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Abstract

Entomological surveillance of local malaria vector populations is an important component of

vector control and resistance management. In this study, the resistance profile and its possi-

ble mechanisms was characterised in a field population of the major malaria vector Anophe-

les coluzzii from Port Harcourt, the capital of Rivers state, in the Niger-Delta Region of

Nigeria. Larvae collected in Port-Harcourt, were reared to adulthood and used for WHO bio-

assays. The population exhibited high resistance to permethrin, deltamethrin and DDT with

mortalities of 6.7% ± 2.4, 37.5% ± 3.2 and 6.3% ± 4.1, respectively, but were fully suscepti-

ble to bendiocarb and malathion. Synergist bioassays with piperonylbutoxide (PBO) partially

recovered susceptibility, with mortalities increasing to 53% ± 4, indicating probable role of

CYP450s in permethrin resistance (χ2 = 29.48, P < 0.0001). Transcriptional profiling

revealed five major resistance-associated genes overexpressed in the field samples com-

pared to the fully susceptible laboratory colony, Ngoussou. Highest fold change (FC) was

observed with GSTe2 (FC = 3.3 in permethrin exposed and 6.2 in unexposed) and CYP6Z3

(FC = 1.4 in exposed and 4.6 in unexposed). TaqMan genotyping of 32 F0 females detected

the 1014F and 1575Y knockdown resistance (kdr) mutations with frequencies of 0.84 and

0.1, respectively, while 1014S mutation was not detected. Sequencing of a fragment of the

voltage-gated sodium channel, spanning exon 20 from 13 deltamethrin-resistant and 9 sus-

ceptible females revealed only 2 distinct haplotypes with a low haplotype diversity of 0.33.

The findings of high pyrethroid resistance but with a significant degree of recovery after

PBO synergist assay suggests the need to move to PBO-based nets. This could be comple-

mented with carbamate- or organophosphate-based indoor residual spraying in this area.
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Background

Malaria kills approximately 400,000 people in 2018 alone, 93% of these deaths in the sub-Saha-

ran Africa. Nigeria alone account for the highest burden of malaria, at 25% of all global cases

[1]. The control of malaria vectors is reliant on the use of chemical insecticides through indoor

residual spraying (IRS), long-lasting lasting insecticidal nets (LLINs) and Insecticide treated

mosquito nets (ITNs) [2,3]. These interventions have reduced malaria transmission to half its

level from year 2000 to 2015 [4]. However, the major threat to these recorded successes is the

issue of insecticide resistance in the major malaria vectors leading to retrogression and an

increase in transmission [5,6]. Adequate data gathering on the resistance profiles and mecha-

nisms in the local malaria vector populations is a key to guide deployment of control tools

using evidence-based strategies [7,8].

The major vectors of malaria in Nigeria are Anopheles gambiae s.s., Anopheles coluzzii,
Anopheles arabiensis and the patchily distributed Anopheles funestus s.s. [9–11]. However,

Anopheles coluzzii has become the dominant species reported in most parts of Nigeria in

recent years, e.g. in the south western region [12,13], the south eastern region [14] and the

northern regions [15,16]. Insecticide resistance in Anopheles gambiae s.l. has been reported in

Nigeria as far back as the early 1960s. In the southern part of the country for example, resis-

tance to dieldrin, lindane and dichlorodiphenyltrichloroethane (DDT), but susceptibility to

malathion parathion, fenthion, and bromophos was reported [17]. Moreover, in Sokoto, in the

northwest of the country resistance to dieldrin, DDT and benzene hexachloride (BHC) was

reported early [18]. Decades after these earlier efforts, data documenting the evolution of the

malaria vectors, their insecticide resistance profiles and the underlying molecular mechanisms

driving the resistance are still lacking, particularly in the Niger-Delta (south-south) region of

the country.

Malaria transmission is practically perennial in the coastal regions of Nigeria (including the

Niger-Delta), due to the prolonged rainy season which provides Anopheles breeding sites year

round [19–21]. This is in contrast to the northern part of the country, with shorter rainy sea-

son (3–5 months) and thus relatively lower transmission rates [19]. Unfortunately, where

numerous strides have been made in determining the transmission profiles of malaria mosqui-

toes, insecticide resistance and the molecular mechanisms driving it in other parts of the coun-

try, e.g. in southwestern Nigeria [13,22–24] and in the north, e.g. [11,15,25], little information

is available from the south-south/Niger-Delta region. Baseline information on the abundance

of Anopheles and its distribution [26], insecticide resistance profiles [27] are available in this

region, without actually going deep into studying the molecular mechanisms involved.

Equally, also there is a dearth of information on the potential impact of the resistance on the

malaria control tools such, as the efficacy of bed nets, as recently conducted in other parts of

the country [15,28]. As well, information on the role of target-site resistance mechanisms like

the 1014F/S knockdown resistance (kdr) mutations [29,30] is also lacking in south-south of

Nigeria, compared to other parts of the country where frequencies of these mutations have

been described in several studies [14–16,31].

In this work, resistance profiles of An. coluzzii from Port Harcourt, Niger-Delta, Nigeria

was investigated, establishing high resistance to pyrethroids and DDT, with evidences from

qPCR (overexpression of CYP6Z2 and CYP6M3 especially) and synergist bioassay with pipero-

nyl butoxide implicating cytochrome P450s in driving permethrin resistance. Analysis of the

voltage gated sodium channel also revealed the presence of 1014F kdr mutation at high fre-

quency, whereas 1014S was not detected. The 1575Ymutation was detected but only at a very

low frequency.
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Methods

Study site and sample collection

Port Harcourt (4.8156˚ N, 7.0498˚ E), the capital of Rivers State, Nigeria lies along the Bonny

Rivers in the south-south region of the country, also referred to as the Niger-Delta. It is situ-

ated in the Tropical Mangrove, with rain extending from February to December [32]. It is ever

green and ever raining because only the months of January and December can be truly called

dry season, as such malaria is perennial in the region due to availability of Anopheles breeding

sites year-round [33]. The heaviest rains in Port Harcourt occur in September with an average

of 367 mm while December is the driest month of the year with an average rain of 20 mm [32].

Larval collection was conducted in Port Harcourt Metropolis in October and November

2019. Larvae were randomly collected from 33 rainwater puddles, in 5 sites, at Obio/Akpor

Government Area (Fig 1). The larvae were suspected to belong to An. gambiae Complex based

on their morphology (sizes and color) and all the female adults that emerged were identified

morphologically as belonging to Anopheles gambiae s.l. [34]. Larvae were reared at the insec-

tary (each group from particular puddle in separate tray) at the department of animal and

experimental biology, University of Port Harcourt, at 25–28˚C and 70–80% relative humidity.

Mosquitoes identification to species level

Genomic DNA (gDNA) was extracted from 48 F0 female mosquitoes randomly selected from

the cages [35]. The gDNA was utilised in the identification to the species level using the

Fig 1. Map of sampling site, showing Obio/Akpor local Government of Port-Harcourt Metropolis, Rivers state, Nigeria.

https://doi.org/10.1371/journal.pone.0247944.g001
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SINE200 PCR [36]. All mosquitoes were confirmed as An. coluzzii with a band of ~479 bp on

agarose gel (S1 Fig). Also, legs individually pulled out from randomly selected 60 adult females

used for qPCR were extracted for species identification, as above, with all the females con-

firmed as An. coluzzii.

WHO insecticides susceptibility testing

The resistance profile of the mosquito population was established using the WHO protocol

[37]. 3–5 days old F0 mosquitoes (4 replicates each of 25 females in a tube) were exposed to

the diagnostic concentrations of the insecticides for 1 h. These insecticides include the pyre-

throids: permethrin (0.75%) and deltamethrin (0.05%), the organochloride, dichlorodiphenyl-

trichloroethane (4% DDT), the carbamate, bendiocarb (0.1%), and the organophosphate,

malathion (5%). All the insecticide impregnated papers were obtained from Vector Control

Research Unit, University Sains Malaysia, Penang, Malaysia. One tube each was used as con-

trol for each insecticide tested, with 25 females exposed to control papers impregnated only

with the carrier oil (QC controls for pyrethroids, OC control for DDT while OP and PY con-

trols were used for bendiocarb and malathion, respectively). Knockdown rates were monitored

for the pyrethroids and DDT at 15 min, 30 min, 45 min and 60 min post-exposure. Mosquitoes

were then transferred into the holding tubes and allowed to recover for 24 h during which they

were fed with 10% sucrose solution. Mortality was recorded 24 h after the exposure. All bioas-

says were carried out at at 25–28˚C and 70–80% relative humidity. Resistance status of the

population was established according to WHO criteria [37] for which populations with

mortality > 98% are considered susceptible, population with mortality of 90–98% are consid-

ered moderately resistant, and those with mortality > 90% as resistant. Abbott’s formula was

not used to correct mortalities in the control mosquitoes of which the highest was 4%. The

papers were tested on a susceptible population of An. coluzzii, Ngoussou to ascertain their effi-

cacy before being use for the testing on the field population.

Synergist assay

Piperonyl butoxide (PBO) (obtained from Vector Control Research Unit, University Sains

Malaysia, Penang, Malaysia) was utilised in a synergist bioassay with pyrethroid to investigate

the potential role of P450s and/or oxidases in resistance [38]. Four replicates each of 25 F0

females were pre-exposed to 4% PBO for 1 h, after which they were then transferred to tubes

containing 0.75% permethrin-impregnated papers, for 1 h. Mosquitoes were then transferred

to holding tubes to recover for 24 h, and mortality was scored. Two tubes with 25 females were

used as controls, with mosquitoes in the first tube exposed to only PBO, while those in the sec-

ond tube were only exposed to permethrin [37].

Transcriptional analysis using quantitative PCR

3–5 days old, F0 females which survive exposure to deltamethrin (deltamethrin-alive) and

unexposed females were used for RNA extraction, alongside females from Ngousso colony.

Total RNA was extracted from three biological replicates of 10 females using the Arcturus

PicoPure Kit (Applied Biosystems, CA, USA) according to the manufacturer’s instructions.

The RNA was treated with Dnase (Qiagen, Hilden, Germany) in order to degrade any residual

gDNA. Purity and concentrations of the RNA was measured using nanodrop UV-Visible spec-

trophotometer (Thermo Scientific, Massachusetts, USA). 1 μg of the total RNA was used as ini-

tial template to synthesize the cDNA using an oligo(dT) primer and superscript III reverse

transcriptase enzyme (Invitrogen, Waltham, CA, USA) following manufacturer’s protocol.

Primers for five well-known pyrethroid metabolizing P450s, including (CYP6P3, CYP6M3,
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CYP6Z2, CYP6Z3 [39–42] and DDT metabolizing GST, GSTe2 [43,44] were used for qPCR

(S1 Table in S1 File). Ribosomal gene S7 and glucose-6-phosphate dehydrogenase (GADH)

were used as the house keeping genes [45]. 1 μl of cDNA was used as template in a PCR reac-

tion with final volume of 20 μl. The components of the mixture included 10 μl of SyBr Green

fluorescent dye (Sigma Aldrich, Germany), 0.6 μl each of the forward and reverse primers,

which was topped up to 20 μl by adding 7.8 μl of nuclease free water. Thermocycling condi-

tions were initial denaturation at 95 ˚C for 3 min, followed by 40 cycles each of 95 ˚C for 10 s,

60 ˚C for 10 s. Final conditions were 95 ˚C for 60 s, 55 ˚C for 30 s and 95 ˚C for 30 s.

The data generated were analysed according to the ddCt protocol [46] in comparison with

the house keeping genes, RSP7 (AGAP010592) and GADH; the efficiencies of the primers were

incorporated into the calculation. The data were converted to their logarithmic forms to

ensure normal distribution. The expression levels between the exposed and unexposed were

analysed using tow-tailed t-test at 95% confidence levels. The list of forward and reverse prim-

ers used in the study are attached in S1 File.

Genotyping of knockdown resistance mutations

The frequencies of the 1014F, 1014S and 1575Y voltage-gated sodium channel mutations were

determined in the field F0 females using TaqMan assay. Genotyping was carried using 32 ran-

domly selected females with real-time thermocyclers (Agilent, Mx3005) using a previously

established protocols [47–49]. The probes for 1014F ((5’-acgacaaaatttc-3’) and 1014S

(5-‘acgactgaatttc-3’) were used based on previous study [48]. Forward (5’-cattt
ttcttggccactgtagtgat-3’) and reverse (5’cgatcttggtccatgttaatttgca-
3’) kdr primer pairs were also adopted from the work of Bass [48]. The probes used in detect-

ing the wild 1575Y and the N1575 were also labelled with FAM (30nfqtttttcattgcataa
tagtac) and HEX (30nfqatttttttcattgcattatagtac), and forward (tggatcgc
tagaaatgttcatgaca) and reverse (cgaggaattgcctttagaggtttct) primer pairs

were also adopted from [49]. In a final volume of 10 μl comprise of 1 μl of gDNA, 4.25 μl

ddH20, 0.25 μl (40x) probes containing allelic-specific primers in each case, and 5 μl of Sensi-

mix (Bioline, London, UK). Cycling conditions were 10 min at 95˚C, followed by 40 cycles

each of 92 ˚C for 15 s and 60 ˚C for 1 min. Two probes labelled with fluorescent dyes, HEX

and FAM were used to detect the susceptible and resistant alleles respectively, were used.

Three controls were used in each case, gDNA from known homozygote resistant, heterozygote

resistant and homozygote susceptible individuals. A negative control was also used, which has

1 μl distilled water instead of gDNA. Results were analysed from scatter plots using the Mx Pro

software.

Polymorphism analysis of the Voltage-Gated Sodium Channel (VGSC)

To assess genetic diversity of the VGSC, a fragment spanning the intron-1 and intron-2, and

the exon 20 was amplified in 13 deltamethrin-alive and 9 dead females This was done using

the previously published set of primers kdrCL-F (50-AAA TGT CTC GCC CAA ATCAG-3)

and kdrCL-R (50-GCA CCT GCA AAA CAA TGTCA-3) [50]. The PCR premix had 1.5 μl

10x buffer A, 0.75 μl of MgCl2, 0.12 μl each of Kapa Taq polymerase and dNTPs, 0.51 μl each

of the forward and reverse primers, and 10.49 μl of ddH20. 1 μl of the gDNA was topped up to

make a total of 15 μl reaction volume. The thermal cycling conditions included an initial dena-

turation at 95 ˚C for 5 min, followed by 35 cycles each of 94 ˚C for 30 s, 57 ˚C for 30 s, 72 ˚C

for 45 s and a final elongation at 72 ˚C for 10 min. PCR products were cleaned and purified

using the QIAquick1 PCR Purification Kit (QIAGEN, Hilden, Germany) according to the
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manufacturer’s directives. The purified products were individually sequenced on both strands

using the same pair of primers above.

For polymorphism analyses, Bioedit [51] was used to visualize and manually edit and

aligned (ClustalW) the sequences. Pattern of genetic variability was assessed using the

DnaSPv6.0 [52]. Maximum likelihood phylogenetic tree was constructed using MEGA 6.0

[53].

Data analysis

Results of bioassays are presented as percentage mortalities for respective insecticides as bars

with standard deviations. Two-tailed Chi-square test was conducted to compare result of syn-

ergist assays with conventional one, using GraphPad Prism (GraphPad Inc., La Jolla, CA,

USA). Two-tailed t-test was also conducted to compare the expression levels between the

exposed and unexposed individuals. The frequencies of kdr mutations were respectively calcu-

lated using the formulae F(R) = (2 x RR + RS)/2N, F(S) = 1-F(R), where RR = Total number of

homozygote resistant, RS = Total number of heterozygote resistant, S = susceptible individuals

and N = total number of individuals.

Results

Insecticide resistance profile of An. coluzzii
Bioassay showed the Port Harcourt An. coluzzii population as highly resistant to pyrethroids

and DDT. The knockdown rates in permethrin (type I pyrethroid), deltamethrin (type II pyre-

throid) and DDT was very low, recorded within the range of 3.3 to the highest of 10%. These

low knockdown rates were also supported by the 24 h mortalities which did not significantly

increased except in the case of deltamethrin. This reiterates the fact that the population is

highly resistant to the pyrethroids and DDT (Fig 2a).

A high mortality rate (37.5%) was recorded in WHO bioassays with 0.05% deltamethrin in

comparison to the very low mortality of only 6.7% ± 2.4 observed with 0.75% permethrin (Fig

2b). There was no mortalities in all the negative control, except for malathion, with 4% mortal-

ity (not shown in Fig 2b). The population was more resistant to permethrin than deltamethrin.

However, the organochlorine DDT also showed mortalities of only 6.3% ± 4.1, 24 h post-expo-

sure. The population showed complete susceptibility to organophosphate malathion and the

carbamate bendiocarb with a mortality of 100% for both insecticides.

Investigating the role of P450 monooxygenases in resistance using PBO

bioassay

PBO-synergist bioassay recovered some susceptibility towards permethrin with mortality

increasing from 6.7% ± 2.4 as obtained from the conventional bioassay to 53% ± 4, indicating

the potential role of P450s in permethrin resistance (Fig 2c). Two-tailed chi-square test indi-

cated that the association between the recovery of susceptibility from PBO exposure as signifi-

cant (χ2 = 29.479, df = 1, P< 0.0001).

Expression profile of candidate resistance genes

The expression of profile of four P450s and GSTe2 was investigated in females which survived

exposure, the unexposed females and Ngousso (Fig 3). These genes were found to be overex-

pressed in the field population compared to Ngousso. Specifically, highest expression was

observed in GSTe2 and CYP6Z3 (Fold change = 6.2 and 4.6, respectively). The least expression

was observed in CYP6Z2 (FC = 0.24), whereas CYP6P3 and CYP6M3 were moderately
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Fig 2. Insecticide susceptibility of the Anopheles coluzzii of the Niger Delta, Nigeria. a: Percentage knockdown rates due to exposure to various

insecticides; b. Percentage mortalities from WHO susceptibility assay using five insecticides. Results are presented as mean ± SD (standard deviation); c.

Result of synergist assay with PBO showing recovery of mortality in synergized mosquitoes exposed to permethrin. ��� statistically significant.

https://doi.org/10.1371/journal.pone.0247944.g002

Fig 3. Determination of molecular basis of pyrethroid resistance in the An. coluzzii population. Results of transcription profiling of 5 major

insecticide resistance gene using qRT-PCR. Values are represented as mean of expression in relation to Ngousso ± SD.

https://doi.org/10.1371/journal.pone.0247944.g003
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overexpressed (1.8- and 1.2-folds). Two-tailed t-test carried out to determine the statistical dif-

ferences between the expression levels in the exposed and unexposed individuals revealed

expressions in the unexposed individuals to be significantly higher than the exposed for

CYP6P3 (P = 0.0025) (Fig 3).

Investigating presence of target site resistance mutations in the VGSC

Initial assessment of the presence of the kdrmutations in the VGSC of 32 field females revealed

a high frequency of the 1014F mutation (0.84) and a very low frequency of the 1575Y mutation

(0.1). No 1014S mutation was detected in all the females screened. For the 1014F kdr muta-

tions, 48.4% of the individuals were homozygote resistant with the allele (RR) whereas 38.7%

were heterozygote resistant (RS) (Fig 4a). Only 12.9% of the population harbour the wild type

susceptible allele (SS). On the other hand, the 1575Y detected in low frequencies of ~10% was

found only at heterozygote resistant (RS) state. The association between the 1014F and 1575Y

mutations was such that 66% of 1575Y alleles were detected on heterozygote 1014F individuals

(RS) while the 33% of the 1575Y alleles were detected on the 1014F homozygote resistant indi-

viduals (RR) (Fig 4b). This means 1575Y distribution might not be random but linked to RS

1014F. The 1575Y alleles were not detected on L1014 susceptible individuals.

Fig 4. Determination of molecular basis of pyrethroid resistance in the An. coluzzii population. a. The genotype frequency distributions of the

1014F kdr mutation (T/T: homozygote resistant, T/A: heterozygote resistant and A/A: homozygote susceptible); b. Association between the 1575Y and

the 1014F kdr mutations; c. maximum likelihood phylogenetic tree of fragment of VGSC from deltamethrin-alive (AL) and dead (DE) F0 female An.

coluzzii from Port-Harcourt (PH). Inset: polymorphism analysis of a fragment of VGSC from deltamethrin-alive and dead F0 females showing only two

haplotypes with variable positions.

https://doi.org/10.1371/journal.pone.0247944.g004
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To determine the genetic diversity of the VGSC a fragment encompassing the 1014 codon

was amplified from 13 deltamethrin-resistant and 9 dead females. Analysis of a 548 bp frag-

ment of VGSC revealed only two distinct haplotypes (Table 1, Fig 4c, S1 File), with low haplo-

type diversity of 0.33.

77% (10/13) of the deltamethrin-alive individuals were homozygote resistant while only

15% were homozygote susceptible in the same group. In contrast, only 55% of the deltame-

thrin-susceptible individuals were homozygote resistant and the remaining 45% were hetero-

zygote resistant. No correlation was observed between deltamethrin resistance and the

presence of the 1014F mutations, for example, RR+RS vs SS (Odds ratio = 0.61 (0.05–7.8,

p = 0.70).

Haplotype 1 appeared to be the largest with ~80% of the sequences (35/44), whereas the

haplotype 2 has the remaining 20%. Tajima’s D test of neutrality between the resistant and sus-

ceptible mosquitoes had a positive value but not significantly different. Moreover, both the del-

tamethrin-resistant and susceptible individuals appeared to have 3 polymorphic sites.

Discussion

In this study resistance profile and the possible molecular mechanism behind it was assessed

in the major malaria vector An. coluzzii from Niger-Delta of Nigeria, where malaria is stable/

perennial [33]. Niger-Delta is the most polluted region in Nigeria due to crude oil related activ-

ities, such as gas flaring, illegal refineries, pipeline vandals and operational accidents leading to

the release of pollutants into the environments in the forms of spillages [54]. These pollutants

get washed into waters and the atmospheric spaces of the cities and villages within the region

posing as additional selection pressure for insecticide resistance to disease vectors. The most

recalcitrant oil related pollutants are the polycyclic aromatic hydrocarbons [55] which are also

potent ligands for the aryl hydrocarbon receptor (AhR) involved in the transcriptional regula-

tion of xenobiotic metabolizing enzymes in insects [56–58] and higher organisms [59]. The

combinations of year-round breeding sites [33] and resistant vectors will be a good cocktail for

malaria transmission. The An. coluzzii population from Port-Harcourt was found to be highly

resistant to the pyrethroids and DDT with a very low mortalities for permethrin. In a previous

study, resistance of> 25% mortality was reported in deltamethrin and DDT [60]. In the pres-

ent work, mortalities of< 10% was seen with DDT and permethrin. In the south-eastern states

of Nigeria which share some geographical features with the Niger-Delta, resistance to deltame-

thrin (57%) and DDT (13%) was recently reported [14]. While the above two studies [60] and

[14] and our study reported full susceptibility to this bendiocarb observations made in An.

coluzzii populations in the northern part of Nigeria suggest moderate resistance to this carba-

mate [15,16]. Moderate resistance to bendiocarb, may be attributed to the additional selection

pressure from the use of carbamates in IRS and pesticides in agricultural fields [16,25]. In the

neighbouring countries of Niger and Cameroun, despite not sharing the same geographical

Table 1. Summary statistics of VGSC fragments in deltamethrin-alive and -dead An. coluzzii females.

Phenotype n S h Hd π (k) D(Tajima) D� (Fu and Li)

Alive 13 3 2 0.323 0.00177 (0.969) 0.57140ns 0.96844ns

Dead 9 3 2 0.366 0.00220(1.09804) 0.7179ns 1.023060ns

All 22 3 2 0.333 0.00182 (0.9989) 0.95493ns 0.90523ns

n = number of sequences, S = polymorphic sites, h = haplotypes, Hd = haplotype diversity, π = nucleotide diversity (k = mean number of nucleotide differences);

Tajima’s D and Fu and Li’s D� statistics, ns, not significant.

https://doi.org/10.1371/journal.pone.0247944.t001
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attributes with the Niger-Delta, An. coluzzii populations were also reported to be susceptible to

malathion and bendiocarb [61,62].

The recovery of susceptibility following synergist bioassays suggests partial contribution of

P450-mediated metabolic resistance in this population. The findings of GSTe2, a gene linked

to DDT/pyrethroid resistance [43,44] overexpressed in the field population probably explained

the alternative mechanism conferring pyrethroid resistance besides kdrmutation. The mortali-

ties observed following pre-exposure to PBO was seven folds higher than the mortality

recorded in the conventional bioassay. This shows a significant association between the PBO

exposure and the increased in mortality even though the recovered susceptibility is ~50%. This

is a trend that has been reported in recent studies [61,62] suggesting the potential of other

detoxification mechanisms to the insecticides and/or other mechanisms including cuticular

resistance on top of kdr resistance.

Transcriptional analysis of the candidate genes previously implicated in resistance to pyre-

throids and DDT demonstrated overexpression of the genes pointing to potential roles of the

metabolic resistance mechanisms. For example, recombinant protein of the CYP6P3 (consis-

tently established as overexpressed in field populations of An. gambiae s.l) was demonstrated

to metabolize permethrin and deltamethrin in field resistant population [42,63,64]. Using

transcriptional analysis this gene has previously been reported in pyrethroid resistant popula-

tions of An. gambiae in southwest Nigeria and Benin as overexpressed [24]. CYP6Z2 linked to

the pyrethroid resistance locus of An. gambiae, was reported to be involved in the metabolism

of varying substrates including butein, resveratrol and entrodiol but not permethrin and

cypermethrin [41]. However, CYP6Z2 was found to metabolize the juvenile hormone ana-

logue, pyriproxyfen in An. gambiae [65]. Though, pyriproxyfen was not tested on this popula-

tion of An. coluzzii it is likely that the Niger-Delta population is resistant to pyriproxyfen

which could reduce the efficacy of new LLINs incorporating this chemical. Overexpression of

GSTe2 has been linked with resistance to pyrethroid and DDT [43]. Not only in An. gambiae s.

l. this gene is shown to be one of the major cross-resistance gene conferring resistance across

diverse populations of An. funestus populations across Africa [44,66]. The rapid increase in

resistance to pyrethroid in recent years has been attributed to the overexpression of multiple

candidate genes in West Africa including the CYP6Z3 [40] and the highly expressed CYP6M3
reported in pyrethroid resistant populations of An. gambiae various parts of West Africa

[39,67] as well as in An. funestus [68,69].

The 1014F kdr mutation was recorded at a high frequency of ~84% in the Niger-Delta pop-

ulation. Comparable frequency of ~ 82% have been reported in the northern part of Nigeria

[15,16]. The highest frequency of 1014F kdr (88%) in Nigeria was reported in Niger state,

north-central geopolitical zone [12]. Moreover, in the south eastern region, a frequency that

ranges from 60% to 90% was detected [14]. In the neighbouring country of Niger, frequency

~82% was reported in the An. coluzzii [62]. However, a lower frequency of 60% was reported

in Chad [62] and ~ 65% in Cameroon [61]. Looking at the frequencies of 1014F kdr mutations

in parts of Nigeria and the neighbouring countries, it could be said that the mutation is

approaching fixation; probably this explains the emergence of the 1575Y mutation in the pop-

ulations to ameliorate the deleterious effects of the 1014F [49,70]. From the genotype data gen-

erated on this population, all the individuals detected were heterozygote with the 1575Y allele.

It is interesting to mention here that all the alleles were detected on either heterozygote (RS)

(66%) or homozygote resistant (RR) 1014F (33%). 1575Y alleles were not detected on any

L1014 susceptible individuals, confirming the earlier projections that it always coexists with

1014F alleles thereby conferring additional advantages to the individuals. It was reported in

the work of Jones and his associates, the1575Y kdr mutation, located in the exon 30 of the

paratype VGSC coexists on the 1014F haplotypes, even though it was found to have an additive
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benefit, it is also alleged to compensate for the fitness cost lost due to 1014F in the field [49].

To the best of our knowledge this is the first study to document presence of this mutation

in populations from Nigeria, though it has been documented in other parts of West Africa

[49,71–73].

Analysis of the 548 bp fragment of the VGSC shows the VGSC is under selection pressure

as a result of which it lead to the selection of only two distinct haplotypes within the population

[74,75]. Low haplotype diversity (0.33) was observed between the deltamethrin-resistant and

susceptible individuals and Tajma’s D� statistics also showed there was no significant differ-

ence between them.

Conclusion

Anopheles coluzzii was the only species of Anopheles found in the various larval sampling sites

in Port Harcourt. The population is highly resistant to pyrethroids and DDT, and fully suscep-

tible to bendiocarb and malathion. Evidence of a role of metabolic resistance was shown possi-

bly mediated by P450 monooxygenases and/or GSTs. High frequency of 1014F kdr mutation

was seen and for the first time in a population of this major malaria vector from Nigeria pres-

ence of 1575Y kdr mutation established. Altogether, the findings of high pyrethroid resistance

and the partial recovery with PBO suggest that pyrethroid-only LLINs may only have a

reduced efficacy against these mosquitoes and that PBO-based nets should be considered.

However, the failure to recover 100% mortality from PBO-synergist assay suggests that other

insecticide classes should be considered in Port Harcourt including bendiocarb and malathion

which could be used for indoor residual spraying.
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