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Abstract8

Phase estimation, due to Kitaev [arXiv’95], is one of the most fundamental subroutines in quantum9

computing, used in Shor’s factoring algorithm, optimization algorithms, quantum chemistry al-10

gorithms, and many others. In the basic scenario, one is given black-box access to a unitary U , and an11

eigenstate |ψ⟩ of U with unknown eigenvalue eiθ, and the task is to estimate the eigenphase θ within12

±δ, with high probability. The repeated application of U and U−1 is typically the most expensive13

part of phase estimation, so for us the cost of an algorithm will be that number of applications.14

Motivated by the “guided Hamiltonian problem” in quantum chemistry, we tightly characterize15

the cost of several variants of phase estimation where we are no longer given an arbitrary eigenstate,16

but are required to estimate the maximum eigenphase of U , aided by advice in the form of states (or17

a unitary preparing those states) which are promised to have at least a certain overlap γ with the18

top eigenspace. We give algorithms and matching lower bounds (up to logarithmic factors) for all19

ranges of parameters. We show a crossover point below which advice is not helpful: o(1/γ2) copies of20

the advice state (or o(1/γ) applications of an advice-preparing unitary) are not significantly better21

than having no advice at all. We also show that having knowledge of the eigenbasis of U does not22

significantly reduce cost. Our upper bounds use the subroutine of generalized maximum-finding of23

van Apeldoorn, Gilyén, Gribling, and de Wolf [Quantum’20], the state-based Hamiltonian simulation24

of Lloyd, Mohseni, and Rebentrost [Nature Physics’13], and several other techniques. Our lower25

bounds follow by reductions from a fractional version of the Boolean OR function with advice, which26

we lower bound by a simple modification of the adversary method of Ambainis [JCSS’02]. As an27

immediate consequence we also obtain a lower bound on the complexity of the Unitary recurrence28

time problem, matching an upper bound of She and Yuen [ITCS’23] and resolving an open question29

posed by them.30

Lastly, we study how efficiently one can reduce the error probability in the basic phase-estimation31

scenario. We show that an algorithm solving phase estimation to precision δ with error probability32

at most ε must have cost Ω
(

1
δ

log 1
ϵ

)
, matching the obvious way to error-reduce the basic constant-33

error-probability phase estimation algorithm. This contrasts with some other scenarios in quantum34

computing (e.g. search) where error-reduction costs only a factor O(
√

log(1/ϵ)). Our lower bound35

technique uses a variant of the polynomial method with trigonometric polynomials.36
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1 Introduction47

1.1 Phase estimation48

Kitaev [19] gave an elegant and efficient quantum algorithm for the task of phase estimation49

nearly 30 years ago. The task is easy to state: given black-box access to a unitary and an50

eigenstate, estimate the phase of the associated eigenvalue. Roughly speaking, the standard51

algorithm for this task sets up a superposition involving many different powers of the unitary52

to extract many different powers of the eigenvalue, and then uses a quantum Fourier transform53

to turn that into an estimate of the eigenphase.1 Many of the most prominent quantum54

algorithms can either be phrased as phase estimation, or use phase estimation as a crucial55

subroutine. Some examples are Shor’s period-finding algorithm [30] as presented in [10];56

approximate counting [6] can be done using phase estimation on the unitary of one iteration57

of Grover’s search algorithm [16], which also recovers the O(
√
N) complexity for searching58

an N -element unordered search space; the HHL algorithm for solving linear systems of59

equations estimates eigenvalues in order to invert them [17]. Applications of phase estimation60

in quantum chemistry are also very prominent, as discussed below.61

More precisely, we are given black-box access to an N -dimensional unitary U (and a62

controlled version thereof) and a state |ψ⟩ that satisfies U |ψ⟩ = eiθ|ψ⟩. Our goal is to output63

(with probability at least 2/3) a θ̃ ∈ [0, 2π) such that |θ̃ − θ| is at most δ in R mod 2π. In64

the basic scenario we are given access to one copy of |ψ⟩, and are allowed to apply U and65

its inverse. Since the repeated applications of U and U−1 are typically the most expensive66

parts of algorithms for phase estimation, the cost we wish to minimize is the number of67

applications of U and U−1. We are additionally allowed arbitrary unitaries that do not68

depend on U , at no cost. Kitaev’s algorithm has cost O(1/δ).69

1.2 Phase estimation with advice70

One of the core problems in quantum chemistry is the following: given a classical description71

of some Hamiltonian H (for instance an “electronic structure” Hamiltonian in the form72

of a small number of local terms), estimate its ground state energy, which is its smallest73

eigenvalue. If H is normalized such that its eigenvalues are all in [0, 2π) and we define74

the unitary U = eiH (which has the same eigenvectors as H, with an eigenvalue λ of H75

becoming the eigenvalue eiλ for U), then finding the ground state energy of H is equivalent76

to finding the smallest eigenphase of U . If we are additionally given a ground state |ψ⟩ (i.e.,77

an eigenstate corresponding to the smallest eigenphase), then phase estimation is tailor-made78

to estimate the ground state energy. However, in quantum chemistry it is typically hard to79

prepare the ground state of H, or even something close to it. What can sometimes be done80

is the preparation of some quantum state that has some non-negligible “overlap” γ with81

the ground space, for instance the “Hartree-Fock state”. We will call such a state an advice82

state. In the complexity-theoretic context, this problem of ground state estimation for a local83

Hamiltonian given an advice state, is known as the “guided local Hamiltonian problem”,84

and has received quite some attention recently [13, 8, 12, 32] because of its connections with85

quantum chemistry as well as deep complexity questions such as the PCP conjecture. These86

complexity-theoretic results typically focus on the BQP-completeness of certain special cases87

1 An added advantage of the standard algorithm for phase estimation is that it can also work with a
quantum Fourier transform that is correct on average rather than in the worst case [23]. However, there
are also approaches to phase estimation that avoid the QFT altogether, see e.g. [28].
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of the guided local Hamiltonian problem, and don’t care about polynomial overheads of the88

cost in the number of qubits logN and in the parameters δ and γ. In contrast, we care here89

about getting essentially optimal bounds on the cost of phase estimation in various scenarios.90

To be more precise, suppose our input unitary is U =
∑N−1

j=0 eiθj |uj⟩⟨uj | with each91

θj ∈ [0, 2π). Let θmax = maxj∈{0,1,...,N−1} θj denote the maximum eigenphase, and let S92

denote the space spanned by all eigenstates with eigenphase θmax, i.e., the “top eigenspace”.93

Advice is given in the form of a state |α⟩ whose projection on S has squared norm at least γ2:94

∥PS |α⟩∥2 ≥ γ2. Note that if S is spanned by a single eigenstate |umax⟩, then this condition95

is the same as |⟨α|umax⟩| ≥ γ, which is why we call γ the overlap of the advice state with96

the target eigenspace. The task maxQPEN,δ is to output, with probability at least 2/3, a97

δ-precise (in R mod 2π) estimate of θmax.298

We will distinguish between the setting where the advice is given in the form of a number99

of copies of the advice state |α⟩, or the potentially more powerful setting where we can apply100

(multiple times) a unitary A that prepares |α⟩ from some easy-to-prepare initial state, say |0⟩.101

We would have such a unitary A for instance if we have a procedure to prepare |α⟩ ourselves102

in the lab. We can also distinguish between the situation where the eigenbasis |u0⟩, . . . , |uN ⟩103

of U is known (say, the computational basis where |uj⟩ = |j⟩) and the potentially harder104

situation where the eigenbasis is unknown. These two binary distinctions give us four different105

settings. For each of these settings we determine essentially optimal bounds on the cost of106

phase estimation, summarized in Table 1.107

Row Basis Access to advice Number of accesses Upper bound Lower bound

1 known state o
(

1
γ2

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 13

2 known state Ω
(

1
γ2

)
Õ

(
1

γδ

)
, Lemma 22 Ω

(
1

γδ

)
, Lemma 14

3 unknown state o
(

1
γ2

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 13

4 unknown state Ω
(

1
γ2

)
Õ

(
1

γδ

)
, Lemma 22 Ω

(
1

γδ

)
, Lemma 14

5 known unitary o
(

1
γ

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 15

6 known unitary Ω
(

1
γ

)
Õ

(
1

γδ

)
, Lemma 21 Ω

(
1

γδ

)
, Lemma 16

7 unknown unitary o
(

1
γ

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 15

8 unknown unitary Ω
(

1
γ

)
Õ

(
1

γδ

)
, Lemma 21 Ω

(
1

γδ

)
, Lemma 16

Table 1 Our results for the cost of maxQPEN,δ. We assume γ > 1/
√
N since a random state has

overlap 1/
√
N with the target eigenspace with high probability, and such a state can be prepared

at no cost. The ‘Basis’ column indicates whether the eigenbasis of U is known; ‘Access to advice’
indicates whether we get copies of the advice state or a unitary to prepare it; ‘Number of accesses’
refers to the number of accesses to advice that we have. The last two columns show our bounds with
references to the lemmas where they are stated and proved. The Õ(·) in the upper-bound column
hides a factor logN for the odd-numbered rows, and log(1/γ) for the even-numbered rows.

Let us highlight some interesting consequences of our results. First, a little bit of advice108

is no better than no advice: the upper bounds in the odd-numbered rows of Table 1 are109

actually obtained by algorithms that don’t use the given advice (o(1/γ2) copies of |α⟩ or110

o(1/γ) applications of A and A−1) at all, yet their costs essentially match the lower bounds111

for algorithms that use advice.112

2 It doesn’t really matter, but we focus on the maximum rather than minimum eigenphase of U because
eigenphase 0 (i.e., eigenvalue 1) is a natural baseline, and we are looking for the eigenphase furthest
away from this baseline.
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We remark here that the same proofs yield the same asymptotic lower bounds for113

algorithms with access to at most c/γ2 advice states for Theorem 12, Rows 1 and 3 of Table 1,114

and for algorithms with access to at most c/γ advice unitaries for Rows 5 and 7 of Table 1,115

where c is a suitably small constant. We chose to use o(·) to avoid clutter.116

A second interesting consequence is that too much advice is no better than a moderate117

amount of advice: the upper bounds in Rows 2 and 4 use O(1/γ2) advice states, and the118

upper bounds in Rows 6 and 8 use O(1/γ) advice unitaries, and using more advice does not119

reduce the cost further. Thirdly, it turns out that knowledge of the eigenbasis of U doesn’t120

really help in reducing the cost: the costs in row 1 and row 3 are the same, and similarly for121

rows 2 vs. 4, 5 vs. 7 and 6 vs. 8.122

Our upper bounds use the subroutine of generalized maximum-finding of van Apeldoorn,123

Gilyén, Gribling, and de Wolf [2] which allows us to find maximum values in the second124

register of a two-register superposition even when the first of these two registers has an125

unknown basis. We derive the upper bound of row 4 from the upper bound of row 8 by126

using roughly 1/γ copies of |α⟩ to simulate one reflection around the state |α⟩ = A|0⟩, using127

the techniques of Lloyd, Mohseni, and Rebentrost [24].3 Our lower bounds follow from128

reductions from a fractional version of the Boolean OR function with advice. We show a129

lower bound for this by a simple modification of the adversary method [1] taking into account130

the input-dependent advice in the initial state.131

Comparison with related work132

Some of the results in our table were already (partially) known. A cost-Õ(
√
N/δ) algorithm133

for the adviceless setting with unknown eigenbasis (implying the upper bounds of rows 1, 3, 5,134

7) was originally due to Poulin and Wocjan [27], and subsequently improved in the log-factors135

by van Apeldoorn et al. [2]; the latter algorithm is basically our proof of Lemma 20. Lin136

and Tong [21] (improving upon [11]) studied the situation with an advice-preparing unitary.137

Their setting is slightly different from ours, they focus on preparing the ground state4 of a138

given Hamiltonian without a known bound on its spectrum, but [21, Theorem 8] implies a139

cost-O(log(1/γ) log(1/δ) log log(1/δ)/γδ) algorithm for our row 8. Their follow-up paper [22]140

further reduces the number of auxiliary qubits with a view to near-term implementation, but141

does not reduce the cost further. Our cost-O(log(1/γ)/γδ) algorithm is slightly better in the142

log-factors than theirs, and uses quite different techniques ([21] uses quantum singular value143

transformation [15]).144

On the lower-bound side, Ω(1/δ) for the cost of phase estimation has long been known to145

hold when the success probability is required to be a constant, this follows for instance from146

the approximate counting lower bound of Nayak and Wu [26] (see also [4]). Lin and Tong [21,147

Theorem 10] proved lower bounds of Ω(1/γ) and Ω(1/δ) on the cost for the setting with148

known eigenbasis and advice unitary (our row 6, and hence also row 8). This is subsumed by149

our stronger (and essentially optimal) Ω(1/γδ) lower bound in row 6. As far as we are aware,150

ours is the first paper to systematically tie together these different results and to complete151

the table with tight upper and lower bounds for the cost in all 8 cases.152

3 We only stated the cost (number of applications of U and U−1) of our algorithms here in the upper-bound
column of Table 1. However, one can verify that the gate-complexities of our algorithms are only worse
by log-factors: they use three main subroutines, all of which have only small overheads in gate-complexity.
These subroutines are basic quantum phase estimation [19], generalized maximum-finding [2], and the
simulation of a unitary reflecting about the state |α⟩ given a small number of copies of |α⟩.

4 Because generalized maximum-finding (Lemma 17) actually outputs a state in addition to an estimate,
our algorithms can be modified to also output a state that is close to the top eigenspace of U .
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Let us also mention some recent work that is not directly covered by our results. First,153

lower bounds for the slightly unusual small-success-probability regime were recently studied154

by Lin [20]. Second, there has been work to make phase estimation more efficient in the155

important special case where the unitary U = eiH is induced by a Hamiltonian H given156

classically as the sum of relatively simple terms, when the cost of phase estimation interacts157

with the cost of Hamiltonian simulation. See for instance the recent paper by Wan, Berta,158

and Campbell [31] and references therein.159

Application160

She and Yuen [29, Theorems 1.6 and 1.7] studied the (t, δ)-Unitary recurrence time problem,161

which is to distinguish whether an input unitary U satisfies U t = I or ∥U t −I∥ ≥ δ, promised162

that one of these is the case (see Definition 7). They proved non-matching upper and lower163

bounds for the cost of quantum algorithms for this problem (see Theorem 8 in this paper).164

As an immediate application of our lower bound for fractional OR with advice, we also obtain165

improved lower bounds for the unitary recurrence time problem that match the upper bound166

of She and Yuen and answer one of their open problems [29, Section 2].167

▶ Theorem 1 (Lower bound for Unitary recurrence time). Any quantum algorithm solving the168

(t, δ)-recurrence time problem for N -dimensional unitaries has cost Ω(t
√
N/δ).169

Interestingly, our lower bound uses the adversary method as opposed to their usage of the170

polynomial method.171

1.3 Phase estimation with small error probability172

For our results in this subsection we revert to the original scenario of phase estimation,173

where an algorithm is given the actual eigenstate |ψ⟩ as input and the goal is to estimate its174

eigenphase θ. However, we now consider the regime where we want small error probability ε175

rather than constant error probability 1/3. Let QPEN,δ,ε denote the task of computing, with176

error probability ≤ ε, a δ-approximation of θ. By repeating Kitaev’s O(1/δ)-cost phase177

estimation algorithm O(log(1/ε)) times and taking the median of the answers, we have the178

following ε-dependent upper bound.179

▶ Theorem 2 (Kitaev + standard error-reduction). For all integers N ≥ 2 and all ε ∈180

(0, 1/2), δ ∈ [0, 2π), there exists an algorithm that solves QPEN,δ,ε with cost O
( 1

δ log 1
ε

)
.181

Grover’s algorithm [16] can compute the ORN function with error probability ≤ 1/3182

using O(
√
N) queries to its N input bits. Interestingly, there exists an ε-error quantum183

algorithm for ORN with only O(
√
N log(1/ε)) queries, which is asymptotically optimal [7],184

and similarly one can reduce error from 1/3 to ε for all symmetric Boolean functions at185

the expense of only a factor
√

log(1/ε) in the query complexity [33]. This is a speed-up186

over the naive O(log(1/ε)) multiplicative overhead. Since optimal quantum algorithms with187

error probability 1/3 for ORN and for all symmetric functions can be derived from phase188

estimation, one may ask if one can achieve such an efficient error-reduction for quantum189

phase estimation as well: is there an algorithm for QPEN,δ,ε of cost O
(

1
δ

√
log(1/ε)

)
? We190

answer this in the negative, showing Theorem 2 is tight.191
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▶ Theorem 3. For integers N ≥ 2 and ε, δ ∈ (0, 1/2),5 every algorithm that solves QPEN,δ,ε192

has cost Ω
( 1

δ log 1
ε

)
.193

In particular, this means that the optimal complexity of ORN with small error probability ε194

of [7] cannot be derived from a phase estimation routine, in contrast to the case of ORN195

(and search) with constant error probability. To show Theorem 3 we first argue that a196

cost-C algorithm for QPEN,δ,ε gives us a cost-C algorithm that distinguishes U = I versus197

U = I − (1 − eiθ)|0⟩⟨0| where θ /∈ [−3δ, 3δ] mod 2π. We then note that the acceptance198

probability of such an algorithm can be written as a degree-2C trigonometric polynomial199

in θ, and invoke a known upper bound on the growth of such trigonometric polynomials in200

order to lower bound their degree.201

2 Preliminaries202

We state the required preliminaries in this section. All logarithms are taken base 2. For a203

positive integer N , U(N) denotes the space of N -dimensional unitaries, and I denote the204

N -dimensional Identity matrix (we drop the subscript if the dimension is clear from context).205

For a positive integer N ≥ 2 and a value θ ∈ [0, 2π), define the N -dimensional unitary206

Uθ as Uθ = I − (1 − eiθ)|0⟩⟨0|. In other words, Uθ is the diagonal matrix with all 1’s except207

the first entry, which is eiθ. For an integer j ∈ {0, 1, . . . , N − 1} and δ ∈ [0, 2π), define208

Mj,δ = I − (1 − eiδ)|j⟩⟨j|.209

2.1 Model of computation210

Here we give a description of our model of computation for all tasks considered in this paper.211

All problems considered in this paper have the following properties:212

Input: An N -dimensional unitary U . We have access to the input as described below.213

State space: The state space of an algorithm comprises two registers: the first register214

is N -dimensional, and the second register is an arbitrarily large workspace.215

Access to input and allowed operations: An algorithm A may apply U and U−1
216

to the first register, and unitaries independent of U to the whole space. It performs a217

POVM at the end to determine the classical output.218

Cost of an algorithm: Total number of applications of U and U−1.219

Depending on the specific problem under consideration, the following properties are variable.220

Initial state: The initial state is assumed to be |0⟩|0⟩ unless mentioned otherwise.221

Input promise: The subset of U(N) (possibly the full set) from which the input is222

taken.223

Output: The output requirement.224

Advice: We may be given access to a specific number of “advice states” |α⟩, or access225

to a specific number of applications of a unitary A that prepares an advice state (e.g.,226

A|0⟩ = |α⟩).227

2.2 Problems of interest228

We list our problems of interest here. All problems fit in the framework of the previous229

subsection, so we skip descriptions of the input, access to the input and allowed operations,230

and the workspace.231

5 We require δ < 2π/5 for our proof of Claim 23 to work. This requirement can be strengthened a little
to δ < 2π/3, but we state our theorem with δ < 1/2 for ease of notation.
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▶ Definition 4 (Phase Estimation). Let N ≥ 2 be an integer and ε, δ > 0. The task QPEN,δ,ε232

is:233

Advice: We are given a single state |ψ⟩ (in other words, our starting state is |ψ⟩|0⟩)234

with the promise that U |ψ⟩ = eiθ|ψ⟩.235

Output: With probability at least 1 − ε, output θ̃ ∈ [0, 2π) such that |θ̃ − θ| ≤ δ mod 2π.236

▶ Definition 5. Let N ≥ 2 be an integer and ε, δ ∈ (0, 1). The task distN,δ,ε is:237

Input promise: U ∈ {I, {Uθ : θ /∈ [δ, δ] mod 2π}}.238

Output: With probability at least 1 − ε, output 1 if U = I, and output 0 otherwise.239

We next define the natural variant of phase estimation that we consider when an algorithm240

need not be given a state from the target eigenspace.241

▶ Definition 6 (Maximum phase estimation). Let N ≥ 2 be an integer and δ > 0. The task242

maxQPEN,δ is:243

Input promise: We consider two cases: one where the eigenbasis of U is known, and244

the other where it is unknown. In the former case, we may assume U =
∑N−1

j=0 eiθj |j⟩⟨j|.245

Define θmax = maxj∈{0,1,...,N−1} θj ∈ [0, 2π).246

Advice: We consider two cases:247

In one case we are given access to advice in the form of a state |α⟩ such that248

∥PS |α⟩∥2 ≥ γ2, where PS denotes the projection on S, the space of all eigenstates249

with eigenphase θmax. If S is spanned by one |umax⟩, this requirement is the same as250

|⟨α|umax⟩| ≥ γ.251

In the other case, we have black-box access to a unitary A that prepares such a state |α⟩.252

We can apply A and A−1. As before, γ is the overlap of |α⟩ with the target eigenspace.253

Number of accesses to advice: We either have ‘few’ accesses to advice as defined254

above (o(1/γ2) advice states or o(1/γ) advice unitaries), or ‘many’ accesses to advice255

(Ω(1/γ2) advice states or Ω(1/γ) advice unitaries).256

Output: With probability at least 2/3, output a value in [θmax − δ, θmax + δ] mod 2π.257

▶ Definition 7 (Unitary recurrence time, [29, Definition 1.5]). For integers N ≥ 2, t ≥ 1 and258

δ ∈ (0, 1), the (t, δ)-recurrence time problem is:259

Input promise: Either U = I, or ∥U t − I∥ ≥ δ in spectral norm.260

Output: With probability at least 2/3: output 1 if U = I, and 0 otherwise.261

The following are the non-matching upper and lower bounds for this problem of She and262

Yuen [29].263

▶ Theorem 8 ([29, Theorems 1.6 and 1.7]). Let δ ≤ 1
2π . Every quantum algorithm solving264

the (t, δ)-recurrence time problem for d-dimensional unitaries has cost Ω
(

max
(
t/δ,

√
d
))

.265

The (t, δ)-recurrence time problem can be solved with cost O(t
√
d/δ).266

2.3 Trigonometric polynomials and their growth267

▶ Definition 9 (Trigonometric Polynomials). A function p : R → is said to be a trigonometric268

polynomial of degree d if there exist complex numbers {ak : k ∈ {−d, . . . , d}} such that for269

all θ ∈ R,270

p(θ) =
d∑

k=−d

ake
ikθ.271
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▶ Theorem 10 ([5, Theorem 5.1.2]). Let t be a degree-n real-valued trigonometric polynomial272

and s ∈ (0, π/2] be such that µ({θ ∈ [−π, π) : |t(θ)| ≤ 1}) ≥ 2π − s, where µ denotes the273

Lebesgue measure on R. Then, supx∈R |t(x)| ≤ exp(4ns).274

3 Lower bounds for maximum phase estimation and Unitary275

recurrence time276

In this section we show lower bounds on the quantum complexity of maximum phase277

estimation obtained by varying all its parameters (see Section 2.1 and Definition 6). In this278

section and the next, we refer to the row numbers of Table 1 when stating and proving our279

bounds.280

Recall that for an integer j ∈ {0, 1, . . . , N − 1} and δ ∈ [0, 2π) we define Mj,δ = I − (1 −281

eiδ)|j⟩⟨j|. Our lower bounds will be by reduction from the following “Fractional OR with282

advice” problem, which fits in the framework of the model described in Section 2.1.283

▶ Definition 11 (Fractional OR with advice). Let N ≥ 2 be integer, δ > 0. The task frORN,δ,t284

is:285

Input promise: U ∈ {I, {Mj,δ : j ∈ {1, 2, . . . , N − 1}}}.286

Advice: When U = I we are given t copies of |0⟩ as advice. When U = Mj,δ, we287

are given t copies of the state γ|j⟩ +
√

1 − γ2|0⟩, i.e., part of our starting state is288

(γ|j⟩ +
√

1 − γ2|0⟩)⊗t.289

Output: With probability at least 2/3: output 1 if U = I, and 0 if U ̸= I.290

We first show a lower bound on the cost of computing frORN,δ,t when t = o(1/γ2). All291

of our lower bounds in Table 1 as well as our lower bound for the Unitary recurrence time292

problem will use this lower bound. We refer the reader to the full version of the paper [25,293

Appendix A] for the proof. The proof follows along the same lines as Ambainis’ adversary294

lower bound [1, Theorem 4.1] of Ω(
√
N) queries for the N -bit Search problem, but now we295

additionally take into account the initial advice states and the fact that our input unitaries296

are only fractional versions of phase queries.297

▶ Theorem 12. For an integer N ≥ 2, real numbers γ ≥ 1/
√
N , δ ∈ [0, π] and t = o(1/γ2),298

every algorithm solving frORN,δ,t has cost Ω(
√
N/δ).299

▶ Lemma 13 (Lower bound for Rows 1,3). Row 1 (and hence Row 3) has a lower bound of300

Ω(
√
N/δ).301

Proof. A cost-C algorithm A for maxQPEN,δ with t advice states and known eigenbasis of U302

immediately yields a cost-C algorithm A′ for frORN,3δ,t: run A on the input unitary, output303

1 if the output phase is in [−δ, δ] modulo 2π, and output 0 otherwise. When U = I, the304

correctness of A guarantees that with probability at least 2/3, the value output by A is in305

[−δ, δ] mod 2π. When U = Mj,3δ, the correctness of A guarantees that with probability at306

least 2/3, the value output by A is in [2δ, 4δ]. For δ < 2π/5, we have [−δ, δ] mod 2π∩ [2δ, 4δ]307

mod 2π = ∅. Thus, A′ solves frORN,3δ,t and has cost C. Theorem 12 yields the bound308

C = Ω
(√

N/δ
)

when t = o(1/γ2), giving the desired result. ◀309

▶ Lemma 14 (Lower bound for Rows 2,4). Row 2 (and hence Row 4) has a lower bound of310

Ω (1/γδ).311

Proof. We prove the required lower bound for maxQPEN,δ with inputs satisfying the promise312

that U ∈
{
IN ,

{
Mj,3δ : j ∈

{
1, 2, . . . , 1/γ2 − 1

}}}
. Because of this assumption, we may take313
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the uniform superposition over the first 1/γ2 computational basis states as our advice state:314

the algorithm should work with such an advice state, since it has overlap γ with the top315

eigenspace for each of the possible U . However, an algorithm can prepare such advice states316

at no cost, so we may assume that the algorithm has no access to advice at all. As in the317

previous proof, this gives an algorithm of the same cost for frOR1/γ2,3δ,0 (ignoring all other318

dimensions). Theorem 12 with N = 1/γ2 and t = 0 yields the required lower bound of319

Ω(1/γδ). ◀320

▶ Lemma 15 (Lower bound for Rows 5,7). Row 5 (and hence Row 7) has a lower bound of321

Ω(
√
N/δ).322

Proof. Towards the required lower bound, consider a cost-C algorithm A solving maxQPEN,δ323

with inputs satisfying the promise U ∈ {IN , {Mj,3δ : j ∈ {1, 2, . . . , N − 1}}}, and with t =324

o(1/γ) accesses to a unitary that prepares an advice state that has overlap at least γ with325

the target eigenspace. We want to construct an algorithm A′ for maxQPEN,δ with the same326

promised inputs that uses no advice, and with cost not much larger than that of A. Note327

that we may assume γ = o(1), since otherwise t = 0, so then A itself already uses no advice.328

We first show how an algorithm can itself implement a good-enough advice unitary A329

quite cheaply. Assuming without loss of generality that 1/3δ is an integer, U1/3δ is actually a330

“phase query”: if U = Mj,3δ, then we have U1/3δ = I − 2|j⟩⟨j|, which is the diagonal matrix331

with 1’s everywhere except a −1 in the jth entry; and if U = I then U1/3δ = I. Thus A332

can start by mapping |0⟩ to a uniform superposition over all indices, and then use Grover’s333

algorithm with U1/3δ as our query operator to amplify the amplitude of |j⟩ to ≥ γ. We334

know that O(γ
√
N) “Grover iterations” suffice for this (see, for example, [34, Section 7.2] for335

details). Each Grover iteration would use one phase-query U1/3δ, so the overall cost (number336

of applications of U and U−1) of this advice unitary is O(γ
√
N/δ). If U = I, the state just337

remains the uniform superposition.338

We now have all components to describe A′: Run A, and whenever A invokes an advice
unitary, use the above A. Since A uses at most t advice unitaries, the cost of A′ is at most
C + t ·O(γ

√
N/δ). Note that A′ uses no advice at all anymore, and solves maxQPEN,δ under

the promise that the input unitary satisfies U ∈ {IN , {Mj,3δ : j ∈ {1, 2, . . . , N − 1}}}. Again,
this immediately yields an algorithm of the same cost for frORN,3δ,0 as in the previous two
proofs. Theorem 12 now implies

C +O(tγ
√
N/δ) = Ω(

√
N/δ),

and hence C = Ω(
√
N/δ) since t = o(1/γ) (t ≤ c/γ for sufficiently small constant c also339

suffices). ◀340

▶ Lemma 16 (Lower bound for Rows 6,8). Row 6 (and hence Row 8) has a lower bound of341

Ω (1/γδ).342

Proof. Just as in the proof of Lemma 14, we may assume N = 1/γ2 by only allowing input343

unitaries of the form U ∈
{
IN ,

{
Mj,3δ : j ∈

{
1, 2, . . . , 1/γ2 − 1

}}}
. With this assumption,344

we may assume that we have no access to advice (i.e., t = 0) since an algorithm can prepare345

a good-enough advice state (namely the uniform superposition over all 1/γ2 basis states) at346

no cost. This yields the required lower bound of Ω(1/γδ) by Lemma 15. ◀347

Finally we prove an optimal lower bound for the Unitary recurrence time problem, match-348

ing She and Yuen’s upper bound (Theorem 8) and resolving one of their open problems [29,349

Section 2].350
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Proof of Theorem 1. Consider an algorithm A solving the (t, δ)-recurrence time problem.351

Restrict to inputs of the form U ∈
{
IN ,

{
Mj,3δ/t : j ∈ {1, 2, . . . , N − 1}

}}
. When U = I we352

have U t = I. When U = Mj,3δ/t, we have ∥U t − I∥ = |1 − e3iδ| ≥ δ for all δ ∈ [0, 1]. Thus,353

A solves frORN,3δ/t,0. Theorem 12 yields the required lower bound of Ω(t
√
N/δ). ◀354

4 Upper bounds for maximum phase estimation355

In this section we show upper bounds on the quantum complexity of our 8 variants of356

maximum phase estimation (see Section 2.1, Definition 6 and Table 1). We require the357

following generalized maximum-finding procedure, adapted from [2, Lemma 48]; we changed358

their wording a bit and modified it from minimum-finding to maximum-finding.359

▶ Lemma 17 ([2, Lemma 48]). There exists a quantum algorithm M and constant C > 0360

such that the following holds. Suppose we have a q-qubit unitary V such that361

V |0⟩ =
K−1∑
k=0

|ψk⟩|xk⟩,362

where x0 > x1 > · · · > xK−1 are distinct real numbers (written down in finite precision),363

and the |ψk⟩ are unnormalized states. Let X be the random variable obtained if we were to364

measure the last register, so Pr[X = xk] = ∥|ψk⟩∥2. Let M ≥ C/
√

Pr[X ≥ xj ] for some j.365

Then M uses at most M applications of V and V −1, and O(qM) other gates, and outputs an366

xi ≥ xj with probability at least 3/4 (in particular, if j = 0 then M outputs the maximum).367

▶ Remark 18. It may be verified by going through [2, Lemma 48] that the only applications368

of V and V −1 used by M are to prepare V |0⟩ starting from |0⟩, and to reflect about V |0⟩.369

We can use generalized maximum-finding to approximate the largest eigenphase starting370

from the ability to prepare a superposition of eigenstates (possibly with some additional371

workspace qubits):372

▶ Lemma 19. There exists a quantum algorithm B such that the following holds. Suppose we373

have an N -dimensional unitary U with (unknown) eigenstates |u0⟩, . . . , |uN−1⟩ and associated374

eigenphases θ0, . . . , θN−1 ∈ [0, 2π). Suppose we also have a unitary A such that375

A|0⟩ =
N−1∑
j=0

αj |uj⟩|ϕj⟩,376

where
∑

j:θj=θmax
|αj |2 ≥ γ2 and the |ϕj⟩ are arbitrary (normalized) states. Then B uses at377

most O(1/γ) applications of A and A−1, and O(log(1/γ)/γδ) applications of U and U−1,378

and with probability at least 2/3 outputs a number θ ∈ [θmax − δ, θmax + δ] mod 2π.379

Proof. Let Ṽ be the unitary that applies phase estimation with unitary U , precision δ, and380

small error probability η (to be determined later), on the first register of the state A|0⟩,381

writing the estimates of the phase in a third register. Then382

Ṽ |0⟩ =
N−1∑
j=0

αj |uj⟩|ϕj⟩|θ̃j⟩,383

where, for each j, |θ̃j⟩ is a superposition over estimates of θj , most of which are δ-close to θj .384

For the purposes of analysis, we would like to define a “cleaned up” unitary V (very close385

to Ṽ ) that doesn’t have any estimates with error > δ. Let |θ̃j
′⟩ be the state obtained from |θ̃j⟩386
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by removing the estimates that are more than δ-far from θj , and renormalizing. Because we387

ran phase estimation with error probability ≤ η, it is easy to show that
∥∥∥|θ̃j

′⟩ − |θ̃j⟩
∥∥∥ = O(√η).388

Then there exists6 a unitary V such that
∥∥Ṽ − V

∥∥ = O(√η) and389

V |0⟩ =
N−1∑
j=0

αj |uj⟩|ϕj⟩|θ̃j
′⟩ =

K−1∑
k=0

|ψk⟩|xk⟩,390

where the xk are the distinct estimates that have support in the last register, and the |ψk⟩391

are (unnormalized) superpositions of the |uj⟩|ϕj⟩’s that are associated with those estimates.392

The largest xk’s are good estimates of θmax. Algorithm B now applies the maximum-393

finding algorithm M of Lemma 17 with the unitary Ṽ . Let us first analyze what would394

happen if B used the cleaned-up V instead of Ṽ . Let X denote the random variable obtained395

if we measure the last register, and note that Pr[X ≥ θmax − δ] ≥
∑

j:θj=θmax
|αj |2 ≥ γ2

396

because all estimates in V |0⟩ have error ≤ δ. Hence B would use O(1/γ) applications of397

V and V −1 to find a θ ∈ [θmax − δ, θmax + δ] with success probability ≥ 3/4. Algorithm398

B will actually use Ṽ and Ṽ −1 instead of V and V −1, which (because errors in quantum399

circuits add at most linearly) incurs an overall error in operator norm of ≤ O(√η) ·O(1/γ).400

Choosing η ≪ γ2, this overall error can be made an arbitrarily small constant. The success401

probability of the algorithm can drop slightly below 3/4 now, but is still ≥ 2/3.402

It remains to analyze the cost of B. Each Ṽ uses 1 application of A, and O(log(1/η)/δ) =403

O(log(1/γ)/δ) applications of U and U−1 for phase estimation (Theorem 2), so B uses O(1/γ)404

applications of A and A−1, and O(log(1/γ)/γδ) applications of U and U−1 in total. ◀405

The upper bounds for our 8 variants of phase estimation (see Table 1) will all follow406

from this. We start with the 4 odd-numbered rows, where it turns out the advice is not407

actually needed to meet our earlier lower bounds. The next proof is basically the same as408

[2, Lemma 50] about estimating the minimal eigenvalue of a Hamiltonian (this improved409

slightly upon [27]; see also [14, Lemma 3.A.4]).410

▶ Lemma 20 (Upper bound for Rows 1, 3, 5, 7). There is an algorithm that uses no advice and411

solves the case in Row 3 (and hence in Rows 1, 5, and 7 as well) with cost O(
√
N log(N)/δ).412

Proof. Let A be the unitary that maps |0⟩ to the maximally entangled state in N dimensions.413

This state can be written in any orthonormal basis, including the (unknown) eigenbasis of U :414

A|0⟩ = 1√
N

N−1∑
j=0

|j⟩|j⟩ = 1√
N

N−1∑
j=0

|uj⟩|uj⟩,415

where |uj⟩ denotes the entry-wise conjugated version of |uj⟩. Applying Lemma 19 with this416

A, |ϕj⟩ = |uj⟩, and γ = 1/
√
N gives the result. ◀417

The next two lemmas cover the 4 cases where the advice states/unitaries are helpful.418

▶ Lemma 21 (Upper bound for Rows 6, 8). There is a quantum algorithm that uses O(1/γ)419

applications of the advice unitary (and its inverse) and solves the case in Row 8 (and hence420

the case in Row 6 as well) with cost O(log(1/γ)/γδ).421

Proof. Apply Lemma 19 with the unitary A that maps |0⟩ to |α⟩, with empty states |ϕj⟩. ◀422

6 This is fairly easy to show, see e.g. [9, proof of Theorem 2.4 in Appendix A].
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▶ Lemma 22 (Upper bound for Rows 2, 4). There is a quantum algorithm that uses O(1/γ2)423

copies of the advice state and solves the case in Row 4 (and hence in Row 2) with cost424

O(log(1/γ)/γδ).425

Proof. We will build upon the algorithm for Row 8 of Lemma 21. By Remark 18 and the426

algorithm in Lemma 21, its O(1/γ) applications of the advice unitary A and its inverse A−1
427

are only used there for two purposes: (1) to prepare a copy of the advice state A|0⟩ = |α⟩,428

and (2) to reflect about |α⟩. We now want to replace these applications of A by using429

copies of the advice state. For (1) this is obvious. Assume the algorithm for Row 8 uses430

(2) at most C/γ times, for some constant C. To implement these reflections, we will invoke431

the result of Lloyd, Mohseni, and Rebentrost [24] (see also [18]), who showed that given432

a number t > 0 and O(t2/η) copies of a mixed quantum state ρ, one can implement the433

unitary eitρ up to error η (in diamond-norm difference between the intended unitary and the434

actually-implemented channel). We will use this result with ρ = |α⟩⟨α|, t = π, η = γ/(100C),435

noting that the implemented unitary eiπ|α⟩⟨α| = I − 2|α⟩⟨α| is a reflection about |α⟩ (up to a436

global minus sign that doesn’t matter).437

Accordingly, we can implement the ≤ C/γ reflections used by the algorithm for Row 8438

using O(1/γ2) copies of |α⟩, each reflection implemented with error ≤ η. Because errors in439

quantum circuits add at most linearly, the overall error between the algorithm of Row 8 and440

our simulation of it (using copies of |α⟩) is at most η · C/γ ≤ 1/100. Hence we obtain an441

algorithm for Row 4 that uses O(1/γ2) copies of |α⟩ and has the same cost O(log(1/γ)/γδ)442

as the algorithm of Row 8. ◀443

5 Tight bounds for phase estimation with small error probability444

Here we prove our lower bound for quantum algorithms solving phase estimation with445

precision δ and error probability at most ε, Theorem 3, which follows from Claims 23 and 24446

below.447

▷ Claim 23. For all integers N ≥ 2 and all ε, δ ∈ (0, 1/2), if there is a cost-d algorithm448

solving QPEN,δ,ε, then there is a cost-d algorithm solving distN,δ,ε.449

Proof. Consider an algorithm A of cost d that solves QPEN,δ,ε. We construct below an450

algorithm A′ of cost d solving distN,δ,ε. Let U ∈ U(N) be the input. The following is the451

description of A′:452

1. Run A with inputs U and |0⟩.453

2. Output 1 if the output of A is in [−δ, δ] mod 2π, and output 0 otherwise.454

Clearly A′ is a valid algorithm, as far as access to input and allowed operations are concerned,455

since its initial state is |0⟩, it applies U,U−1, some unitaries independent of U , and finally456

performs a two-outcome projective measurement to determine the output bit. The cost of457

A′ is d.458

The correctness follows along the same lines as the proofs in Section 3. We prove459

correctness here for completeness. First note that |0⟩ is an eigenstate of all U ∈ {I} ∪460

{Uθ : θ /∈ [−3δ, 3δ] mod 2π}. When U = I, the correctness of A guarantees that with461

probability at least 1 − ε, the value output by A is in [−δ, δ] mod 2π. When U = Uθ, the462

correctness of A guarantees that with probability at least 1 − ε, the value output by A is463

in [θ − δ, θ + δ] mod 2π. For θ /∈ [−3δ, 3δ] mod 2π we have [−δ, δ] mod 2π ∩ [θ − δ, θ + δ]464

mod 2π = ∅ since δ < 1/2 < 2π/5, and hence A′ solves distN,δ,ε. ◀465

We next show a lower bound for the cost of algorithms computing distN,δ,ε.466
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▷ Claim 24. For all integers N ≥ 2, ε, δ ∈ (0, 1/2), every algorithm for distN,δ,ε has cost467

Ω
( 1

δ log 1
ε

)
.468

In order to prove Claim 24, we first show that amplitudes of basis states in low-cost469

algorithms that run on Uθ are low-degree trigonometric polynomials in θ. This is analogous470

to the fact that amplitudes of basis states in query algorithms for Boolean functions are471

low-degree (algebraic) polynomials in the input variables [3, Lemma 4.1], and our proof is472

inspired by theirs.473

▷ Claim 25. Let t > 0 be a positive integer and let θ ∈ [0, 2π]. Consider a quantum474

circuit that has starting state |0⟩, uses an arbitrary number of θ-independent unitaries, uses475

t applications of controlled-Uθ and controlled-U−1
θ in total, and performs no intermediate476

measurements. Then the amplitudes of basis states before the final measurement are degree-t477

trigonometric polynomials in θ.478

Proof. We prove this by induction on t. The claim is clearly true when t = 0 since all479

amplitudes are constants in this case. For the inductive step, suppose the claim is true for480

t = d. Let |ψd⟩ denote the state of the circuit just before the application of the (d+ 1)th481

application of Uθ (the argument for U−1
θ is similar, and we skip it). By the inductive482

hypothesis, we have483

|ψd⟩ =
∑

w

∑
b∈{0,1}

N−1∑
j=0

pj,b,w(θ)|j⟩|b⟩|w⟩,484

where the first register is where Uθ and U−1
θ act, the second register is the control qubit, and485

the last register represents the workspace (i.e., Uθ and U−1
θ do not act on this register), and486

each pj,b,w is a trigonometric polynomial of degree at most d in θ. For a basis state |j⟩|b⟩|w⟩,487

we have488

Uθ|j⟩|b⟩|w⟩ =
{
eiθ|0⟩|b⟩|w⟩ if j = 0 and b = 1

|j⟩|b⟩|w⟩ otherwise.
489

In both cases, the amplitudes of the basis states after the application of Uθ are degree-(d+ 1)490

trigonometric polynomials in θ. After the last application of Uθ the algorithm will apply an491

input-independent unitary. The amplitudes after that unitary are linear combinations of492

the amplitudes before, which won’t increase degree. This concludes the inductive step, and493

hence the theorem. ◀494

Proof of Claim 24. Consider a cost-t algorithm A′ solving distN,δ,ε. Claim 25 implies that495

on input Uθ, the amplitudes of the basis states before the final measurement are degree-t496

trigonometric polynomials in θ. The acceptance-probability polynomial p : R → R given497

by p(θ) := Pr[A′(Uθ) = 1] is a degree-2t trigonometric polynomial, because it is the sum of498

squares of moduli of certain amplitudes, and each of these squares is a degree-2t trigonometric499

polynomial. The correctness of the algorithm ensures that p(0) ∈ [1 − ε, 1] and p(θ) ∈ [0, ε]500

for all θ /∈ [−3δ, 3δ] mod 2π. See Figure 1 for a visual depiction of the behaviour of p for501

θ ∈ [−π, π).502

Scaling by a global factor of 1/ε, we obtain a trigonometric polynomial q of degree 2t503

satisfying:504

q(0) ≥ (1 − ε)/ε > 1/(2ε), and505

q(θ) ∈ [0, 1] for all θ ∈ [−π, π) \ [−3δ, 3δ].506

Thus, Theorem 10 is applicable with s = 6δ, which implies 1/(2ε) ≤ supx∈R |q(x)| ≤507

exp(24tδ). By taking logarithms and rearranging we get t = Ω
( 1

δ log 1
ε

)
, proving the theorem.508

◀509
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θ

p = 0

p = 1

−→
0−π π−3δ 3δ

ε

p(0) ≥ 1 − ε

Figure 1 Acceptance probability p of A′ as a function of θ in the proof of Claim 24

6 Conclusion510

In this paper we considered several natural variants of the fundamental phase estimation511

problem in quantum computing, and proved essentially tight bounds on their cost in each512

setting. As an immediate application of one of our bounds, we resolved an open question513

of [29, Section 2].514

We mention two interesting questions in the first variant of phase estimation we considered,515

where an algorithm is given a number of copies of advice states/unitaries instead of black-box516

access to a perfect eigenstate as in the basic phase estimation setup. First, are the logarithmic517

overheads in the input dimension N and the inverse of the overlap γ in our upper bounds518

(see Table 1) necessary, or can we give tighter upper bounds? Second, can we show the519

log(1/ε)-dependence on the error probability also in the advice-guided case, like we did for520

basic phase estimation (Theorem 3)?521
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