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Abstract8

We consider a contest game modelling a contest where reviews for a proposal are crowdsourced from9

n players. Player i has a skill si, strategically chooses a quality q ∈ {1, 2, . . . , Q} for her review and10

pays an effort fq ≥ 0, strictly increasing with q. Under voluntary participation, a player may opt to11

not write a review, paying zero effort; mandatory participation does not provide this option. For her12

effort, she is awarded a payment per her payment function, which is either player-invariant, like, e.g.,13

the popular proportional allocation, or player-specific; it is oblivious when it does not depend on the14

numbers of players choosing a different quality. The utility to player i is the difference between her15

payment and her cost, calculated by a skill-effort function Λ(si, fq). Skills may vary for arbitrary16

players; anonymous players means si = 1 for all players i. In a pure Nash equilibrium, no player17

could unilaterally increase her utility by switching to a different quality. We show the following18

results about the existence and the computation of a pure Nash equilibrium:19

We present an exact potential to show the existence of a pure Nash equilibrium for the contest20

game with arbitrary players and player-invariant and oblivious payments. A particular case21

of this result provides an answer to an open question from [6]. In contrast, a pure Nash22

equilibrium might not exist (i) for player-invariant payments, even if players are anonymous, (ii)23

for proportional allocation payments and arbitrary players, and (iii) for player-specific payments,24

even if players are anonymous; in the last case, it is N P-hard to tell. These counterexamples25

prove the tightness of our existence result.26

We show that the contest game with proportional allocation, voluntary participation and27

anonymous players has the Finite Improvement Property, or FIP; this yields two pure Nash28

equilibria. The FIP carries over to mandatory participation, except that there is now a single29

pure Nash equilibrium. For arbitrary players, we determine a simple sufficient condition for the30

FIP in the special case where the skill-effort function has the product form Λ(si, fq) = si fq.31

We introduce a novel, discrete concavity property of player-specific payments, namely three-32

discrete-concavity, which we exploit to devise, for constant Q, a polynomial-time Θ(nQ) algorithm33

to compute a pure Nash equilibrium in the contest game with arbitrary players; it is a special34

case of a Θ
(

n Q2 (n + Q − 1
Q − 1

))
algorithm for arbitrary Q that we present. This settles the35

parameterized complexity of the problem with respect to the parameter Q. The computed36

equilibrium is contiguous: players with higher skills are contiguously assigned to lower qualities.37

Both three-discrete-concavity and the algorithm extend naturally to player-invariant payments.38
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1 Introduction45

Contests [39] are modelled as games where strategic contestants, or players, invest efforts46

in competitions to win valuable prizes, such as monetary awards, scientific credit or social47

reputation. Such competitions are ubiquitous in contexts such as promotion tournaments48

in organizations, allocation of campaign resources, content curation and selection in online49

platforms, financial support of scientific research by governmental institutions and question-50

and-answer forums. This work joins an active research thread on the existence, computation51

and efficiency of (pure) Nash equilibria in games for crowdsourcing, content curation, infor-52

mation aggregation and other relative tasks [1, 2, 4, 5, 6, 12, 14, 15, 16, 17, 18, 21, 25, 40].53

In a crowdsourcing contest (see, e.g., [8, 13, 33]), solutions to a certain task are solicited.54

When the task is the evaluation of proposals requesting funding, a set of expert advisors,55

or reviewers, file peer-reviews of the proposals. We shall consider a contest game for56

crowdsourcing reviews, embracing and wide-extending a corresponding game from [6, Section57

2] that was motivated by issues in the design of blockchains and cryptocurrencies. In the58

contest game, funding agencies wish to collect peer-reviews of esteem quality. Costs are59

incurred to reviewers; they reflect various overheads, such as time, participation cost or60

reputational loss, and are supposed to increase with the reviewers’ skills and efforts.1 Both61

skills and efforts are modelled as discrete; such modelling is natural since, for example,62

monetary expenditure, the time to spend on projects, and man-power are usually measured63

in discrete units. Naturally, efforts increase with the achieved qualities of the reviews. Efforts64

map collectively into payments rewarded to the reviewers to counterbalance their costs. We65

proceed to formalize these considerations.66

1.1 The Contest Game for Crowdsourcing Reviews67

We assume familiarity with the basics of finite games, as articulated, e.g., in [24]; we shall68

restrict attention to finite games. In the contest game for crowdsourcing reviews, henceforth69

abbreviated as the contest game, there are n players 1, 2, . . . , n, with n ≥ 2, simultaneously70

writing reviews for a proposal. Each player i ∈ [n] has a skill si > 0. Players are anonymous71

if their skills are the same; then, take si = 1 for all i ∈ [n]. Else they are arbitrary.72

The strategy qi of a player i ∈ [n] is the quality of the review she writes; she chooses73

it from a finite set {1, 2, . . . , Q}, with Q ≥ 2. For a given quality vector q = ⟨q1, . . . , qn⟩,74

the load on quality q, denoted as Nq(q), is the number of players choosing quality q; so75 ∑
q∈[Q] Nq(q) = n. A partial quality vector q−i results by excluding qi from q, for some76

player i ∈ [n]. Playersq(q) is the set of players choosing quality q in q. fq is the effort paid by77

a player writing a review of quality q; it is an increasing function of q with f1 < f2 < . . . < fQ.78

Mandatory participation is modeled by setting f1 > 0; under voluntary participation, modeled79

by setting f1 = 0, a player may choose not to write a review and save effort.80

Given a quality vector q and a player i ∈ [n], the payment awarded to player i ∈ [n] for her81

review is the value Pi(q) determined by her payment function Pi, obeying the normalization82

condition
∑

k∈[n] Pk(q) ≤ 1. Payments are oblivious if for any player i ∈ [n] and quality vector83

q, Pi(q) = Pi(Nq(qi), fqi
); that is, Pi(q) depends only on the quality qi chosen by player i84

and the load on it. Note that oblivious payments are not necessarily player-invariant as for85

1 One might argue that the cost of a reviewer for writing a review of a given quality decreases with her
skill and claim that skill is a misnomer; however, it can also be argued that skilled players are incurred
higher costs upon drawing more skills than necessary for writing a decent review. For consistency, we
chose to keep using skills in the same way as in [6].
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different players i, k ∈ [n], it is not necessary that Pi = Pk. Payments are player-invariant if86

for every quality vector q, for any players i, k ∈ [n] with qi = qk, Pi(q) = Pk(q); thus, players87

choosing the same quality are awarded the same payment. A player-invariant payment88

function Pi(q) can be represented by a two-argument payment function Pi(q, q−i), for a89

quality q ∈ [Q] and a partial quality vector q−i, for a player i ∈ [n]. We consider the following90

player-invariant payments:91

The proportional allocation PAi(q) = fqi∑
k∈[n] fqk

; thus,
∑

i∈[n] PAi(q) =
∑

i∈[n] fqi∑
i∈[n] fqi

= 1.92

Proportional allocation is widely studied in the context of contests with smooth allocation93

of prizes (cf. [39, Section 4.4]). For proportional allocation with voluntary participation94

(by which f1 = 0), in the scenario where all players choose quality 1, the payment to any95

player becomes 0
0 , so it is indeterminate.2 To remove indeterminacy and make payments96

well-defined, we define the payment to any player choosing quality 1 in the case where all97

players choose 1 to be 0. Note that proportional allocation is not oblivious.98

The equal sharing per quality ESi(q) = CES · fqi

Nq(qi)
; so fqi

is shared evenly by players choos-99

ing qi. Since
∑

i∈[n] ESi(q) = CES·
∑

i∈[n]
fqi

Nq(qi)
, we take CES =

(
maxq

∑
i∈[n]

fqi

Nq(qi)

)−1
.100

Note that the equal sharing per quality is different from the standard equal sharing, by101

which all players choosing quality at least some q ∈ [Q] share fq equally. Thus, standard102

equal sharing is not oblivious, while the equal sharing per quality is. Both the equal103

sharing per quality and the equal sharing allow for a player’s payment to decrease with104

an increase in quality; this happens, for example, in standard equal sharing when a player105

switches from a lower quality with very high load to a higher quality with a significantly106

smaller total load on qualities at least the higher quality.107

The KTop allocation KTopi(q) = CKTop ·

 0 , if qi ≤ Q − K
fqi

Nq(qi)
, if qi > Q − K

; so players choos-108

ing a quality q higher than a certain quality Q−K share fq evenly. Since
∑

i∈[n] KTopi(qℓ) =109

CKTop
∑

qi>Q−K

fqi

Nq(qi)
, we take CKTop =

(
maxqℓ

∑
qi>Q−K

fqi

Nq(qi)

)−1
. Note that110

the KTop allocation is different from the standard KTop allocation, considered in,111

e.g., [14, 22, 40], by which all players choosing quality higher than Q − K share fq equally;112

so the utility of a player i choosing a quality qi > Q − K in q is fqi∑
q>Q−K Nq(q) . Thus,113

the standard KTop allocation is not oblivious, while the KTop allocation is.114

A generalization of a player-invariant payment function results by allowing the payment115

to player i ∈ [n] to be a function Pi(i, q) of both i and q; it is called a player-specific payment116

function. The cost or skill-effort function Λ : R≥1 × R≥0 → R≥0, with Λ(·, 0) = 0, is a117

monotonically increasing, polynomial-time computable function in both skill and effort.118

For a quality vector q, the utility function is assumed to be of quasi-linear form with119

respect to payment and cost and is defined as Ui(q) = Pi(q) − Λ(si, fqi
), for each player120

i ∈ [n]. In a pure Nash equilibrium q, for every player i ∈ [n] and deviation of her to strategy121

q ∈ [Q], q ̸= qi, Ui(q) ≥ Ui(q, q−i); so no player could increase her utility by unilaterally122

switching to a different quality. We consider the following problems for deciding the existence123

of a pure Nash equilibrium and computing one if there is one:124

2 This means that all values c satisfy 0 = 0 · c.



4 The Contest Game for Crowdsourcing Reviews

∃PNE with Player-Invariant and Oblivious Payments125

∃PNE with Player-Invariant Payments126

∃PNE with Proportional Allocation and Arbitrary Players127

∃PNE with Proportional Allocation and Anonymous Players128

∃PNE with Player-Specific Payments129

The most significant difference between the contest game and the contest games traditionally130

considered in Contest Theory [39] is that the it adopts players with a discrete action space,131

choosing over a finite number of qualities, while the latter focus on players with a continuous132

one. (See [11] for an exception.) Alas, the contest game is comparable to classes of contests133

studied in Contest Theory [39] with respect to several characteristics:134

Casting qualities as individual contests, the contest game resembles simultaneous contests135

(cf. [39, Section 5]), in which players simultaneously invest efforts across the set of contests.136

While in an all-pay contest (cf. [39, Chapter 2]) all players competing for a non-splittable137

prize must pay for their bid and the winner takes all of it, all players are awarded138

payments, summing up to at most 1, in the contest game.139

The utility Ui(q) = Pi(q) − Λ(si, fqi
) in the contest game can be cast as smooth (cf. [39,140

Chapter 4]): (i) each player receives a portion Pi(q) of the prize according to an allocation141

mechanism that is a smooth function of the invested efforts {fq}q∈[Q] (except when all142

players invest zero effort (cf. [39, start of Section 4], which may happen under proportional143

allocation with voluntary participation) and (ii) utilities are quasilinear in payment and144

cost; in this respect, Ui corresponds to a contest success function [37].145

We shall need some definitions from Game Theory, applying to finite games with players
i maximizing utility Ui. All types of potentials map profiles to numbers. A game is an
(exact) potential game [27] if it admits a exact potential Φ: for each player i ∈ [n], for any
pair qi and q′

i of her strategies and for any partial profile q−i, Ui(q′
i, q−i) − Ui(qi, q−i) =

Φ(q′
i, q−i)−Φ(qi, q−i). A game is an ordinal potential game [27] if it admits a ordinal potential

Φ: for each player i ∈ [n], for any pair qi and q′
i of her strategies and for any partial profile

q−i, Ui(q′
i, q−i) > Ui(qi, q−i) if and only if Φ(q′

i, q−i) > Φ(qi, q−i). A game is a generalized
ordinal potential game [27] if it admits a generalized ordinal potential Φ: for each player i ∈ [n],
for any pair qi and q′

i of her strategies, and for any partial profile q−i, Ui(qi, q−i) > Ui(q′
i, q−i)

implies Φ(qi, q−i) > Φ(q′
i, q−i). So a potential game is a strengthening of an ordinal potential

game, which is a strengthening of a generalized ordinal potential game. Every generalized
ordinal potential game has at least one pure Nash equilibrium [27, Corollary 2.2].

We recast some definitions from Game Theory in the context of the contest game. An
improvement step out of the quality vector q and into the q′ occurs when there is a unique
player i ∈ [n] with qi ≠ q′

i such that Ui(q) < Ui(q′); so it is profitable for player i to switch
from qi to q′

i. An improvement path is a sequence q(1), q(2), . . . , such that for each quality
vector q(ρ) in the sequence, where ρ ≥ 1, there occurs an improvement step out of qρ and
into q(ρ+1). A finite improvement path has finite length. The Finite Improvement Property,
abbreviated as FIP, requires that all improvement paths are finite; that is, there are no
cycles in the directed quality improvement graph, whose vertices are the quality vectors and
there is an edge from quality vector q(1) to q(2) if and only if an improvement step occurs
from q(1) to q(2). Every game with the FIP has a pure Nash equilibrium: a sink in the
quality improvement graph; there are games without the FIP that also have [27]. By [27,
Lemma 2.5], a game has a generalized ordinal potential if and only if it has the FIP.
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1.2 Results146

We study the existence and the computation of pure Nash equilibria for the contest game.147

When do pure Nash equilibria exist for arbitrary players, player-invariant or player-specific148

payments and for arbitrary n and Q? For the special case of the contest game with149

proportional allocation payments and a skill-effort function Λ(si, fq) = sifq, this has been150

advocated as a significant open problem in [6, Section 6]. What is the time complexity of151

deciding the existence of a pure Nash equilibrium and computing one in case there exists152

one? Is this complexity affected by properties of the payment or the skill-effort function, or153

by numerical properties of skills and efforts, and how? We shall present three major results:154

Every contest game with arbitrary players and player-invariant and oblivious payments155

has a pure Nash equilibrium, for any values of n and Q and any skill-effort function Λ156

(Theorem 1). We devise an exact potential [27] for the contest game and resort to the fact157

that every potential game has a pure Nash equilibrium [27, Corollary 2.2]. By Theorem 1,158

the contest game with equal sharing per quality and KTop allocation has a pure Nash159

equilibrium. However, existence does not extend beyond player-invariant and oblivious160

payments: We prove the tightness of our existence result (Theorem 1) by exhibiting161

simple contest games with no pure Nash equilibrium when:162

Payments are player-invariant but not oblivious, even if players are anonymous (Propo-163

sition 3).164

Payments are proportionally allocated and players are arbitrary (Proposition 4).165

Payments are player-specific, even if players are anonymous (Proposition 6). The166

N P-completeness of deciding the existence of a pure Nash equilibrium follows by a167

simple reduction from the problem of deciding the existence of a pure Nash equilibrium168

in a succinctly represented strategic game [32, Theorem 2.4.1] (Theorem 7).169

We show that the contest game with proportional allocation, voluntary participation and170

anonymous players has the FIP (Theorem 8). The contest game is found to have two171

pure Nash equilibria in this case. A simplification of the proof for voluntary participation172

establishes the FIP for mandatory participation (Theorem 10); the number of pure Nash173

equilibria drops to one. As the key to establish these results, we show the No Switch from174

Lower Quality to Higher Quality Lemma: in an improvement step, a player necessarily175

switches from a higher quality to a lower quality (Lemma 9).176

These results are complemented with a very simple, Θ(1) algorithm that works under177

proportional allocation, for arbitrary players, with Λ(si, fq) = si fq and making stronger178

assumptions on skills and efforts to compute a pure Nash equilibrium (Theorem 12). The179

algorithm simply assigns all players to quality 1; so it runs in optimal time Θ(1).180

Finally, we consider a player-specific payment function that is also three-discrete-concave:181

for any triple of qualities qi, qk and q, the difference between the payments when182

incrementing the load on q and decrementing the load on qi is at most the difference183

between the payments when incrementing the load on qk and decrementing the load184

on q. Three-discrete-concave functions make a new class of discrete-concave functions185

that we introduce; similar classes of discrete-concave functions, such as L-concave,186

are extensively discussed in the excellent monograph by Murota [28]. We present a187

Θ
(

n · Q2 (n + Q − 1
Q − 1

))
algorithm to decide the existence of and compute a pure Nash188

equilibrium for three-discrete-concave player-specific payments and arbitrary players189

(Theorem 14).190

Exhaustive enumeration of all quality vector incurs an exponential Θ(Qn) time complexity.191

To bypass the intractability, we focus on contiguous profiles, where any players i and k,192



6 The Contest Game for Crowdsourcing Reviews

with si ≥ sk, are assigned to qualities q and q′, respectively, with q ≤ q′; they offer a193

significant advantage: the cost for their exhaustive enumeration drops to Θ
((n + Q − 1

Q − 1
))

.194

We prove the Contigufication Lemma: any pure Nash equilibrium for the contest game195

can be transformed into a contiguous one (Proposition 15). So, it suffices to search196

for a contiguous, pure Nash equilibrium. The algorithm is polynomial-time Θ(nQ) for197

constant Q, settling the parameterised complexity of the problem when payments are198

player-specific.199

We extend the algorithm for three-discrete-concave player-specific payments to obtain200

a Θ
(

max{n, Q2} ·
(n + Q − 1

Q − 1
))

algorithm for three-discrete-concave player-invariant201

payments (Theorem 20). The improved time complexity for arbitrary Q in comparison202

to the case of three-discrete-concave player-specific payments is due to the fact that the203

player-invariant property allows dealing with the payment of only one, instead of all, of204

the players choosing the same quality.205

1.3 Related Work and Comparison206

The contest game studied here is inspired by, embraces and extends in two significant ways an207

interesting contest game introduced in [6]. First, we consider an arbitrary payment function,208

whereas [6] focuses on proportional allocation. Second, we consider a cost function that is an209

arbitrary function of skill and effort, whereas [6] focuses on the product of skill and effort.210

Although we have considered a single proposal in our contest game, multiple proposals can211

also be accommodated, as in [6].212

Casting qualities as resources, the contest game resembles unweighted congestion games [31];213

adopting their original definition in [31], there are, though, two significant differences: (i)214

players choose sets of resources in a (weighted or unweighted) congestion game while they215

choose a single quality in a contest game, and (ii) the utilities (specifically, their payment216

part) depend on the loads on all qualities in a contest game, while costs on a resource depend217

only on the load on the resource in an congestion game. However, their dissimilarity is218

trimmed down when restricting the comparison to contest games with an oblivious payment219

function, where a payment depends only on the load on the particular quality, and to singleton220

(unweighted) congestion games, first introduced in [30], where each player chooses a single221

resource. Note that the payments in a contest game with an oblivious payment function may222

be player-specific, while, in general, costs in a singleton congestion game are not.223

Congestion games with player-specific payoffs were introduced by Milchtaich [26] as224

singleton congestion games where the payoff to a player choosing a resource is given by a225

player-specific payoff function. (In fact, player-specific payments in this paper have been226

inspired by player-specific payoffs in [26].) In [26, Theorem 2], it is shown that, under227

a standard monotonicity assumption on the payoff function, these games always have a228

pure Nash equilibrium. An example is provided in [26, Section 5] of a congestion game229

with player-specific payoffs that lacks the Finite Improvement Property (FIP). In contrast,230

Theorem 1 shows that the contest game with a player-invariant and oblivious payment231

function, a special case of a congestion game with player-specific payoffs, has a potential232

function; thus, it identifies a subclass of congestion games with player-specific payoffs that233

does have the stronger FIP.234

Gairing et al. [20] consider cost-minimizing players and non-singleton congestion games235

with player-specific costs; [20, Theorem 3.1], shows that there is a potential for the strict236

subclass of congestion games with linear player-specific costs of the form fie(δ) = αie · δ,237

where αie ≥ 0, for a player i and a resource e; δ is the number of players choosing resource e.238
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For the potential function result (Theorem 1) for the contest game with a player-invariant239

and oblivious payment function, we consider general player-specific utilities of the form240

Ui(q) = Pi(i, N(q)) − Λ(si, fq), where Pi(i, N(q)) ≥ 0 is not necessarily linear and Λ is an241

arbitrary non-negative function, which is independent of N(q) and could be non-monotone.242

Theorem 1 is a significant generalization of [20, Theorem 3.1], which assumed linear player-243

specific costs, and an extention of it, due to the subtracted term Λ(si, fq). however, it is also244

a restriction of [20, Theorem 3.1], since the contest game is singleton and Pi is assumed245

player-invariant.246

The contest games considered in the proofs of the existence of pure Nash equilibria for247

[6, Theorems 1 and 3] assume Q = 3 and Q = 2, respectively, and deal with proportional248

allocation, voluntary participation and a skill-effort function Λ(si, fq) = sifq, for any player249

i ∈ [n] and quality q ∈ [Q]. Pure Nash equilibria are ill-defined in all considered cases of250

voluntary participation as they ignore the indeterminacy arising in case all players choose251

quality 1. Putting aside this correctness issue, Theorem 1 generalizes the context of [6,252

Theorem 3] from the case Q = 2 to arbitrary Q, for any player-invariant and oblivious253

payment function and any skill-effort function; Theorems 8 and 10 generalize the context of254

[6, Theorem 1] from Q = 3 to arbitrary Q, while they significantly strengthen the claimed255

results for these ill-defined cases, since (i) they establish the FIP, which is a property stronger256

than the existence of a pure Nash equilibrium, (ii) they cover together both voluntary and257

mandatory participation, and (iii) they explicitly determine the pure Nash equilibria and258

their number, while the outlined convergence arguments for claiming [6, Theorem 1] do not.259

The contest game is related to project games [5], where each weighted player i selects a260

single project σi ∈ Si among those available to him, where several players may select the261

same project. Weights wi,σi
are project-specific; they are called universal when they are fixed262

for the same project and identical when the fixed weights are the same over all projects. The263

utility of player i is a fraction rσi
of the proportional allocation of weights on the project σi.264

Projects can be considered to correspond to qualities in the contest game, which, in contrast,265

has, in general, neither weights nor fractions but has the extra term Λ(si, fq) for the cost.266

For the contest game in [16], there are m activities and player i ∈ [n] chooses an output267

vector bi = ⟨bi1, . . . , bim⟩, with biℓ ∈ R≥0, ℓ ∈ [m]; the case biℓ = 0 corresponds to voluntary268

participation. In contrast, there are no activities in the contest game; but one may view the269

single proposal and quality vectors in it (as well as in the contest game in [6]) as an activity270

and output vectors, respectively. There are C ≥ 1 contests awarding prizes to the players271

based on their output vectors; allocation is equal sharing in [16], by which players receiving a272

prize share are "filtered" using a function fc associated with contest c. The special case of the273

contest game in [16] with C = 1 can be seen to correspond to a contest game in our context;274

nevertheless, to the best of our understanding, no results transfer between the contest games275

in [16] and in this paper, as their definitions are different; for example, we do not see how to276

embed output vectors in our contest game, or skill-effort costs in the contest game in [16].277

Listed in [39, Section 6.1.3] are more examples of player-invariant payments, including278

proportional-to-marginal contribution (motivated by the marginal contribution condition279

in (monotone) valid utility games [38]) and Shapley-Shubick [34, 35]. Games employing280

proportional allocation, equal sharing and K-Top allocation have been studied, for example,281

in [5, 10, 18, 29, 41], in [16, 25] and in [14, 22, 40], respectively. Accounts on proportional282

allocation and equal sharing in simultaneous contests appear in [39, Section 5.4 & Section 5.5],283

respectively. Player-invariant payments enhance Anonymous Independent Reward Schemes284

(AIRS) [9], where payments, termed as rewards, are only allowed to depend on the quality of285

the individual review, or content in the context of user-generated content platforms.286



8 The Contest Game for Crowdsourcing Reviews

A plethora of results in Contest Theory establish the inexistence of pure Nash equilibria in287

contests with continuous strategy spaces; see, e.g, [3] or [33, Example 1.1]. Still for continuous288

strategy spaces, for proportional allocation, existence, uniqueness and characterization of289

pure Nash equilibria is established in [39, Theorem 4.9] for two-player contests and in [23] for290

contests with an arbitrary number of players, assuming additional conditions on the utility291

functions. All-pay contests with discrete action spaces were considered in [11]. In our view,292

the analysis of contest games with discrete action spaces is more challenging; it requires293

combinatorial arguments, instead of concavity and continuity arguments, typically employed294

for contests with continuous action spaces.295

2 (In)Existence of a Pure Nash Equilibrium296

We show:297

▶ Theorem 1. The contest game with arbitrary players and player-invariant and oblivious298

payments has an exact potential and a pure Nash equilibrium.299

Proof. Define the function Φ : {q} → R as300

Φ(q) =
∑

q∈[Q]

Γ(Nq(q)) −
∑

k∈[n]

Λ(sk, fqk
) ,301

where the function Γ : N ∪ {0} → R will be defined later. We prove that Φ is an exact302

potential.303

Consider a player i ∈ [n] switching from strategy qi, to strategy q̂i, while other players do304

not change strategies. So the quality vector q = ⟨q1, . . . , q(i−1), qi, qi+1, . . . , qn⟩ is transformed305

into q̂ := ⟨q1, . . . , qi−1, q̂i, qi+1, . . . , qn⟩; thus, Nq̂(qi) = Nq(qi) − 1, Nq̂(q̂i) = Nq(q̂i) + 1 and306

Nq̂(q̃) = Nq(q̃) for each quality q̃ ̸= qi, q̂i. To simplify notation, denote qi and q̂i as q and q̂,307

respectively. So,308

Ui(q) − Ui(q̂) = [Pi(q)][
Nq(q),Nq(q̂)

] − [Pi(q̂)][
Nq(q)−1,Nq(q̂)+1

] + Λ(si, f
q̂
) − Λ(si, fq) ,309

where [Pi(q)][Nq(q),Nq(q̂)] and [Pi(q)][Nq(q)−1,Nq(q̂)+1] denote the payments awarded to i310

when the loads on qualities q and q̂ are (Nq(q), Nq(q̂)) and (Nq(q) − 1, Nq(q̂) + 1), respec-311

tively, while loads on other qualities remain unchanged. So [Pi(q)][Nq(q),Nq(q̂)] = Pi(q) and312

[Pi(q)][Nq(q)−1,Nq(q̂)+1] = Pi(q̂). Clearly,313

Φ(q) − Φ(q̂) = Γ(Nq(q)) + Γ(Nq(q̂)) − Λ(si, fq) −
(

Γ(Nq(q) − 1) + Γ(Nq(q̂) + 1) − Λ(si, f
q̂
)
)

314

= Γ(Nq(q)) − Γ(Nq(q) − 1) − (Γ(Nq(q̂) + 1) − Γ(Nq(q̂))) + Λ(si, f
q̂
) − Λ(si, fq) .315

Now define the function Γ such that for a quality vector q, for each quality q ∈ [Q],316

Γ(Nq(q)) − Γ(Nq(q) − 1) = [Pi(q)][
Nq(q),Nq(q̂)

] ,317

We set q̂ for q and Nq(q̂) + 1 for Nq(q) to obtain318

Γ(N
q̂
(q̂) + 1) − Γ(N

q̂
(q̂)) = [Pi(q̂)][

Nq(q)−1,Nq(q̂)+1
] ,319

if Nq(q) ≥ 1, and Γ(0) = 0. Note that Γ is well-defined: the left-hand side is a function320

of Nq only, as also is the right-hand side since Pi(q) is independent of (i) i, since P is321
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player-invariant, and (ii) the loads on qualities other than q, since P is oblivious. An explicit322

formula for Γ(Nq(q) follows from its definition:323

Γ(Nq(q)) =
(

Γ(Nq(q) − 2) + [Pi(q)][
Nq(q)−1,Nq(q̂)+1

])+ [Pi(q)][
Nq(q),Nq(q̂)

] = . . .324

= [Pi(q)][
1,Nq(q)+Nq(q̂)−1

] + [Pi(q)][
2,Nq(q)+Nq(q̂)−2

] + . . . + [Pi(q)][
Nq(q),Nq(q̂)

]325

Hence, by definition of Γ,326

Φ(q) − Φ(q̂) = [Pi(q)][
Nq(q),Nq(q̂)

] − [Pi(q̂)][
Nq(q)−1,Nq(q̂)+1

] + Λ(si, f
q̂
) − Λ(si, fq) .327

Hence, Φ(q) − Φ(q̂) = Ui(q) − Ui(q̂), Φ is an exact potential and a pure Nash equilibrium328

exists. ◀329

Since Γ, P and Λ are poly-time computable, so is also the exact potential Φ used for the330

proof of Theorem 1 since it involves summations of values of Γ, P and Λ. Hence, ∃PNE331

with Player-Invariant and Oblivious Payments ∈ PLS.332

▷ Open Problem 2. Determine the precise complexity of ∃PNE with Player-
Invariant and Oblivious Payments. We remark that no PLS-hardness results for
computing pure Nash equilibria are known for either singleton congestion games [26]
or for project games [5], which, in some sense, are also singleton as the contest game
is; moreover, all known PLS-hardness results for computing pure Nash equilibria in
congestion games apply to congestion games that are not singleton. These remarks
appear to speak against PLS-hardness.

We next show that existence of pure Nash equilibria is not guaranteed if P is not player-333

invariant and oblivious simultaneously. We start by showing:334

▶ Proposition 3. There is a contest game with mandatory participation, player-invariant335

payments and anonymous players that has neither the FIP nor a pure Nash equilibrium.336

Proof. Consider the contest game with two players 1 and 2 with skill 1
3 and three qualities 1,337

2 and 3, with fq = q for q ∈ [3]. So participation is mandatory. Assume a product skill-effort338

function Λ(1
3 , fq) = 1

3 fq, q ∈ [3]; so Λ(1
3 , f1)) = 1

3 , Λ(1
3 , f2) = 2

3 and Λ(1
3 , f3) = 1. The339

payment function P gives payment 1 to the player, if any, choosing the strictly highest quality,340

or gives payment 1
2 to each player in case of a tie; so Pi(1, 1) = Pi(2, 2) = Pi(3, 3) = 1

2 for341

each player i ∈ [2], P1(2, 1) = P2(1, 2) = P1(3, 1) = P2(1, 3) = P1(3, 1) = P2(1, 3) = 1 and342

P2(2, 1) = P1(1, 2) = P2(3, 1) = P1(1, 3) = P2(3, 1) = P1(1, 3) = 0. Note that these payment343

functions are not oblivious as the payment to a player choosing a particular quality depends344

on the numbers of players choosing higher qualities. We check that the game neither has the345

FIP nor a pure Nash equilibrium:346

If player 1 chooses 1, then player 2 gets utility 1
2 − 1

3 = 1
6 when choosing 1, 1 − 2

3 = 1
3347

when choosing 2, and 1 − 1 = 0 when choosing 3. So player 2 chooses 2.348

If player 1 chooses 2, then player 2 gets utility 0 − 1
3 = −1

3 when choosing 1, 1
2 − 2

3 = −1
6349

when choosing 2, and 1 − 1 = 0 when choosing 3. So player 2 chooses 3.350

If player 1 chooses 3, then player 2 gets utility 0 − 1
3 = −1

3 when choosing 1, 0 − 2
3 = −2

3351

when choosing 2, and 1
2 − 1 = −1

2 when choosing 3. So player 2 chooses 1.352
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Since players are anonymous and payments are player-invariant, player 1 best-responds to353

player 2 in an identical way. Now note that the best-responses form the cycle ⟨1, 2⟩ ⇝354

⟨3, 2⟩⇝ ⟨3, 1⟩⇝ ⟨2, 1⟩⇝ ⟨2, 3⟩⇝ ⟨1, 3⟩⇝ ⟨1, 2⟩, while quality vectors outside the cycle are355

not pure Nash equilibria. Hence, there is no pure Nash equilibrium. ◀356

We continue to prove:357

▶ Proposition 4. There is a contest game with mandatory participation, proportional358

allocation and arbitrary players that has neither the FIP nor a pure Nash equilibrium.359

Proof. Fix an integer parameter k ≥ 2. Consider the contest game with players 1 and 2360

qualities 1, 2, . . . , Q with fq = q for each q ∈ [Q], where Q = k + 1, and s1 = 1
4k − 2 + 1

k + 1
361

and s2 = 1
4k + 2 + 1

k + 1
. Consider a quality vector (q1, q2). Then,362

U1(q1, q2) = q1

q1 + q2
− 1

4k − 2 + 1
k + 1

q1363

and364

U2(q1, q2) = q2

q1 + q2
− 1

4k + 2 + 1
k + 1

q2 .365

We check that a best-response cycle is possible. Consider a unilateral deviation of player 1366

to quality q′
1 > q1. Then,367

U1(q′
1, q2) − U1(q1, q2) = q′

1

q′
1 + q2

− q1

q1 + q2
− (q′

1 − q1) 1
4k − 2 + 1

k + 1
368

= (q′
1 − q1)q2

(q′
1 + q2)(q1 + q2)

− (q′
1 − q1) 1

4k − 2 + 1
k + 1

369

= (q′
1 − q1)

(
q2

(q′
1 + q2)(q1 + q2)

− 1
4k − 2 + 1

k + 1

)
.370

Similarly, for a unilateral deviation of player 2 to quality q′
2,371

U2(q1, q′
2) − U1(q1, q2) = (q′

2 − q2)

(
q1

(q1 + q′
2)(q1 + q2)

− 1
4k + 2 + 1

k + 1

)
.372

Consider the sequence of deviations (1, 1)⇝ (1, 2)⇝ (2, 2)⇝ . . .⇝ (k − 1, k)⇝ (k, k)⇝373

(k, k + 1), where players 2 and 1 alternate in taking steps. We prove that these steps are374

improvements:375

Consider first the step (κ, κ)⇝ (κ, κ + 1), taken by player 2, where 1 ≤ κ ≤ k. Then,376

U2(κ, κ + 1) − U2(κ, κ) = κ

(κ + (κ + 1))(κ + κ) − 1
4k + 2 + 1

k + 1
377

= 1
2(2κ + 1) − 1

2(2k + 1) + 1
k + 1

378

≥ 1
2(2k + 1) − 1

2(2k + 1) + 1
k + 1

379

> 0 .380

So the step (κ, κ)⇝ (κ, κ + 1) is an improvement for player 2.381
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Consider now the step (κ − 1, κ)⇝ (κ, κ), taken by player 1, where 1 ≤ κ ≤ k. Then,382

U1(κ, κ) − U1(κ − 1, κ) = κ

(κ + κ)((κ − 1 + κ) − 1
2(2k − 1) + 1

k + 1
383

= 1
2(2κ − 1) − 1

2(2k − 1) + 1
k + 1

384

≥ 1
2(2k − 1) − 1

2(2k − 1) + 1
k + 1

385

> 0 .386

So the step (κ − 1, κ)⇝ (κ, κ + 1) is an improvement for player 1.387

So a unilateral deviation to the immediately higher quality by a player is an improvement.388

We can similarly prove that a unilateral deviation to a higher quality by either player is an389

improvement. In particular, no quality vector (q1, q2) with q1 ≤ k and q2 ≤ k + 1 is a pure390

Nash equilibrium. We will prove that there is an improvement cycle starting with the quality391

vector (k, k + 1).392

Consider first the unilateral deviation (k, k + 1)⇝ (k − 1, k + 1) by player 1 to quality393

k − 1. Then,394

U1(k − 1, k + 1) − U1(k, k + 1)395

= −

 k + 1
((k − 1) + (k + 1))(k + k + 1) − 1

2(2k − 1) + 1
k + 1

396

= − k + 1
2k(2k + 1) + 1

2(2k − 1) + 1
k + 1

.397

Thus, U1(k − 1, k + 1) > U1(k, k + 1) > 0 if and only if398

(k + 1)
[
2(2k − 1) + 1

k + 1

]
< 2k(2k + 1)399

or400

2(k + 1)(2k − 1) + 1 < 2k(2k + 1)401

which is verified directly. Hence, the unilateral deviation (k, k + 1)⇝ (k − 1, k + 1) by402

player 1 is an improvement.403

Consider now the unilateral deviation (k − 1, k + 1)⇝ (k − 1, k) by player 2 to quality k.404

Then,405

U2(k − 1, k) − U2(k − 1, k + 1)406

= −

 k − 1
((k − 1) + (k + 1))(k + (k − 1)) − 1

2(2k + 1) + 1
k + 1

407

= − k − 1
2k(2k − 1) + 1

2(2k + 1) + 1
k + 1

.408

Thus, U2(k − 1, k) > U2(k − 1, k + 1) > 0 if and only if409

(k − 1)
[
2(2k + 1) + 1

k + 1

]
< 2k(2k − 1)410
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or411

2(k − 1)(2k + 1) + k − 1
k + 1 < 2k(2k − 1)412

which is verified directly. Hence, the unilateral deviation (k − 1, k + 1)⇝ (k − 1, k) by413

player 2 is an improvement.414

Now the unilateral deviation (k − 1, k)⇝ (k, k) by player 1 is an improvement as it is a415

deviation from a lower quality to a higher. The unilateral deviation (k, k)⇝ (k, k + 1)416

by player 1 is an improvement for the same reason. Thus, we get the improvement cycle417

(k, k + 1)⇝ (k − 1, k + 1)⇝ (k − 1, k)⇝ (k, k)⇝ (k, k + 1).418

Finally, note that (k + 1, k + 1) is not a pure Nash equilibrium since the unilateral deviation419

of player 1 to strategy k is an improvement:420

U1(k, k + 1) − U1(k + 1, k + 1) = −

 k + 1
(k + k + 1)2 (k + 1) − 1

2(2k − 1) + 1
k + 1

421

= −

 1
2 (2k + 1) − 1

2(2k − 1) + 1
k + 1

422

= 1
2(2k − 1) + 1

k + 1
− 1

2 (2k + 1)423

> 0 ,424

since 2(2k − 1) + 1
k + 1 < 2(2k + 1). The claim follows. ◀425

▷ Open Problem 5. Determine the precise complexity of ∃PNE with Player-
Invariant Payments and ∃PNE with Proportional Allocation and Arbitrary
Players. We are tempted to conjecture that both are N P-complete.

We now turn to player-specific payments. We show:426

▶ Proposition 6. There is a contest game with player-specific payments and anonymous427

players that has neither the FIP nor a pure Nash equilibrium.428

Proof. Consider the contest game with two players 1 and 2, and two qualities 1 and 2 with429

f1 = 1 and f2 = 2. Assume a skill-effort function Λ(1, fq) = fq for all qualities q ∈ [Q]; so430

Λ(1, f1) = 1 and Λ(1, f2) = 2. Similarly to Matching Pennies, player 1 has big payment when431

alone on a quality, else very small, and player 2 has big payment when not alone, else very small.432

Formally, define P1(1, 1) = P1(2, 2) = 103 P1(1, 2) = P1(2, 1) = 10, P2(1, 2) = P2(2, 1) = 103
433

and P2(1, 1) = P2(2, 2) = 10. We check that there is no pure Nash equilibrium:434

If player 1 chooses 1, then player 2 gets utility 103 − 1 when choosing 1, and 10 − 2 = 8435

when choosing 2. So player 2 chooses 2.436

If player 1 chooses 2, then player 2 gets utility 103 − 1 when choosing 1, and 10 − 1 = 9437

when choosing 2. So player 2 chooses 1.438

If player 2 chooses 1, then player 1 gets utility 10 − 1 = 9 when choosing 1, and 103 − 2439

when choosing 2. So player 1 chooses 2.440

If player 2 chooses 2, then player 1 gets utility 103 − 1 when choosing 1, and 10 − 2 = 8441

when choosing 2. So player 1 chooses 1.442
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Now note that the best-responses form the cycle ⟨1, 2⟩ ⇝ ⟨1, 1⟩ ⇝ ⟨2, 1⟩ ⇝ ⟨2, 2⟩ ⇝ ⟨1, 2⟩,443

while quality vectors outside the cycle are not Nash equilibria. Hence, there is no pure Nash444

equilibrium. ◀445

We continue to show:446

▶ Theorem 7. ∃PNE with Player-Specific Payments is N P-complete, even if players447

are anonymous.448

Proof. ∃PNE with Player-Specific Payments ∈ N P since one can guess a quality449

vector and verify the conditions for a pure Nash equilibrium. To prove N P-hardness, we450

reduce from the N P-complete problem of deciding the existence of a pure Nash equilibrium451

in a (finite) succinctly represented strategic game [32, Theorem 2.4.1]. So consider such452

a game with n players, m strategies and payoff functions {Fi}i∈[n] represented by a poly-453

time algorithm computing, for a pair of a profile s and a player i ∈ [n], the payoff F(i, s)454

of player i in s. Construct a contest game with n players, Q = m, so that the quality455

vectors coincide with pure profiles of the strategic game. Define the payment function as456

Pi(i, q) = Fi(i, s) + Λ(si, fq) for a player i and a strategy vector q; thus, Ui(q) = Fi(i, s).457

N P-hardness follows. ◀458

3 Proportional Allocation459

3.1 Anonymous Players460

We show:461

▶ Theorem 8. The contest game with proportional allocation, voluntary participation and462

anonymous players has the FIP and two pure Nash equilibria.463

Proof. It suffices to prove that there is no cycle in the quality improvement graph. Recall464

that voluntary participation means f1 = 0. We prove that improvement is possible only if,465

subject to an exception, the deviating player is switching from a higher quality to a lower466

quality:467

▶ Lemma 9 ( No Switch from Lower Quality to Higher Quality ). Fix a quality vector q and468

two distinct qualities q̃, q̂ ∈ [Q] with q̃ < q̂. In an improvement step of a player out of q,469

Nq(q̃) increases and and Nq(q̂) decreases.470

Proof. Denote f
q̃

= β, f
q̂

= γ > β, χ =
∑

q∈[Q]\{q̃,q̂} Nq(q) ≥ 0 and A =
∑

q∈[Q]\{q̃,q̂} Nq(q) fq ≥471

0. Denote the loads on qualities q̃ and q̂ as x and y, respectively; thus, y = n − χ − x We472

shall abuse notation to denote the quality vector q as (x, y).473

(D1) A deviation of a player from q̂ to q̃ will be depicted as (x + 1, y − 1)

⇝
(x, y)

with x ≥ 0 and474

y ≥ 1, so as to guarantee the existence of at least one player i ∈ Playersq(q̂). Call such a475

deviation rightward&downward.476

(D2) A deviation of a player from q̃ to q̂ will be depicted as (x, y)
⇝

(x − 1, y + 1)

with y ≥ 0 and477

x ≥ 1, so as to guarantee the existence of at least one player i ∈ Playersq(q̃). Call such a478

deviation leftward&upward.479
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Note that a rightward&downward deviation is an improvement for the deviating player if and480

only if the reverse leftward&upward improvement step is not an improvement for her. We481

shall prove that a rightward&downward deviation (x + 1, y − 1),

⇝
(x, y)

with x ≥ 0 and y ≥ 1, is an482

improvement unless (x, y) = (n − 1, 1). Consider a player i ∈ Players(x,y)(q̂). We proceed by483

case analysis.484

1. Assume first that q̃ ̸= 1, so that f
q̃

> 0, implying that f
q̂

> 0 as well. So, in this case,485

denominators in proportional allocation fractions are always strictly positive; as we shall486

see in the analysis for the case q̃, this is a crucial property. We have that487

Ui((x, y)) = γ

A + xβ + (n − χ − x)γ − γ488

and489

Ui((x + 1, y − 1)) = β

A + (x + 1)β + (n − χ − x − 1) · γ
− β .490

(x + 1, y − 1)

⇝
(x, y)

is an improvement when Ui((x + 1, y − 1)) > Ui((x, y)), or491

β

A + (x + 1)β + (n − χ − x − 1)γ − β >
γ

A + xβ + (n − χ − x)γ − γ ,492

or493

−β
A + xβ + (n − χ − x − 1)γ

A + (x + 1)β + (n − χ − x − 1)γ > −γ
A + (x − 1)β + (n − χ − x)γ

A + xβ + (n − χ − x)γ .494

Since both denominators are strictly positive for every quality vector (x, y), the last is495

equivalent to496

β [A + xβ + (n − χ − x)γ − γ][A + xβ + (n − χ − x)γ]497

< γ [A + (x − 1)β + (n − x − y)γ][A + (x + 1)β + (n − χ − x − 1)γ]498

or499

β [A + xβ + (n − χ − x)γ]2 − βγ[A + xβ + (n − χ − x)γ]500

< γ [A + xβ + (n − χ − x)γ − 1][A + xβ + (n − χ − x)γ + β − γ]501

= γ
(
[A + xβ + (n − χ − x)γ]2 − [A + xβ + (n − χ − x)γ] + (β − γ)[A + xβ + (n − χ − x)γ] − (β − γ)

)
502

= γ
(
[A + xβ + (n − χ − x)γ]2 − γ[A + xβ + (n − χ − x)γ] + (γ − β)

)
503

= γ[A + xβ + (n − χ − x)γ]2 − γ2[A + xβ + (n − χ − x)γ] + γ(γ − β)504

or505

(γ − β)[A + xβ + (n − χ − x)γ]2 − γ(γ − β)[A + xβ + (n − χ − x)γ] + γ(γ − β) > 0 .506

Since γ > β, the last inequality is equivalent to507

[A + xβ + (n − χ − x)γ]2 − γ[A + xβ + (n − χ − x)γ] + γ > 0508

or509

[A + xβ + (n − χ − x)γ]2 > γ ([A + xβ + (n − χ − x)γ] − β) .510

Since n − χ − x ≥ 1, it follows that A + xβ + (n − χ − x)γ ≥ γ, which implies511

[A + xβ + (n − χ − x)γ]2 ≥ γ[A + xβ + (n − χ − x)γ]512

> γ[A + xβ + (n − χ − x)γ − β] ,513
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since β > 0. It follows that (x + 1, y − 1)

⇝
(x, y)

is an improvement, implying that (x, y),
⇝

(x − 1, y + 1)

514

with x ≥ 0 and y > 0, is not.515

2. Assume now that q̃ = 1, so that f
q̃

= 0. Then, it is no longer the case that denominators in516

proportional allocation fractions are always strictly positive. Specifically, when x = n − 1517

and y = 1, some denominator becomes 0 as we shall see. So the case x = n − 1 and y = 1518

will require special handling. We proceed with the details. In all cases, we have that519

Ui((x, y)) = β

A + x · 0 + +(n − χ − x) · γ
− β = β

(
1

A + (n − χ − x)γ − 1
)

,520

and521

Ui((x + 1, y − 1)) = 0
A + (x + 1) · 0 + (n − χ − x − 1) · γ

− 0 = 0
A + (n − χ − x − 1)γ522

Note that if y = 1 and x = n−1, then in Ui(x+1, y−1), A = 0, χ = 0 and n−χ−x−1 = 0,523

so that the denominator in the fraction of Ui(x + 1, y − 1) becomes also 0, making the524

fraction indeterminate; in this case, Ui((x + 1, y − 1)) is 0 by the way indeterminacy525

is removed. In all other cases, the denominator is strictly positive, which results again526

in Ui((x + 1, y − 1)) = 0. So, Ui((x + 1, y − 1)) = 0 in every case. (x + 1, y − 1)

⇝
(x, y)

is an527

improvement when Ui((x + 1, y − 1)) > Ui((x, y)) or528

1
A + (n − χ − x)γ < 1 .529

(x, y) = (n − 1, 1): Then, the denominator in Ui((x, y) becomes 1, resulting to Ui((x, y))530

is also 0, implying that neither the rightward&downward deviation (x + 1, y − 1)

⇝
(x, y)

nor531

the leftward&upward deviation (x, y)
⇝

(x − 1, y + 1)

is an improvement.532

(x, y) ̸= (n − 1, 1): Thus, either x = n or x ≤ n − 2. We proceed by case analysis.533

x = n: Then, y = 0 and there can be no (x + 1, y − 1)

⇝
(x, y)

deviation out of (n, 0).534

x ≤ n − 2: Then, n − χ − x ≥ 2 and A + (n − χ − x)γ ≥ 2γ > 2. It follows that the535

necessary and sufficient condition for an improvement holds.536

It follows that, unless (x, y) = (n − 1, 1), the rightward&downward deviation537

(x + 1, y − 1)

⇝
(x, y)

is an improvement, implying that the leftward&upward deviation538

(x, y)
⇝

(x − 1, y + 1)

is not.539

Hence, rightward&downward deviations are improvements except when (x, y) = (n − 1, 1).540

◀541

It follows that the quality improvement graph has two sinks, representing two pure Nash542

equilibria:543
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The node (n − 1, 1), corresponding to Nq(1) = n − 1, Nq(2) = 1 and Nq(q) = 0 for each544

quality q ∈ [Q] with q > 2.545

The node (n, 0), corresponding to Nq(1) = n and Nq(q) = 0 for each quality q ∈ [Q] with546

q > 1. This node is unreachable by improvement steps.547

◀548

Under mandatory participation, it no longer holds that f1 = 0, and Case 2. in the proof of549

Lemma 9 does not arise; as a result, the node (n − 1, 1), corresponding to Nq(1) = n − 1,550

Nq(2) = 1 and Nq(q) = 0 for each quality q ∈ [Q] with q > 2, is not a sink anymore since551

the unilateral deviation of a player from quality 2 to quality 1 is now an improvement since552

f1 > 0. So we have now a unique pure Nash equilibrium, where all players choose quality 1.553

The rest of the proof of Theorem 8 transfers over. Hence, we have:554

▶ Theorem 10. The contest game with proportional allocation, mandatory participation and555

anonymous players has the FIP and a unique pure Nash equilibrium.556

Given the counter-example contest game in Proposition 4, Theorem 10 establishes a separation557

with respect to the FIP property and the existence of a pure Nash equilibrium between558

arbitrary players and anonymous players, under mandatory participation and proportional559

allocation. Theorems 8 and 10 imply:560

▶ Corollary 11. The contest game with proportional allocation and anonymous players has a561

generalized ordinal potential.562

3.2 Mandatory Participation563

We show:564

▶ Theorem 12. There is a Θ(1) algorithm that solves ∃PNE with Proportional Al-565

location and Arbitrary Players with lower-bounded skills mini∈[n] si ≥ f2
f2 − f1 and566

skill-effort functions Λ(si, fq) = sifq, for all players i ∈ [n] and qualities q ∈ [Q].567

Proof. By definition of utility and mandatory participation, the utility of each player i ∈ [n]568

is more than −sif1. If player i deviates to 2, its utility will be less than f2 − f2si = −f2(si −1).569

The assumption implies that −f2(si − 1) ≤ −f1si for all players i ∈ [n]. So player i does not570

want to switch to quality 2. Since efforts are increasing, for all qualities q with 2 < q ≤ Q, the571

utility of player i when she deviates to q will be less than −fq(si − 1) < −f2(si − 1) ≤ −f1si,572

by the assumption. So player i does not want to switch to any quality q > 2 either. Hence,573

assigning all players to quality 1 is a pure Nash equilibrium. ◀574

Since f2
f2 − f1 > 1, the assumption made for Theorem 12 that all skills are lower-bounded by575

f2
f2 − f1 in Theorem 12 cannot hold for anonymous players where si = 1 for all players i ∈ [n].576

This assumption is reasonable for real contests for crowdsourcing reviews where a minimum577

skill is required for reviewers in order to eliminate the risk of receiving inferior solutions of578

low quality. Indeed, crowdsourcing firms can target crowd contributors based on exhibiting579

skills, like performance in prior contests. Clearly, the assumption made for Theorem 12,580

enabling the existence of a pure Nash equilibrium, could not hold for the counter-example581

contest game in Proposition 4.582
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4 Three-Discrete-Concave Payments and Contiguity583

Say that the load vector Nq is contiguous if players 1 to Nq(1) choose quality 1, players584

Nq(1) + 1 to Nq(1) + Nq(2) choose quality 2, and so on till players
∑

q∈[Q−1] Nq(q) + 1 to n585

choose quality qlast ≤ Q such that for each quality q̂ > qlast, Nq(q̂) = 0; so for any players i586

and k, with i < k, choosing distinct qualities q and q′, respectively, we have q < q′. Clearly, a587

contiguous load vector determines by itself which Nq(q) players choose each quality q ∈ [Q].588

Say that an inversion occurs in a load vector Nq if there are players i and k with i < k589

choosing qualities qi and qk, respectively, with qi > qk; thus, si ≥ sk while fqi > fqk
. Call i590

an inversion witness; call i and k an inversion pair. Clearly, no inversion occurs in a load591

vector Nq if and only if Nq is contiguous.592

Given a contiguous load vector Nq, denote, for each quality q ∈ [Q] such that Playersq(q) ̸=593

∅, the minimum and the maximum, respectively, player index i ∈ Playersq(q) as firstq(q) and594

lastq(q), respectively. Clearly, firstq(q) =
∑

q̂<q
Nq(q̂) + 1 and lastq(q) =

∑
q̂≤q

Nx(q̂); so595

firstq(1) = 1 for Nq(1) > 0 and lastq(Q) = n for Nq(Q) > 0.596

Order the players so that s1 ≥ s2 ≥ . . . ≥ sn. Recall that f1 < f2 < . . . < fQ. Represent a597

quality vector q as follows:598

Use a load vector Nq = ⟨Nq(1), Nq(2), . . . , Nq(Q)⟩.599

Specify which Nq(q) players choose each quality q ∈ [Q].600

To simplify notation, we shall often omit to specify the players choosing each quality q ∈ [Q].601

Thus, we shall represent a quality vector q by the load vector Nq.602

4.1 Player-Specific Payments603

Recall that a player-specific payment function Pi(q) can be represented by a two-argument604

payment function Pi(i, q), where i ∈ [n] and q is a quality vector. We start by defining:605

▶ Definition 13. A player-specific payment function P is three-discrete-concave if for every606

player i ∈ [n], for every load vector Nq and for every triple of qualities qi, qk, q ∈ [Q],607

Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk) − 1, . . . , N′
q(q) + 1, . . . , N′

q(Q))) +608

Pi(i, (Nq(1), . . . , Nq(qi) − 1, . . . , Nq(qk), . . . , Nq(q) + 1, . . . , Nx(Q)))609

≤ 2 Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) .610

The inequality in Definition 13 may be rewritten as611

Pi(i, (Nq(1), . . . , Nq(qi) − 1, . . . , Nq(qk), . . . , Nq(q) + 1, . . . , Nq(Q))) −612

Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q)))613

≤ Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) −614

Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk) − 1, . . . , Nq(q) + 1, . . . , Nq(Q))) .615

We show:616

▶ Theorem 14. There is a Θ
(

n · Q2 (n + Q − 1
Q − 1

))
algorithm that solves ∃PNE with617

Player-Specific Payments for arbitrary players and three-discrete-concave player-specific618

payments; for constant Q, it is a Θ(nQ) polynomial algorithm.619

Proof. We start by proving:620

▶ Proposition 15 (Contigufication Lemma for Player-Specific Payments). For621

three-discrete-concave player-specific payments, any pair of (i) a pure Nash equilibrium622

Nq = ⟨Nq(1), . . . , Nq(Q)⟩ and (ii) player sets Playersq(q) for each quality q ∈ [Q], can be623

transformed into a contiguous pure Nash equilibrium.624
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Proof. If no inversion occurs in Nq, then Nq is contiguous and we are done. Else take the625

earliest inversion witness i, together with the earliest player k such that i and k make an626

inversion. We shall also consider a player ι ∈ [n] \ {i, k}. Since payments are player-specific,627

Ui(Nq) = Pi(i, Nq) − Λ(si, fqi )628

and629

Uk(Nq) = Pk(k, Nq) − Λ(sk, fqk ) .630

1. Player i does not want to switch to quality q ̸= qi if and only if631

Pi(i, (Nq(1), . . . Nq(qk), . . . , Nq(qi), . . . , Nq(Q))) − Λ(si, fqi )632

≥ Pi(i, (Nq(1), . . . Nq(q) + 1, . . . , Nq(qi) − 1, . . . , Nq(Q))) − Λ(si, fq) ,633

or634

Λ(si, fqi ) − Λ(si, fq) ≤ Pi(i, (Nq(1), . . . Nq(q), . . . , Nq(qi), . . . , Nq(Q))) −635

Pi(i, (Nq(1), . . . , Nq(q) + 1, . . . , Nq(qi) − 1, . . . , Nq(Q))) (C.1) .636

2. Player k does not want to switch to quality q ̸= qk if and only if637

Pk(k, (Nq(1), . . . Nq(qk), . . . , Nq(q), . . . , Nq(Q))) − Λ(sk, fqk )638

≥ Pk(k, (Nq(1), . . . Nq(qk) − 1, . . . , Nq(q) + 1, . . . , Nq(Q))) − Λ(sk, fq) ,639

or640

Λ(sk, fqk ) − Λ(sk, fq) ≤ Pk(k, (Nq(1), . . . Nq(qk), . . . , Nq(q), . . . , Nq(Q))) −641

Pk(k, (Nq(1), . . . , Nq(qk) − 1, . . . , Nq(q) + 1, . . . , Nx(Q))) (C.2) .642

3. Player ι does not want to switch to quality q ̸= qι if and only if643

Pι(ι, (Nq(1), . . . Nq(q), . . . , Nq(qι), . . . , Nq(Q))) − Λ(sι, fqι )644

≥ Pι(ι, (Nq(1), . . . Nq(q) + 1, . . . , Nq(qι) − 1, . . . , Nq(Q))) − Λ(sι, fq) ,645

or646

Λ(sι, fqι ) − Λ(sι, fq) ≤ Pι(ι, (Nq(1), . . . Nq(q), . . . , Nq(qι), . . . , Nq(Q))) −647

Pι(ι, (Nq(1), . . . , Nq(q) + 1, . . . , Nq(qι) − 1, . . . , Nq(Q))) (C.3) .648

Swap the qualities chosen by players i and k; so they now choose qk and qi, respectively.
Choices of other players are preserved.

Denote as Nq′ the resulting load vector; clearly, for each q̂ ∈ [Q], Nq′(q̂) = Nq(q̂). We prove:649

▶ Lemma 16. The earliest inversion witness in q′ is either i or some player î > i.650

Proof. Assume, by way of contradiction, that the earliest inversion witness in q′ is a player651

j < i. Since the earliest inversion witness in q is i, j is not an inversion witness in q. Let652

q̂ be the quality chosen by j in q and q′. Since players other than i and k do not change653

qualities in q′, j makes an inversion pair with either i or k in q′. There are two cases.654

j makes an inversion pair with i in q′: Since i chooses quality qk in q′, it follows that655

q̂ > q′. Since k > j and k chooses quality qk in q, this implies that j and k make an656

inversion pair in q.657
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j makes an inversion pair with k in q′: Since k chooses quality qi in q′, it follows that658

q̂ > qi. Since i > j and i chooses quality qi in q, this implies that j and i make an659

inversion pair in q.660

In either case, since i > j, i is not the earliest witness of inversion in q. A contradiction. ◀661

We continue to prove:662

▶ Lemma 17. Nq′ is a pure Nash equilibrium if and only if Nq is.663

Proof. We consider the following cases:664

1. Player i does not want to switch to quality q ̸= qk if and only if665

Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) − Λ(si, fqk )666

≥ Pi(i, (Nq(1), . . . , Nq(qi), . . . Nq(qk) − 1, . . . , Nq(q) + 1, . . . , Nq(Q))) − Λ(si, fq)667

or668

Λ(si, fqk ) − Λ(si, fq) ≤ Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) −669

Pi(i, (N′
q(1), . . . , Nq(qi), . . . , Nq(qk) − 1, . . . , Nq(q) + 1, . . . , Nq(Q))) .(C.4)670

671

2. Player k does not want to switch to quality q ̸= qi if and only if672

Pk(k, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) − Λ(sk, fqi )673

≥ Pk(k, (Nq(1), . . . , Nq(qi) − 1, . . . , Nq(qk), . . . , Nq(q) + 1, . . . , Nq(Q))) − Λ(sk, fq)674

or675

Λ(sk, fqi ) − Λ(sk, fq) ≤ Pk(k, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) −676

Pk(k, (Nq(1), . . . , Nq(qi) − 1, . . . , Nq(qk), . . . , Nq(q) + 1, . . . , Nq(Q))) . (C.5)677

678

3. Player ι does not want to switch to quality qκ ∈ [Q] \ {qι} in q′ if and only if679

Pι(ι, (Nq(1), . . . , Nq(qι), . . . , Nq(qκ), . . . , Nq(Q))) − Λ(sι, fqι )680

≥ Pι(ι, (Nq(1), . . . , Nq(qι) − 1, . . . , Nq(qκ) + 1, . . . , Nq(Q))) − Λ(sι, fqκ )681

or682

Λ(sι, fqι ) − Λ(sι, fqκ ) ≤ Pι(ι, (Nq(1), . . . , Nq(qι), . . . , Nq(qκ), . . . , Nq(Q))) −683

Pι(ι, (Nq(1), . . . , Nq(qι) − 1, . . . , Nq(qκ) + 1, . . . , Nq(Q))) . (C.6)684

Hence, we conclude:685

1. From the rewriting of the inequality for player i in Definition 13,686

Pi(i, (Nq′ (1), . . . , Nq(qi) − 1, . . . , Nq(qk), . . . , Nq(q) + 1, . . . , Nq(Q))) −687

Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q)))688

≤ Pi(i, (Nq(1), . . . Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) −689

Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk) − 1, . . . , Nq(q) + 1, . . . , Nq(Q))) .690

Hence,691

Pi(i, (Nq(1), . . . , Nq(qi) − 1, . . . , Nq(qk), . . . , Nq(q) + 1, . . . , Nq(Q))) −692

Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , N′
q(Q)))693

≤ Λ(si, fq) − Λ(si, fqi ), Λ(si, fqk ) − Λ(si, fq)694

≤ Pi(i, (Nq(1), . . . Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) −695

Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk) − 1, . . . , Nq(q) + 1, . . . , Nq(Q)))696

if and only if both (C.1) and (C.4) hold.697
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2. From the rewriting of the inequality for player k in Definition 13,698

Pk(k, (Nq′ (1), . . . , Nq(qi), . . . , Nq(qk) − 1, . . . , Nq(q) + 1, . . . , Nq(Q))) −699

Pk(k, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q)))700

≤ Pk(k, (Nq(1), . . . Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) −701

Pk(k, (Nq(1), . . . , Nq(qi) − 1, . . . , Nq(qk), . . . , Nq(q) + 1, . . . , Nq(Q))) .702

Hence,703

Pk(k, (Nq(1), . . . , Nq(qi), . . . , Nq(qk) − 1, . . . , Nq(q) + 1, . . . , Nq(Q))) −704

Pi(i, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q)))705

≤ Λ(sk, fq) − Λ(sk, fqi ), Λ(sk, fqk ) − Λ(sk, fq)706

≤ Pk(k, (Nq(1), . . . Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) −707

Pk(k, (Nq(1), . . . , Nq(qi) − 1, . . . , Nq(qk), . . . , Nq(q) + 1, . . . , Nq(Q)))708

if and only if both (C.2) and (C.5) hold.709

3. Since (C.3) and (C.6) are identical, it follows that player ι does not want to switch to a710

quality qκ ̸= qι in q if and only if she does not want to switch to the quality qκ in q′.711

The conclusions imply that no player wants to switch qualities in q if and only if she does712

not want to switch qualities in q′. The claim follows. ◀713

Now the earliest inversion witness, if any, in q′ is either i, the earliest witness of inversion in714

q, making an inversion pair with a player k̂ > k, or greater than i. It follows inductively that715

a pure Nash equilibrium exists if and only if a contiguous pure Nash equilibrium exists. ◀716

By Proposition 15, it suffices to search over contiguous load vectors. Fix a load vector Nq717

and a quality q ∈ [Q] such that Playersq(q) ̸= ∅. No player choosing quality q wants to switch718

to the quality q′ ̸= q if and only if for all players i ∈ Playersq(q),719

Pi(i, Nq) − Λ(si, fq) ≥ Pi(i, (Nq(1), . . . , Nq(q) − 1, . . . , Nq(q′) + 1, . . . , Nq(Q))) − Λ(si, fq′)720

or721

Λ(si, fq) − Λ(si, fq′) ≤ Pi(i, Nq) − Pi(i, (Nq(1), . . . , Nq(q) − 1, . . . , Nq(q′) + 1, . . . , Nq(Q))) .(C.7)722

Since P is player-specific, Pi(i, Nq) and Pi(i, (Nq(1), . . . , Nq(q)−1, . . . , Nq(q′)+1, . . . , Nq(Q)))723

are not constant over all players choosing quality q in Nq and switching to quality q′ in724

(Nq(1), . . . , Nq(q) − 1, . . . , Nq(q′) + 1, . . . , Nq(Q)), respectively. Hence, no player choosing725

quality q ∈ [Q] wants to switch to a quality q′ ̸= q if and only if (C.4) holds for all players726

i ∈ Playersq(q).727

To compute a pure Nash equilibrium, we enumerate all contiguous load vectors Nq =728

⟨Nq(1), Nq(2), . . . , Nq(Q)⟩, searching for one that satisfies (C.7), for each quality q ∈ [Q]729

and for all players i ∈ Playersq(q); clearly, there are
(n + Q − 1

Q − 1
)

contiguous load vectors730

(cf. [7, Section 2.6]). For a player-specific payment function, checking (C.7) for a quality731

q ∈ [Q] entails no minimum computation but must be repeated n times for all players i ∈ [n];732

checking that the inequality holds for a particular q′ ̸= q takes time Θ(1), so checking that733

it holds for all qualities q′ ̸= q takes time Θ(Q), and checking that it holds for all q ∈ [Q]734

takes time Θ(Q2). Thus, the total time is Θ
(

n · Q2 ·
(n + Q − 1

Q − 1
))

. For constant Q, this is735

a polynomial Θ
(
nQ
)

algorithm.736

By Proposition 15, a contiguous load vector satisfying (C.7) for each quality q ∈ [Q]737

exists if and only if it will be found by the algorithm enumerating all contiguous load vectors.738

Hence, the algorithm solves ∃PNE with Player-Specific Payments. ◀739
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4.2 Player-Invariant Payments740

Recall that a player-invariant payment function Pi(q) can be represented by a two-argument741

payment function Pi(q, q−i), where q ∈ [Q] and q−i is a partial quality vector, for some742

player i ∈ [n]. In correspondence to three-discrete-concave player-specific payments, we743

define:744

▶ Definition 18. A player-invariant payment function P is three-discrete-concave if for every745

player i ∈ [n], for every load vector Nq and for every triple of qualities qi, qk, q ∈ [Q],746

Pi(q, (Nq(1), . . . , Nq(qi), . . . , Nq(qk) − 1, . . . , Nq(q) + 1, . . . , Nq(Q))) +747

Pi(q, (Nq(1), . . . , Nq(qi) − 1, . . . , Nq(qk), . . . , Nq(q) + 1, . . . , Nq(Q)))748

≤ 2 Pi(qi, (Nq(1), . . . , Nq(qi), . . . , Nq(qk), . . . , Nq(q), . . . , Nq(Q))) .749

In correspondence to Proposition 15, we prove a Contigufication Lemma for three-discrete-750

concave player-invariant payment functions:751

▶ Proposition 19 (Contigufication Lemma for Player-Invariant Payments). For752

three-discrete-concave player-invariant payments, any pair of (i) a pure Nash equilibrium753

Nq = ⟨Nq(1), . . . , Nq(Q)⟩ and (ii) player sets Playersq(q) for each quality q ∈ [Q], can be754

transformed into a contiguous pure Nash equilibrium.755

By Proposition 19, it suffices to search over contiguous load vectors. Fix a load vector Nq756

and a quality q ∈ [Q] such that Playersq(q) ̸= ∅. No player choosing quality q wants to switch757

to the quality q′ ̸= q if and only if for all players i ∈ Playersq(q),758

Pi(q, Nq) − Λ(si, fq) ≥ Pi(q′, (Nq(1), . . . , Nq(q) − 1, . . . , Nq(q′) + 1, . . . , Nq(Q))) − Λ(si, fq′)759

or760

Λ(si, fq) − Λ(si, fq′) ≤ Pi(q, Nq) − Pi(q′, (Nq(1), . . . , Nq(q) − 1, . . . , Nq(q′) + 1, . . . , Nq(Q))) .(C.8)761

Since P is player-invariant, Pi(q, Nq) and Pi(q′, (Nq(1), . . . , Nq(q)−1, . . . , Nq(q′)+1, . . . , Nq(Q)))762

are constant over all players choosing quality q in Nq and switching to quality q′ in763

(Nq(1), . . . , Nq(q) − 1, . . . , Nq(q′) + 1, . . . , Nq(Q)), respectively. Hence, no player î choosing764

quality q ∈ [Q] wants to switch to a quality q′ ̸= q if and only if (C.8) holds for each quality765

q′ ̸= q, where î ∈ Playersq(q) is arbitrarily chosen.766

To compute a pure Nash equilibrium, we enumerate all contiguous load vectors Nq =767

⟨Nq(1), Nq(2), . . . , Nq(Q)⟩, searching for one that satisfies (C.8), for each quality q ∈ [Q] and768

for a player î ∈ Playersq(q); clearly, there are
(n + Q − 1

Q − 1
)

contiguous load vectors (cf. [7,769

Section 2.6]. For player-invariant payments, checking (C.8) for a quality q ∈ [Q] entails the770

computation of the minimum of a function on a set of size Nq(q); computation of the minima771

for all qualities q ∈ [Q] takes time
∑

q∈[Q] Θ(Nq(q)) = Θ
(∑

q∈[Q] Nq(q)
)

= Θ(n). Thus, the772

total time is
(n + Q − 1

Q − 1
)

·
(
Θ(n) + Θ(Q2)

)
= Θ

(
max{n, Q2} ·

(n + Q − 1
Q − 1

))
.773

By Proposition 15, a contiguous load vector satisfying (C.8) for each quality q ∈ [Q]774

exists if and only if it will be found by the algorithm enumerating all contiguous load vectors.775

Hence, it follows:776

▶ Theorem 20. There is a Θ
(

max{n, Q2} ·
(n + Q − 1

Q − 1
))

algorithm that solves ∃PNE777

with Player-Invariant Payments for arbitrary players and three-discrete-concave player-778

invariant payments; for constant Q, it is a Θ(nQ) polynomial algorithm.779
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▷ Open Problem 21. Investigate the possibility of improving the time complexities
of the algorithms in Theorems 14 and 20. For constant Q, this means reducing the
exponent Q of n. Assumptions stronger than three-discrete-concavity on the payments
might be required.

5 Open Problems and Directions for Further Research780

This work poses far more challenging problems and research directions about the contest781

game than it answers. To close we list a few open research directions.782

1. Study the computation of mixed Nash equilibria. Work in progress confirms the existence783

of contest games with Q = 3 and n = 3 that have only one mixed Nash equilibrium,784

which is irrational. We conjecture that the problem is PPAD-complete for n = 2.785

2. Determine the complexity of computing best-responses for the contest game. We conjecture786

N P-hardness; techniques similar to those used in [16, Section 3] could be useful.787

3. Formulate incomplete information contest games with discrete strategy spaces and study788

their Bayes-Nash equilibria. Ideas from Bayesian congestion games [19] will very likely789

be helpful. Study existence and complexity properties of pure Bayes-Nash equilibria.790

4. In analogy to weighted congestion games [26, 31], formulate the weighted contest game791

with discrete strategy spaces, where reviewers have weights, and study its pure Nash792

equilibria.793
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