)% 93.2(2.2)%
PPO-L, FOCOPS* - - - -

J(π),
performance

Ours -67.3(4.9) -24.4(4.7) -143.2(1.6) -847.1(6.5)
PPO-L -66.3(5.3) -34.1(6.7) -151.4(3.6) -895.5(4.3)

FOCOPS* -69.8(3.2) -15.2(2.3) -249.1(1.4) -734.1(3.3)
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Figure 3: Control trajectories by the learned policies from
our approaches and baselines. “Gene” indicates the syn-
thetic trajectory from the final learned generative model,
which behaves very similarly to the real environment with
the “Ours” policy, showing its effectiveness for barrier func-
tion construction. We can see that our approach learns safer
policies than the baselines.

barrier function maps the initial space to near 0 and the un-
safe space to 1 with the third sample mean in Equation (5)
to 0 (marked as Lie in Figures). The barrier function has a
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Figure 4: Barrier function training and testing in the 2D SDE
example. The learned barrier function maps the initial space
to near 0 and the unsafe space to 1 with the third sample
mean in Equation (5) to 0 (marked as Lie). The barrier
function has a similar close-to-0 value keeping constant
along with the trajectories in the real environment and the
generative model.

similar value along with the trajectories in the real environ-
ment and the generative model. Again, this indicates that
the generative model behaves very similarly to the environ-
ment, as shown in Figure 3. Although the barrier function
decreases or stays constant most of the time, it can increase
at some point. This is due to 1) the possible modeling error
between the generative model SDE and environment and 2)
the supervised learning approach cannot cover all possible
cases for soft barrier function training.

Limitations: As stated earlier, one key assumption of this
work is the smoothness and continuity of the system behav-
ior, which prevents its application to hybrid dynamics with
jump conditions such as the contact dynamics in Mojuco
and Safety Gym. One possible solution is to learn an ensem-
ble generative model as a hybrid system to deal with those
discontinuous contact dynamics, and we plan to explore
it in future work. Another limitation of our framework is
the computation complexity of the generative model (e.g.,
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Figure 5: Barrier function training and testing in the Cart-
pole balancing example.
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Figure 6: Barrier function training and testing in the UAV
maneuvering example.
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Figure 7: Barrier function training and testing in the Rocket
powered landing example.

it takes around 8 hours to learn a policy for the Cartpole
example and 1 day for the UAV and Rocket examples). In
future work, we plan to improve the efficiency of this part
by exploring techniques such as Continuous Latent Process
Flows (CLPF) (Deng et al., 2021).

5. Conclusion
We present a safe RL approach in unknown continuous
stochastic environments that enforces hard reachability-
based safety constraints through generative-model-based
soft barrier functions. Our approach formulates a novel
bi-level optimization problem and develops a safety RL al-
gorithm that jointly learns the generative model, soft barrier
function, and policy optimization. Experiments demonstrate
that our approach can significantly improve empirical sys-
tem safe rates over CMDP-based baselines and also provide
a practical lower bound of safety probability.
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