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Abstract—Device authentication of wireless devices at the
physical layer could augment security enforcement before fully
decoding packets. At the upper layers of the stack, this is
conventionally handled by cryptographic schemes. However,
the associated computing overhead may make such regular
approaches unsuitable for the emerging class of Internet of
Things devices, which are typically resource-constrained and
embedded in areas that make them difficult to retrieve and re-
program. In contrast, radio frequency fingerprint identification
(RFFI) exploits the unique hardware features as device identifiers
at the physical layer. This article reviews both the state-of-
the-art in engineered feature-based RFFI protocol design and
advances in recent deep learning-based protocols, as well as
a hybrid protocol that combines their advantages. Specifically,
the hybrid approach leverages two methods: a more versatile
distance-based classifier and an automatic feature extractor. This
article also summarizes the goals of identification, verification
and classification as applicable to RFFI, and how they can be
achieved by the above protocols.

Index Terms—Internet of Things, device authentication, deep
learning, radio frequency fingerprint identification

I. INTRODUCTION

The pervasiveness of wireless networks has made it neces-
sary to secure them against a plethora of threats. In particular,
proper authentication of device identities that access a network
is crucial, and it constitutes a major security challenge for
emerging networks such as the Internet of Things (IoT) [1].
Conventional device authentication schemes mainly rely on
cryptographic algorithms and protocols as well as unique
device identifiers. The former is usually used to design a
challenge-response protocol, which requires a common key
shared between two devices. The latter is represented by
software addresses, such as MAC addresses.

Cryptographic authentication schemes face some challenges
when applied to an IoT environment. First, it is difficult for
some IoT applications to regularly refresh their key. Key
distribution is usually done by cryptography but IoT devices
may not be able to afford the costly computation. Instead, they
have to use a constant key that is vulnerable to several types
of threats. Second, the IoT will encompass legacy devices
that do not have support for firmware updates. Meanwhile,
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software addresses can be tampered with quite easily, hence,
they cannot be considered unique.

Therefore, there is a clear and urgent need for unique
and stable device identifiers for IoT devices. Radio frequency
fingerprint (RFF) has emerged as a promising candidate [2].
For all wireless devices, there exist inevitable differences in the
hardware components due to variations in the manufacturing
process, even when those devices are produced from the
same manufacturing product line. These hardware impairments
typically include oscillator imperfection, mixer imbalances,
and power amplifier (PA) non-linearity [2]. There are unique
and stable impairments and they can be exploited as device
fingerprints to represent wireless devices.

RFF identification (RFFI) is the protocol that leverages
RFF for authentication. In particular, radio devices transmit
as normal and the wireless waveform will be distorted by
hardware impairments. The receiver will classify the identity
of the transmitter solely based on the received signal. In other
words, RFFI protocols are typically deployed at the receiver
side, and no modification or interaction is required from
transmitters. Hence, RFFI is applicable to all IoT techniques
such as WiFi [3]-[6], IEEE 802.15.4/ZigBee [7], [8], and
LoRa [9]-[11].

The majority of the existing RFFI works can be categorized
into engineered feature-based protocols and deep learning-
based protocols. Early engineered feature-based RFFI works
such as [3] and [8] design algorithms to extract a subset of
hardware features manually, and, thus, they require expertise
for an understanding of the adopted communication protocol.
Meanwhile, there has been a recent surge of research works
that employ deep learning to perform RFFI [5]-[7], [9]-[12].
In particular, these prior works leverage the inherent ability of
deep learning to perform automatic feature extraction.

RFFI can enable the identification, verification and clas-
sification of radio devices. These RFFI processes are used,
respectively, to identify device legitimacy, verify the asserted
identity, and classify device labels. While these tasks have
been investigated individually, a comprehensive overview and
comparison among them are missing. The main contribution of
this paper is, thus, a holistic review of conventional engineered
feature-based protocols and deep learning-based approaches.
In particular, we discuss how their implementations achieve
the above three tasks and their limitations. Then, we present a
hybrid protocol to leverage the automatic feature extraction ca-
pability of the deep learning model and the versatile distance-
based classifier. This paper provides the first tutorial on how
RFFI can achieve identification, verification, and classification
for radio devices.
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Fig. 1. The overview of an RFFI protocol.

RFF is extracted from RF signals, which are impacted by
wireless channel propagation effects. In addition, as a device
identifier, it is also important to ensure their uniqueness and
stability over time and environmental conditions such as tem-
perature variations. These remaining challenges are discussed
to inspire future research on RFFI, which are essential for
RFFI to be successfully applied in the real world.

II. RFFI OVERVIEW

As shown in Fig. 1, a typical authentication problem in-
volves M legitimate devices under test (DUTs) communicat-
ing with a receiver responsible to perform device authentica-
tion. The received signal from a DUT m can be given as

y(t) = h(t) x Fin(x(2)) + n(), (1)

where h(t) is the wireless channel, * denotes the convolution
operation, x(t) is the transmitted signal, F,,(-) represents
hardware effects of the m-th DUT, and n(t) is the additive
white Gaussian noise (AWGN). The transmitted signal consists
of a header and payload. A software address (e.g., a MAC
address) will be present in the header, and is often used as the
device identifier in conventional authentication schemes.

The transmitted signal passes through a series of hardware
blocks, including the modulator, digital-to-analog converter
(DAC), mixer, oscillator, PA, and antenna. Due to the manufac-
turing variation, these components are subject to hardware im-
pairments, including DAC sampling errors, e.g., quantization
errors and integral nonlinearity (INL), mixer imbalance (both
gain and phase), PA nonlinearity, oscillator imperfections such
as carrier frequency offset (CFO) and phase noise, as well as
antenna characteristics [2]. These impairments slightly distort
the signal and their effects are collectively represented by the
Fm(+) in Equation (1). They are unique and difficult to be
tampered with, and, hence, they can be leveraged as device
identities.

RFFI aims to exploit these unique hardware impairments
for device authentication and provide an additional security
mechanism. It can be implemented on top of a classical and
existing receiver architecture. In practice, RFFI is an open-set
recognition problem as there will always be unknown devices
and/or rogue attackers [6]. As illustrated in Fig. 1, the tasks
in the RFFI literature can be categorized as follows:

e Identification distinguishes legitimate devices from any
potential rogue devices, which is a binary classification
task.

e Classification infers the index/label of legitimate devices
under a closed-set assumption.

o Verification ascertains whether the packet is sent from the
asserted device with an algorithmically derived ID.

It should be noted that the terminology used in the RFFI
community differs from that of the classification literature. For
example, identification usually refers to identifying/classifying
classes but in RFFI literature identification has been used
to detect rogue devices. Many RFFI classification studies
only consider closed-set recognition, focusing on designing
different approaches to achieve higher classification accuracy.
It may not be considered a security concept though as only
known devices are involved. However, we used these task
definitions to align with the RFFI literature.

RFFI typically involves extracting RFF features embedded
in RF signals (feature extraction) and determines whether
the fingerprint closely matches any of those of a known
set of legitimate transmitters (classifier design). Conventional
RFFI approaches extract low-dimensional features manually,
as detailed in Section III. Thanks to deep learning, recent RFFI
works leverage the automatic feature extraction capability of
deep learning and significantly extended the RFFI realm, as
explained in Section IV. Section V then presents a hybrid
RFFTI algorithm by combining the deep learning-based feature
extractor and distance-based classifier. A comparison of the
works adopting these approaches is given in Table I, which
will be elaborated in the following sections.

III. ENGINEERED FEATURE-BASED RFFI

As shown in Fig. 2, there are two types of engineered
feature-based protocols, namely distance-based solutions (Sec-
tion III-B) and machine learning (ML)-based solutions (Sec-
tion III-C), depending on different classification designs. Both
rely on engineered feature extractors (Section III-A) and
consist of training and test stages.

A. Feature Extractor

Engineered feature-based protocols need to extract hardware
features manually. In practice, we may not be able to estimate
all of the features. Instead, only a subset of features can
be extracted for any given DUT m, captured by f,,(-). For
example, the PARADIS designed in [3] is one of the seminal
works in this area that extracts CFO, SYNC correlation, 1Q
offset, magnitude error and phase error from WiFi devices. The
extraction relies on the underlying communication protocols
and elegant mathematical models. For instance, the CFO can
be estimated using repeated preambles in each packet. Hence,
this approach can be considered model-based.

Engineered feature extraction requires an expert understand-
ing of the adopted communication protocol and transmitter
architecture. However, it is challenging to extract individual
features accurately as some of them are interrelated. For
example, phase imbalance of the mixer, CFO, phase noise, and
PA nonlinearity all contribute to phase rotations. It is difficult
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Fig. 2. Conventional engineered feature-based RFFI protocol. Both distance-based and ML-based solutions are shown.

to separate them and estimate their individual contribution. In
addition, using only a subset of hardware features potentially
limits the classification capacity.

Engineered feature-based RFFI protocols are vulnerable
to impersonation attacks. Due to the broadcast nature of
wireless communications, transmissions from legitimate users
to receivers can be captured by any rogue device within
the range. As engineered feature-based approaches rely on
explicit features such as CFO and their extraction algorithms
are publicly known, attackers can eavesdrop on legitimate
transmissions, carry out the same feature extraction procedure
and build an RFF database. They can then change their
hardware features to masquerade legitimate devices. Such an
attack is reported in [13] where the CFO-based RFFI for IEEE
802.11 is subverted. A possible solution is to hide the RFF
with noise [13], but this would require hardware access that
will not be applicable to IoT devices.

B. Distance-based Solutions

1) Training: Distance-based solutions need to maintain a
database that stores the RFFs of each legitimate device. The
receiver will collect several signals from each DUT, extract
the hardware features, and save them in an RFF database.
There might be multiple records of RFF mapping for a given
individual device because the feature extraction process is
subject to noise and interference.

2) Test: When the receiver captures a packet, it estimates
the same type of features used in the training stage and obtains
f. It will then compare the estimated features against the
records in the RFF database. The similarity can be measured
by distance metrics or cosine similarity. For example, the
comparison of the Euclidean distance can be given as

argmindy, = |f — fiu| <, )

where 7 is a predefined threshold.
Distance-based RFFI protocols can achieve all three tasks:

e Identification: When the signal comes from a legitimate
device, a valid decision will be returned by Equation (2).
Otherwise, if the signal comes from a rogue device, its
hardware impairments will not be the same as or similar
to any one of the legitimate devices; no valid result will
be returned in this case.

o Classification: The receiver will extract the RFF feature
of the incoming signal and infer the device index, which
is returned by Equation (2).

o Verification: The receiver will first decode the claimed
identity, i.e., the index m/, from the received signal
and obtain the relevant RFF from the database, f,,’, as
shown in Equation (2). It will then compare f,,,; with the
estimated RFF of the incoming signal, f . If the similarity
is within the threshold, the verification is successful.



The similarity comparison can be completed by the k-nearest-
neighbor (kNN) algorithm [3] or simple distance matching.
The work in [8] designed a Euclidean distance-based hybrid
classifier that combines multiple features with weights ad-
justed based on the signal-to-noise ratio (SNR).

C. ML-based Solutions

Classical machine learning models, e.g., support vector
machine (SVM) and random forest, are exploited because
of their classification capability. We take the widely used
SVM [3] as an example.

1) Training: We first need to collect some labelled packets
from legitimate devices and then extract their features to form
a training set. After that, the SVM is trained and served for
future authentication. Different from distance-based solutions,
an RFF database is not required.

Since engineered feature-based RFFI protocols are model-
driven, their training overhead is quite low. For example, the
work in [3] found that 20 packets from each DUT are sufficient
to train an SVM model and achieve a good performance.

2) Test: SVM is suitable for classification tasks. The re-
ceiver first captures a packet, estimates the features, f, and
feeds it into the well-trained SVM model. Then a predicted
label will be returned.

However, the SVM model cannot tell whether the packet
is from unknown devices as they are inaccessible during the
training stage. This makes it not suitable for verification and
identification tasks.

I'V. DEEP LEARNING-BASED RFFI

In the area of deep learning-based RFFI, to our best knowl-
edge, the work in [9] was the first one to apply convolutional
neural networks (CNN) and multilayer perceptrons (MLP).
Following this work, there have been several deep learning-
based approaches that include the use of CNN [2], [5]-[7],
[10], MLP [10] and Long Short-Term Memory (LSTM) [10],
[12].

An example of a deep learning-based RFFI classification
protocol is illustrated in Fig. 3 with a CNN as a basis.
Similar to deep learning applied to other domains such as
image recognition, the protocol consists of two stages, namely
training and test. During the training stage, the receiver will
collect signals from all the legitimate DUTs to train a capable
model. It can automatically extract all the underlying features,
which can fully exploit the hardware impairments and avoid
the extraction overhead. At the test stage, an inference is made
based on the received signal and the pre-trained neural network
model.

Deep learning-based RFFI is data-driven and heavily relies
on the amount of training data. The training of a deep learning
solution usually requires extensive computational resources
that may not be available to low-cost IoT devices. This can be
potentially solved by training a neural network at the cloud and
deploying the trained model at the devices, as the inference is
computationally light.

A. Signal Representation

Deep learning has excellent capability of automatic feature
extraction, which can mitigate the disadvantage of manually
extracting engineered features. Many RFFI works directly use
the time domain RF signals, i.e., IQ samples, as the deep
learning input [2], [4]-[6], [10]. RFF might be not evident in
the time domain, and transferring time domain signals to FFT
coefficients (frequency domain) [4], [9], [10] and spectrogram
(time-frequency domain) [10], [11] can expose hidden RFF
features, which can be learned by deep learning easier.

It should be noted converting RF signals to various domains
is different from manual feature extraction. After the conver-
sion, the signal is still high-dimensional and RFF features are
still not unveiled.

B. Identification and Verification

As the natures of the identification and verification pro-
cesses are similar, they can be processed by the same deep
learning techniques with different configurations.

1) Binary Classification: The use of deep learning for
identification and verification will rely on binary classification
but with different class/label categories.

Some unauthorized devices are introduced during training
to emulate rogue devices. A binary classifier is trained in a
supervised manner.

o For identification, only one neural network is needed;
the two classes include legitimate and rogue devices.
For example, the work in [6] proposed a so-called Disc.
model for identification.

o For verification, a separate verification neural network
should be trained for each legitimate device m [7]. The
two classes are the DUT m and all other devices (could
be legitimate or rogue). During the test stage, the system
first extracts the claimed identity, m’. It then calls its
corresponding verification model to determine whether
the claimed identity is true.

It is impossible to access all the potential rogue devices
in practice. Whenever a rogue device with similar hardware
impairments to a legitimate device is present but not included
in the training, misclassification may occur.

2) Anomaly/Outlier Detection: We can consider both iden-
tification and verification as an outlier/anomaly detection prob-
lem that aims to confirm whether a newly received signal
belongs to known distributions. Hence, those two tasks can
be implemented using the same deep learning techniques but
with a different outlier definition, as follows:

e Identification determines whether the transmitter belongs
to a group of legitimate devices. In this case, the outliers
refer to rogue devices.

o Verification is used to confirm whether the transmitter is
claiming its true identity. Therefore, the outliers’ identi-
ties are different from their claimed ones. They can be
either legitimate or rogue.

Autoencoder is popular for anomaly/outlier detection [6].

It first encodes the input data to a smaller dimension, and,
then uses a decoder to reconstruct the input. The training data
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Fig. 3. Deep learning-based RFFI classification protocol. CNN is shown as an

consists of signals from legitimate devices for the identification
task or signals from the asserted device for the verification
task. When the test data is from an outlier, a reconstruction
error will be returned. Autoencoder works in an unsupervised
learning manner. There is no need to collect data from outliers
in advance, which is more realistic and accurate than the
binary classifier-based approach. For verification, an individual
anomaly detection model should be trained for each legitimate
device, the same as the binary classifier-based approach.

C. Classification

Most of the existing deep learning-based RFFI work focuses
on the classification task [2], [6], [7], [10], [12]. It is typically
cast as a multi-class classification problem in the deep learning
context. Hence, state-of-the-art supervised deep learning tech-
niques can be exploited. In particular, MLP [10], CNN [2],
[5]-[7], [10], and LSTM [10], [12] are the commonly adopted
architectures for RFFI. As shown in Fig. 3, a deep learning
classification model typically consists of an automatic feature
extraction part and a classification part. The classification is
usually carried out by the softmax function that returns a list of
probabilities representing the confidence levels for each label.
The element with the maximum probability is chosen as the
predicted label.

Deep learning classification is a closed-set classification
problem because models are trained on a fixed number of
known classes. The model cannot distinguish unknown de-
vices, which will instead be classified as legitimate devices
whose RFF features are closest. This will cause a significant
security loophole since we cannot prevent rogue devices.

D. Joint Identification and Classification

Some deep learning-based approaches can achieve both
identification and classification. These solutions will first de-
termine whether the candidate IoT device is legitimate or
rogue. If it is a rogue device, its access is denied. If it is
legitimate, the protocol will further infer its device index.

A common and straightforward way will be combining two
deep learning models to achieve identification and classifica-
tion separately. For example, the work in [12] used generative

example.

adversarial networks (GANs) to detect rogue devices for
identification and CNN as well as LSTM for classification. The
approach is however cumbersome as the two models should
be trained separately.

There are efforts to achieve joint identification and classi-
fication using a single deep learning model. For example, the
authors in [6] borrowed the open set recognition concept and
adopted the OpenMax architecture to classify both known and
unknown devices. Specifically, an additional class representing
unknown devices is added to the trained neural network model
by adjusting the softmax outputs. Meanwhile, the work in [5]
cleverly exploits the softmax output information to achieve
rogue device detection and legitimate device classification
simultaneously. Specifically, when a rogue device arrives, the
outputs of the softmax function will not have an obvious
winner, which can be inferred there might be a rogue device.

V. HYBRID RFFI PROTOCOL
A. Overview

In IoT applications, devices may join and leave the net-
work frequently, which leads to a variable number of IoT
devices. This poses challenges to RFFI design. Deep learning
is excellent at automatic feature engineering but it is not
scalable in terms of changing the number of classes/labels.
In contrast, distance-based classifiers can be easily adjusted
to different device numbers. Therefore, a hybrid protocol can
synergistically leverage their advantages [11], specifically, the
automatic feature extraction capability of deep learning and
the versatile authentication functionality of a distance-based
classifier.

B. Protocol Design

The proposed hybrid architecture is illustrated in Fig. 4 and
is exemplified with CNN as the deep learning feature extractor,
which consists of training, enrollment, and authentication
stages.

1) Training: A deep learning classification model is trained,
following the procedure described in Section IV-C. Once it is
successfully trained, the dense layers will be taken out and
the remaining layers will serve as a feature extractor. More
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Fig. 4. Hybrid RFFI protocol. CNN is shown as an example of training a feature extractor.

training devices are preferred to produce a deep learning model
with a better generalization capability.

2) Enrollment: A deep learning-based feature extractor is
used to automatically obtain hardware features. The automatic
feature extraction capability of deep learning models allevi-
ates the difficulties of extracting engineered features and can
exploit all the underlying hardware impairments. For each
DUT, several packets will be transmitted and their RFF will
be extracted by the deep learning-based feature extractor and
saved into the database. This completes the enrollment stage.

3) Authentication: During the authentication stage, when
a test signal arrives, the receiver will first extract the cor-
responding feature and compare it against the database. The
similarities between the feature of the test signal and the ones
in the database can be quantified by their distances.

When kNN is used as the classifier, the labels of the K
devices with the smallest distances will be returned. When the
feature distances between the candidate device and the ones in
the database are larger than a threshold, the candidate device
is considered rogue (identification task). When the candidate
device is legitimate, the classification is further performed,
which is achieved by selecting the mode value of the returned
K labels as the device index. We can also extract the claimed
device identity and its RFF features for verification.

VI. CHALLENGES AND VISIONS FOR FUTURE WORK
A. Security

In general, the security analysis of RFFI is relatively limited
and remains an open problem. Defining an impersonation
attack to deep learning-based RFFI is difficult because raw
signals are used instead of explicit features, but it is still pos-
sible. GAN has been leveraged to generate physical waveforms
that are the same as the ones emitted by legitimate users [14],
which will embed the intrinsic hardware impairments.

B. Impact of Wireless Channel

The dynamics of wireless channels will impact RFFI. As the
training and test will be probably carried out at different times

and locations, channel effects at these stages will be different.
A engineered feature-based protocol is less affected by channel
variations because channel effects are often mitigated during
the estimation and extraction of hardware features. However,
they cannot be removed completely, especially in rich multi-
path environments. The channel variations will have a more
pronounced impact on deep learning-based protocols because
the channel impact is more severe to raw IQ samples [4]. Data
augmentation can be leveraged by augmenting the collected
data with varying channel conditions [11], but performing
an accurate and comprehensive channel augmentation remains
challenging.

C. Environment Effect

The stability of RFF features against environmental varia-
tion is currently overlooked. Oscillator is probably the most
unstable component as it suffers from temperature and time
drift. The work in [10] and [15] has revealed that frequency
offsets of LoRa and WiFi devices change with temperature.
However, the overall stability of RFFI systems is not clear
because long-term evaluation lasting years is not available.

D. Dataset Construction

Different from other deep learning research where a large-
scale dataset is available for benchmarking, e.g., the Ima-
geNET for image classification, a comprehensive and open-
source wireless waveform dataset is missing, which limits
performance evaluation and comparison for RFFI [4].

o Limited Number of DUTs: As it is time-consuming to
carry out experiments for capturing wireless transmis-
sions, most prior art only involves a limited number of
devices. The biggest dataset is the DARPA dataset [4],
which includes 5,117 WiFi devices with 166 transmis-
sions on average for each device as well as 5,000 ADS-B
devices each with 76 transmissions per device on average.
However, other works typically use less than 100 DUTs.



For example, the work in [8] employed 54 ZigBee nodes,
which is the largest ZigBee population investigated by far.

o Limited Scenarios: It is important to evaluate RFFI proto-
cols in as many scenarios as possible for demonstrating
their practicality, such as different multipath levels (in-
door, outdoor, urban, rural) and various SNR values.

e Open Source: There are currently very few open-source
datasets suitable for RFFI. There are few examples
though such as the WiFi dataset in [4] and the LoRa
dataset in [11].

It is indeed challenging but necessary for the community
to work together and contribute to an open-source RFFI
dataset. It should ideally cover as many candidate wireless
technologies as possible. A guideline needs to be agreed upon
in advance, which can ensure that the same procedure is
followed and compatible data sources can be created.

VII. CONCLUSIONS

In this paper, we have provided an overview of RFFI
for device identification, verification and classification. We
have outlined and compared three types of RFFI protocols,
namely engineered feature-based protocols, deep learning-
based protocols and a hybrid protocol. Our overview shows
that RFFI is a promising device authentication technique but
there are still several challenges that must be addressed before
reaping its full potential.
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