2	bimetallic catalysts: Synergistic effect from dual-metal active
3	sites
4	
5	Jin Liu ^a , Xinbo Zhu ^{a,*} , Susu Jiang ^a , Hao Zhang ^b , Yu Hong ^{a,c,d} , Geng Chen ^a , Xin Tu ^{e,**}
6	
7	a. Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P.R.
8	China
9	b. State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power
10	Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
11	c. New Materials Institute, University of Nottingham Ningbo China, Ningbo, 315100,
12	P.R. China
13	d. Research and Development Center, Ningbo Energy Group Co. Ltd, Ningbo, 315040,
14	P.R. China
15	e. Department of Electrical Engineering and Electronics, University of Liverpool,
16	Liverpool, L69 3GJ, UK
17 18	Abstract
19	Plasma-catalytic synthesis of ammonia (NH3) was carried out using BaTiO3
20	supported Ru-M bimetallic catalysts (Ru-M/BaTiO ₃ , M = Fe, Co and Ni) in a
21	dielectric barrier discharge (DBD) reactor. The NH ₃ synthesis performance followed
22	the order of Ru-Ni/BaTiO ₃ > Ru/BaTiO ₃ > Ru-Co/BaTiO ₃ > Ru-Fe/BaTiO ₃ , with the
23	highest NH ₃ concentration (3895 ppm) and energy yield (0.39 g kWh ⁻¹) achieved over

Plasma-catalytic synthesis of ammonia over Ru/BaTiO₃-based

Ru-Ni/BaTiO₃ at 25 W and 10 W, respectively. To gain insights into the 24 physio-chemical properties of the Ru-M/BaTiO₃ catalysts, comprehensive catalyst 25 26 characterizations were performed, including X-ray diffraction, N₂ physisorption measurements, X-ray photoelectron spectroscopy (XPS), high-resolution transmission 27 electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), and 28 temperature-programmed desorption of CO₂ and N₂ (CO₂ and N₂-TPD). The results 29 indicated that the loading of Ni enhanced the basicity and N₂ adsorption capacity of 30 the catalyst surface, as well as the density of oxygen vacancy (OV) on the BaTiO₃ 31 32 surface, which facilitated the adsorption and activation of N₂ on BaTiO₃ surface. These effects led to the enhanced NH₃ synthesis, as excited N₂ could be adsorbed on 33 Ru-Ni/BaTiO₃ from plasma region and stepwise hydrogenated to form NH_x species 34 35 and ultimately NH₃.

Keywords: plasma catalysis, ammonia synthesis, Ru-based bimetallic catalyst,
oxygen vacancy, N₂ activation

38

39 1. In	troduction
----------	------------

Besides being an essential raw material for many chemicals, ammonia (NH₃) has shown great value and environmental benefits as an emerging clean fuel due to its characteristics of carbon-free, high energy density and easy to liquid and store [1]. NH₃ can be directly used in fuel cells to generate electricity, and blended with conventional fossil fuels such as gasoline and diesel for combustion to output mechanical power [2, 3]. Using a NH₃ blend-fuel power system can achieve higher thermal efficiency and lower NO_x, SO_x, and CO₂ emissions than a fossil fuel-powered 47 internal combustion engine [4, 5].

48	Currently, the Haber-Bosch process based NH_3 synthesis is the major
49	industrial-scale NH3 synthesis process. This process is an energy-intensive thermal
50	catalytic reaction that requires the reactants to be maintained within a temperature
51	range of 450-600°C and a pressure range of 10-25 MPa for NH ₃ synthesis. The
52	Haber-Bosch process based NH ₃ synthesis relies almost entirely on the combustion of
53	fossil fuels to provide the required energy. Due to the harsh reaction conditions, the
54	production of 1 kg of NH ₃ results in emissions of 1.25–2.16 kg of CO ₂ equivalent due
55	to the harsh reaction conditions [6]. Therefore, the NH ₃ synthesis industry consumes
56	approximately 1.8-3% of global energy each year and emits approximately 290
57	million tons of CO ₂ [7, 8].

58 Establishing small-scale, decentralized NH₃ production plants to utilize localized and intermittent renewable energy sources is currently the main way to produce 59 "green ammonia". Among various technologies for the synthesis of "green ammonia", 60 e.g. photo-catalysis [9, 10] and electro-catalysis [11, 12], the plasma-catalysis process 61 has received widespread attention. The plasma-catalytic system could be operated 62 under mild catalytic reaction conditions, and is easy to achieve miniaturization and 63 decentralization of NH₃ synthesis equipment. The plasma-catalytic system is 64 characterized by quick start and stop times, which allows it to match intermittent and 65 seasonal renewable energy sources. This enables the conversion and storage of 66 localized renewable energy sources. Furthermore, in the process of plasma-catalytic 67 synthesis of NH₃, the activation of the N≡N bond is mainly achieved via collisions 68

with energetic electrons, making NH₃ synthesis thermodynamically favorable even at
ambient pressure and room temperature [13, 14].

Perovskite oxides (with the general formula ABO₃) have recently emerged as a

new and promising class of catalyst support in heterogeneous catalysis due to their exceptional thermal stability, tunable electronic structure, and redox behavior [15]. Due to the unique structure of perovskite oxides, which can accommodate variable B-site elements and valences, these catalyst supports are highly susceptible to introducing interface effects, such as strong metal-support interaction (SMSI) and oxygen vacancies (OV). This, in turn, enhances the activity of ABO₃-supported catalysts for NH₃ synthesis [16, 17]. Moreover, our previous research has

71

72

73

74

75

76

77

78

demonstrated that the introduction of BaTiO₃, with its high dielectric constant, into
the plasma discharge region could amplify the electric field of the gas phase, thereby
facilitating N₂ activation through electron-impact reactions, which represents the
primary step in plasma-catalytic NH₃ synthesis [18].

83 The incorporation of metallic catalysts has been demonstrated to enhance the plasma-catalytic performance of NH₃ synthesis, as the metal sites on the catalyst 84 support play a critical role in heterogeneous reactions [19-21]. Various metal-based 85 catalysts have proved to be active for NH₃ synthesis to date. Among them, the 86 87 Ru-based catalysts are more efficient under milder reaction conditions as they afford more prominent N₂ activation due to the proper binding strength of atomic N and N₂ 88 89 dissociation barrier [22, 23]. However, the utilization of Ru-based catalysts has been limited due to the high cost and low production of Ru. To reduce cost and optimize 90

91	the performance of Ru-based metallic catalysts, alloying Ru with other metal
92	components has been found effective in adjusting its structural and electronic
93	properties, thereby increasing its ability to activate the $N \equiv N$ bond. This approach
94	builds upon knowledge gained from conventional thermal catalytic NH ₃ synthesis.
95	For example, previous studies have demonstrated that an alloy of Ru-Fe/MgO resulted
96	in a higher NH ₃ yield and better anti-poisoning performance compared to pure Ru and
97	Fe catalysts [24]. Similarly, the Ru-Co/MgAl ₂ O ₄ catalyst was found to be the most
98	active among the Ru-M/MgAl ₂ O ₄ catalysts (M = Fe, Co, Ni, and Mo). When the Ru
99	loading was reduced from 4 wt.% to 2 wt.%, and Co was added at the same 2 wt.%
100	loading in the Ru-Co/MgAl ₂ O ₄ catalyst, its activity was comparable to that of the 4
101	wt.% Ru/MgAl ₂ O ₄ catalyst, suggesting the underlying synergistic effect between
102	bimetallic components [25]. Some studies suggested that the improved performance
103	of Ru-based bimetallic catalysts may be attributed to different surface activities
104	resulting from electron transfer between the metals, as well as favorable kinetics and
105	thermodynamics of N ₂ dissociation [24, 26]. Despite these efforts to investigate the
106	mechanisms underlying for thermal-catalytic NH ₃ synthesis, the understanding of the
107	reaction mechanisms of plasma-catalytic NH3 synthesis over Ru-based bimetallic
108	catalysts remains limited.

In this study, we investigate the performance of plasma-catalytic NH_3 synthesis over bimetallic Ru-M/BaTiO₃ (M = Fe, Co, and Ni) catalysts in a dielectric barrier discharge (DBD) reactor. To gain insight into the changes in the physicochemical properties of the catalysts after incorporating M, we extensively characterized

Ru-M/BaTiO₃ catalysts using various techniques such as X-ray diffraction (XRD), N₂ 113 physisorption X-ray photoelectron (XPS), 114 measurements, spectroscopy high-resolution transmission electron microscopy (HRTEM), energy dispersive 115 spectroscopy (EDS), and temperature programmed desorption (CO₂-TPD and 116 N₂-TPD). In addition, we used optical emission spectroscopy (OES) to identify the 117 reactive species during the plasma-catalytic reactions. Based on the results obtained, 118 we propose the mechanisms underlying the enhanced performance of Ru-Ni/BaTiO₃ 119 catalysts in plasma-catalytic NH₃ synthesis. 120

121 **2.** Experimental

122 2.1 Catalysts preparation and characterization

Bimetallic catalysts of Ru-M/BaTiO₃ (M = Fe, Co and Ni) were prepared using 123 124 the co-impregnation method. Initially, the nitrates of M and RuCl₃·3H₂O were dissolved in deionized water, then the solution was added to a measured amount of 125 BaTiO₃ powder. The slurry was stirred for 30 min, then heated at 80°C for 3 h, dried 126 127 at 110°C for 12 h, and calcined at 550°C for 6 h. The catalysts were reduced in a 5 vol.% H₂/Ar flow at 550°C and 100 ml min⁻¹ for 3 h, then screened to 40-60 mesh. 128 The total loading amount of active metal for each catalyst was fixed at 3 wt.%, while 129 the molar ratio of Ru to M was 1:1. The catalysts were named Ru-Fe/BaTiO₃, 130 Ru-Co/BaTiO₃, Ru-Ni/BaTiO₃ and Ru/BaTiO₃. The chemicals Ni(NO₃)₂·6H₂O, 131 Co(NO₃)₂·6H₂O, Fe(NO₃)₃·9H₂O, RuCl₃·3H₂O and BaTiO₃ were all of analytical 132 grade (Macklin, China). The purity of all gases (H₂, N₂, and Ar) was 99.999% 133 (Fangxin, China). 134

The XRD patterns of the Ru-M/BaTiO₃ catalysts were obtained using a Rikagu 135 D/max-2000 X-ray diffractometer equipped with Cu-Ka radiation. The scanning 136 range was 10° to 80° , and the scanning step size was 0.02° . N₂ physisorption 137 measurements were performed using a Quantachrome Autosorb-1 instrument at 77 K. 138 Before each test, the catalysts were degassed at 250 °C for 3 h to remove impurities. 139 The specific surface area was obtained using the Brunauer-Emmett-Teller (BET) 140 method, and pore volume and diameter distribution were obtained using Barrett 141 Joyner Halenda (BJH) method. High-resolution transmission electron microscopy 142 143 (HRTEM) and energy-dispersive X-ray spectrometry (EDS) mapping analyses were performed using the FEI Tecnai G2 F20. The particle size distribution of each catalyst 144 was obtained by analyzing 100 particles from the TEM images. 145

146 Temperature programmed desorption (TPD) experiments were conducted on an AutoChem II 2920 instrument to measure the desorption behavior of CO₂ and N₂. 147 Prior to the test, catalysts were reduced in a H₂/He gas flow (10 vol.% H₂; 50 mL 148 149 min⁻¹) at 550°C for 2 h and then cooled to 50°C. For CO₂-TPD, the catalysts were treated in a CO₂ gas flow at 50°C and 50 ml min⁻¹ for 30 min to adsorb CO₂, while for 150 N₂-TPD, the catalysts were placed in a N₂ gas flow at 500°C and 50 ml min⁻¹ for 1 h, 151 then they were cooled to 50°C and kept for 30 min to adsorb N₂. The samples were 152 then heated to 900°C at the rate of 10 °C min⁻¹ in a He flow at the flow rate of 40 ml 153 min⁻¹ for both CO₂-TPD and N₂-TPD. 154

155 X-ray photoelectron spectroscopy (XPS) analysis was performed on a Thermo
156 ESCALAB 250Xi using an Al Kα X-ray source. Both low-resolution survey and

high-resolution scans were obtained for each catalyst, and the spectra were calibrated with C 1s at a binding energy of 284.8 eV. Prior to the XPS analysis, the catalysts were reduced in H₂/He gas flow (10 vol.% H₂; 50 ml min⁻¹) at 550°C for 2 h and then cooled to ambient temperature. After reduction, the samples were prepared and analyzed in a reduced environment.

162

163 **2.2 Experimental setup**

164

165

Fig. 1. Experimental setup for plasma-catalytic NH₃ synthesis

166

A schematic diagram of the experimental system used in this study is shown in Fig. 1. The reactor comprised a quartz tube with an inner diameter of 8 mm and a wall thickness of 2 mm, sealed with two PTFE seals. The high-voltage electrode was a 4 mm diameter stainless-steel rod connected to a power source (Suman CTP-2000K, China), while the external electrode was a stainless-steel mesh wrapped around the quartz tube. The Ru-M/BaTiO₃ catalyst (0.4 g, 40–60 meshes) was held in the reactor by quartz wool. High voltage probes (Tektronix TPP0502, USA) were used to measure the voltages across the external capacitor $(0.47 \ \mu\text{F})$ and the reactor, and a four-channel digital oscilloscope (Tektronix TDS2024C, USA) was used to record all electrical signals.

N₂ and H₂ gases with a purity exceeding 99.999% were sourced from gas 177 cylinders and regulated by mass flow controllers (Sevenstars D07-B, China). The 178 gases were mixed in a chamber before being introduced to the reactor in a 1:1 molar 179 ratio. To measure the concentrations of gas products (including N₂, H₂, and NH₃), a 180 two-channel gas chromatography (Fuli 9790II, China) equipped with a thermal 181 182 conductivity detector (TCD) was used. Optical emission spectra during plasma discharge in the presence of the Ru-M/BaTiO₃ catalysts were captured using an 183 optical spectrometer (Ideaoptics PG2000EX, China). 184

185 **2.3 Electrical characteristic measurement and parameters calculation.**

186 The plasma discharge power was calculated by the Lissajous method as follows:

$$P_{\rm dis}(W) = f \times C_{\rm ext} \times A \tag{1}$$

187 where C_{ext} is external capacitance (0.47 µF), *f* is the frequency of AC discharge (9.4 to

188 9.8 kHz), and A is the area of the Lissajous figures (Fig. S1).

189 The energy yield of the plasma-catalytic NH₃ synthesis was calculated using the190 following equation:

191
$$Energy \ yield\left(g \ kWh^{-1}\right) = \frac{M \times C_{out} \times Q_{after}}{P_{dis}}$$
(2)

where M denotes the molar mass of NH₃, C_{out} is the NH₃ concentration measured at the reactor outlet and Q_{after} is the gas flow rate after the reaction measured by a soap-film flowmeter.

3. Results and discussion 196

3.1. Catalyst characterizations 197

198 199

Fig. 2. XRD patterns for the Ru-M/BaTiO₃ catalysts

200

201	Fig. 2 depicts the XRD patterns of the Ru-M/BaTiO ₃ catalysts used in the study.
202	All the catalysts showed well-matched diffraction peaks with the tetragonal phase
203	BaTiO ₃ (ICDD PDF #00-005-0626). The diffraction peaks at 2 θ of 31.49°, 31.64°,
204	38.88°, 44.85°, 45.37°, 55.95°, and 56.25°, which can be attributed to the (1 0 1), (1 1
205	0), (1 1 1), (0 0 2), (2 0 0), (1 1 2), and (2 1 1) planes of BaTiO ₃ in the tetragonal
206	phase, were intense for all the Ru-M/BaTiO3 catalysts. No diffraction peaks of
207	metallic Ru, Fe, Co, and Ni were observed in the XRD patterns, probably due to the
208	high dispersion of the metal dopants on the BaTiO3 support. The presence of the
209	dopant M caused the diffraction peaks of $(0\ 0\ 2)$ and $(2\ 0\ 0)$ planes to shift to lower
210	angles when compared to BaTiO ₃ , which could be associated with the lattice

expansion of BaTiO₃. This phenomenon might be attributed to the substitution of Ti^{4+} in BaTiO₃ by M cation with a larger radius(which is c.a. 0.61, 0.65, 0.61, 0.69 and 0.68 Å for Ti^{4+} , Fe^{3+} , Co^{2+} , Ni^{2+} and Ru^{3+} , respectively [27-30]), and oxygen vacancy was generated for electronic compensation, as the dopant of M cation preferentially substitutes for Ti^{4+} ions in BaTiO₃ due to the similarity of their ionic radii in octahedral coordination [31-33].

Fig. 3. N₂ adsorption-desorption isotherms and pore diameter distribution of the
 Ru-M/BaTiO₃ catalysts

217

220

As shown in Fig. 3, all Ru-M/BaTiO₃ samples exhibited clear characteristics of 221 type IV isotherms with H4 hysteresis loops, indicating their mesoporous structure. 222 Compared to Ru-M/BaTiO₃, the introduction of dopant M resulted in a decrease in the 223 most probable aperture and average pore size, while the specific surface area slightly 224 increased. For instance, the most probable aperture was 2.66 nm for Ru/BaTiO₃, 225 which reduced to 2.26 nm for Ru-Ni/BaTiO₃ and 2.20 nm for Ru-Co/BaTiO₃. 226 Meanwhile, the specific surface area increased from 2.26 m² g⁻¹ for Ru/BaTiO₃ to 227 2.62 m² g⁻¹ for Ru-Ni/BaTiO₃. Considering the structural differences among the 228

229 Ru-M/BaTiO₃ catalysts were not significant, it suggests that the loading of M had a

230	limited	impact c	on adjus	ting the	framework	structure	of catalyst	s.
-----	---------	----------	----------	----------	-----------	-----------	-------------	----

Catalyst	S_{BET} (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Average pore size (nm)	The most probable aperture (nm)
Ru-Fe/BaTiO ₃	2.42	0.010	16.05	2.37
Ru-Co/BaTiO ₃	2.57	0.011	15.05	2.20
Ru-Ni/BaTiO ₃	2.62	0.011	15.86	2.26
Ru/BaTiO ₃	2.26	0.010	17.18	2.66

 Table 1. Textural properties of the Ru-M/BaTiO₃ catalysts

232

231

233

Fig. 4. HRTEM for (a and b) Ru/BaTiO₃, (d and e) for Ru-Ni/BaTiO₃; (c) EDS
mapping of Ru-Ni particles on Ru-Ni/BaTiO₃; (f) line scanning of Ru-Ni particles

High-resolution transmission electron microscopy (HRTEM) was employed to analyze the catalysts' morphology. As depicted in Fig. 4(a) and (d), the doped metal particles were predominantly present on the support's surface in a highly disordered

state. By using EDS-mapping, the distribution of Ru and Ni elements on the surface 240 of the BaTiO₃ support was investigated, and the results were shown in Fig. S2. The 241 242 uniform and random distribution of Ru and Ni elements on the surface of the BaTiO₃ support was confirmed by comparing spatial features in both the Ru and Ni maps, 243 which is consistent with Fig. 4(d). In comparison to Ru/BaTiO₃, the average size of 244 the metal particle in Ru-Ni/BaTiO₃ is 3.12 nm, which is much smaller than that in 245 Ru/BaTiO₃ (5.14 nm). The metal particle size of Ru-Ni/BaTiO₃ mainly ranged from 246 4-6 nm, whereas it was 6-8 nm for Ru/BaTiO₃. This observation is consistent with 247 248 the study by Ni et al., who reported that adding Mg reduced the particle size of Ru-Mg particles and improved the dispersion of Ru nanoparticles on the surface of 249 Ru-Mg/AC due to the interaction of metal precursors during the high-temperature 250 251 reduction process [34].

Figs. 4(b) and (e) show the d-spacings of 0.206 and 0.226 nm correspond to the 252 $(1 \ 0 \ \overline{1} \ 1)$ plane of Ru (ICDD PDF #00-006-0663) and $(1 \ 0 \ \overline{1} \ 0)$ plane of Ru-Ni alloy 253 (ICDD PDF #04-001-2915) in the hexagonal phase, respectively. The structure of 254 Ru-Ni binary particle was further investigated by EDS. As presented in Fig. 4(c), the 255 location color point presenting Ru and Ni elements were uniformly mixed and 256 covered. The line canning results showing in Fig. 4(e) suggest the intensities of Ru 257 and Ni exhibited the same spatial trend of variation, which confirmed that Ru-Ni 258 existed in the form of a homogeneous alloy. 259

Fig. 4(b) reveals that the Ru particles were doped onto and encapsulated by the BaTiO₃ support, which can be attributed to the SMSI effect [35]. The SMSI effect could alter the electronic properties of active metal species by electron transfer from the support to metal particles that are doped onto the support, and further vary the adsorption strength of reactants on the metal particles [36]. However, in the case of Ru/BaTiO₃, the full encapsulation of the Ru particles had a detrimental effect on their catalytic activity due to the decrease in metal sites. Fig. 4(e) also confirms the occurrence of the SMSI effect in the case of Ru-Ni/BaTiO₃ since an overlayer is found between the Ru-Ni metal particle and the BaTiO₃ support.

269

270

271

Fig. 5. CO₂-TPD profiles of the Ru-M/BaTiO₃ catalysts

300°C) correspond to physical adsorption and the adsorption on Brønsted basicity 275 sites of the Ru-M/BaTiO₃ catalysts. Meanwhile, the desorption peaks centered in the 276 277 medium temperature (300-600°C) and high temperature (> 600°C) regions correspond to the desorption of CO₂ on medium and strong basic sites, respectively, 278 indicating the desorption of CO₂ from Lewis basicity sites [37, 38]. Compared to 279 Ru/BaTiO₃, the introduction of dopant M into the Ru-M/BaTiO₃ catalysts improved 280 the density of both weak and strong basic sites. The increase in the density of weak 281 basic sites in the presence of dopant M is believed to be related to the 282 surface-adsorbed hydroxyl groups[38], while the medium and strong basicity are 283 associated with the chemisorption on oxygen species such as electron-rich O^{2-} , O^{2-}_{2-} 284 and O⁻ species [39], which are related to CO_2 adsorption on surface OV sites [40]. To 285 286 better quantify the strength of basicity in the Ru-M/BaTiO₃ catalysts, the CO₂-TPD profiles were deconvoluted and the amount of CO₂ desorbed was listed in Table S1. 287 The results showed that the amount of CO₂ desorbed from medium and strong basic 288 sites of the Ru-M/BaTiO₃ catalysts were 54.2 µmol g⁻¹ for Ru-Ni/BaTiO₃, 50.5 µmol 289 g-1 for Ru-Co/BaTiO₃, 48.2 µmol g-1 for Ru-Fe/BaTiO₃ and 31.9 µmol g-1 for 290 Ru/BaTiO₃, respectively. These findings indicate that there was an increased density 291 of Lewis basic sites on the surface of the Ru-M/BaTiO₃ catalysts, with Ru-Ni/BaTiO₃ 292 exhibiting the highest density of Lewis basic sites. 293

295 296 297

5

Fig. 6. N₂-TPD profiles for the Ru-M/BaTiO₃ catalysts

As presented in Fig. 6, the N₂-TPD desorption profiles for the Ru-M/BaTiO₃ 298 catalysts can be deconvoluted into 5 peaks. The first two peaks, centered below 200°C, 299 correspond to the desorption of physically adsorbed N₂, while the peaks centered 300 above 200°C can be attributed to the desorption of chemisorbed N₂ [41]. In 301 comparison to Ru/BaTiO₃, the desorption profile of Ru-Ni/BaTiO₃ catalyst showed a 302 similar pattern with a significantly higher N₂ desorption amount. However, the 303 introduction of Fe or Co to the catalyst resulted in the inhibition of both physical and 304 chemical adsorption of N₂. The amount of N₂ chemisorption, which was determined 305 by N₂ desorption amount above 200°C, follows the order of Ru-Ni/BaTiO₃ (53.2 306 μ mol g⁻¹) > Ru/BaTiO₃ (48.8 μ mol g⁻¹) > Ru-Co/BaTiO₃ (37.9 μ mol g⁻¹) > 307 Ru-Fe/BaTiO₃ (24.1 µmol g⁻¹). Such chemisorption of N₂ is necessary for N₂ 308

activation, but the diffusion of some key intermediates, such as N and NH_x radicals 309 that bind too strongly to the metal surface, may be impeded [42]. 310

- 314
- 315

Fig. 7(a) presents high-resolution XPS spectra of the Ru 3p and Ti 2p orbits. 316 These spectra were deconvoluted using the Lorentzian-Gaussian function. Generally, 317 the binding energies (BE) of Ru $3p_{1/2}$ and Ru $3p_{3/2}$ were centered around 483.7 and 318 461.7 eV, respectively. For Ru/BaTiO₃, the BE of Ru 3p_{1/2} was 483.92 eV, which was 319 lower than the standard BE of Ru $3p_{1/2}$ at 484.8 eV, indicating that the Ru particles on 320 the BaTiO₃ surface were in an electron-rich state [43]. The BE of Ru 3p_{1/2} for the 321 Ru-M/BaTiO₃ catalysts further decreased compared to the Ru/BaTiO₃ catalyst, for 322 323 example, the BE of Ru 3p_{1/2} for Ru-Fe/BaTiO₃ was 483.88 eV, while it shifted to 483.33 eV for Ru-Ni/BaTiO₃. 324

325	Regarding the Ti 2p spectra of the Ru-M/BaTiO ₃ catalysts, two main peaks from
326	the Ti $2p_{3/2}$ and Ti $2p_{1/2}$ orbits at around 459 eV and 464 eV, respectively, were clearly
327	observed along with two satellite peaks. The BE of Ti $2p_{3/2}$ for Ru/BaTiO ₃ was 459.28
328	eV, and it shifted to 458.96 eV and 458.45 eV for Ru-Fe/BaTiO3 and Ru-Ni/BaTiO3,
329	respectively. The shift of characteristic peaks in the Ti $2p_{3/2}$ and Ti $2p_{1/2}$ orbits can be
330	attribute to the generation of Ti^{3+} and are related to the generation of OV [44, 45].

Fig. 7(b) presents the high-resolution XPS spectra of the O 1s orbit for the 331 Ru-M/BaTiO3 samples. The peaks centered around 530.58 eV belong to lattice 332 oxygen species (O_{α}) , which mainly exists in the form of Ba-O-Ti [46]. The peaks 333 centered around 531.90 eV correspond to O_{β} , which is the oxygen species in the 334 vicinity of the OV, and the peaks centered around 533.37 eV could be attributed to 335 surface adsorbed oxygen species (O_{γ}) like OH⁻ or O_2^{2-} , CO_3^{2-} [33, 47]. The introduction 336 of dopant M led to the left shift of the BE of O_{α} and an increase in the area of O_{β} 337 peaks, suggesting an increased density of OV on catalyst surface [48, 49]. The relative 338 OV density of the Ru-M/BaTiO₃ catalysts, defined as $O_{\beta}/(O_{\alpha} + O_{\beta} + O_{\gamma})$, was as 339 follows: Ru-Ni/BaTiO₃ (15.35%) > Ru-Fe/BaTiO₃ (14.18%) > Ru-Co/BaTiO₃ 340 $(7.90\%) > \text{Ru/BaTiO}_3$ (1.73%). This order is in agreement with the order of the 341 binding energy of Ti 2p. 342

343

344 **3.2.** Optical emission spectrum diagnosis

350

346

Fig. 8(a) shows the N₂ second positive system (SPS) indicating the vibrational excitation reaction of N₂. The H_{α} atomic line at 656.3 nm indicates the dissociation of H₂. The strong intensity of N₂ at 337 nm caused the NH band at 336.1 nm to overlap and become indistinguishable. Therefore, the NH band at 327.1 nm was chosen to determine the relative intensity of the NH bands. The selection of emission lines and

corresponding transitions are listed in Table S2. The intensities of the selected
emission lines of these reactive species were normalized using the method proposed
by Wang et al. [19], and the results are presented in Fig. 8(b).

As shown in Fig. 8(b), compared with Ru/BaTiO₃ and Ru-Fe/BaTiO₃, the 359 relative intensity of N₂^{*} emission line was lower in the presence of Ru-Ni/BaTiO₃ and 360 Ru-Co/BaTiO₃. Considering that the generation of N_2^* is mainly derived from 361 electron-impact reactions in gas phase, which are a function of electron energy and 362 electric field strength. The lower relative intensity of N_2^* suggests a lower degree of 363 vibrational-excitation of N₂, indicating that the electric field was relatively lower for 364 the case of Ru-Ni/BaTiO₃ and Ru-Co/BaTiO₃. For all Ru-M/BaTiO₃ catalysts, the 365 relative intensity of the H atomic line was roughly the same around 0.99. In addition, 366 367 Ru-Co/BaTiO₃ showed the highest relative intensity of the NH emission line, while Ru-Fe/BaTiO₃ and Ru-Ni/BaTiO₃ exhibit a lower relative intensity of 0.8, indicating a 368 relatively lower concentration of NH radical generated in the plasma discharge region. 369 370

371 3.3. Plasma-catalytic NH₃ synthesis over Ru-M/BaTiO₃

372 **3.3.1 Electrical characteristics of plasma discharge**

373 374

375

Fig. 9. Lissajous figures of Ru-Ni/BaTiO₃ packed DBD reactor

Fig. 9 shows that the Lissajous figures have a parallelogram shape, indicating the 376 presence of filamentary discharge in the plasma region [50]. The Lissajous figures 377 378 were used to calculate several parameters, including total capacitance (C_{cell}), effective capacitance (C_{eff}), transferred charges (Q_{trans}), and breakdown voltage (U_b), using the 379 method described in the supporting information (Section 1). As presented in table S3, 380 increasing the plasma discharge power resulted in a significant increase in $C_{\rm eff}$, $Q_{\rm trans}$, 381 and $U_{\rm b}$. For example, when the plasma discharge power increased from 5 W to 20 W, 382 $C_{\rm eff}$ increased from 61.43 pF to 103.75 pF. The increase in $C_{\rm eff}$ suggests that 383 384 increasing the discharge power promotes the generation of filamentary discharge channels and the spatial expansion of the plasma discharge region [51]. When the 385 dielectric barrier is broken down, gas molecules are ionized and a large number of 386 charged particles are generated, and electrons are directionally moved under the 387 action of the electric field to form filamentary discharge channels [52]. As the plasma 388 discharge power gradually increased from 5 W to 25 W, the U_b increased from 0.27 389

kV to 1.23 kV. The increased U_b resulted in a higher electric field strength in the 390 plasma discharge region, and the electron escape velocity was accelerated, which 391 392 promoted the development of the electron avalanche. As a result, the density of the filamentary discharge channel increased significantly, and the value of C_{eff} increased 393 with the increase of discharge power. Considering the higher U_b and C_{eff} , it could be 394 deduced that the discharge mode changed from partial discharge to uniform 395 filamentary discharge when plasma discharge power increased from 5 W to 25 W. 396 Correspondingly, the increased plasma discharge also promoted electron transfer per 397 half-cycle via plasma discharge, which increased from 0.27 μ C (5 W) to 0.97 μ C (20 398 W). 399

400

402 Fig. 10. *U-I* profiles of Ru-Ni/BaTiO₃ packed DBD reactor during plasma discharge
403

voltage and current waveforms exhibit a sinusoidal pattern, but with numerous spikes 405 near the voltage peak, which further confirms the presence of filamentary discharges. 406 407 The intensity and density of micro-discharges were evaluated by the spikes per discharge cycle [53]. Only a few spikes could be observed at a plasma discharge 408 power of 5 W. Increasing the plasma discharge power enhanced the intensity and 409 density of filamentary discharge, leading to more transferred charges and a higher 410 effective capacitance, as confirmed by the Lissajous figures. This phenomenon 411 confirms that increasing plasma discharge power can promote NH₃ synthesis by 412 expanding the discharge region and increasing the number of filamentary channels. 413 Furthermore, the Lissajous figures overlapped with each other in the presence of 414 different Ru-M/BaTiO₃ catalysts as shown in Fig. S3, indicating that the dopant M has 415 416 only a limited effect on plasma discharge characteristics.

417

418 **3.3.2** Plasma-catalytic NH₃ synthesis performance

Fig. 11. Plasma-catalytic NH₃ synthesis performance over Ru-M/BaTiO₃ catalysts (a)
 outlet NH₃ concentration; (b) energy yield

423

420

Fig. 11 illustrates the NH_3 synthesis performance of Ru-M/BaTiO₃ (M = Fe, Co 424 and Ni) catalysts based on the outlet NH₃ concentration at the plasma discharge power 425 426 from 5 W to 25 W. It is evident that the NH₃ concentration showed an upward trend following the increasing plasma discharge power. Among the tested catalysts, 427 Ru-Ni/BaTiO₃ exhibited the highest NH₃ concentration, followed by Ru/BaTiO₃, 428 429 Ru-Co/BaTiO₃, Ru-Fe/BaTiO₃ and BaTiO₃ over the discharge power range. The NH₃ concentration over Ru-Ni/BaTiO₃ increased significantly from 994 ppm at 5 W to 430 3083 ppm at 15 W, and then gradually to 3895 ppm at 25 W. In contrast, the 431 introduction of dopant Co and Fe reduced the NH3 concentration compared to 432 Ru/BaTiO₃. For all tested catalysts, the energy yield initially increased from 5 W to 10 433 W and then decreased from 10 W to 25 W, as shown in Fig. 11(b). Specifically, for 434 Ru-Ni/BaTiO₃, the energy yield increased from 0.34 g kWh⁻¹ at 5 W to 0.39 g kWh⁻¹ 435 at 10 W and then decreased to 0.26 g kWh⁻¹ at 25 W. Similar trends were observed in 436

437 previous works [54, 55].

438

439 3.3.3 Enhancement mechanism of Ru-Ni/BaTiO₃

Instead of N₂ directly dissociating in the gas phase through electron-impact, the 440 plasma promotes N₂ dissociation on the catalyst surface by activating N₂ to the 441 vibrational state, which improves the dissociative sticking probability and reduces the 442 dissociation energy barrier of N2 on the catalyst surface, as reported in previous 443 studies [56, 57]. In this work, we found that the relative concentration of N_2^* in the 444 445 presence of Ru-Ni/BaTiO₃ was lower than that of Ru/BaTiO₃. This is likely due to the high dispersity of the Ru-Ni particles, which facilitates the breakover of plasma 446 discharge current, but is unfavorable for enhancing the electric field [58, 59]. Based 447 448 on the relatively lower degree of N₂ excitation in the presence of Ru-Ni/BaTiO₃, it can be deduced that the enhancement of NH₃ synthesis performance mainly results from 449 the activation of N₂ on the catalyst surface, followed by hydrogenation through 450 451 heterogeneous reactions.

The introduction of dopant M caused changes to the lattice structure of BaTiO₃ by partially substituting Ti⁴⁺. This led to a distortion of the coordination environment of the B site in BaTiO₃, which facilitated the generation of OV on the support of Ru-M/BaTiO₃. In the present study, the density of OV was significantly increased in the presence of dopant M, with the order being Ru-Ni/BaTiO₃ (15.35%) > Ru-Fe/BaTiO₃ (14.18%) > Ru-Co/BaTiO₃ (7.90%) > Ru/BaTiO₃ (1.73%). The generation of OV on the catalyst surface enhanced the Lewis basicity of the catalysts,

which in turn promoted the adjacent active metal into the electron-rich state via the 459 classical SMSI effect [60]. Based on the CO₂-TPD results, the Ru-Ni/BaTiO₃ catalyst 460 461 had the highest Lewis basic sites of 54.2 μ mol g⁻¹, which was 1.70 times higher than that of Ru/BaTiO₃. Correspondingly, the BE of Ru 3p_{1/2} for the Ru-M/BaTiO₃ 462 catalysts decreased further compared to the Ru/BaTiO₃ catalyst, indicating the higher 463 density of electron on Ru surface for the case of Ru-Ni/BaTiO₃. Although the 464 generation of OV may not be the only reason for the electron-rich state of Ru sites 465 considering the electron transfer from Ni to Ru, it had a positive effect on improving 466 the electron density of Ru. 467

OV has been demonstrated to act as electron traps that can effectively activate N₂ 468 by depleting electrons from the vacancy and accumulating electrons on the adsorbed 469 470 N₂ [61, 62]. Zhang et al. have also found that higher OV densities on TiO₂ surfaces led to stronger N₂ adsorption and activation capacities, suggesting that chemisorption 471 of N₂ on OV sites [63]. These findings are consistent with the observed enhancement 472 in N₂ chemisorption and increase in OV density on Ru-Ni/BaTiO₃ catalysts. 473 Conventionally, electron transfer occurs in M-N₂ complexes, where transitional metals 474 such as Fe, Mo, Ru, and Co donate their available d-orbital electrons to the π^* 475 anti-bonding orbital to activate chemisorbed N₂. Therefore, two types of active sites 476 existed on Ru-Ni/BaTiO₃ and played a role in activating N₂ on the catalyst surface: 477 electron-rich metal sites and OV. The electrons in the metastable state on these active 478 479 sites can transfer into the anti-bonding orbital of chemisorbed N₂, promoting N₂ activation [63, 64]. Consequently, N_2 is converted to NH_x intermediates and 480

481 ultimately to NH₃ by stepwise hydrogenation [19, 65].

During the plasma-catalytic synthesis of NH₃ from N₂ and H₂, H radicals can 482 also be generated through electron-impact dissociation of H₂ in the gas phase. These 483 H species have a high probability to be adsorbed on the catalyst surface, especially on 484 the active metal sites, resulting in hydrogen poisoning of catalyst [19, 66]. This 485 indicates that abundant H atoms cover the active sites of Ru catalysts, inhibiting the 486 dissociative adsorption of N₂ on the metal surface and thereby limiting NH₃ synthesis 487 [67]. In addition to promoting the activation and dissociation of adsorbed N₂, OV can 488 also accept H atoms from the Ru surface, leading to the formation of H atoms 489 confined in OV (OV-H). This process helps to suppress hydrogen poisoning and 490 promotes the regeneration of active metal sites [68]. The HRTEM images confirmed 491 492 that the SMSI effect was successfully induced in Ru/BaTiO₃ and Ru-Ni/BaTiO₃, which can inhibit hydrogen adsorption on the active metal sites and, consequently, 493 facilitate N2 dissociation on catalyst surfaces [38]. However, it was observed that the 494 495 metal particles tend to be fully encapsulated in Ru/BaTiO₃, indicating a strong SMSI 496 effect that could decrease the number of active metal sites as larger metal particles are more likely to be encapsulated by the migrated support, which could further limit the 497 accessibility of active sites [69]. By doping with Ni, the overlayer generated by the 498 SMSI effect only occurs at the interfaces between the Ru-Ni alloy and BaTiO₃ support 499 probably due to its smaller size distribution of the metal particles [35]. This way, the 500 501 SMSI effect can maintain the electron transfer capacity with few active sites being covered. 502

Fig. 12. Proposed mechanisms of plasma-catalytic NH₃ synthesis over Ru-Ni/BaTiO₃
 catalyst

503

506

Based on the preceding discussions, Fig. 12 summarizes the possible 507 enhancement mechanisms for NH₃ synthesis by plasma-catalysis over Ru-Ni/BaTiO₃. 508 The superior NH₃ synthesis performance of Ru-Ni/BaTiO₃ over Ru/BaTiO₃ was 509 mainly attributed to the enhanced surface reactions. The key enhanced reactions are 510 511 described below: The NH₃ synthesis process over Ru-Ni/BaTiO₃ commenced with the electron-impact excitation of reactants (R1). In particular, these reactions 512 pre-activated N₂ and facilitated its chemisorption on the catalyst surface for further 513 activation and dissociation (R2). The introduction of Ni promoted Ru-Ni to be in an 514 electron-rich state, which facilitated the dissociation of reactants on the metal surface 515 and generated surface-adsorbed N and H species (R3). These N and H species could 516 517 diffuse from metal sites to the support (R4). The introduction of Ni also resulted in an increased density of OV, which was a newly-generated active site for N₂ activation 518 (R5). Consequently, Ru-Ni/BaTiO₃ significantly promoted N₂ surface-dissociation 519 reactions, leading to an improvement in the concentration of N reactive species on the 520 521 catalyst surface. These adsorbed N reactive species could react with abundant H 522 radicals in the gas-phase (via E-R mechanism, R6) and on the surface (via L-H 523 mechanism, R7). As a result, more NH_x (x = 1 or 2) species could be generated 524 through the stepwise hydrogenation of N radicals, and NH_3 generation was 525 accelerated finally (R8).

$$N_2 \text{ or } H_2 + e^* \to N_2^* \text{ or } H_2^* + e$$
 (R1)

$$N_2^* \rightarrow N_2^*(s)$$
, on catalyst surface (R2)

$$N_2^*(s) \text{ or } H_2^*(s) \rightarrow N \cdot (s) \text{ or } H \cdot (s), \text{ on metal sites}$$
 (R3)

$$N \cdot (s)$$
 or $H \cdot (s)$, on metal sites $\rightarrow N \cdot (s)$ or $H \cdot (s)$, on support (R4)

$$N_2(s) + OV \rightarrow N_2^*(s) + OV \rightarrow 2N \cdot (s) + OV$$
 (R5)

$$N \cdot (s) + xH \cdot (g) \to NH_x(s) \tag{R6}$$

$$N \cdot (s) + xH \cdot (s) \rightarrow NH_x(s)$$
 (R7)

$$NH_{x}(s)+(3-x)H(s) \rightarrow NH_{3}(s) \rightarrow NH_{3}(g)$$
(R8)

526

527 4. Conclusion

Plasma-catalytic NH₃ synthesis was carried out using Ru-based bimetallic catalysts (Ru-M/BaTiO₃, M = Fe, Co and Ni). The NH₃ synthesis performance was observed to follow the order of Ru-Ni/BaTiO₃ > Ru/BaTiO₃ > Ru-Co/BaTiO₃ > Ru-Fe/BaTiO₃, with the highest NH₃ concentration (3895 ppm) and energy yield (0.39 g kWh⁻¹) obtained over Ru-Ni/BaTiO₃ at 25 W and 10 W, respectively.

The effect of dopant M in the Ru-M/BaTiO₃ catalysts and its effect on plasma-catalytic NH_3 synthesis were investigated. The basicity of the catalyst was found to increase after being loaded with M, while the loading of Ni strengthened the N₂ adsorption capacity of the catalyst. Compared to Ru/BaTiO₃, the introduction of

537	dopant Ni increases the density of Lewis basic sites and amount of chemisorbed N_2 on
538	the surface of Ru-Ni/BaTiO ₃ , which were 1.70 times and 1.09 times higher,
539	respectively. The Ru-Ni/BaTiO ₃ catalyst also had a smaller metal particle size, which
540	prevented the encapsulation of Ru-Ni particles by the BaTiO ₃ support, improving the
541	accessibility of active metal sites for NH ₃ synthesis compared to Ru/BaTiO ₃ . On the
542	one hand, these properties increased the amount of chemisorbed $N_{\rm 2}$ on the catalyst
543	surface. On the other hand, they increased the electron density on the surface of Ru.
544	These facilitate the activation of N_2 on the metal sites via the electron-donating effect,
545	as well as on the catalyst surface. As a result, N_2 could be stepwise hydrogenated to
546	form NH_x species and ultimately NH_3 . This study demonstrated that the incorporation
547	of dopant Ni could be an effective means of further improving catalyst activity in the
548	plasma-catalytic NH3 synthesis process, as it could act as both an electronic and
549	structural promoter in Ru-based bimetallic catalysts.

- 550 Acknowledgment
- 551 This work was supported by the National Natural Science Foundation of China

552 (No. 51976093).

553

554 **References**

- R.H. Dolan, J.E. Anderson, T.J. Wallington, Outlook for ammonia as a sustainable
 transportation fuel. Sustainable Energy Fuels, 5(2021): 4830-4841.
- 557 2. D. Erdemir, Dincer I., A perspective on the use of ammonia as a clean fuel: Challenges
 558 and solutions. Int. J. Energy Res., 4 (2021): 4827-4834.
- D. Zhou, R. Zhou, R. Zhou, B. Liu, T. Zhang, Y. Xian, P.J. Cullen, X. Lu, K. Ostrikov,
 Sustainable ammonia production by non-thermal plasmas: Status, mechanisms, and
 opportunities. Chem. Eng. J., 421(2021): 129544.
- A. Yousefi, H. Guo, S. Dev, B. Liko, S. Lafrance, Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine. Fuel, 314(2022): 122723.

565	5.	Lasocki, J., M. Bednarski, M. Sikora, Simulation of ammonia combustion in dual-fuel
566		compression-ignition engine. IOP Conf. Ser. Earth Environ. Sci., 214(2019): 012081.
567	6.	A.G. Olabi, M.A. Abdelkareem, M.A. Murisi, N. Shehata, A.H. Alami, A. Radwan, T.
568		Wilberforce, K. Chae, E.T. Sayed, Recent progress in Green Ammonia: Production,
569		applications, assessment; barriers, and its role in achieving the sustainable development
570		goals. Energy Convers. Manage., 277(2023): 116594.
571	7.	Z. Wan, Y. Tao, J. Shao, Y. Zhang, H. You, Ammonia as an effective hydrogen carrier and
572		a clean fuel for solid oxide fuel cells. Energy Convers. Manage., 228(2021): 113729.
573	8.	F. Gorky, J.M. Lucero, J.M. Crawford, B.A. Blake, S.R. Guthrie, M.A. Carreon, M.L.
574		Carreon, Insights on cold plasma ammonia synthesis and decomposition using alkaline
575		earth metal-based perovskites. Catal. Sci. Technol., 11(2021): 5109-5118.
576	9.	Y. Huang, N. Zhang, Z. Wu, X. Xie, Artificial nitrogen fixation over bismuth-based
577		photocatalysts: fundamentals and future perspectives. J. Mater. Chem. A, 8(2020):
578		4978-4995.
579	10.	M.H. Vu, M. Sakar, T.O. Do, Insights into the recent progress and advanced materials for
580		photocatalytic nitrogen fixation for ammonia (NH ₃) production. Catalysts, 8(2018): 621.
581	11.	A. Wu, J. Yang, B. Xu, X. Wu, Y. Wang, X. Lv, Y. Ma, A. Xu, J. Zheng, Q. Tan, Y. Peng,
582		Z. Qi, H. Qi, J. Li, Y. Wang, J. Harding, X. Tu, A. Wang, J. Yan, X. Li, Direct ammonia
583		synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis.
584		Appl. Catal., B, 299(2021): 120667.
585	12.	A. Chen, B. Xia, Ambient dinitrogen electrocatalytic reduction for ammonia synthesis. J.
586		Mater. Chem. A, 7(2019): 23416-23431.
587	13.	L.R. Winter, B. Ashford, J. Hong, A.B. Murphy, J.G. Chen, Identifying surface reaction
588		intermediates in plasma catalytic ammonia synthesis. ACS Catal., 10(2020):
589		14763-14774.
590	14.	A. Vojvodic, A.J. Medford, F. Studt, F.A. Pedersen, T.S.Khan, T. Bligaard, J.K. Ngrskov,
591		Exploring the limits: A low-pressure, low-temperature Haber-Bosch process. Chem. Phys.
592		Lett., 598(2014): 108-112.
593	15.	H. Zhu, P. Zhang, S. Dai, Recent Advances of lanthanum-based perovskite oxides for
594		catalysis. ACS Catal., 5(2015): 6370-6385.
595	16.	H. Fang, D. Liu, Y. Luo, Y. Zhou, S. Liang, X. Wang, B. Lin, L. Jiang, Challenges and
596		opportunities of Ru-based catalysts toward the synthesis and utilization of ammonia. ACS
597		Catal., 12(2022): 3938-3954.
598	17.	V.S. Marakatti, E.M. Gaigneaux, Recent advances in heterogeneous catalysis for
599		ammonia synthesis. Chemcatchem, 12(2020): 5838-5857.
600	18.	J. Liu, X. Zhu, X. Hu, X. Tu, Plasma-assisted ammonia synthesis in a packed-bed
601		dielectric barrier discharge reactor: roles of dielectric constant and thermal conductivity
602		of packing materials. Plasma Sci. Technol., 24(2022): 025503.
603	19.	Y. Wang, M. Craven, X. Yu, J. Ding, P. Bryant, J. Huang, X. Tu, Plasma-enhanced
604		catalytic synthesis of ammonia over a Ni/Al ₂ O ₃ catalyst at near-room temperature:
605		Insights into the importance of the catalyst surface on the reaction mechanism. ACS
606		Catal., 9(2019): 10780-10793.
607	20.	L. Dou, Y. Liu, Y. Gao, J. Li, X. Hu, S. Zhang, K. Ostrikov, T. Shao, Disentangling
608		metallic cobalt sites and oxygen vacancy effects in synergistic plasma-catalytic CO ₂ /CH ₄

609		conversion into oxygenates. Appl. Catal. B, 318(2022): 121830.
610	21.	X. Hu, X. Zhu, X. Wu, Y. Cai, X. Tu, Plasma-enhanced NH3 synthesis over activated
611		carbon-based catalysts: Effect of active metal phase. Plasma Processes Polym., 17(2020):
612		2000072.
613	22.	Y. Gong, H. Li, C. Li, X. Bao, H. Hosono, J. Wang, Insight into rare-earth-incorporated
614		catalysts: The chance for a more efficient ammonia synthesis. J. Adv. Ceram.,
615		11(2022): 1499-1529.
616	23.	T. Wang, F.A. Pedersen, Achieving industrial ammonia synthesis rates at near-ambient
617		conditions through modified scaling relations on a confined dual site. Proc. Natl. Acad.
618		Sci. U. S. A., 118(2021): e2106527118.
619	24.	K.K. Ghuman, K. Tozaki., M. Sadakiyo, S. Kitano, T. Oyabe, M. Yamauchi, Tailoring
620		widely used ammonia synthesis catalysts for H and N poisoning resistance. Phys. Chem.
621		Chem. Phys., 21(2019): 5117-5122.
622	25.	Z. Yang, W. Guo, J. Lin, D. Liao, Supported catalysts with Ru-M (M = Fe, Co, Ni, Mo)
623		bimetallic active centers for ammonia synthesis. Chin. J. Catal., 27(2006): 378-380.
624	26.	M.J. Banisalman, M.C. Kim, S.S. Han, Origin of enhanced ammonia synthesis on Ru-Co
625		catalysts unraveled by density functional theory. ACS Catal., 12(2022): 1090-1097.
626	27.	L. Ju, T. Sabergharesou, K.G. Stamplecoskie, M. Hegde, T. Wang, N.A. Combe, H. Wu,
627		P.V. Radovanovic, Interplay between size, composition, and phase transition of
628		canocrystalline Cr^{3+} -doped BaTiO ₃ as a path to multiferroism in perovskite-type oxides. J.
629		Am. Chem. Soc., 134(2012): 1136-1146.
630	28.	M. Arshad, W. Khan, M. Abushad, M. Nadeem, S. Husain, A. Ansari, V.K. Chakradhary,
631		Correlation between structure, dielectric and multiferroic properties of lead free Ni
632		modified BaTiO ₃ solid solution. Ceram. Int., 46(2020): 27336-27351.
633	29.	C. Calle, J.A. Alonso, L. Martínez, M. Retuerto, H. García, M.T. Fernández, Ru-Ru
634		metal-metal bonding in the chains of edge-sharing octahedra of NdMn1.5Ru0.5O5: A
635		neutron powder diffraction and magnetic study. Eur. J. Inorg. Chem., 5(2010): 781-789.
636	30.	Y. Hamasaki, T. Shimizu, S. Yasui, T. Taniyama, M. Itoh, Evidence of ferroelectricity in
637		ferrimagnetic kappa-Al ₂ O ₃ -type In _{0.25} Fe _{1.75} O ₃ films. Appl. Phys. Lett., 16(2016): 162901.
638	31.	W. Peng, L. Li, S. Yu, P. Yang, K. Xu, Dielectric properties, microstructure and charge
639		compensation of MnO ₂ -doped BaTiO ₃ -based ceramics in a reducing atmosphere. Ceram.
640		Int., 47(2021): 29191-29196.
641	32.	J. Wang, J. Leroy, G. Niu, G.S. Giron, B. Gautier, B. Vilquin, N. Barrett, Chemistry and
642		structure of BaTiO ₃ ultra-thin films grown by different O ₂ plasma power. Chem. Phys.
643		Lett., 592(2014): 206-210.
644	33.	K. Xu, G. Zhu, H. Xu, Y. Zhao, K. Jiang, X. Zhang, H. Yin, M. Shangguan, L. Wan, T.
645		Huang, The colossal permittivity effect on BaTiO ₃ induced by different sinter atmosphere.
646		Appl. Phys. A: Mater. Sci. Process., 128(2022): 1044.
647	34.	J. Ni, R. Wang, F. Kong, T. Zhang, J. Lin, B. Lin, K. Wei, Highly efficient Ru-Ba/AC
648		catalyst promoted by magnesium for ammonia synthesis. Chin. J. Catal., 32(2011):
649		436-439.
650	35.	Y. Guo, S. Mei, K. Yuan, D. Wang, H. Liu, C. Yan, Y. Zhang, Low-temperature CO ₂
651		methanation over CeO ₂ -supported Ru single atoms, nanoclusters, and nanoparticles
652		competitively tuned by strong metal-support interactions and H-spillover effect. ACS

653		Catal., 8(2018): 6203-6215.
654	36.	M.W. Arshad, Y. You, Y. Kim, L. Heo, S. Kim, Effect of the support material of IrRu
655		catalysts on CO-assisted NO _x reduction. Chem. Eng. J., 455(2023): 140911.
656	37.	H. Ronduda, M. Zybert, W. Patkowski, A. Tarka, P. Jodtowski, L. Kepinski, A. Sarnecki,
657		D. Moszynski, W. R. Pilecka, Tuning the catalytic performance of Co/Mg-La system for
658		ammonia synthesis via the active phase precursor introduction method. Appl. Catal. A,
659		598(2020): 117553.
660	38.	Z. Wang, B. Liu, J. Lin, Highly effective perovskite-type BaZrO3 supported Ru catalyst
661		for ammonia synthesis. Appl. Catal. A, 458(2013): 130-136.
662	39.	J. Hao, F. Cai, J. Wang, Y. Fu, J. Zhang, Y. Sun, The effect of oxygen vacancy of
663		alkaline-earth metal Sr doped Sm ₂ Zr ₂ O ₇ catalysts in the oxidative coupling of methane.
664		Chem. Phys. Lett., 771(2021): 138562.
665	40.	D. Yu, J. He, T. Xie, J. Yang , J. Wang , J. Xie, H. Shi, Z. Gao, B. Xiang , D.D. Dionysiou,
666		boosting catalytic activity of SrCoO _{2.52} perovskite by Mn atom implantation for advanced
667		peroxymonosulfate activation. J. Hazard. Mater., 442(2023): 130085.
668	41.	H. Ma, Z. Shi, Q. Li, S. Li, Preparation of graphitic carbon nitride with large specific
669		surface area and outstanding N ₂ photofixation ability via a dissolve-regrowth process. J.
670		Phys. Chem. Solids, 99(2016): 51-58.
671	42.	A.R. Singh, J.H. Montoya, B.A. Rohr, C. Tsai, A. Vovodic, J.K. Narskov, Computational
672		design of active site structures with improved transition-state scaling for ammonia
673		synthesis. ACS Catal., 8(2018): 4017-4024.
674	43.	Y. Zhan, C. Zhou, F. Jin, C. Chen, L. Jiang, Ru/TiO ₂ catalyst for selective hydrogenation
675		of benzene: Effect of surface hydroxyl groups and spillover hydrogen. Appl. Surf. Sci.,
676		525(2020): 146627.
677	44.	Z. Han, C. Choi, S. Hong, T. W, Y. Soo, Y. Lung, J. Qiu, Z. Sun, Activated TiO ₂ with
678		tuned vacancy for efficient electrochemical nitrogen reduction. Appl. Catal. B, 257(2019):
679		117896.
680	45.	H. Chen, S. Tosoni, G. Pacchioni, Adsorption of ruthenium atoms and clusters on anatase
681		TiO ₂ and tetragonal ZrO ₂ (101) surfaces: A comparative DFT study. J. Phys. Chem. C,
682		119(2015): 10856-10868.
683	46.	J.L. Clabel., I.T. Awan, G. Lozano, M.A. Pereira-da-Silva, R.A. Romano, V.A.G. Rivera,
684		S.O. Ferreira, E. Marega, Understanding the electronic properties of BaTiO ₃ and Er ³⁺
685		doped BaTiO ₃ films through confocal scanning microscopy and XPS: the role of oxygen
686		vacancies. Phys. Chem. Chem. Phys., 22(2020): 15022-15034.
687	47.	J. Zhu, L. Song, J. Jiang, Y. Xiong, N. Zhang, X. Li, H. Ye, S. Chen, H. Ju, D. Liu, Y. Lin,
688		W. Ye, C. Wang, Q. Xu, Oxide defect engineering enables to couple solar energy into
689		oxygen activation. J. Am. Chem. Soc., 138(2016): 8928-8935.
690	48.	H. Han, S. Jin, S. Park, Y. Kim, D. Jang, M.H. Seo, W.B. Kim, Plasma-induced oxygen
691		vacancies in amorphous MnOx boost catalytic performance for electrochemical CO2
692		reduction. Nano Energy, 79(2021): 105492.
693	49.	H. Zhou, M. Wang, F. Wang, Oxygen-vacancy-mediated catalytic methanation of
694		lignocellulose at temperatures below 200 degrees C. Joule, 5(2021): 3031-3044.
695	50.	F.A. Herrera, G.H. Brown, P. Barboun, N. Turan, P. Mehta, W.F. Schneider, J.C. Hicks,
696		D.B. Go, The impact of transition metal catalysts on macroscopic dielectric barrier

697		discharge (DBD) characteristics in an ammonia synthesis plasma catalysis reactor. J. Phys.
698		D: Appl. Physics, 52(2019): 224002.
699	51.	X. Tu, H.J. Gallon, M.V. Twigg, P.A. Gorry, J.C. Whitehead, Dry reforming of methane
700		over a Ni/Al ₂ O ₃ catalyst in a coaxial dielectric barrier discharge reactor. J. Phys. D: Appl.
701		Phys., 44(2011): 274007.
702	52.	D.P. Subedi, U.M. Joshi, C.S. Wong, Dielectric barrier discharge (DBD) plasmas and
703		their applications, Plasma Sci. Technol. for Emerging Econ (2017). Springer, Singapore.
704	53.	B.S. Patil, A.S.R. Kaathoven, F.J.J. Peeters, N. Cherkasov, J. Lang, Q. Wang, V. Hessel,
705		Deciphering the synergy between plasma and catalyst support for ammonia synthesis in a
706		packed dielectric barrier discharge reactor. J. Phys. D: Appl. Phys., 53(2020): 144003.
707	54.	P. Peng, Y. Li, Y. Cheng, S. Deng, P. Chen, R. Ruan, Atmospheric pressure ammonia
708		synthesis using non-thermal plasma assisted catalysis. Plasma Chem. Plasma Process.
709		36(2016): 1201-1210.
710	55.	X. Zhu, J. Liu, X. Hu, Z. Zhou, X. Li, W. Wang, R. WU, X. Tu. Plasma-catalytic
711		synthesis of ammonia over Ru-based catalysts: Insights into the support effect. J. Energy
712		Inst. 102(2022): 240-246.
713	56.	K.H.R. Rouwenhorst, H.G.B. Burbach, D.W. Vogel, J.N. Paulí, B. Geerdink, L. Lefferts,
714		Plasma-catalytic ammonia synthesis beyond thermal equilibrium on Ru-based catalysts in
715		non-thermal plasma. Catal. Sci. Technol., 11(2021): 2834-2843.
716	57.	K.H.R. Rouwenhorst, L. Lefferts, On the mechanism for the plasma-activated N ₂
717		dissociation on Ru surfaces. J. Phys. D: Appl. Phys., 54(2021): 393002.
718	58.	N. Naude, F. Massines, Influence of the surface conductivity on the stability of a glow
719		dielectric-barrier discharge. IEEE Trans.Plasma Sci., 36(2008): 1322-1323.
720	59.	R. Pribyl, P. Stastny, M. Pazderka, J. Kelar, Z.K. Tucekova, M. Zemanek, M. Trunec, M.
721		Cernak, Properties of MgAl ₂ O ₄ doped alumina barrier layers for dielectric barrier
722		discharge. J. Phys. D: Appl. Phys., 53(2020): 505202.
723	60.	X. Liu, M. Liu, Y. Luo, C. Mou, S.D. Lin, H. Cheng, J. Chen, J. Lee, T. Lin, Strong
724		metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation.
725		J. Am. Chem. Soc., 134(2012): 10251-10258.
726	61.	H. Li, J. Shang, Z. Ai, L. Zhang, Efficient visible light nitrogen fixation with BiOBr
727		nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc.,
728		137(2015): 6393-6399.
729	62.	S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen, J. Ye,
730		Light-switchable oxygen vacancies in ultrafine Bi ₅ O ₇ Br nanotubes for boosting
731		solar-driven nitrogen fixation in pure water. Adv. Mater., 29(2017): 1701774.
732	63.	G. Zhang, X. Yang, C. He, P. Zhang, H. Mi, Constructing a tunable defect structure in
733		TiO ₂ for photocatalytic nitrogen fixation. J. Mater. Chem. A, 8(2020): 334-341.
734	64.	X. Li, S. Ma, F. Luo, Z. Yang, Engineering oxygen vacancies in Co ₃ O ₄ to boost p-d
735		hybridization for hydrogeneration of nitrogen and oxygen. Appl. Surf. Sci., 600(2022):
736		154115.
737	65.	P. Peng, Y. Li, Y. Cheng, S. Deng, P. Chen, R. Ruan, Atmospheric pressure ammonia
738		synthesis using non-thermal plasma assisted catalysis. Plasma Chem. Plasma Process.
739		36(2016): 1201-1210.
740	66.	J. Sun, O. Chen, X. Zhao, H. Lin, W. Oin, Kinetic investigation of plasma catalytic
		, , , , , , , , , , , , , , , , , , ,

synthesis of ammonia: insights into the role of excited states and plasma-enhanced 741 surface chemistry. Plasma Sources Sci. Technol., 31(2022): 094009. 742 J. Huang, M. Yuan, X. Li, Y. Wang, M. Li, J. Li, Z. You, Inhibited hydrogen poisoning for 743 67. 744 enhanced activity of promoters-Ru/Sr₂Ta₂O₇ nanowires for ammonia synthesis. J. Catal. 745 389(2020): 556-565. 746 68. J. Huang, J. Pan, Z. You, X. Jiang, Enhanced ammonia synthesis activity of Ru/Ba₅Ta₄O₁₅ catalyst by reduction of Ba₅Ta₄O₁₅ with CaH₂. Int. J. Hydro. Energy, 47(2022): 747 28019-28024. 748 Z. Luo, G. Zhao, H. Pan, W. Sun, Strong metal-support interaction in heterogeneous 749 69. catalysts. Adv. Energy Mater., 12(2022): 2201395. 750 751