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Thesis Abstract 

Protein phosphorylation is a fundamental post-translation modification (PTM) that regulates 

protein function and is well-studied in relation to cell signalling pathways and disease. The 

development of high-throughput proteomics pipelines such as tandem mass spectrometry has 

led to the discovery of large numbers of specific phosphorylated protein motifs and sites, 

focussing primarily on the phosphorylation of serine, threonine and tyrosine amino acids. 

However, there is no database-level control for the false discovery of sites, likely leading to 

the overestimation of true phosphosites reported in phosphorylation resources. In addition, the 

vast majority of phosphosite discoveries are made in humans, with many other species only 

having a few reported phosphosites. Furthermore, only a small fraction of the currently 

characterised human phosphoproteome has an annotated functional role and the studies 

focusing on predicting the functional relevance of phosphosites on a large scale using 

techniques such as conservation analysis are scarce. As a result, this Thesis profiled the human 

phosphoproteome to estimate the true extent of protein phosphorylation and understand the 

evolutionary and functional trends of phosphosites. 

First, in Chapter 2, we developed and validated an accessible Python pipeline which can 

determine the conservation of specific amino acid sites such as PTMs and perform several steps 

of a typical conservation analysis in a single step. In particular, for each query protein sequence, 

the pipeline identifies its likely homologous sequences from the selected species using the 

BLAST algorithm, generates multiple sequence alignments and calculates the conservation of 

target amino acid sites. In Chapter 3, we profiled the human phosphoproteome and developed 

a method of independent phosphosite FDR estimation in large datasets. We ranked all reported 

human phosphosites into sets according to the amount of identification evidence they had in 

public databases and analysed the sets in terms of conservation across 100 species, sequence 

properties and functional annotations. We demonstrated significant differences between the 

sets and estimated that around 62,000 Ser, 8,000 Thr and 12,000 Tyr phosphosites in the human 

proteome were likely to be true, which is lower than most published estimates. Furthermore, 

our analysis estimated that 86,000 Ser, 50,000 Thr and 26,000 Tyr phosphosites were likely 

false positive identifications, highlighting the significant potential of false positive data in 

phosphorylation databases. In Chapter 4, we analysed the evolutionary conservation of human 

phosphosites across different groups of eukaryotic species and linked their conservation 

patterns to diverse protein functions. Finally, we applied the conservation analysis to predict 

over 1,000,000 potential phosphosites in eukaryotes by using confident human phosphosites as 

a reference set. Our results highlighted the relevance of conservation analysis in studying 

phosphosites and can ultimately be used to improve proteome annotations of several species. 
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Chapter 1 

Introduction and Thesis Aims  

1.1 Abstract 

Proteins are complex molecular structures which have essential roles across all forms of life. 

Therefore, understanding the structure and function of proteins is an integral part of any 

biological research. This introductory Chapter begins by providing an overview of protein 

structure to highlight key structural elements involved in protein folding which is an essential 

first step in facilitating protein function. The Chapter then summarises various biological 

functions regulated by proteins, such as providing structural support to cells, tissues and organs, 

transporting molecules, facilitating immune response, coordinating signal transduction and 

catalysing various chemical reactions such as phosphorylation, which is an important post-

translational modification of proteins. The exact mechanism and the functional role of 

phosphorylation is then explored in more detail. In addition, this Chapter describes how novel 

phosphorylation peptides and sites are discovered in proteomics studies using traditional 

biochemical approaches and more recent high-throughput techniques based on mass 

spectrometry (MS). Several important statistical methods applied in the analysis of MS-

generated phosphoproteomics data to control the rate of false positive identifications are also 

discussed before providing an overview of key bioinformatics resources that store 

phosphorylation data. After that, the Chapter highlights how evolutionary conservation 

analysis can be applied to study the functional relevance and evolution of novel phosphosites. 

Several crucial steps of a typical conservation analysis are also discussed, such as homologue 

sequence searching with BLAST and generating multiple sequence alignments to identify 

conserved protein regions. Finally, the Chapter introduces the basic principle of a functional 

enrichment analysis used to study protein function and concludes by outlining the main aims 

of this Thesis. 
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1.2 The Fundamentals of Protein Structure 

Proteins are complex molecular structures which have essential roles across all forms of life. 

They are synthesised in a process known as translation which takes place in cell’s ribosomes. 

Proteins are incredibly diverse and perform a variety of important functions depending on their 

structure[1]. The structure of proteins is made up of four key levels. The first level is the 

protein’s primary structure which is a chain of different amino acids joined together by peptide 

bonds. There are 20 different amino acids which can make up the primary structure. The overall 

amino acid sequence of the polypeptide chain is encoded by its underlying genetic code, or 

deoxyribonucleic acid (DNA), and it ultimately determines the protein’s folding properties, 

function and molecular interactions[2]. In particular, a protein’s primary structure contains 

specific short and recognisable amino acid sequences known as motifs which are characteristic 

of protein’s structural or functional properties[2]. These sequences are often conserved between 

species or proteins from the same protein family that share a common evolutionary ancestor[2]. 

The secondary structure of a protein is formed when the amino acid chain folds into regular 

repeated patterns through the formation of hydrogen bonds between the backbone chemical 

groups of the chain (carbonyl and amide groups)[2]. This ensures structural stability and 

maintains a protein’s folded state needed for its function[3]. The most common secondary 

protein structures are alpha helices and beta sheets. They are eventually folded further into a 

more complex, three-dimensional tertiary structure which represents the overall arrangement 

of the protein’s polypeptide chain[2]. The formation of a stable tertiary structure under an 

organism’s physiological conditions is critical for a protein to be able to perform its biological 

function as it creates a surface with specific physical and chemical properties required for 

molecular interactions[4]. It is also possible for multiple folded polypeptide chains to bond 

together by association through chemical interactions such as hydrogen bonds, disulphide 

bonds and van der Waals forces to create a protein’s oligomeric (i.e., containing multiple units) 

quaternary structure, although not all proteins have this structural level[2, 4]. An example of a 

protein with a quaternary structure is haemoglobin which is made up of two alpha-globin and 

two beta-globin polypeptide chains that play a role in oxygen transport[5]. Additional complex 

structural protein motifs can be formed, which often contribute to protein’s function and 

mechanical stability. For example, coiled coils are combinations of multiple alpha helices 

wrapped around each other as a coiled structure involved in facilitating protein-protein 

interactions and providing structural support to the cell[6]. Finally, regions of protein’s 

polypeptide chains can fold independently from the rest of the protein’s structure to form 
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compact and stable units known as protein domains which can contribute to protein’s overall 

function[2]. An example of a protein domain is SH3 which is made of 50-60 amino acids and is 

found in many proteins involved in cell signalling[7]. The presence or absence of specific 

protein domains can be used by researchers to classify proteins into families and infer their 

evolutionary relationship[8].  

The structure of proteins can be determined and analysed using a variety of experimental 

techniques including traditional approaches such as x-ray crystallography[9] and nuclear 

magnetic resonance spectroscopy[10], as well as more recent techniques based on mass 

spectrometry[11]. Newly established protein structures, their annotations and underlying amino 

acid sequences are stored in several publicly accessible bioinformatics resources. For example, 

Protein Data Bank (PDB) provides tools for the analysis and visualisation of experimentally 

determined, three-dimensional protein structures and contains over 200,000 entries[12]. Another 

important computational database is UniProt which is a comprehensive protein resource that 

contains data for over 220 million protein sequences from a wide range of species and offers 

high-quality, manually curated structural and functional sequence annotations[13]. For each 

protein entry, UniProt provides tools to explore its sequence, domains and families, subcellular 

location, post-translational modifications (PTMs), evolutionary relationships and its functional 

significance in biological processes and disease[13]. In addition, UniProt provides links to 

relevant literature and other bioinformatics resources including PDB to allow further analysis 

of target proteins, making it a valuable resource for protein analysis[13]. 

1.3 Functional Significance of Proteins 

The final folded structure of a protein defines how it interacts with other molecules and this 

interaction forms the basis of how proteins function. In fact, most proteins function by binding 

to another molecule, known as a ligand, using a complementary binding site made of a specific 

amino acid arrangement which is brought together during protein folding[8]. Examples of 

ligands include nucleic acids, small molecules (adenosine triphosphate (ATP), amino acids, 

lipids, carbohydrates, etc.), ions and other proteins[8]. Ligand specificity and affinity varies 

between proteins and depends on their structure, function and metabolic conditions, with some 

proteins also having multiple binding sites which allows them to interact with different ligands 

simultaneously[8]. 

In general, proteins are involved in the structural and functional maintenance of organism’s 

cells, tissues and organs by performing a variety of important roles. For example, the 
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importance of proteins with structural roles can be highlighted by actin proteins which bind 

together to form microfilament networks that make up a part of a cell’s cytoskeleton and 

therefore provide structural support to the cell, establish its shape and regulate cell division and 

movement[14]. In addition, actin can interact with filaments made of myosin motor proteins to 

assist the development of muscle structure and allow muscle contraction[15]. Furthermore, a 

group of structural proteins known as intermediate filaments (for example, keratin and 

vimentin), which are typically thicker than microfilaments, provide additional mechanical 

strength and support within a cell’s cytoskeleton and are prevalent in tissues affected by 

physical stress such as bone and epidermis[16, 17].  

Proteins can also facilitate the transport of molecules and ions to regulate homeostasis 

(maintenance of stable internal conditions) and assist nutrient uptake, toxin removal and cell 

signalling[8]. For example, ABC transporter proteins are membrane-bound, ATP-powered 

pumps which transport a variety of molecules across cell membranes including metal ions, 

amino acids, carbohydrates, lipids and toxins[8, 18]. In addition, proteins called aquaporins are 

channel-forming structures which facilitate transmembrane diffusion of water and ensure tissue 

hydration, waste removal and nutrient uptake across all forms of life[19]. Some proteins act as 

hormones which are secreted chemical messengers that coordinate molecular processes by 

binding to specific cell surface receptors and ultimately eliciting a physiological response[20]. 

For example, insulin and glucagon are protein hormones which are secreted by the pancreas to 

regulate carbohydrate metabolism[20]. Another example of a protein hormone is growth 

hormone (GH) which plays a key role in regulating body growth and development in humans 

and other animals. In particular, GH promotes tissue and organ growth while also regulating 

nutrient metabolism[20]. Proteins also play an important role in the immune system. Antibodies 

are proteins with high ligand specificity, which are produced by the immune system in response 

to an infection by foreign molecules. They work by recognising and binding to its target 

molecule called an antigen and the formation of this antigen-antibody complex either marks 

the foreign molecule for destruction by other cells or directly neutralises it[8].  

Finally, proteins can act as biological catalysts known as enzymes, the role of which is to speed 

up and organise chemical reactions within various essential biological pathways involved in 

functions such as cell development, metabolism, protein synthesis and many others[8]. In any 

chemical reaction catalysed by an enzyme, the binding of the involved enzyme to one or more 

of its specific ligand molecules, also known as substrates, modifies the molecules which lowers 

the activation energy needed for the reaction to occur, ultimately accelerating its speed[21]. In 
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general, enzymes act by transferring a functional group from one molecule onto another, 

changing the shape of a substrate or repositioning a substrate to optimise its functional 

interactions[21]. The overall rate of a chemical reaction catalysed by an enzyme depends on 

substrate and enzyme concentrations, as well as temperature and pH levels, with different 

enzymes having their own optimal levels[21]. Enzymes can be classified according to 

similarities between chemical reactions that they catalyse. For example, hydrolase enzymes act 

by catalysing the hydrolysis of covalent bonds (i.e., by adding water molecules to break the 

bonds) between amino acids or nucleic acids[8]. This reaction is useful in various biological 

processes such as ATP hydrolysis which releases energy and regulates metabolism[22], or 

protein breakdown which plays a key role in digestion[23] and repair mechanisms[24]. Another 

major class of enzymes called kinases modify proteins by catalysing the addition of a phosphate 

chemical group[8]. This chemical process is known as phosphorylation which is an important 

post-translational modification (PTM) of proteins that plays a significant role in regulating 

various signalling pathways involved in cell cycle maintenance, metabolism, immune response 

and disease progression[25, 26]. In fact, the research described in this Thesis is centred around 

protein phosphorylation and aims to investigate its scope, functional relevance and evolution. 

1.4 Exploring the Mechanism and the Roles of Protein Phosphorylation 

The exact mechanism of protein phosphorylation involves the transfer of a phosphate chemical 

group (PO4) from an ATP molecule onto a particular amino acid residue in the target protein[26]. 

The reaction is catalysed by a kinase enzyme which recognises and binds to a specific sequence 

motif within a target protein that contains the phosphorylated amino acid site. The spontaneous 

hydrolysis of covalent bonds in ATP which occurs in the presence of water and a kinase enzyme 

releases the phosphate group (forming ADP) and the energy required to drive phosphorylation. 

As a result, the kinase enzyme is able to transfer the phosphate onto the target amino acid site 

to modify the protein[26]. Phosphorylation is a reversible reaction in which enzymes called 

phosphatases can remove the added phosphate from the target protein by catalysing the 

hydrolysis of the phosphate bond[26, 27] (Fig. 1). This reversible nature of phosphorylation 

allows protein function to be readily regulated in response to stimuli[26, 27]. Cells contain many 

different kinase and phosphatase enzymes responsible for regulating phosphorylation of 

numerous proteins[8]. For example, several genome sequencing studies identified more than 

500 different kinase-encoding genes in humans alone[28]. In fact, it is estimated that in a typical 

mammalian cell, more than one-third of proteins are phosphorylated at any given time, which 

further highlights the great extent and the importance of protein phosphorylation[8]. 
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Figure 1. A graphical overview of protein phosphorylation. 

 

The most frequently observed and studied phosphorylatable amino acids are serine (Ser), 

threonine (Thr) and tyrosine (Tyr), which are polar amino acids phosphorylated on the 

hydroxyl groups of their side chains through the formation of phosphodiester bonds with 

phosphate groups[29-33]. In particular, the more abundant Ser and Thr phosphorylation plays a 

significant role in many conserved biological pathways involved in signal transduction, cell 

proliferation, metabolism and disease progression. For example, various cell cycle checkpoints 

including mitosis are regulated by serine/threonine kinase enzymes such as cyclin-dependent 

kinase (CDK) and polo-like kinase (PLK) which phosphorylate multiple target proteins and 

promote the activation of downstream molecular pathways involved in chromosome 

segregation, spindle assembly and cytokinesis[34, 35]. As a result, the incorrect regulation of 

those enzymes can lead to uncontrollable cell growth and the development of cancer, thus 

making them promising targets for novel therapeutic drugs[34, 35]. Furthermore, a conserved 

family of serine/threonine kinases called mitogen-activated protein kinases (MAPK) are 

involved in complex functional cascades which regulate cell proliferation and differentiation, 

apoptosis, stress responses and growth factor signalling[36]. Similarly, tyrosine phosphorylation 

plays an important role in various molecular functions conserved across many species[37]. For 
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example, tyrosine kinase Src is made of several functional domains including SH2 and SH3 

which help regulate the phosphorylation of transcription factors, adaptor proteins and other 

kinase enzymes involved in cell proliferation and differentiation, neuronal signalling and bone 

metabolism[38]. In addition, tyrosine phosphorylation is involved in adaptive immune responses 

in animal organisms, where, for example, an enzyme called spleen tyrosine kinase (SYK) 

initiates a cascade of signalling pathways which ultimately lead to the activation and 

proliferation of B cells necessary for the release of antibodies[39]. Protein phosphorylation can 

also occur on less studied, non-canonical amino acids such as arginine (Arg), lysine (Lys), 

histidine (His), cysteine (Cys), aspartate (Asp) and glutamine (Glu) which regulate various 

protein signalling functions in eukaryotic and prokaryotic systems[40]. In fact, a recent large-

scale proteomics study discovered many non-canonical phosphorylation sites (phosphosites) in 

human cells and established their involvement in functions such as transcription and cell 

signalling, further highlighting the general scope of phosphorylation and its functional 

significance[41]. 

In addition to phosphorylation, the regulation of protein function and stability can depend on 

other PTMs, with most proteins having multiple amino acid sites which can be modified[42, 43]. 

Moreover, phosphorylation can interplay with other PTMs as part of PTM crosstalk, where the 

occurrence of one PTM affects the function and localisation of another[44]. For example, the 

activation of tumour suppressor protein p53 which facilitates cellular response to DNA damage 

is regulated by phosphorylation on serine residues which in turn increases the affinity of p53 

for acetyltransferase enzymes that catalyse acetylation (addition of an acetyl group) of a lysine 

residue[45]. Furthermore, the activity of histone H3 protein, which is involved in chromatin 

formation and gene expression, is regulated by multiple PTMs and there is also evidence of 

crosstalk between phosphorylation and methylation (addition of a methyl group) during 

mitosis[46]. 

As highlighted throughout this Thesis, protein phosphorylation is an essential post-translational 

modification involved in regulating many vital conserved molecular functions. As a result, the 

studies of phosphoproteomes are frequent and often focus on discovering, quantifying and 

annotating new phosphorylation sites, motifs and associated kinase enzymes across various 

species[47]. 
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1.5 Discovering Novel Phosphorylation Sites 

The discovery of phosphorylated proteins and their associated phosphosites has been a 

constantly evolving field in proteomics. One of the earliest analytical techniques used to detect 

the presence of phosphorylation in a protein sample is based on radioactive labelling of target 

proteins with 32P (phosphorus-32 isotope), followed by their analysis and visualisation with 

biochemical techniques such as SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis) and autoradiography[48-50]. To increase the accuracy of detecting specific 

phosphorylation events, it has been possible to incorporate the radiolabelling method with a 

technique called Edman sequencing which is used to determine specific amino acid sequences 

of target proteins or peptides and identify phosphorylated amino acids[51, 52]. In addition, 

phosphorylation motifs and sites can be detected using highly specific antibodies that only bind 

to target proteins or known sites in their phosphorylated state[53-55]. The use of phosphorylation-

specific antibodies has allowed the identification and analysis of many novel Ser and Thr 

phosphosites[56-58], as well as less commonly studied Tyr phosphosites[59]. Although these 

techniques can detect phosphorylated protein regions with high accuracy and be used to 

validate phosphosite predictions from proteomics studies, they are only able to process a small 

number of protein samples (i.e., low-throughput) and are often time-consuming[60, 61]. With the 

development of more advanced methods of detecting phosphorylated proteins, the use of low-

throughput approaches is now rare as it lacks the depth of coverage needed in modern 

proteomic workflows. 

Several high-throughput (HTP) methods have been developed to increase the scale of 

phosphosite detection and establish a more comprehensive view of the phosphoproteome[61]. 

Those methods are primarily based on mass spectrometry (MS) which can be optimised to 

detect and characterise phosphorylated peptides in a protein sample[60, 61]. At its simplest, MS 

is a powerful analytical technique which works by identifying and quantifying molecules in 

complex biological samples such as protein mixtures through the analysis of ions with specific 

mass-to-charge (m/z) ratios that correspond to those molecules[62, 63]. A significant 

breakthrough in phosphoproteomics was the development of a technique called liquid 

chromatography-tandem MS (LC-MS/MS) which is routinely used for the accurate 

identification and quantification of phosphopeptides with canonical Ser, Thr and Tyr 

phosphosites[60, 63, 64]. LC-MS/MS includes essential steps during protein sample preparation 

and analysis which enable phosphopeptide isolation and phosphosite detection (Fig. 2).  
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A standard workflow of LC/MS-MS begins with sample preparation which includes the 

extraction of a protein sample from cells or tissues through cell lysis techniques such as 

homogenisation[65]. The proteins are then purified based on their physical properties such as 

mass, charge and hydrophobicity using chromatography techniques[66]. After this, the extracted 

protein mixture is digested into smaller peptides either by protease enzymes such as trypsin or 

through chemical means such as the addition of formic acid[66]. The next key step which allows 

to selectively isolate phosphorylated peptides from the overall peptide mixture in the sample is 

phosphopeptide enrichment[67]. One method of phosphopeptide enrichment is immobilised 

metal ion affinity chromatography (IMAC) which relies on high binding affinity of certain 

metal ions towards phosphorylated amino acid residues[68]. An alternative enrichment method 

involves the use of titanium dioxide (TiO2) which is more selective than IMAC for binding 

phosphorylated peptides and has a lower preparation time, making it ideal for the analysis of 

large and complex protein samples[69]. Furthermore, immunoaffinity-based enrichment using 

antibodies can be applied in combination with LC-MS/MS to specifically isolate 

phosphopeptides with tyrosine phosphosites[70, 71]. Before being introduced into the mass 

spectrometer, the enriched phosphopeptides are separated by their hydrophobicity in solution 

using reversed-phase liquid chromatography (LC) technique which is directly coupled to the 

MS instrument[66]. In a typical mass spectrometer, the eluted peptides, starting from the most 

hydrophilic ones, are first ionised, usually by electron ionisation or electrospray ionisation, and 

the resulting ions are separated based on their m/z value using an electric or magnetic field 

produced by a mass analyser[62]. An example of a commonly used mass analyser is Orbitrap in 

which the ions are orbited around a spindle-like electrode at a very characteristic frequency 

and this frequency of oscillations is converted into m/z values[72]. The separated ions are then 

detected and quantified with a detector to establish their abundance[62]. The resulting data from 

the detector is processed with specialised software such as Proteome Discoverer[73] or 

MaxQuant[74] to generate a mass spectrum which visualises the abundance of peptide ions 

relative to their m/z value, where each peak in the spectrum represents an ion with a certain 

m/z value and the height of the peak corresponds to the abundance of that ion in the sample[62].  
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Figure 2. A standard workflow of LC-MS/MS in phosphoproteomics analysis. Several examples of analytical techniques and computational methods involved in sample 

preparation, MS analysis and data processing are provided.
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Peptide ions with the most intense signals from the first MS step are selected and fragmented 

into smaller ions by techniques such as collision-induced dissociation (CID)[75] and electron 

transfer dissociation (ETD)[76]. For each selected peptide ion (also referred to as the precursor 

ion), its resulting set of fragment ions is analysed by the second mass analyser (MS2) to create 

a fragmentation spectrum which presents their abundance and m/z values within the precursor. 

After that, the experimental fragmentation spectrum from the MS2 step is searched against a 

sequence database to identify the most likely corresponding peptide sequences, also known as 

peptide spectrum matches (PSMs)[67]. To perform the database search, relevant software 

algorithms first pre-process known protein sequences from the sequence databases such as 

UniProt[13] and Reference Sequence Database (RefSeq)[77] in silico, which involves sequence 

digestion and fragmentation to predict their perfect theoretical MS2 spectra[78]. The resulting 

database is searched using the precursor mass to find matching hits with a similar mass. The 

experimental MS2 spectrum from the selected precursor is then compared against the 

theoretical ones to obtain a scored candidate list of likely associated PSMs[78]. Several 

algorithms have been developed to perform database searches and assign PSMs including 

Mascot[79], Comet[80] and Andromeda[81] which vary in terms of PSM scoring approaches and 

search parameters[78]. Confidently identified PSMs are analysed with site localisation 

algorithms to identify potential phosphorylation events on selected amino acids, where each 

target site is assigned a probability score that indicates the likelihood of that site being 

phosphorylated[82-84]. In general, to assign a local probability score, site localisation algorithms 

analyse fragmentation patterns and m/z values of fragment ions, their originating precursor 

ions and the number of potential phosphosites in a given sequence[82-84]. Examples of site 

localisation software and algorithms used in the analysis of PSM data include Ascore[82], 

phosphoRS[85], LuciPHOr[86], Andromeda’s PTM Score[81] and the recently developed 

PTMProphet[87].  

The method of fragmenting specific precursor peptide ions in LC-MS/MS as described above 

is referred to as data-dependent acquisition (DDA)[78]. Although powerful, this method tends 

to be biased towards selecting precursor ions with the highest peak intensity which limits the 

analysis and quantification of peptides with lower abundance. To increase the accuracy of 

peptide quantification, data-independent acquisition (DIA) methods are emerging in 

proteomics which are based on fragmenting all the eluting peptides within a defined m/z 

window during the second MS stage[88, 89]. The DIA methods generate larger amounts of data, 

tend to have higher precision and result in better reproducibility compared to the DDA 
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methods[88, 89]. However, because the precursor ions are unknown in the DIA approach, the 

methods used for database searching and estimating false positive matches are different 

compared to the DDA method. In addition, due to the novelty of the DIA approach, most of 

the phosphorylation data analysed in this Thesis was acquired using DDA experiments. 

Therefore, although the DIA approach is an important development in proteomics, it is 

currently beyond the scope of this research. 

1.6 Evaluating the Reliability of Phosphosite Identifications 

The development and the use of LC/MS-MS in proteomics studies has led to the discovery of 

large numbers of phosphorylation motifs and sites[29-33, 90]. However, researchers must be aware 

that the data resulting from PSM mapping approaches and site localisation algorithms may 

contain incorrect peptide mappings or site identifications (i.e., false positive identifications). It 

is important to reduce the number of resulting incorrect phosphosite predictions that end up in 

downstream analysis as they can lead to inaccurate biological conclusions regarding the 

relevance of phosphosites in specific signalling pathways or their role in kinase-substrate 

relationships. Several statistical processes are therefore applied, either within the search engine 

used for PSM mapping, or in a downstream site localisation software, to calculate additional 

statistics which reflects the probability that the mapped PSMs or localised phosphosites are 

true identifications[91-93].  

For example, the false discovery rate (FDR) of PSMs reflects the ratio between false positive 

PSM identifications and the total number of identified PSMs above a certain score threshold[92]. 

A common target-decoy approach can estimate FDR in a resulting set of mapped peptides 

following a PSM database search[92]. This approach involves searching an artificial negative 

control decoy database which contains protein sequences that are similar to the sequences in 

the actual searched database in terms of their length and amino acid composition[92]. The decoy 

database is usually generated by randomising or reversing the amino acid sequences from the 

database used in PSM searching[92, 94]. Assuming that the likelihood of obtaining incorrect PSM 

mappings is equal between searching the decoy and the real target database, it is possible to 

estimate FDR by taking into account the number of detected decoy PSMs above a certain score 

threshold which would infer the number of expected false positive identifications from 

searching the target database[92]. As a result, the use of FDR and FDR-related statistical scores 

such as q-value (used for global FDR estimation across all mapped PSMs) and posterior error 

probability (used to estimate local FDR for each individual PSM) allows researchers to detect 
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highly confident PSMs and control the rate of false positive PSM mappings in their analysis 

which is usually set to 1%[95, 96]. 

When it comes to assessing the reliability of phosphosite localisation in peptide sequences, 

additional statistical scoring methods are applied by site localisation algorithms to estimate the 

rate of incorrectly localised phosphosites, also referred to as the false localisation rate (FLR)[93]. 

Site localisation algorithms vary in terms of mapping their localisation probability scores to 

FLR estimation, with the overall performance also depending on the fragmentation mode and 

resolution used in the MS pipeline[97]. For example, PhosphoRS suggests that obtaining a local 

probability score of 0.99 for a particular PSM would reflect an FLR of 1%[85]. However, it does 

not predict global phosphosite FLR across all PSMs. In addition, LuciPHOr estimates FLR by 

using decoy phosphopeptides in which random amino acids are artificially phosphorylated[86]. 

This creates a decoy fragment ion distribution with random patterns which is then compared to 

the ion distribution of the candidate peptide and the differences between the two populations 

are used to estimate FLR, where larger differences indicate lower FLR[86]. Additional methods 

have been proposed and validated to independently estimate global FLR for site localisation 

including using decoy amino acids which cannot be phosphorylated in nature such as alanine 

and leucine[98, 99]. However, there is no general agreement in terms of how FLR should be 

estimated[93].  

To conclude, although LC-MS/MS and computational analysis is generally recognised as very 

effective and reliable for phosphosite detection, from each study it is likely that there is some 

element of remaining false discovery of peptides and sites wrongly localised, depending on the 

statistical thresholds applied[93]. Furthermore, the guidelines for dealing with FLR are still 

evolving and unfortunately, FLR estimation methods are not consistently applied in reported 

phosphoproteomics studies that identify phosphorylated peptides and sites. As a result, it is 

likely that published studies contain considerable numbers of falsely localised phosphosites 

which can lead to overestimation of the total number of known true phosphosites if database 

providers do not control for false discovery rate across multiple datasets[100]. The issue of 

phosphosite FDR across large datasets is explored further in Chapter 3, where the whole human 

phosphoproteome is profiled to independently estimate the true extent of protein 

phosphorylation and the proportion of false positive phosphosite identifications.  
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1.7 Phosphorylation Databases 

Following confident identification of phosphopeptides and localisation of target phosphosites 

in proteomics studies, the resulting data is deposited and organised in relevant phosphorylation 

databases which can be accessed by researchers to assist their projects. There are currently over 

60 available phosphorylation databases which differ in terms of species covered, the sources 

of phosphorylation data and the number of reported phosphosites[101]. In addition, global 

databases such as the previously mentioned UniProt provide relevant online tools to promote 

further exploration of reported phosphorylation data, including phosphosite conservation, 

predicting kinase-substrate relationships and establishing phosphosite relevance and 

interactions in protein functions and disease development[13]. UniProt reports phosphorylation 

data for many species and identifies phosphosites using several methods including manual 

assertion based on published experimental evidence, inference from sequence similarity 

evidence obtained using a related experimentally characterised and annotated protein, or the 

use of phosphorylation data imported from another database[13]. Therefore, UniProt is one of 

the most accessible resources containing high-quality phosphorylation data.  

Another well-cited, comprehensive and publicly available phosphorylation resource is 

PhosphoSitePlus (PSP) which contains experimental mammalian PTM data, primarily focusing 

on human phosphorylation[57]. PSP provides structural and functional information about 

specific modification sites and offers tools for further data interpretation in the context of 

biological pathway regulation, disease development and cellular localisation of target sites[57]. 

In addition, a recent update incorporates a powerful tool for predicting and exploring kinase-

substrate relationships based on a given peptide sequence[102]. As of February 2023, PSP 

reported nearly 300,000 Ser, Thr and Tyr phosphosites in over 20,000 non-redundant protein 

sequences from several species. Phosphorylation data integrated in PSP comes from several 

sources including manually curated reviews of literature describing high-throughput tandem 

MS studies and low-throughput experiments, as well as from in-house, unpublished MS 

studies[57]. However, the vast majority (>95%) of phosphosite identifications in PSP comes 

from HTP studies alone and many sites were identified in just a single reported PSM[57]. As 

discussed previously, phosphosite identifications from MS studies are stochastic by nature, 

especially when phosphosite false discovery rate is not controlled for. As a result, PSP 

recommends that researchers should be cautious when accepting phosphosites from MS studies 

alone as true identifications. Nevertheless, PSP datasets are widely used in proteomics studies 
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and PSP remains one of the most cited phosphorylation resources with its latest release having 

over 2,000 citations[57]. 

Large amounts of phosphorylation data can also be found in PeptideAtlas (PA) which is a 

compendium of phosphopeptide observations and their associated annotations obtained from 

large tandem MS datasets[103]. To ensure high and consistent quality of reported 

phosphopeptide identifications, the input MS data in PA is typically processed through the 

Trans-Proteomic Pipeline (TPP) which is a collection of software tools specifically designed 

for validating LC-MS/MS data[104]. For example, PeptideProphet is a statistical tool which is 

used in TPP to validate the results of a search engine search during PSM assignment by 

applying the previously mentioned target-decoy approach for FDR estimations[94, 105]. 

PeptideProphet is applied in combination with iProphet which is a tool designed to further 

validate peptide matches by combining the evidence from multiple assignments of the same 

PSM by different search engines, as well as collating evidence from multiple PSMs for the 

same target peptide[106]. Furthermore, the resulting PSMs are statistically mapped to their 

potential protein candidates using ProteinProphet[107]. The latest PA builds also incorporate the 

use of the PTMProphet algorithm for phosphosite localisation where each potential 

phosphosite within an observed PSM is assigned a probability score between 0 and 1 of being 

phosphorylated[87]. Phosphorylation evidence from PSP and PA is further evaluated in Chapter 

3, where FDR is independently estimated for the sets of human Ser, Thr and Tyr sites with 

varying amounts of cumulative evidence available in those resources. 

Additional phosphorylation databases provide peptide and site identifications for specific sets 

of species. For example, Human Protein Reference Database (HPRD) contains experimentally 

verified PTMs and their annotations for over 15,000 human proteins[108]. HPRD can also be 

used to explore kinase-substrate relationships by integrating the PhosphoMotif Finder tool 

which contains a collection of phosphorylation motifs and their associated kinase enzymes 

from published literature[90]. Another database, Plant PTM Viewer, is a central resource for 

investigating PTMs in plant species which stores comprehensive phosphorylation data for 

model plant organisms such as A. thaliana (Arabidopsis), O. sativa (rice) and Z. mays (maize) 

and provides the details of relevant experiments and validation techniques used to identify the 

target sites[109]. In addition, the iProteinDB database provides information on PTMs in several 

Drosophila species and offers a comparative analysis of identified sites with other model 

organisms[110]. 
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The general scope of phosphorylation studies is mostly limited to a specific set of species, with 

humans and commonly studied model organisms (e.g., mouse, flies, worms and plants) having 

the most phosphosite annotations, and other species (e.g., several vertebrates, invertebrates and 

lower eukaryotes) having very few or no identified phosphosites at all[13, 57, 111]. The process of 

phosphosite identification and proteome annotation can be expensive and time-consuming. 

Therefore, proteomics studies are often designed around benefiting human life and improving 

the understanding of human biology and disease[112]. Despite this, only a small fraction of the 

currently characterised human phosphoproteome has an annotated functional role[13, 57, 113]. 

This is likely because the rate of phosphosite discovery is far greater than the rate at which 

each individual site or motif can be analysed experimentally and validated in terms of 

functional annotations. In addition, several studies suggested that a significant portion of 

phosphosites may have no clear functional relevance[114, 115]. The difficulty in distinguishing 

functionally significant phosphorylated regions from those that do not contribute to protein 

function is exacerbated by the added complexity of proteins having multiple phosphorylated 

sites within their sequence, as well as several kinase enzymes being able to phosphorylate 

multiple sites[30, 31]. The identification and validation of a protein’s functionally significant 

phosphosites is therefore a crucial step in predicting its biological function, understanding its 

molecular interactions and directing downstream analysis[116]. As a result, one of the main aims 

of this Thesis is to analyse the functional relevance of human phosphorylation sites and use 

characterised confident human phosphosites with strong identification evidence as a reference 

set to predict phosphosites in eukaryotic species which may not have comprehensive 

phosphoproteome annotations. This is achieved in Chapter 4 by applying conservation analysis 

to study protein sequences from the reference human proteome and analyse the evolutionary 

and functional trends of their associated phosphosites which are expected to have diverse 

conservation patterns across groups of eukaryotic species. 

1.8 The Basic Principle of Conservation Analysis 

The conservation analysis in proteomics involves comparing the amino acid sequence of a 

protein in question to the sequences of its homologues (i.e., proteins that have a common 

evolutionary ancestor) and identifying local regions of similarity which are likely to have a 

common functional implication amongst the compared proteins[116]. It is possible, however, 

that common protein ancestry may not necessarily infer functional similarities, especially when 

only a small portion of a target sequence is conserved, or if known functional annotations of 

conserved homologues are inaccurate[117-119]. As a result, a careful examination of common 
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protein features such as protein domains, their presence and conservation across homologous 

sequences in addition to the overall sequence conservation could be considered to enhance the 

accuracy of predictions surrounding functional relevance[118]. Nevertheless, conservation plays 

a central role in research surrounding model organisms and how they can be used to study 

human biology and disease[112, 120]. This is highlighted by various studies of organisms such as 

flies[121], worms[122], yeast[123] and mammals[122, 124] that uncovered novel molecular pathways 

and demonstrated a direct functional connection of those pathways to human biology by 

analysing conservation of the involved proteins[120, 122].  

When it comes to studying the evolution and function of phosphorylated protein regions, it is 

generally hypothesised that functionally significant phosphosites would be highly conserved 

because their mutations to non-phosphosites would alter protein function and ultimately hinder 

evolutionary selection[125, 126]. Several studies demonstrated that Ser, Thr and Tyr phosphosites 

are indeed significantly more conserved compared to non-phosphosites in general[113, 126]. This 

observation is examined further in Chapter 3, where the conservation is assessed between 

human phosphosites and characterised non-phosphosites in the same protein sequences. In 

addition, assuming that phosphosites are generally highly conserved, Chapter 3 applies the 

conservation analysis to separate confident human phosphosites from likely false positive 

identifications. 

1.9 Identifying Homologous Protein Sequences 

A typical conservation analysis of a query protein sequence begins with identifying its 

homologous sequences which can be done by performing a sequence search against protein 

sequence databases and establishing regions of excess sequence similarity[127]. An example of 

a popular protein sequence database is UniProt’s Swiss-Prot which contains hundreds of 

thousands of manually curated entries and provides comprehensive sequence annotations[13]. 

Other widely used protein resources include RefSeq which contains sets of well-annotated 

reference sequences[77], and the Protein Data Bank (PDB) which also links protein sequences 

to their relevant three-dimensional structures[128]. 

One of the most reliable and widely used methods for searching sequence databases and 

identifying local regions of similarity between two amino acid sequences is Basic Local 

Alignment Search Tool (BLAST) and in particular, its blastp algorithm which analyses query 

protein sequences against a protein database[129, 130]. The query sequences are typically 

provided in standardised FASTA format where a sequence of amino acids is preceded by a “>” 
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symbol and contains relevant protein ID tags and descriptive sequence information. The 

BLAST algorithm begins by processing the query protein sequence to filter out any low-

complexity regions (i.e., sequence regions comprised of a limited set of amino acids, often 

containing repeats[131]) if required. The query sequence is then divided into shorter sequences 

of fixed length (also referred to as “words”) to make a sequence list which is to be searched 

against the database. Because identical matches are not always made, the initial list of “words” 

is also expanded to include neighbouring “words” of the same length which have a certain 

similarity score to their initial “word”. The similarity score of the neighbours is reflected by a 

combination of individual amino acid matches and differences relative to the original “word”. 

Those scores are defined by a selected substitution matrix, where the exact amino acid matches 

typically produce the highest score, favourable (or likely) amino acid substitutions have 

positive values and unlikely substitutions have negative values. An example of a commonly 

used scoring matrix in protein alignments is BLOSUM (BLOcks SUbstitution Matrix), with 

BLOSUM62 being a default option in blastp, which is based on the relative frequencies and 

probabilities of substitutions between amino acid pairs[132]. The resulting lists of “words” 

containing the “word” itself and its high-scoring neighbours, which have a similarity above a 

certain threshold (also known as the neighbourhood word-score threshold[133]), are searched 

against the sequence database to find the exact (conserved) matches. Once a match is made and 

aligned (seeded), the alignment is extended in both directions by first using a gap-free extension 

method which continues as long as the alignment score relative to the composition of the query 

sequence increases and does not fall below a certain value (i.e., the drop-off value), or until a 

maximum query length is reached. The resulting high-scoring segment pairs are further 

extended by the introduction of gaps which consider insertion and deletion mutations. The final 

pairwise alignment is assigned a Maximum score which reflects the overall quality of the 

alignment by taking into account the length of the alignment, any rewards for matched amino 

acids between the compared sequences and any penalties for mismatches. BLAST also 

incorporates a statistical parameter called an Expectation value (E-value) which represents the 

number of times an alignment with a given score can be obtained by chance when the query 

sequence is searched against a random protein database of the same size. Therefore, alignments 

with high Maximum scores and low E-values are unlikely to occur by chance and are instead 

likely to represent homologous sequences[134]. BLAST is applied throughout this Thesis as part 

of the conservation analysis, where it is used to identify potential homologues of the target 

human proteins in different species (orthologues) to help establish how conserved human 

phosphosites are across eukaryotes. 
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1.10 Comparing Multiple Protein Sequences 

Once the likely homologue candidates of the query protein sequence are selected, the next step 

of a conservation analysis involves a sequence comparison, which is done by generating and 

examining a multiple sequence alignment (MSA) between the full query sequence and the 

sequences of its matched homologues[135, 136]. MSAs provide information about the similarity 

of the primary structure between the compared proteins, which can in turn be used to make 

predictions about their phylogenetic relationship and functional similarity by identifying 

conserved functional amino acid sites and domains[136]. In a traditional MSA, the compared 

protein sequence entries are aligned as rows and the amino acid sites are split into columns, 

with indels (gaps) being added to account for any insertion and deletion mutations between the 

sequences. The degree of conservation can be assessed for each location within an MSA either 

as a column-wise score or at a global sequence level with several different conservation scores 

and scoring algorithms available[116, 137]. Additional software tools are applied for the analysis, 

interpretation and annotation of MSAs such as MEGA (Molecular Evolutionary Genetic 

Analysis)[138] and Jalview[139].  

There are many published computational algorithms available for generating MSAs which 

differ in terms of their speed, accuracy and approaches used for sequence comparisons[140, 141]. 

For example, ClustalW[142] is one of the earliest and most widely used MSA methods which 

applies a progressive, matrix-based alignment approach, where scored pairwise alignments are 

first made between all sequences to generate a distance matrix, which represents the divergence 

of each sequence pair. The distance matrix is then used to calculate a phylogenetic tree with 

the neighbour-joining method[143] where the branch lengths are proportional to the estimated 

evolutionary divergence. Finally, the branching order of the resulting tree is used to guide the 

process of the sequence alignment in a progressive manner, starting from the two closest 

sequences and then gradually adding more distant ones. Since the release of ClustalW, many 

other MSA algorithms with superior performance have been developed and benchmarked[140, 

141]. The popular notable examples of such algorithms include MAFFT[144], MUSCLE[145], 

Clustal Omega[146] and T-COFFEE[147]. The choice of an MSA tool generally depends on the 

research goal, the desired accuracy and execution time, the available computational power and 

the dataset size[148]. In particular, MUSCLE has proven to be more suitable for large-scale 

alignments (i.e., alignments involving longer sequences and/or many sequences at once) when 

compared to other methods and its application can be easily integrated into computational 

pipelines and programming languages[145]. As in ClustalW, the algorithm of MUSCLE is also 
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based on a progressive approach, but it includes additional iterative refinement steps which 

increase the accuracy of the alignment and gap placement[145]. MUSCLE refines the alignment 

until a point of convergence is reached where the alignment cannot be improved further or if a 

defined maximum number of iterations is met.  

An example of an alignment generated by MUSCLE and visualised in Jalview is demonstrated 

in Figure 3, where the sequence of a human SH2 domain-containing protein 3C (SH2D3C) is 

compared against its potential orthologues in eukaryotic species. SH2D3C plays a role in 

regulating cell adhesion and migration[149] by using a conserved protein domain SH2 which is 

typically involved in a variety of signalling pathways[150]. In addition, SH2D3C has known 

functional Tyr278 and Tyr283 sites in its sequence which are phosphorylated during cell 

signalling pathways[13, 151]. The example MSA in Figure 3 was able to identify the conserved 

SH2 domain, which spans between positions 220 and 319 in the human sequence, and 

distinguish it from the less conserved disordered protein regions which are found earlier in the 

sequence. In addition, the alignment successfully detected the conserved functional tyrosine 

phosphosites. This highlights how such analysis can be used to make evolutionary and 

functional conclusions about this protein and its relevant sites. 

Overall, MSAs play an integral role in conservation analysis when comparing multiple protein 

sequences, understanding evolutionary relationships and inferring protein regions of functional 

relevance. This is further highlighted by a range of recent conservation studies which, for 

example,  examined SARS-CoV-2 spike protein to understand the transmission of COVID-19 

between species and its emergence in humans[152, 153], identified liver cancer-relevant mutations 

in a lipid-binding protein domain called START[154] and explored conserved anti-fungal 

defence mechanisms in plant species[155]. In addition, several examples of MSAs are 

demonstrated in Chapter 4 where they are used to visualise different conservation patterns of 

human phosphosites across various groups of eukaryotic species. 
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Figure 3. Sections of a multiple sequence alignment between human SH2 domain-containing protein 3C (shown at the top) and its potential orthologues from 60 eukaryotic 

species. The alignment was generated using MUSCLE and visualised with Jalview. Functional sites Tyr278 and Tyr283 are highlighted by black boxes and red labels underneath. 

The flanking positions of each alignment section are also provided which correspond to the site positions in the human sequence. 

 

 

 



30 
 

The described steps of a typical conservation analysis can be automatically performed by 

several publicly available computational pipelines, which can identify homologues, generate 

MSAs and assess conservation in a single step. The key examples of such pipelines include 

ConSurf[156], ACES[157], PANTHER[158] and Ensembl Compara[159], some of which are further 

discussed in Chapter 2. However, it is important to note that none of the existing conservation 

pipelines can easily and efficiently determine the conservation of multiple protein targets at 

once across several species on a large scale. One of the aims of this Thesis is to establish global 

evolutionary and functional trends of human phosphosites. As a result, it is important to have 

a reliable methodology in place which can determine the conservation of every target site in 

the human phosphoproteome across a large number of eukaryotic species. The development 

and validation of such method is described in Chapter 2 where a computational conservation 

pipeline is built for large-scale evolutionary analysis of multiple protein sequences and species. 

1.11 Functional Enrichment Analysis of Proteins 

As previously highlighted, the analysis of a protein’s function is crucial in understanding its 

associated biological pathways and molecular interactions. In addition to conservation analysis, 

a commonly used technique to infer the functions of specific protein groups is functional 

enrichment analysis[160]. The basic principle of the functional enrichment analysis is to identify 

functional annotations which are significantly overrepresented (enriched) in a target list of 

proteins when compared to a control background set. A standard vocabulary system used for 

classifying and describing functional annotations is Gene Ontology (GO) which organises the 

annotations, referred to as GO terms, into a hierarchical order according to the three main 

groups: cellular component, molecular function and biological process[161]. Each GO term 

represents a specific biological concept and is assigned to proteins based on experimental 

evidence or computational predictions from the conservation analysis of similar proteins with 

a known function[160]. The terms are also commonly linked together using parent-child 

relationships which highlight functional relationships[161]. For example, a parent term “protein 

kinase activity” has a child term “protein serine/threonine kinase activity” which in turn has a 

child term “MAP kinase activity”. 

There are many bioinformatics tools available for performing functional enrichment analysis 

of protein targets[162]. In a typical workflow, the software assigns GO terms for each entry in a 

specific background set. Once the user uploads their list of target proteins, the software 

performs a statistical analysis to compare the number of targets associated with a particular GO 

term to the number of proteins in the background set linked to that term. The significance of 
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the enrichment is assessed with a p-value which reflects the probability of observing this 

enrichment by chance. Additional multiple testing correction may be applied to adjust the p-

value. One of the most commonly used tools for functional enrichment of protein sets is 

DAVID (Database for Annotation, Visualization and Integrated Discovery)[163] which applies 

Fisher’s exact statistical test[164] to select enriched functional annotations in the user’s protein 

set. DAVID is suitable for large-scale analysis involving thousands of target proteins and 

searches additional functional annotations in addition to GO terms, including KEGG 

pathways[165], UniProt keywords[13] and protein domain annotations from databases such as 

SMART[166] and InterPro[167]. Another useful functional enrichment tool is clusterProfiler[168] 

which is an open-source, user-friendly R package that offers comprehensive analysis and 

visualisation of enriched functional terms. Functional enrichment analysis is applied in Chapter 

3 to compare the functional annotations of proteins containing phosphosites with different 

levels of identification evidence. In addition, Chapter 4 includes functional enrichment analysis 

with DAVID and clusterProfiler to investigate functional trends of human phosphosites and 

link them to various phosphosite conservation patterns.  
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1.12 Thesis Aims and Chapter Outline 

The main aim of this Thesis is to profile the human phosphoproteome to estimate the true extent 

of protein phosphorylation and analyse the evolutionary conservation of phosphosites. To 

achieve this aim, the Thesis is logically split into three chapters which investigate phosphosites 

from the human proteome in terms of their phosphorylation evidence in relevant databases, 

conservation across 100 eukaryotic species and functional relevance in associated proteins. 

Chapter 2 - Developing a Computational Pipeline for Predicting Amino Acid 

Conservation Across Multiple Species 

Several publicly available computational pipelines automatically perform various steps of a 

typical conservation analysis, often focusing on identifying potential homologues of target 

proteins, generating multiple sequence alignments and assessing site conservation in a single 

convenient step. However, none of the existing methods can easily and efficiently determine 

site conservation in multiple protein targets across several species, which is essential for 

understanding the evolutionary trends of human phosphosites on a large scale. As a result, 

Chapter 2 describes the development and optimisation of an accessible computational pipeline 

which determines phosphosite conservation by performing several steps of a conservation 

analysis in a single step. Our novel conservation pipeline can search multiple protein query 

sequences against reference proteomes of selected species using BLAST, extract a top hit 

(likely orthologue) from each species for each query, generate MSAs between each query 

sequence and its top hits, calculate site conservation and map the results to phosphorylation 

data. 

Chapter 3 - Profiling the Human Phosphoproteome to Estimate the True Extent of 

Protein Phosphorylation 

Public phosphorylation databases such as PSP and PA compile results from published papers 

or openly available MS data. However, there is no database-level control for false discovery of 

sites, likely leading to the overestimation of true phosphosites. Chapter 3 describes the profiling 

analysis of the human phosphoproteome to estimate the FDR of phosphosites and predict a 

more realistic count of true identifications. In particular, human Ser, Thr and Tyr phosphosites 

are ranked into sets according to the strength of their identification evidence and analysed in 

terms of their conservation across 100 species, sequence properties and functional annotations. 

The analysis demonstrates significant differences between the sets and independently estimates 

phosphosite FDR in the human phosphoproteome, highlighting the extent of false positive 

identifications in large datasets. 
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Chapter 4 - Discovering Evolutionary and Functional Trends of Human 

Phosphorylation Sites 

The vast majority of phosphosite discoveries are made in humans, with many other species 

only having a few experimentally confirmed or computationally predicted phosphosites. In 

addition, only a small fraction of the currently characterised human phosphoproteome has an 

annotated functional role. The analysis in Chapter 4 investigates the conservation of human 

phosphosites across various groups of eukaryotic species and establishes their relevance in 

several protein functions. In addition, by using conservation analysis and confident human 

phosphosites as a reference set, we predict over 1,000,000 potential phosphosites in eukaryotic 

species ranging from primates and other mammals to fungi and plants. 

Chapter 5 - Thesis Conclusion and Future Research Directions 

This Chapter will conclude this Thesis by summarising key results, highlighting their 

significance and offering directions for further research. 
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Chapter 2 

Developing a Computational Pipeline for Predicting Amino Acid 

Conservation Across Multiple Species 

 

2.1 Abstract 

The analysis of amino acid conservation is an efficient method of predicting significant 

functional sites within a protein sequence. Several publicly available computational pipelines 

automatically perform various steps of a typical conservation analysis, often focusing on 

identifying potential homologues of target proteins, generating multiple sequence alignments 

and assessing site conservation in a single convenient step. However, none of the existing 

methods can easily and efficiently determine the conservation of multiple protein targets at 

once across several species. In this Chapter, we developed and optimised an accessible Python 

pipeline which can determine the conservation of specific amino acid sites such as PTMs and 

perform the following steps of a conservation analysis in a single step: 

• Search multiple query sequences against proteomes of selected species using BLAST. 

• For each query sequence, extract a top-matched protein sequence from each species. 

• Generate MSAs between each query sequence and its matches. 

• Determine the conservation of a specified amino acid across the aligned sequences at 

each of its positions in a query sequence. 

• Produce a comprehensive summary output which can be mapped to target sites of 

interest and used to predict their conservation patterns across the selected species. 

We demonstrated that the pipeline is robust, easy to use and can be readily applied to analyse 

thousands of protein targets at once from different species. The pipeline generates multiple 

useful outputs which permit an in-depth downstream analysis, such as BLAST results, FASTA 

sequences of top hits from each species, multiple sequence alignments and percentage 

conservation of target and adjacent sites. In addition, the pipeline is supported by a guide 

containing detailed installation and running instructions, explanations of any inputs and 

outputs, a troubleshooting guide and links to example inputs and results. Finally, the user does 

not need any prior knowledge of Python programming to run the pipeline. Therefore, the 

pipeline is ideal for studying the evolutionary conservation of any biological sites of interest 

such as post-translational modifications across multiple species. 
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2.2 Introduction 

2.2.1 The relevance of conservation analysis in proteomics 

The analysis of a protein’s amino acid sequence can be used to predict its function and 

structure. However, not all amino acid residues within a protein sequence are of equal 

functional relevance and often only a few sites are involved in important protein domains, with 

others being readily interchangeable without having a significant effect on protein function. 

Therefore, the identification of a protein’s functionally significant sites is a crucial step in 

predicting its biological function, understanding its molecular interactions and directing 

downstream analysis[116]. 

One efficient and commonly applied method of predicting significant protein sites is the 

analysis of sequence conservation. At its simplest, an amino acid sequence of a protein in 

question is compared to the sequences of its homologues, with a central concept being that 

proteins which share common evolutionary ancestry are also similar in terms of function and 

structure[137]. The identification of highly conserved sites or motifs can therefore be used to 

derive their primary structural patterns and functional significance when compared to groups 

of annotated protein homologues with a known shared function. It is possible, however, that 

common protein ancestry may not necessarily infer functional similarities, especially when 

only a small portion of a target sequence is conserved, or if known functional annotations of 

conserved homologues are inaccurate[117-119]. As a result, a careful examination of common 

protein features such as protein domains, their presence and conservation across homologous 

sequences in addition to the overall sequence conservation should be considered to ensure 

accurate functional assignments for the proteins in question[118].  

The analysis of evolutionary conservation and protein homology has been successfully applied 

in studying protein interactions[169-171], detecting and verifying motifs involved in substrate 

binding[172-174], and uncovering the origins and functions of proteins implicated in modern 

diseases such as Ebola virus[175], COVID-19[153] and cancer[176, 177]. Furthermore, the 

importance of conservation analysis has been highlighted in a comparative computational study 

which revealed that sequence conservation is the most accurate individual predictor of protein 

function when compared to other properties such as amino acid identity, catalytic properties, 

and relative site position on a protein surface[178]. However, it was also concluded that using a 

combination of those attributes would maximise the overall accuracy of functional 

predictions[178].  
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2.2.2 Identifying homologous protein sequences 

The first logical step in a typical conservation analysis of a new protein sequence involves 

searching and selecting its homologous sequences. This is done by performing sequence 

similarity searches against protein sequence databases. For example, UniProt’s Swiss-Prot 

database is an expertly curated resource which not only contains hundreds of thousands of 

protein sequences, but also provides comprehensive annotations describing sequence features, 

protein isoforms, post-translational modifications (PTMs) and potential protein interactions, 

allowing more accurate functional predictions to be made from the identified homologues[13]. 

Other widely used protein resources include Reference Sequence Database (RefSeq)[77] and the 

Protein Data Bank (PDB)[128]. The sequence searching itself can be performed by using 

publicly available algorithms such as HMMER[179], the Smith-Waterman local similarity 

algorithm[180, 181] and BLAST[129, 130], with the latter being considered the most reliable and 

widely used method for identifying local regions of similarity between two sequences. The 

presence or absence of homology between the query sequence and the resulting matched 

sequences can be inferred from excess sequence similarity, conservation of active sites and 

available sequence annotations[127]. To assess sequence similarity between two matched 

sequences, a search algorithm returns a similarity score which generally allows to distinguish 

between potentially homologous sequences and the ones which are unrelated to the query 

sequence, based on the principle that unrelated sequences would have a similar score to the 

sequences matched at random[127]. For example, BLAST runs pairwise alignments between a 

query sequence and its matches to generate a Maximum Score (or bit score) which takes into 

account any rewards for matched amino acids between the compared sequences and penalties 

for any mismatches, and which does not depend on database size (i.e. finding the exact match 

from a database of a different size would generate same score)[130]. To further evaluate 

sequence similarity and add statistical significance within a search algorithm, BLAST and other 

tools incorporate an Expectation value (E-value) which is a statistical parameter that reflects 

the number of times a sequence match with a given score can be obtained by chance when 

searched against a random protein database of the same size[130]. Therefore, lower E-values and 

higher similarity scores are assigned to sequence matches which are unlikely to occur by 

chance and which, in fact, are likely to represent homologous sequences. In protein sequence 

comparisons, homology can be reliably and statistically inferred by a commonly accepted E-

value threshold of <0.001 and a bit score of >50, although additional less sensitive metrics are 

also available, including percentage identity[127]. 
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Typical search algorithms such as BLAST are easily accessible locally or through various 

online resources and allow efficient identifications of homologues for individual protein 

sequences. However, several computational tools have been developed to also detect protein 

homology on a greater scale from large sets of target sequences with a focus on identifying 

groups of significant orthologues (genes which evolved from speciation events) and paralogues 

(genes which evolved from duplication events)[182]. Accurate orthologue identification is 

essential in computational biology for improving genome annotations, studying phylogenetic 

relationships between species and predicting the functional significance of unknown protein 

sequences[183]. One of the most widely used and simplest methods for predicting an orthologous 

relationship between identified homologues is by applying the reciprocal best hits (RBH) 

principle, which is based on selecting the best-scoring match out of all homologues[184, 185]. 

RBH assumes that if protein X from database x is an orthologue of protein Y from database y, 

then when protein X is searched against database y, the best match would be protein Y, whereas 

a reciprocal search of protein Y against database x would return protein X as the best match[184, 

185]. In addition to RBH, orthologue identification and grouping can be performed using various 

algorithms which are implemented within specialised tools[182, 186]. For example, OrthoMCL 

allows users to execute a global BLAST analysis where complete proteomes of multiple species 

are compared against each other to identify potential orthologues for each given sequence and 

cluster them into specified orthologue groups, thus allowing a functional prediction to be made 

based on common annotations present within that group[187]. Such large-scale approaches are 

generally computationally intensive and demanding in terms of memory and CPU usage, 

although multiple efforts have been made to build upon existing algorithms and improve their 

overall efficiency[188, 189]. 

2.2.3 Generating multiple sequence alignments 

Once the homologous sequences are selected, the next step in a conservation analysis involves 

generating and examining a multiple sequence alignment (MSA) between a query sequence 

and the sequences of its homologues[135, 136]. Each protein MSA has protein sequences aligned 

as rows and amino acids as columns, with gaps inserted at certain positions if needed to 

improve alignment accuracy and account for any insertion or deletion mutations between the 

aligned sequences[136]. An MSA is usually assessed to identify areas or columns of interest in 

which amino acids are conserved across the aligned sequences and may therefore be 

functionally significant since they have fewer mutations compared to the remaining areas of 

the alignment, likely due to stronger evolutionary constraints[136, 190]. It is also possible to 
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pinpoint the conservation of any sequence areas already known to be functionally significant 

such as active sites or modified residues, to determine if those features are potentially present 

in another species. The degree of conservation can be assigned for each location within an 

MSA either as a column-wise score or at a global sequence level with several different 

conservation scores and scoring algorithms available[116, 137]. In addition, it is feasible to 

calculate the percentage conservation of a certain amino acid at a given aligned position out of 

all sequences to predict how conserved a specific site of interest from a query sequence is. A 

traditional method of generating multiple sequence alignments is ClustalW[191], although many 

other published alignment tools are available[140, 141]. These include widely used iterative 

approaches such as MAFFT[144] and MUSCLE[145] which are more suitable for generating large 

alignments, show superior performance in terms of speed and accuracy, and the application of 

which can be easily incorporated within computational workflows.  

2.2.4 Computational pipelines for conservation analysis 

As discussed in Chapter 1, one of the main aims of this Thesis is to predict the conservation of 

all known Ser, Thr and Tyr human phosphorylation sites (phosphosites) in multiple eukaryotic 

species. The conservation data can then be used to assess the likelihood of target phosphosites 

being “real” and to understand their evolutionary and functional patterns across eukaryotes. To 

achieve this, it would be necessary to search every protein sequence in the human proteome 

against the proteomes of selected species to identify top matching orthologues, perform MSAs 

and assign conservation scores to target human phosphosites at their known sequence positions. 

Several publicly available computational pipelines automatically perform various steps of a 

conservation analysis, often focusing on identifying homologues, generating MSAs and 

assessing conservation in a single convenient step. For example, ConSurf is a computational 

tool which was ultimately built for identifying functional sequence regions by analysing the 

evolutionary rates of amino or nucleic acids across homologues[156]. In brief, given a query 

sequence of amino acids or nucleotides, ConSurf searches its homologous sequences using 

BLAST or HMMER in a selected database such as Swiss-Prot, generates a multiple sequence 

alignment using MUSCLE, MAFFT or ClustalW, builds phylogenetic trees and predicts 

evolutionary rates at each position within the sequence[156]. The rates of evolution are inferred 

by applying the Rate4Site algorithm which is based on the maximum likelihood principle and 

considers branch length and overall topology of generated phylogenetic trees[192]. The 

conservation pipeline integrated within the ConSurf tool has been successfully used to identify 
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functionally significant protein sites from large alignments[116, 193]. However, it has also been 

demonstrated that ConSurf applications can be time-consuming and that the Rate4Site 

algorithm decreases in performance when dealing with less than 50 aligned sequences[116, 137]. 

In addition, ConSurf does not allow running sequence searches against whole proteomes and 

it is also not possible to automatically select the species of interest from the resulting 

homologues (although manual filtering can be done for each individual query search), with a 

focus rather being made on closest homologue matches from a specified protein database such 

as Swiss-Prot[156]. Therefore, although ConSurf offers an efficient conservation analysis 

pipeline, it is not suitable for the aims outlined in this Thesis.   

Another publicly available pipeline for conservation analysis is ACES (Analysis of 

Conservation with an Extensive list of Species) which analyses the conservation of a query 

sequence in relation to its orthologous sequences from the reference genomes of selected 

species[157]. In particular, ACES allows to run a global BLAST search of query sequences 

against whole genomes, identify top matching orthologues from each species, build 

phylogenetic trees, perform basic sequence annotations, generate multiple sequence alignments 

using MUSCLE and determine conservation patterns at specific sequence regions[157]. 

However, the obvious limitation of ACES is that it can only be applied to nucleotide sequences. 

Nevertheless, the general principles behind the ACES pipeline can prove useful in the 

conservation analysis of human protein sequences that is aimed in this Thesis. 

Extensive pre-generated collections of genomics and proteomics data related to evolutionary 

relationships between sequences are also readily accessible from various databases and can be 

linked to query sequences. For example, the Ensembl comparative genomics resource 

(Ensembl Compara) is a comprehensive database which contains pairwise all-vs-all BLAST 

alignments between various genomes, predictions and groupings of orthologues, pre-generated 

phylogenetic trees and sequence annotations for over 70 species[159]. Ensembl Compara also 

offers a range of tools for each of the steps in conservation analysis but analysing multiple 

sequences is complicated and the list of available species is mostly limited to vertebrates[159]. 

2.2.5 Aims 

As discussed, there are plenty of computational workflows available for the analysis of 

conservation in genomics and proteomics, but to our understanding, none of them were 

perfectly suitable for achieving the goals outlined in this Thesis. Therefore, the main aim of 

the work described in this Chapter was to develop a novel and convenient computational 
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pipeline for the analysis of query protein sequences, which would ultimately generate data that 

researchers can use to determine the conservation of target protein sites in a selected set of 

species. In particular, it was proposed that the conservation pipeline could be applied in this 

Thesis to predict the conservation of human phosphosites from the reference human proteome 

across multiple eukaryotic species. To achieve this, the pipeline was optimised to perform the 

following analytical functions in a single step: 

• Search multiple query sequences against reference proteomes of selected species. 

• For each query sequence, extract a top-matched protein sequence from each species. 

• Generate multiple sequence alignments between each query sequence and its matches. 

• Determine the conservation of a specified amino acid across the aligned sequences at 

each of its positions in a query sequence. 

• Produce a comprehensive summary output which can be mapped to target sites of 

interest and used to predict their conservation patterns across the selected species. 

The development of the conservation pipeline was done using Python which is a high-level, 

dynamic and easily accessible programming language that offers readable, clean code as well 

as interplay with other programming languages[194]. Furthermore, Python encompasses many 

useful libraries for data analysis and visualisation such as NumPy, SciPy, pandas and 

Matplotlib, making it an increasingly popular choice for scientific programming[195, 196]. 

Several specialised Python libraries have also been developed to assist bioinformatics research. 

For example, Biopython is a library which allows accessing major databases such as Swiss-

Prot and PDB, processing multiple sequence alignments, analysing 3D molecular structures 

and interacting with various commonly used tools such as BLAST and ClustalW[197]. In fact, 

multiple previous studies have successfully implicated Python and its analytical libraries as a 

key part of their methodology[198-200]. As a result, Python was an optimal choice of a 

programming language for the development of our conservation pipeline. 
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2.3 Method 

A comprehensive computational pipeline was written in Python (ver. 3.7.3) while using Spyder 

(ver. 3.3.6) as an integrated development environment (IDE). The pipeline was optimised to 

combine multiple steps of a typical conservation analysis (Fig. 4). 

 

 
Figure 4. A flowchart of the conservation analysis pipeline. 

 

The first step of the conservation pipeline is to load a FASTA file “targets.fasta” containing 

user-selected protein sequences from a particular species with target sites of interest for which 

a conservation score has to be calculated. By default, the target sequences must come from 

human, although it is possible to analyse targets from any species with an available reference 

proteome. Another FASTA file “proteomes.fasta” is also uploaded which contains all selected 

reference proteomes of target species and the proteome of species from which the sites of 
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interest originate. All reference proteomes and target protein sequences can be readily 

downloaded from UniProt in FASTA format[13].  

Each target protein sequence is used as a query in a BLASTp search against every selected 

proteome using default settings (BLAST+ ver. 2.10.0)[129, 130, 201]. For each target sequence, its 

matched sequences in the resulting BLAST output are filtered by applying a user-selected E-

value threshold (default set at ≤0.00001). A single top matching protein sequence is then 

selected from each of the species based on a given E-value, thus identifying the most likely 

orthologue candidate from that species, although a true orthologous relationship cannot be 

guaranteed without further evaluation. A FASTA output is also generated per target protein 

which contains its sequence and the sequences of all its matches to be aligned. 

A multiple sequence alignment is then generated between a target sequence and its matches 

using the MUSCLE algorithm (ver. 3.8.31) with default settings, applied via a locally installed 

executable file[145]. If any sequences to be aligned (either the target sequence or any of the 

matched sequences) are ≥2,000 amino acids long, 2 iterations of the algorithm are run using 

recommended settings for large alignments (-maxiters 2 option)[145]. 

The resulting MSAs are processed using Biopython (ver. 1.74)[197] to calculate percentage 

conservation of a user-specified amino acid at each of its positions within a target protein 

sequence. The conservation of neighbouring amino acids at -1 and +1 positions around each 

target amino acid is also given. In addition, the pipeline can consider user-specified frequent 

amino acid substitutions when calculating percentage conservation scores. For example, if a 

target amino acid is serine, any matched sequence with a threonine (a common mutation of 

serine) at the aligned position can be included in the conservation calculation and vice versa. 

The conservation scores are finally cross-referenced with a separate file containing positions 

of target sites of interest to determine the conservation of those sites across the selected species. 

Conservation percentage scores are provided out of the total number of analysed target species 

and out of the number of sequences which were matched and aligned with the query sequence. 
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The pipeline was designed to account for potential errors by identifying any query proteins 

which cannot be analysed, extracting them into a separate output “targets_not_analysed.csv” 

and eliminating them from further processing. A protein target can be excluded from the 

pipeline’s analysis for one of the following reasons: 

• A target produces no hits in a BLAST search at all, likely due to its sequence being too 

short or poorly annotated. 

• A target produces no significant hits in a BLAST search that meet the set E-value 

threshold, likely due to its sequence being unique to its origin species. 

• A target is not found in the reference proteome of its origin species, likely due to poor 

sequence annotation or because the target is an isoform of a canonical protein from the 

reference proteome. This is detected when an identical match to the query protein is not 

found in a BLAST search when searched against the reference proteome of its origin 

species. 

• Multiple sequence alignments are not generated between the target sequence and its top 

hits. This is likely to happen when very large sequences of ≥30,000 base pairs are being 

aligned. 

• A target protein does not have a specific amino acid in its sequence. 
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2.4 Application 

All the inputs necessary for running the conservation pipeline including the main Python script 

and the “README.md” file with detailed instructions can be accessed through a GitHub 

repository via link:  

https://github.com/antonk-liv/conservation_pipeline 

The user has to ensure that their system has Python installed and that the main script can be 

accessed through a relevant IDE or via Windows/MacOS/Linux command line. In order to run 

the BLAST step of the pipeline, the user must download BLAST+ executable files from the 

National Institutes of Health (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Furthermore, the user must 

ensure that several Python libraries and modules are installed (Table 1). 

Table 1. Python modules and libraries incorporated into the conservation pipeline. 

Python module/library Version used Link for more details and installation instruction 

NumPy 1.21.5 https://numpy.org/ 

Biopython 1.74 https://biopython.org/ 

Csv 1.0 https://docs.python.org/3/library/csv.html 

Re 2.2.1 https://docs.python.org/3/library/re.html 

Pandas 1.3.5 https://pandas.pydata.org/ 

 

The following inputs must be placed into the working directory before running the pipeline: 

• Main Python pipeline (“conservation_code_run_with_config_ver250922.py”). 

• Configuration file with user-specified settings (“configurations.ini”). 

• Linker Python file (“link_to_config.py”) which connects the main conservation code 

with the configuration file.  

• User-prepared file “targets.fasta” with FASTA sequences of target proteins containing 

the sites of interest. 

• User-prepared file “proteomes.fasta” with complete reference proteomes of target 

species (including the origin species of the target proteins) in FASTA format across 

which the conservation of target sites would be assessed. 

• User-prepared CSV file “sites.csv” which must contain UniProt accession numbers of 

target protein sequences in the first column and positions of the sites of interest in the 

second column. 

• MUSCLE executable file (“muscle.exe”). 

• Dictionary file “Mapped_Uniprot_Species_Names.tsv” containing UniProt codes for 

all available species as well as their common and scientific names. 

https://github.com/antonk-liv/conservation_pipeline
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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If required, any relevant BLAST+ source files must also be placed into the directory. 

The user has to then access the configuration file (“configurations.ini”) using any appropriate 

text editor and specify the following parameters for the conservation pipeline: 

• Origin species of the target protein sequences (“species_of_targets” parameter). The 

species name must be entered using a relevant UniProt species code (if the species code 

is unknown, the user would refer to the UniProt database or search the pre-processed 

dictionary input “Mapped_Uniprot_Species_Names.tsv”). 

• Amino acid identity of target sites (“target_amino_acid” parameter) using single-letter 

amino acid code. The pipeline calculates the conservation of a target amino acid at each 

of its positions within every query protein sequence. 

• A most likely substitution of a target amino acid (“sub” parameter) which may not 

influence the site function, and which is therefore included in the conservation 

calculation if found instead of a target amino acid within aligned sequences. If no 

substitution is available, the user must enter any amino acid other than the target amino 

acid and ignore any columns in the output referring to the substitution. 

• E-value of the BLASTp search (“eval_thres” parameter). Any resulting BLAST hits 

equal to or less than the specified E-value threshold are accepted by the pipeline. 

Once the parameters are specified and the configuration file is saved, the user can then run the 

conservation pipeline either by using a relevant Python IDE or through command line, making 

sure that the location of the working directory containing all the necessary inputs is specified. 

It is recommended to use high-throughput computing or parallelisation when analysing more 

than 1,000 targets at a time to increase the speed and efficiency of the pipeline. 
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2.5 Results and Discussion 

The conservation pipeline was successfully tested (Fig. 5) using 1,000 randomly selected query 

protein sequences from the UniProt’s reference human proteome (UniProt release 2019_10). 

Each query sequence was searched against the proteomes of 100 example eukaryotic species 

using BLASTp to identify top matching hits from each of the species (Fig. 5A), extract all 

sequences of the matches (Fig. 5B), generate multiple sequence alignments (Fig. 5C) and 

calculate percentage conservation of target sites within the query sequence (Fig. 5D). For this 

test, the target amino acid was serine and the goal was to identify the conservation of potential 

serine phosphorylation sites within the query sequences. Phosphorylation data for the query 

sequences (if available) was extracted from the phosphorylation database PhosphoSitePlus 

(PSP)[57]. The data was pre-filtered to extract human sequences and positions of phosphorylated 

sites (11/03/20 build; https://pgb.liv.ac.uk/~antonk/PhosphoSitePlus_build/). All example inputs and 

outputs from the described test including the “proteomes.fasta” file containing 100 proteomes 

of eukaryotic species can be found in a separate online repository: https://pgb.liv.ac.uk/~antonk/. 

This version of the “proteomes.fasta” file also contains human reference proteome and is 

therefore suitable for a large-scale conservation analysis of human protein targets which is 

described in Chapters 3 and 4 of this Thesis.  

In the test of 1,000 targets, it was possible to obtain conservation data for 991 protein targets 

and successfully map it to their phosphorylation data. For the remaining targets, it was not 

possible to calculate site conservation either due to the protein having no matches in BLAST 

(1 protein), no significant matches in BLAST which met a set E-value threshold (5 proteins), 

no serine in its sequence (1 protein) or due to failed alignments (2 proteins) (Fig. 5E). 

https://pgb.liv.ac.uk/~antonk/PhosphoSitePlus_build/
https://pgb.liv.ac.uk/~antonk/
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Figure 5. Example outputs from the conservation pipeline for a human query protein Q8TE77 (Slingshot Protein Phosphatase 3). (A) Top sequence matches from each of the 

selected proteomes (1 hit per species) produced by a BLASTp search. (B) FASTA sequences of the top hits from each of the species. (C) A fragment of a multiple sequence 

alignment viewed in Jalview (version 2.11.2.3) between a query protein sequence and its top hits. The query sequence is on the top (highlighted in blue) and the positions of 

each target amino acid (serine) within the query sequence are highlighted in red. (D) Main output from the pipeline containing various conservation scores for each target amino 

acid per target protein, aligned species and conservation of adjacent sites. (E) Target proteins which were not analysed by the pipeline and the reasons for their exclusion.

Target Species Hit %Identity E-value Max. Score

Q8TE77 HUMAN Q8TE77 100 0 1336

Q8TE77 PANTR A0A2I3SR48 98.8 0 1312

Q8TE77 GORGO G3R6S4 98.2 0 1311

Q8TE77 PANPA A0A2R8ZJG8 96.8 0 1256

Q8TE77 CHLSB A0A0D9R830 94.4 0 1155

Q8TE77 CERAT A0A2K5N622 94.4 0 1155

Q8TE77 PTEAL L5KNG8 79.9 0 1011

Q8TE77 CAVPO H0VCR6 81.3 0 1011

Q8TE77 PHYMC A0A2Y9EWZ8 83.8 0 1008

Q8TE77 HETGA G5BSB3 82.9 0 1006

Q8TE77 BOVIN F1MI92 81.8 0 979

Q8TE77 TARSY A0A1U7T9W0 82.9 0 977

Q8TE77 SHEEP W5PM88 80.6 0 972

Q8TE77 MOUSE Q8K330 80.2 0 965

Q8TE77 DIPOR A0A1S3FIB6 80.8 0 964

Q8TE77 MESAU A0A1U7Q4Z7 81.5 0 941

Q8TE77 TRIMA A0A2Y9RR33 74.9 0 921

Q8TE77 ERIEU A0A1S3W5Z6 76.7 0 917

Q8TE77 URSMA A0A384DKH8 74.7 0 903

Q8TE77 VOMUR A0A4X2MFA2 68.9 0 849

Q8TE77 RABIT A0A5F9DVD5 73.3 0 715

Q8TE77 ANOCA G1KHA2 54.4 0 620

Q8TE77 ALLSI A0A1U7SAM9 62 0 550

Q8TE77 XENTR A0A5G3IT47 53 3.46E-163 489

Q8TE77 SERDU A0A3B4TED9 50.3 5.23E-163 486

Q8TE77 XENLA A0A1L8FKQ9 45.6 6.22E-162 486

Q8TE77 ONCMY A0A060X028 50.4 3.12E-160 477

Protein Site Peptide sequence Pos. in aln. Position in prot. No. of species analysed %Cons. out of 100 %Cons. out of 100 inc. subs. %Cons. in matched seqs. only %Cons. in matched seqs. inc. subs. No. of species aligned Species aligned (UP codes) Species aligned (common or sci names) -1 site +1 site -1 site position in aln. +1 site position in aln. %Cons. of -1 site in matched seqs. %Cons. of +1 site in matched seqs.

Q8TE77 S ALVTVsRsPPGsGAs 124 9 100 50 52 54.3 56.5 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;R P 123 125 53.3 54.3

Q8TE77 S VsRsPPGsGAsTPVG 145 13 100 43 46 46.7 50 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;G G 144 146 17.4 48.9

Q8TE77 S sPPGsGAsTPVGPWD 148 16 100 43 46 46.7 50 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;A T 147 149 15.2 46.7

Q8TE77 S sRLQRRQsFAVLRGA 182 37 100 69 69 75 75 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;Q F 181 183 53.3 78.3

Q8TE77 S EPTEKAPsEEELHGD 237 70 100 28 29 30.4 31.5 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;P E 236 238 40.2 46.7

Q8TE77 S QTDFGQGsQsPQKQE 255 85 100 14 14 15.2 15.2 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;G Q 254 256 50 45.7

Q8TE77 S DFGQGsQsPQKQEEQ 257 87 100 43 43 46.7 46.7 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;Q P 256 258 45.7 40.2

Q8TE77 S LEsLRPPsAEPGGss 722 259 100 37 42 40.2 45.7 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;P A 721 723 79.3 32.6

Q8TE77 S LDVsDLEsVTsKEIR 792 290 100 45 46 48.9 50 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;E V 791 833 67.4 59.8

Q8TE77 S sDLEsVTsKEIRQAL 835 293 100 81 81 88 88 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;T K 834 836 90.2 89.1

Q8TE77 S VRLWDEEsAQLLPHW 1129 385 100 46 61 50 66.3 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;E A 1128 1130 88 51.1

Q8TE77 S EQKVGGVsPEEHPAP 1669 484 100 47 49 51.1 53.3 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;V P 1668 1670 29.3 51.1

Q8TE77 S sIsLLEPsLELEsTs 2062 547 100 30 35 32.6 38 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;P L 2061 2064 48.9 22.8

Q8TE77 S PALKsRQsVVTLQGs 2401 602 100 64 66 69.6 71.7 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;Q V 2400 2402 54.3 50

Q8TE77 S sVVTLQGsAVVANRT 2408 609 100 13 16 14.1 17.4 92CHLRE;PHYPA;DICDI;XENLA;XENTR;ONCMY;SALSA;SERDU;TAKRU;VOMUR;ERIEU;RABIT;DIPOR;TARSY;MOUSE;CRIGR;MESAU;CAVPO;FUKDA;HETGA;SAIBB;AOTNA;CALJA;RHIBE;CHLSB;MACFA;MACMU;PAPAN;CERAT;MANLE;NOMLE;PONAB;PANPA;GORGO;PANTR;ICTTR;OTOGA;PROCO;MYOLU;PTEAL;BOVIN;CAPHI;SHEEP;PHYMC;DELLE;LIPVE;URSMA;FELCA;PIG;HORSE;CANLF;ODORO;AILME;MUSPF;LOXAF;TRIMA;ALLSI;ANOCA;PELSI;GASAC;TURTR;ALLMI;ORNAN;CALSU;DRYPU;CALAN;AMAAE;TINGU;TAEGU;OPIHO;COLLI;APTFO;EGRGA;ANAPL;MELGA;DROME;LUCCU;ANODA;TRICA;BOMMO;9NEOP;PAPXU;ZOONE;DAPPU;HARSA;OOCBI;LEPWE;MUSAM;ORYSI;WHEAT;ARATH;ARAHY;Chlamydomonas reinhardtii;Moss;Slime mold;African clawed frog;Western clawed frog;Rainbow trout;Atlantic salmon;Greater amberjack;Japanese pufferfish;Common wombat;Western European hedgehog;Rabbit;Ord's kangaroo rat;Philippine tarsier;Mouse;Chinese hamster;Golden hamster;Guinea pig;Damaraland mole rat;Naked mole rat;Bolivian squirrel monkey;Ma's night monkey;White-tufted-ear marmoset;Black snub-nosed monkey;Green monkey;Crab-eating macaque;Rhesus macaque;Olive baboon;Sooty mangabey;Drill;Northern white-cheeked gibbon;Sumatran orangutan;Pygmy chimpanzee;Western lowland gorilla;Chimpanzee;Thirteen-lined ground squirrel;Small-eared galago;Coquerel's sifaka;Little brown bat;Black flying fox;Bovine;Goat;Sheep;Sperm whale;Beluga whale;Yangtze river dolphin;Polar bear;Cat;Pig;Horse;Dog;Pacific walrus;Giant panda;European domestic ferret;African elephant;Caribbean manatee;Chinese alligator;Green anole;Chinese softshell turtle;Three-spined stickleback;Atlantic bottle-nosed dolphin;American alligator;Duckbill platypus;G A 2407 2420 14.1 46.7

Target Reason for exclusion

A0A286YF77 Target has no significant hits in BLAST

A0N4Z7 Target has no significant hits in BLAST

P0C864 Target has no significant hits in BLAST

P59052 Target has no significant hits in BLAST

Q9H8Q6 Target has no significant hits in BLAST

O75147 Failed alignment due to one of the sequences being too long (>30000bp)

Q8WZ42 Failed alignment due to one of the sequences being too long (>30000bp)

P0DOY5 No hits at all in BLAST

Q9NRI6 No target amino acid in sequence
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To further highlight that our conservation pipeline can be tailored to study PTMs such as phosphosites 

across various species, a separate test was performed which focused on the analysis of known 

phosphosites from species other than human. A small number of proteins from different species and 

their phosphosites (n=4; Table 2) were randomly selected by searching public phosphorylation 

databases including The Plant PTM Viewer[109], PTM database iProteinDB[110] and PSP (mouse 

dataset)[57]. As before, selected targets were analysed across the proteomes of 100 other species to 

determine the conservation of their phosphosites. 

Table 2. Target proteins from various species and their reported phosphosites used to test the conservation pipeline. 

Protein Species UniProt Accession Phosphosite 

Positions 

Evidence 

Cyclin-dependent 

kinase A-1 

Arabidopsis thaliana 

(mouse-ear cress) 

P24100 Tyr15; Ser141; 

Thr161 

Plant PTM 

Viewer[109] 

Nascent polypeptide-

associated complex 

Zea mays (maize) K7VIA7 Ser124; Ser144; 

Ser148 

Plant PTM 

Viewer[109] 

Sphingosine kinase 2 Mus musculus (mouse) Q9JIA7 Ser358; Ser364; 

Thr377; Ser379; 

Thr584 

PSP[57] 

Protein kinase shaggy Drosophila melanogaster 

(fruit fly) 

P18431 Ser8; Ser9; Ser17; 

Ser213; Tyr214; 

Ser217 

iProteinDB[110] 

 

The results from the pipeline, including multiple sequence alignments (Fig. 6), were used to assess 

the conservation of phosphosites in Table 2 in relation to different species groups. Interestingly, we 

observed different conservation patterns which can provide an insight into the evolution of the 

analysed proteins and their function. For example, the results showed that phosphorylated Tyr15 from 

A. thaliana in cyclin-dependent kinase A-1 (CDKA1), an enzyme which controls cell division and is 

known to be prevalent in many species[202], was indeed conserved across all species in the analysis 

including plants (Fig. 6A), further highlighting the importance of tyrosine phosphorylation in 

plants[203]. A similar conservation pattern was observed for protein kinase shaggy from D. 

melanogaster where all its target phosphorylation sites were conserved across all species (Fig. 6D). 

Most aligned sequences for this target were glycogen synthase kinase 3 (GSK3) enzymes. In fact, 

protein kinase shaggy from Drosophila melanogaster is a known orthologue of GSK3 which is 

responsible for cell-fate specification and is found in animals, plants and fungi[204, 205]. Our pipeline 

was successfully able to infer this orthologous relationship by identifying top sequence matches and 

producing multiple sequence alignments which correctly aligned key functional sites (Fig. 6D). 

However, the user must be careful when making assumptions about true orthologous relationships 

between target proteins and their resulting top hits from other species. For example, our test identified 

different conservation patterns for phosphosites in nascent polypeptide-associated complex from Z. 

mays, where Ser124 was only conserved in plants, Ser144 was conserved in plants and insects, and 

Ser148 was conserved primarily in vertebrates (Fig. 6B). This suggests that the aligned phosphosites 



49 
 

may be associated with different proteins depending on the species they are found in, even though 

there may be an overlap in terms of functional domains. Therefore, further analysis of specific 

domains is recommended before assuming a true orthologous relationship between the aligned 

sequences. Finally, our test revealed an example of where phosphosites in Sphingosine kinase 2 from 

M. musculus were conserved primarily in mammals (Fig. 6C), suggesting that their function is either 

unique to that species group or that the sequences where the sites were not conserved are poorly 

annotated. To summarise, our tests showed that the pipeline can successfully determine the 

conservation of known phosphosites across different species and is applicable for both large and 

small-scale studies. 
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A 

B 

C 

D 

 

 

 

 
Figure 6. Sections of multiple sequence alignments of protein targets and their phosphorylated sites from (A) Arabidopsis 

thaliana, (B) Zea mays, (C) Mus musculus and (D) Drosophila melanogaster aligned with top-matched sequences from 

other species and analysed by conservation pipeline. For each alignment, the sequence of the target protein is located at 

the top. Phosphorylated amino acids are marked by black rectangles and their location within the sequence is provided. 
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2.6 Conclusion 

In this Chapter, we developed a publicly available Python pipeline which can be used to study 

evolutionary conservation of target sites within a selected set of protein targets across multiple 

species. We demonstrated that the pipeline is robust, easy-to-use and can be readily applied to analyse 

thousands of protein targets at once from different species, something which is not easily permissible 

by the existing computational methods of conservation analysis such as ConSurf[156] or Ensembl 

Compara[159]. There is also no limit on the number of species which can be included, although 

naturally increasing the number of species would decrease the speed of the BLAST searches. In 

addition, the pipeline is supported by a guide written as “README.md” file containing detailed 

installation and running instructions, explanations of any inputs and outputs, a troubleshooting guide 

and links to example results. Finally, any user-defined parameters can be specified through 

“configurations.ini” file, thus ensuring that no prior knowledge of Python programming is needed to 

run the pipeline. 

The pipeline has been designed so that users can analyse the conservation of any amino acids in any 

target protein sequences across any selected species. However, it is important to note that the pipeline 

was specifically tailored to study canonical protein targets from reference proteomes. If a target 

protein is not in the reference proteome of the species it originates from (i.e., the “proteomes.fasta” 

file), then it is still possible to analyse the conservation of its sites without affecting the core 

functionality of the pipeline by manually adding its FASTA sequence to the “proteomes.fasta” file. 

Furthermore, the pipeline was designed to analyse a single selected amino acid per run. To overcome 

this and analyse the conservation of additional amino acids without having to re-run the whole 

pipeline, a separate code is available (“conservation_code_aln_section_with_config_ver250922.py”) 

in the GitHub repository which allows to process resulting multiple sequence alignments from the 

main pipeline and determine the conservation of any additional selected amino acids. The code is 

applied in a similar way to the main pipeline as described in the “README.md” file. In conclusion, 

for each query protein sequence, our conservation pipeline generates useful outputs such as BLAST 

results, FASTA sequences of top BLAST hits from each species, MSAs and percentage conservation 

of target sites and their adjacent sites at -1 and +1 positions. Therefore, the pipeline is ideal for 

studying the evolutionary conservation of any biological sites of interest, such as post-translational 

modifications and their short encompassing motifs. High efficiency of the pipeline is further 

highlighted in Chapters 3 and 4 where it is applied to study the conservation of all known human 

phosphosites across multiple eukaryotic species. 
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Chapter 3  

Profiling the Human Phosphoproteome to Estimate the True Extent of 

Protein Phosphorylation 

 

The work described in Chapter 3 has been previously reviewed and published in Journal of Proteome 

Research, where A. Kalyuzhnyy is the lead author. 

Citation: Kalyuzhnyy, A., Eyers, P. A., Eyers, C. E., Bowler-Barnett, E., Martin, M. J., Sun, Z., 

Deutsch, E. W., Jones, A. R. (2022). Profiling the Human Phosphoproteome to Estimate the True 

Extent of Protein Phosphorylation. J Proteome Res. 21(6), 1510-1524. 

3.1 Abstract 

Public phosphorylation databases such as PhosphoSitePlus (PSP) and PeptideAtlas (PA) compile 

results from published papers or openly available MS data. However, there is no database-level 

control for false discovery of sites, likely leading to the overestimation of true phosphosites. By 

profiling the human phosphoproteome, we estimate the false discovery rate (FDR) of phosphosites 

and predict a more realistic count of true identifications. We rank sites into phosphorylation likelihood 

sets and analyse them in terms of conservation across 100 species, sequence properties and functional 

annotations. We demonstrate significant differences between the sets and develop a method for 

independent phosphosite FDR estimation. Remarkably, we report an estimated FDR of 84%, 98% 

and 82% within sets of phosphoserine (pSer), phosphothreonine (pThr) and phosphotyrosine (pTyr) 

sites, respectively, that are supported by only a single piece of identification evidence - the majority 

of sites in PSP. We estimate that around 62,000 Ser, 8,000 Thr and 12,000 Tyr phosphosites in the 

human proteome are likely to be true, which is lower than most published estimates. Furthermore, 

our analysis estimates that 86,000 Ser, 50,000 Thr and 26,000 Tyr phosphosites are likely false-

positive identifications, highlighting the significant potential of false positive data to be present in 

phosphorylation databases. 
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3.2 Introduction 

Protein phosphorylation is a fundamental post-translation modification (PTM) that regulates protein 

function and is well-studied in relation to cell signalling pathways and disease[25, 26, 206]. Huge numbers 

of phosphorylated peptides and sites have been reported and characterized after isolation from human 

cells using approaches allied to tandem mass spectrometry (LC-MS/MS), focussing primarily on the 

phosphorylation of canonical (established) serine (Ser), threonine (Thr) and tyrosine (Tyr) residues[29-

33]. However, large numbers of non-canonical phosphorylation sites have also been annotated on 

proteins from a variety of sources including human cells[41]. This additional complexity highlights the 

ongoing requirement for careful, evidence-based phosphosite identification from mass spectrometric 

datasets. 

Historically, the focused analysis of phosphorylation sites in proteins tended to rely on biochemical 

analysis including, for example, chromatography and solid-state Edman sequencing[51, 52, 207]. 

However, while giving confidence in phosphosite identification, such low-throughput approaches are 

now rare, lacking the depth of coverage needed for most large-scale studies. The dominance of MS 

approaches has led to the development of multiple strategies to both understand and help mitigate the 

high levels of phosphopeptide false discovery rate (FDR), particularly in sets of mapped peptide 

spectral matches (PSMs) that result from LC-MS/MS and sequence database analysis[92, 96, 208]. The 

goal of such approaches is to separate true identifications from false ones. Even without considering 

non-canonical phosphorylation (which is likely to be absent in typical phosphoproteomics pipelines 

due to its acid-labile nature), many confidently identified phosphopeptides possess multiple Ser, Thr 

or Tyr residues that could be differentially modified in a given proteolytically-generated peptide[41]. 

Phosphosite occupancy is variable on any given protein under different biological conditions, such 

that analysis of a peptide containing, for example, two Ser residues that have the potential to be 

phosphorylated with different dynamics could present evidence for neither, only one, or both being 

modified, depending on the sample studied[31, 32, 93, 209]. Many phosphorylation events are also sub-

stoichiometric, possibly falling below the limit of detection of certain analyses[32, 93]. As such, careful 

data handling and statistical processes should be applied, either within the search engine used for 

peptide mapping, or in a downstream software application to calculate additional statistics, such as a 

local false localisation rate (FLR) or conversely the probability that a given site within a peptide is 

correct or incorrect. Software/algorithms include phosphoRS[85], Ascore[82], Andromeda’s PTM 

Score[81] and recently released PTMProphet[87]. We have previously benchmarked the performance 

of some instrumental parameters and software pipelines for phosphoproteomics[97], demonstrating 

that there is considerable variability in how such scores map to robust statistics, such as local or global 

FLR, depending on the instrument fragmentation mode and resolution. 
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Following confident identification of phosphopeptides and localisation of given sites, data tend to be 

compiled from within a single study or across multiple studies (meta-analysis) to determine the extent 

of evidence for a given site from multiple PSMs. In general, where there are independent observations 

of PSMs supporting a phosphosite, it can be reasonably assumed that the evidence for a site to be real 

increases, although to our knowledge there are no current statistical models to calculate this 

phenomenon accurately. Multiple PSMs can be observed per identified phosphosite as a result of 

either different peptide sequences containing that site, or the same peptide sequence being detected 

several times[91]. There are some caveats to this logic though, as it is possible for the same PSM to be 

wrongly assigned to a phosphopeptide multiple times. This can occur if the correct interpretation for 

the spectrum had a very similar peptide sequence and identical mass to the wrongly assigned 

phosphopeptide[93, 210]. Although LC-MS/MS and computational analysis is generally recognised as 

very effective and reliable for phosphosite detection, from each study it is likely that there is some 

element of remaining false discovery of peptides and sites wrongly localised, depending on the 

applied statistical thresholds. This is particularly problematic for studies that set relatively weak 

thresholds for phosphosite localisation (e.g., equating to site probability >0.75) in order to maximise 

sensitivity – more true positives may be identified, but at the expense of very large numbers of false 

positives passing the threshold. A multi-centre benchmarking study highlighted some of the 

challenges in practice, showing considerable variability in the number of true positive, false positive 

and false negative sites reported across different laboratories, with particular issues arising when a 

peptide carried multiple phosphate groups[211]. Methods and guidelines for FLR are still evolving and 

not consistently applied in phosphoproteome studies, and so it is likely that most published studies 

contain considerable numbers of falsely localised phosphosites[57, 103, 211-213]. This can lead to 

overestimation of the total number of known true human phosphosites if database providers do not 

control for FDR across multiple datasets[100]. 

One such database is PhosphoSitePlus (PSP) which represents a comprehensive, manually-curated 

and well-cited resource containing experimentally defined PTMs primarily focusing on 

phosphorylation[57]. As of March 2020, PSP encompassed phosphosite evidence across 17,830 human 

protein sequences which are defined as canonical in UniProt[13] (i.e., representing the most prevalent 

protein product per gene). The evidence for phosphorylation comes from manually-curated reviews 

of literature primarily describing tandem MS studies and also low-throughput experiments, or from 

in-house MS studies[57]. Interestingly, the majority of phosphosites in PSP only have a single piece 

of evidence associated with their identification (i.e., there is only one study identifying the 

phosphosite). As mentioned in the PSP documentation itself, researchers should be cautious when 

accepting such sites as true positives[57]. It is possible that many users of PSP are not aware of the 
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need for caution when reviewing or re-using data, and we are not familiar with any previous effort to 

assess phosphosite FDR within PSP. A second curated proteomics resource is PeptideAtlas (PA)[103] 

which is a repository of tandem MS datasets that have been processed through Trans-Proteomic 

Pipeline to ensure high and consistent quality of phosphopeptide identifications[104]. The latest PA 

builds incorporate the use of the PTMProphet algorithm for phosphosite localisation where each 

potential phosphosite within an observed PSM is assigned a probability score between 0 and 1 of 

being phosphorylated[87]. As with PSP, researchers should also be careful when accepting sites in PA 

with only a single piece of identification evidence (i.e., a single associated PSM) as positively 

identified phosphosites. Instead, phosphosites that not only have multiple PSM observations in PA, 

but also have high phosphorylation probability scores assigned within the majority of those PSMs are 

most likely to be true positive identifications. In addition to PSP and PA, other databases containing 

data on human phosphosites include UniProt, which collates mostly manually curated phosphosites 

from literature, but is planned to start incorporating high-throughput derived data in later releases[13];  

dbPTM, a server importing data from other resources, but currently unavailable as of July 2021[214]; 

and PhosphoDB containing results from a set of studies on phosphopeptides derived from multiple 

proteases[215]. Even with easy access to these accumulated phosphorylation site resources, to our 

knowledge, no estimates have been made to predict the scale of phosphosite FDR across large 

datasets.  

In this work, by profiling the reported human phosphoproteome, we aimed to estimate the false 

discovery rate of phosphosites with evidence in PSP and/or PA and use these estimates to predict the 

count of true phosphosites within the currently explored human phosphoproteome. We categorised 

the sites into sets of various predicted phosphorylation likelihood based on the amount of positive 

identification evidence reported in PSP and PA, properties not readily available in other databases. 

By using orthogonal features of phosphosites assigned to these sets, such as evolutionary 

conservation, sequence properties and functional annotations, we aimed to demonstrate significant 

differences between the sets and develop an improved method for independent FDR estimation. 
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3.3 Method 

3.3.1 Processing and categorising phosphorylation data in PSP and PA 

Phosphorylation data in PeptideAtlas (PA) (2020 build)[103] was filtered to only include human 

Ser/Thr/Tyr sites from canonical UniProt protein sequences with at least one PSM observation 

(1,069,709 sites across 63,616 sequences) (Table S1). The sites were categorised according to the 

number of PSM observations with a certain phosphorylation probability score assigned by 

PTMProphet[87]. The counts of observations with a probability of >0.95 were used as positive 

evidence for site phosphorylation. The counts at a probability threshold of ≤0.19 were used as 

negative evidence in favour of a site being a non-phosphosite. The total number of PSM observations 

per site was considered to distinguish sites for which ≥10% of all associated PSMs had a PTM 

probability >0.95, from sites where a small minority (<10%) of associated PSMs had this probability. 

Based on this, selected confidence categories were applied to predict site phosphorylation likelihood 

in PA (“High”: ≥5 positive observations which accounted for ≥10% of total observations across all 

probabilities; “Medium”: ≥5 positive observations which accounted for <10% of total observations 

or 2-4 positive observations; “Low”: 1 positive observation; “Not phosphorylated”: 0 positive 

observations and ≥5 negative observations; “Other”: site did not fall into any described categories). 

PhosphoSitePlus (PSP) data (11/03/20 build; Phosphorylation_site_dataset.gz)[57] was filtered to only 

include human Ser/Thr/Tyr sites from canonical protein sequences labelled by UniProt identifiers 

(231,607 sites across 17,830 sequences) (Table S2). The sites were ranked based on the number of 

times they have been characterised in low/high-throughput studies. The sum of observations across 

all studies was used to predict site phosphorylation likelihood in PSP (“High”: ≥5 observations; 

“Medium”: 2-4 observations; “Low”: 1 observation). 

3.3.2 Evolutionary conservation analysis 

The conservation pipeline developed in Chapter 2 was applied to determine the cross-species 

conservation of all Ser, Thr and Tyr sites in the reference human proteome[13] which had 

phosphorylation evidence in PSP and PA. The human reference proteome (20,605 sequences, UniProt 

ID: UP000005640) and the proteomes of 100 eukaryotic species (50 mammals, 12 birds, 5 fish, 4 

reptiles, 2 amphibians, 11 insects, 4 fungi, 7 plants and 5 protists; Table S3) were downloaded from 

UniProt (UniProt release 2019_10). Each sequence in the human proteome was used as a query in a 

BLASTp search (BLAST+ 2.10.0 version)[129, 130, 201] against all 100 eukaryotic proteomes. The 

BLAST output was processed to extract a top matching significant orthologue (E-value of ≤0.00001) 

from each species for each human target. Human targets were then aligned with their matched 

orthologues using the MUSCLE algorithm (version 3.8.31)[145] with default settings if all sequences 
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to be aligned were <2,000 amino acids long. If any sequences to be aligned (either the human 

sequence or any of the orthologue sequences) were ≥2,000 amino acids long, 2 iterations of the 

algorithm were run using settings for large alignments (-maxiters 2 option)[145]. From the 

alignments, percentage conservation scores were calculated for every Ser, Thr and Tyr site within 

each human target out of 100 (all eukaryotic proteomes) and out of the number of aligned orthologues. 

Conservation percentages were calculated considering any Ser/Thr substitutions in orthologues, 

whereby an orthologue was included in the count if, for example, a Thr in its sequence was aligned 

with a Ser in the target human sequence and vice versa. Conservation data was then cross-referenced 

with PSP/PA datasets to identify sites in the human proteome with phosphorylation evidence in 

PSP/PA and determine their conservation. To ensure consistency in terms of proteins and sites used, 

any human protein target for which it was not possible to calculate site conservation either due to the 

protein having no matches in BLAST (14 proteins), no significant matches in BLAST (236 proteins), 

no Ser/Thr/Tyr sites in its sequence (1 protein) or due to failed alignments (10 proteins), was excluded 

from any further analysis (Table S4). Any human targets labelled with the same UniProt identifier in 

the reference human proteome, PSP and PA, but which corresponded to different protein sequences 

across the datasets (73 proteins; Table S4) were also excluded. Conservation was assessed for the 

remaining targets (Table S5) by linear regression models with non-assumed intercept for simpler 

interpretation of slope between phosphosites and non-phosphosites. Average conservation of likely 

phosphosites (sites ranked “High” or “Medium” in PSP and/or PA) was plotted against average 

conservation of likely non-phosphosites (sites in “Not phosphorylated” and “Other” sets) within each 

target protein that had at least 3 likely phosphosites and 3 likely non-phosphosites. Conservation 

scores (%) were also compared across all sites within phosphorylation likelihood sets using box plots. 

3.3.3 Analysis of amino acids adjacent to phosphosites 

Target protein sequences (20,271 sequences; Table S6) were processed to identify amino acids at the 

-1 and +1 proximal positions adjacent to every Ser, Thr and Tyr site. If a target sequence ended with 

a Ser, Thr or Tyr site then its +1 amino acid was marked as “Not found”. For each amino acid, its 

frequency at each proximal position was first normalised to 1,000 and then to its frequency in the pre-

filtered human reference proteome (expected distribution). Proximal amino acid frequencies around 

target Ser, Thr and Tyr in “High in PSP and PA” set were compared to those in the “Not 

phosphorylated” set, and to the expected amino acid distribution. The comparisons were assessed by 

Fisher’s exact statistical test[164] performed using scipy module in Python[196] with Bonferroni 

corrections to generate adjusted p-values. For each amino acid, any significant difference (Bonferroni 

corrected p-value <0.001) between the compared sets was used to estimate phosphosite false 

discovery rate across all phosphorylation likelihood sets. FDR estimates assumed that all sites in the 
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highest phosphorylation likelihood set “High in PSP and PA” set were true positive phosphosite 

identifications, whereas all sites with the weakest phosphorylation confidence (either the “Not 

phosphorylated” or the “Other” set) were non-phosphosites. Therefore, the observed count of a 

certain proximal amino acid in the “High in PSP and PA” (nPos) corresponded to its expected count 

at 0% FDR, whereas its observed count in the “Not phosphorylated” or “Other” set (nNeg) 

corresponded to its expected count at 100% FDR. To estimate % FDR in any other phosphorylation 

likelihood set based on the observed count of the compared proximal amino acid in that set (nObs), 

we used the following equation: 

% FDR = (1- 
nObs−nNeg

nPos−nNeg
 ) x 100 

The equation has the effect of estimating what proportion of the observed count (nObs) is explained 

by assumed false positives (nNeg) and what proportion by true positives (nPos). For example, if 

amino acid X was found at +1 position next to 500 Ser sites in the highest phosphorylation confidence 

set (0% FDR set; nPos = 500) compared to 10 Ser sites in the “Not phosphorylated” set (100% FDR 

set; nNeg = 10), and next to 350 sites in the set of interest (nObs = 350), then pSer FDR within the 

set of interest would be 31%. This would suggest that 31% of sites in that set behave like false positive 

pSer in terms of X amino acid frequency at +1 position, whereas 69% of those sites behave like sites 

in the highest phosphorylation likelihood set (true pSer). An average FDR with 95% confidence 

intervals (CI) was calculated per each likelihood set using all significantly enriched amino acids 

around a particular target phosphosite and which had an enrichment of >1.5 relative to the expected 

distribution. Final FDR estimates were used to derive the total number of true positive (TP) 

phosphosite identifications across phosphorylation likelihood sets.   

To compare FDR/TP estimates between individual PSP and PA sets, the method was replicated using 

alternative phosphorylation likelihood sets, where sites were categorised according to the highest 

amount of positive phosphorylation evidence from one database (at least one observation at PTM 

probability >0.95 in PA; at least one observation in PSP), without taking into account any evidence 

in the other. Phosphosite FDR estimates within “High” sets in each database were presented as a 

weighted average between FDR estimates in sites ranked “High” in that database only and sites 

ranked “High” in both PSP and PA. For example, the FDR in “High in PA” set was a weighted average 

of FDR estimates in “High in both” set and “High in PA only” set.  

To analyse phosphosites in UniProt, phosphorylation data for the reference human proteome was 

downloaded directly from UniProt (June 2021 version; release 2021_04) and processed to split 

phosphosites according to associated evidence codes from the Evidence and Conclusion Ontology 

(ECO:0007744 - combinatorial computational and experimental evidence imported from large-scale 
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experiments; ECO:0000269 - manually annotated experimental evidence; ECO:0000250 – similarity 

evidence based on orthologous sequence). Any target proteins removed earlier (Table S4) were also 

removed from this analysis. The resulting protein sequences (n=9,481) and sets of Ser, Thr and Tyr 

phosphosites were analysed in terms of adjacent amino acids and conservation using the above 

method. Phosphosite FDR was calculated for the large-scale study set (ECO:0007744) using “High 

in PSP and PA” as 0% FDR set and “Not phosphorylated” as the 100% set. 

3.3.4 Functional enrichment analysis 

All protein sequences in the filtered reference human proteome (Table S6) were categorised into sets 

according to what their highest ranked Ser, Thr and Tyr site was in terms of phosphorylation evidence 

(“High in PSP and PA”, “High in PSP or PA”, “Medium in PSP and/or PA”, “Low in PSP and/or 

PA”, “Other in PA”, “Not phosphorylated” and “No evidence in PSP or PA”). Each protein set within 

Ser, Thr and Tyr datasets was analysed with DAVID (version 6.8)[163] using all proteins in filtered 

proteome with any Ser, Thr or Tyr evidence in PSP or PA (16,296, 14,565 and 12,912 proteins 

respectively) as control background. Protein sets containing no reported evidence in PSP or PA were 

searched against a background of all proteins in the filtered reference proteome to determine any 

differences in their functional enrichment compared to proteins with PSP/PA evidence. Per each set 

searched, the top 10 (where possible) significant (Benjamini–Hochberg corrected p-value <0.05) 

functional terms with the highest percentage of proteins mapped were identified, replacing any near 

synonymous terms with additional terms from outside the initial top 10. All target protein sets were 

also searched in UniProt (release 2020_04) to determine percentage of proteins mapped to UniProt 

keywords “Phosphoprotein”, “Alternative splicing”, “Nucleus”, “Transcription”, “Acetylation”, 

“Membrane”, “Glycoprotein”, “Signal” and “Disulfide bond”. 

3.3.5 Secondary structure analysis 

Categorised Ser, Thr and Tyr sites in filtered reference human proteome were mapped to protein 

structures (beta strand, helix, turn and coiled coil) described for those proteins in UniProt (release 

2020_04) (Table S5; Table S7). Any target proteins searched in UniProt which were marked as 

obsolete (15 proteins) or represented different sequences despite being labelled with the same 

identifier (25 proteins) were removed from further and marked as “NA” (Table S5). Normalised (to 

1,000) counts of target amino acids within protein structures were assessed with Fisher’s exact 

statistical test[164] using the scipy module in Python[196] to generate p-values and indicate any 

significant enrichment (p <0.05) between “High in PSP and PA” set and the “Not phosphorylated” 

set. The method was also applied separately for Ser sites with phosphorylation evidence in UniProt, 

and which were mapped to the described phosphorylation likelihood sets based on PSP/PA evidence. 
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3.4 Results and Discussion 

3.4.1 Categorising all Ser, Thr and Tyr annotated phosphosites in the human proteome 

We first ranked all Ser, Thr and Tyr phosphosites in PA and PSP in the filtered reference human 

proteome according to the amount of accumulated identification evidence (Fig. 7; Table 3; Table S5). 

The majority of Ser, Thr and Tyr sites (50.1%, 63.3% and 54.3% respectively) with phosphorylation 

evidence in PSP were placed into the “Low” phosphorylation likelihood set, meaning that there was 

only a single piece of evidence supporting their positive identification (Fig. 7A). Furthermore, out of 

all analysed Ser, Thr and Tyr sites with at least one observation at PTM probability >0.95 in PA 

(suggesting a positive phosphosite identification), 21.7%, 34.0% and 33.5% respectively were placed 

in the “Low” set (Fig. 7B; Table 3), highlighting that a considerable amount of potential phosphosites 

only had one piece of positive identification evidence across both databases. Interestingly, we found 

that in the human proteome there were more Tyr sites assigned to “High” set in PSP (5+ observations) 

than Thr sites (Fig. 7A; Table 3), indicating a higher initial proportion of pTyr compared to pThr in 

PSP. High prevalence of likely true Tyr phosphosites in the PSP dataset could have been a result of 

in-house studies which identified large numbers of pTyr sites using immunoaffinity strategies not 

suitable for pSer/pThr discovery[70, 216], and studies which have not been officially published[57].  

 
Figure 7. Distribution of serine (Ser), threonine (Thr) and tyrosine (Tyr) phosphosites from UniProt’s reference human 

proteome that have any positive identification evidence in (A) PhosphoSitePlus (PSP) or (B) PeptideAtlas (PA) based on 

established phosphorylation likelihood sets (see “Methods”). Venn diagrams provide the counts of (C) Ser, (D) Thr and 

(E) Tyr sites ranked “High” in PSP (left), PA (right) and both resources (overlap).  
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C D E 



61 
 

From PA, it is possible to identify sites for which covering phosphopeptides are observed, but for 

which the modifications are only localised to other sites in the same peptides, thus providing strong 

evidence for likely non-phosphosites. Sets of potential Ser, Thr and Tyr non-phosphosites were 

therefore established based initially on evidence in PA (Table S8). Those sets were then cross-

referenced with data in PSP to determine whether PSP contained any sites ranked as non-phosphosites 

in PA. Interestingly, we found that 2,489 Ser, 1,341 Thr and 891 Tyr sites assigned to the “Not 

phosphorylated” set in PA were found to have evidence in PSP (Table S9). In fact, out of those 

potential PA non-phosphosites, 146 Ser, 97 Thr and 293 Tyr sites were placed into “High” 

phosphorylation likelihood set according to PSP evidence (Table S9). This strongly indicated the 

presence of potential false positives in PSP and/or false negatives in PA. For example, Ser42 in 

protein P17066 (HSPA6) and Ser59 in Q8N488 (RYBP) had 8 and 6 phosphosite identification 

references in PSP respectively (mostly from in-house MS studies) but had no positive identification 

evidence in PA or any mention in UniProt[13] (Table S5). On the other hand, Ser4 in P15927 (RPA2) 

had 33 phosphosite identification references in PSP and was also mentioned in UniProt’s annotations, 

but has never been positively localised in any of its 127 associated PSMs in PA (Table S5). To 

eliminate potential false assignments when considering evidence in both PSP and PA, a site was only 

categorised as a non-phosphosite if it had no evidence in PSP in addition to having negative 

phosphorylation evidence in PA (Table 3). As a result, we established final negative control sets 

containing 13,892 Ser, 8,462 Thr and 2,184 Tyr sites. Similar adjustments were made to the “Other” 

PA set (sites in that set must have no evidence in PSP) which contained the majority of analysed PA 

sites (Table 3). 

Table 3. Categorising serine (Ser), threonine (Thr) and tyrosine (Tyr) sites from UniProt’s reference human proteome 

into phosphorylation likelihood sets based on available phosphorylation evidence in PhosphoSitePlus (PSP) and 

PeptideAtlas (PA). 

Phosphorylation likelihood set Phosphorylation evidence per site Ser count Thr count Tyr count 

High in PSP 5+ pieces of evidence 32,306 8,161 9,763 

Medium in PSP 2-4 pieces of evidence 34,154 12,197 7,228 

Low in PSP 1 piece of evidence 66,777 35,173 20,191 

High in PA 5+ observations at PTM score >0.95 which 

is ≥10% of total observations  

26,186 4,204 1,169 

Medium in PA 5+ observations at PTM score >0.95 which 

is <10% of total observations OR 2-4 

observations at PTM score >0.95 

20,517 5,297 1,460 

Low in PA 1 observation at PTM score >0.95 12,950 4,895 1,324 

Not phosphorylated 0 observations at PTM score >0.19 AND 

5+ observations at PTM score ≤0.19 AND 

no evidence in PSP 

13,892 8,462 2,184 

Other sites At least 1 observation in PA but does not 

fall into any other PA categories AND no 

evidence in PSP 

60,221 35,000 10,009 
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Having further cross-referenced sets of sites of various phosphorylation likelihood between PSP and 

PA (Table S9), we established a “gold standard” set of phosphosites, all of which had “High” 

phosphorylation likelihood according to both PSP and PA evidence (Table S10). This set contained 

16,978 Ser, 2,747 Thr and 986 Tyr highly likely true phosphosites (Fig. 7C-E; Table S10). As for the 

general agreement between PSP and PA in terms of phosphorylation evidence, we found that 37.7% 

of Ser, 20.5% of Thr and 9.10% of Tyr sites with PSP evidence also had at least one observation at 

PTM probability >0.95 in PA (Table S9). This variation in phosphosites observed between the two 

databases can be explained by the likely use of different methods for phosphosite detection and 

localisation between PA and the sources referenced in PSP, as well as due to a considerable presence 

of random false positives in both datasets before thresholding has been applied. 

3.4.2 Evolutionary conservation analysis 

Phosphoproteomes from all species are constantly evolving, although many ancient phosphosites are 

conserved across species and taxa, increasing the likelihood of them being functionally relevant[126, 

217, 218]. In our analysis, we determined the conservation of all potential Ser, Thr and Tyr phosphosites 

and non-phosphosites in UniProt’s filtered reference human proteome across 100 eukaryotic species 

(Table S5), weighed towards vertebrates, but also including examples of insects, plants and 

unicellular eukaryotes (Table S3). In our first analysis, we explored the mean conservation of 

phosphosites and non-phosphosites per protein (at least three of each present per protein) and 

performed a correlation analysis across all proteins (Fig. 8). We fitted linear regression models 

through the origin, under the theory that proteins unique to humans would have zero conservation for 

both phosphosites and non-phosphosites. We found great variation between the conservation of both 

site types, ranging from near zero to 100%, which was mostly dependent on the overall conservation 

of the protein sequence. However, based on the generated linear regression models, we concluded 

that on average, Ser, Thr and Tyr phosphosites (“High” or “Medium” in PSP and/or PA) were around 

4.6%, 5.4%, and 2.0% respectively more conserved across all 100 eukaryotes than corresponding 

likely non-phosphosites (sites in “Not phosphorylated” and “Other” sets) within analysed proteins 

when allowing Ser/Thr substitutions towards the conservation score (Fig. 8). Similar results were 

obtained when assessing phosphosite conservation only across found orthologues for each protein 

(Fig. S1). The results (Fig. 8; Fig. S1) provide additional evidence that phosphosites are generally 

more conserved than non-phosphosites[126, 217, 219]. The difference in conservation is thus subtle and 

variable, but statistically robust. Furthermore, in our analysed sets of proteins which had at least 3 

likely phosphosites and 3 likely non-phosphosites, we found 104, 88 and 19 proteins where 

conservation of Ser, Thr and Tyr likely phosphosites respectively was at least 20% higher than 

conservation of likely non-phosphosites (Table S11).  
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Figure 8. Mean % conservation across 100 eukaryotic species of likely (A) Ser, (B) Thr, (C) Tyr phosphosites and corresponding likely non-phosphosites within each target protein 

(n=number of proteins analysed). The regression coefficient (R2) is given by “R_sq”.
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We next compared the conservation of all sites split by phosphorylation likelihood sets (Fig. 9) and 

observed that sites in the highest phosphorylation likelihood set (“High in both PSP and PA”) had the 

highest average conservation across all 100 eukaryotic proteomes considering Ser/Thr substitutions 

(average conservation of 58.4%, 58.6% and 69.4% across 16,978 Ser, 2,747 Thr and 986 Tyr sites 

respectively) (Fig. 9; Table S12). In comparison, the sites in “Low in PSP and/or PA” set had slightly 

lower average conservation scores of 54.3%, 55.4% and 64.0% in 35,126 Ser, 13,253 Thr and 7,471 

Tyr sites respectively (Fig. 9; Table S12). Assuming that high conservation is a property of true 

phosphosites, that property was observed more frequently in higher phosphorylation likelihood sets 

compared to lower ones suggesting higher FDR in sets with less phosphorylation evidence.  

There were numerous cases in our analysis of likely non-phosphosites and sites with “Low” 

phosphorylation likelihood where amino acid conservation was also high compared to likely 

phosphosites, indicative of a conserved function for these amino acids in, for example, catalysis or a 

biomolecular interaction that is unrelated to phosphorylation. Furthermore, we found 64, 30 and 6 

proteins in which the average conservation across 100 eukaryotes of Ser, Thr and Tyr likely non-

phosphosites respectively was at least 20% higher than the conservation of corresponding likely 

phosphosites (Table S11). It is possible that the predicted phosphosites within those proteins were 

either false positives or were non-functional true phosphosites, explaining the comparative weaker 

selective pressure. In fact, previous reports estimated that as many as 65% of known phosphosites 

may be non-functional as individual sites (although may have a more general structural role) due to 

limited kinase specificity and therefore have similar evolution rates compared to non-phosphosites 

which would explain the observed trends[114, 115]. It is also possible that some proteins were formed 

by recent gene fusion events leading to regions containing phosphorylation sites only found in a few 

closer related orthologues (low conservation), with other protein domains being more highly 

conserved. In addition, higher evolutionary rates in closely related species (primates, for example) 

could lead to new protein functions unique to that group of species, further explaining low 

conservation of some phosphosites in our analysis. We further note that Tyr sites in the highest 

phosphorylation likelihood set (“High in PSP and PA”) had a higher mean conservation (69.4%) 

compared to Ser/Thr sites in that set (58.4% and 58.6% respectively) (Fig. 9; Table S12). There are 

several possible explanations for this result, including the idea that pTyr is under stronger 

conservation pressure (i.e., mutations cannot easily be tolerated) in animals which make up the vast 

majority (84/100) of the species analysed (Table S3). It is also possible that there is a degree of 

experimental bias due to the comparison of the much larger set of pSer/pThr to pTyr. The typically 

higher data quality for pTyr, enhanced by the availability of epitope-specific monoclonal antibodies 

may also contribute to this phenomenon. 
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Figure 9. Box plots of conservation percentages (%) across 100 eukaryotic species of human (A) Ser, (B) Thr and (C) 

Tyr sites categorised across established phosphorylation confidence sets based on PSP and PA evidence. Within each 

box, a horizontal line represents median % conservation, an (x) symbol represents mean % conservation per group. Each 

box extends from the 25th to the 75th percentile of each set's distribution of conservation % values. Vertical lines 

extending from the boxes correspond to adjacent values. Dots (•) represent outlier values. Red line shows median % 

conservation in “High in PSP and PA” set for visual comparison. 
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3.4.3 Analysis of amino acids adjacent to phosphosites 

Amino acids directly adjacent to known phosphorylation sites are often involved in optimising 

substrate capture for subsequent phospho-transfer by the kinase enzymatic machinery[220-222]. 

Multiple reports specifically highlight the importance of proline (Pro) in the mechanism of 

phosphorylation for families of kinases such as the cyclin-dependent kinases, mitogen-activated 

protein kinases and, more recently, the centrosomal kinase PLK4[220, 223-228]. Consequently, there is a 

high prevalence of Pro in numerous phosphorylation motif sequences as part of Ser/Thr-Pro 

combinations[90, 229].  

In our analysis, we identified the frequency of -1 and +1 amino acids relative to a possible phosphosite 

and compared it across different sets of sites ranked by the relative strength of phosphorylation 

evidence in Table 3. We found a strong enrichment of Pro at the +1 position next to Ser and Thr sites 

in the reference human proteome that were placed in the set with the most phosphorylation evidence 

(“High in PSP and PA”) (Fig. 10A, B; Table S13). In fact, Pro was observed at the +1 position next 

to 44.3% and 74.9% of all Ser and Thr sites respectively in that set (Table S13). The enrichment of 

Pro at +1 position around those sites was significant (adj. p-value <0.001) in relation to the normalised 

distribution of Pro in the human proteome, where it is, in fact, only the sixth most observed amino 

acid (Table S13). The normalised number of observations of Pro at +1 relative to Ser and Thr sites in 

the highest phosphorylation likelihood set was also significantly (adj. p-value <0.001) higher than 

around Ser/Thr sites in the “Not phosphorylated” set (Fig. 10A, B), where only 2.68% of Ser and 

5.67% of Thr sites had Pro at +1 position (Table S13). Therefore, the enrichment of Pro around highly 

likely Ser and Thr phosphosites suggests that this feature, amongst others, can be used as a 

differentiating characteristic for phosphosites compared to non-phosphosites. 

We also found a significant enrichment of Asp at +1 position next to Ser sites in the highest 

phosphorylation likelihood set (Fig. 10A). To explain this, we linked the sequences containing those 

sites to phosphorylation motifs which commonly feature Ser-Asp combinations, including those 

phosphorylated by Casein kinase II[90, 230]. At the -1 positions around target Ser, we found significant 

enrichment (adj. p-value <0.001) of Asp and Gly in the highest phosphorylation likelihood set 

compared to “Not phosphorylated” set (Fig. 10D). It is possible that the observed enrichment was due 

to the presence of those amino acids within substrate motifs of Casein Kinase II, CDK5, PKC and 

MEKK[90], suggesting high prevalence of potential true Ser phosphosites. Similar conclusions were 

made for the enrichment of Gly at -1 around Thr sites in the highest phosphorylation likelihood set 

(Fig. 10E) which was linked to possible Gly-Thr combinations within PKA, ERK1 and ERK2 kinase 

substrate motifs[90]. 
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Figure 10. Counts of proximal amino acids positioned at (A) +1 around Ser; (B) +1 around Thr; (C) +1 around Tyr; (D) 

-1 around Ser; (E) -1 around Thr; (F) -1 around Tyr sites of various phosphorylation likelihood based on evidence in PSP 

and PA, normalised to observed distribution of those amino acids in human proteome (represented by dotted baseline 

fixed at 1). Significant (Bonferroni corrected p-value <0.001) enrichment of proximal amino acids in the “High in PSP 

and PA” set is highlighted by the caret symbol (^) when compared against the “Not phosphorylated” set, and an asterisk 

symbol (*) when compared to the expected amino acid distribution. 
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We compared the frequency of significantly enriched amino acids (Bonferroni corrected p-value 

<0.001; enrichment >1.5) across the sites within different phosphorylation likelihood sets and used 

the comparison to estimate phosphosite false discovery rate across those sets. Using the counts of all 

four enriched amino acids (Asp and Pro at +1; Asp and Gly at -1) around Ser sites of various 

phosphorylation likelihood (Fig. 10A, D) and working under the assumption of FDR = 0% in set 1 

“High in PSP and PA”, we estimated average Ser phosphosite FDR = 49% (CI ± 12%) in set 2 “High 

in PSP or PA”; FDR = 54% (CI ± 25%) in set 3 “Medium in PSP and/or PA”; FDR = 84% (CI ± 

11%) in set 4 “Low in PSP and/or PA” and FDR = 91% (CI ± 4%) in the “Other” set. Similarly, by 

using the enrichment of Pro at +1 and Gly at -1 around target Thr sites, we estimated Thr phosphosite 

FDR = 59% (CI ± 7%) in set 2; FDR = 86% in set 3 (CI ± 8%); FDR = 98% (CI ± 5%) in set 4 and 

FDR = 99% (CI ± 1%) in the “Other” set (Table 4A; Table S14). Our FDR estimates clearly highlight 

that the majority of Ser and Thr sites with just one piece of phosphosite identification evidence are 

likely false positive identifications, and users of these databases can reasonably assume that if a site 

does not have multiple levels of evidence, then it is unlikely to represent a true phosphorylation site. 

In our analysis of proximal sites around target Tyr, we found a significant enrichment (adj. p-value 

<0.001) of Ala, Glu and Asp at +1 positions, in addition to enriched Ile, Val and Asp at -1 in “High 

in PSP and PA” set compared to “Not phosphorylated” set (Fig. 10C, F). We were able to link the 

enrichment of those proximal sites to their possible involvement in various phosphorylation motifs 

including EGFR and Abl kinase substrate motifs; PTP1B and PTPRJ phosphatase substrate motifs, 

and multiple SH2 domain binding motifs[90, 231], therefore indicating higher frequency of true Tyr 

phosphosites in the highest confidence set compared to other sets. By using the frequencies of all six 

enriched proximal amino acids around target Tyr in “High in PSP and PA” (Fig. 10C, F), we estimated 

FDR = 49% (CI ± 9%) in set 2 “High in PSP or PA”, FDR = 69% (CI ± 5%) in set 3 “Medium in PSP 

and/or PA”, FDR = 82% (CI ± 9%) in set 4 “Low in PSP and/or PA”, and FDR = 98% (CI ± 4%) in 

the “Other” set (Table 4A; Table S14). 

Our FDR estimates varied depending on the selected enriched proximal amino acid in the highest 

phosphorylation likelihood set (Table S14), and thus the FDR estimates obtained with our method 

should be seen as approximate indicators of the extent of false positives in a set of sites with 

quantifiable phosphorylation evidence. 

Based on our Ser, Thr and Tyr phosphosite FDR estimates, we predicted that there were around 

62,000 Ser, 8,000 Thr and 12,000 Tyr true positive (TP) phosphosite identifications in the human 

proteome that were supported by evidence in PSP and/or PA (Table 4A). Furthermore, the results 

suggested that 86,000 Ser, 50,000 Thr and 26,000 Tyr sites with positive phosphorylation evidence 
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in PSP and/or PA (sites in “High”, “Medium”, “Low” sets) were false positives (Table 4A). 

Interestingly, the estimated count of Tyr TPs was higher than the count of Thr TPs which goes against 

the general understanding of threonine phosphorylation being more prevalent than tyrosine[31], 

although it is difficult to estimate the underlying true distributions, given experimental biases due to 

availability of different tools and methods. Our results are influenced because there are initially more 

Tyr sites with “High” or “Medium” phosphorylation evidence than Thr sites, particularly in PSP (Fig. 

7A; Table 4A), where there has been a strong focus to identify Tyr sites using in-house methods. The 

ratio of count of sites that have been recorded as “High” in both databases is however 16,978 (pSer), 

2,747 (pThr) and 986 (pTyr), following more closely previously reported estimates of 

phosphorylation site frequency. It thus remains to be seen if the pTyr sites reported in PSP, but 

without independent evidence are true or false. 

Using the same method, we compared phosphosite FDR between PSP and PA sets by considering 

positive phosphorylation evidence (“High”, “Medium” or “Low” sets) in one database without taking 

into account any evidence in the other (Fig. S2, Table S15). The analysis revealed a generally lower 

FDR per each set in PA compared to the respective set in PSP, overall suggesting that a higher 

proportion of analysed sites in PA are true phosphosites compared to the analysed sites in PSP (Table 

4B; Table S15). 
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Table 4. Counts of estimated true positive (TP) serine (Ser), threonine (Thr) and tyrosine (Tyr) phosphosites within sets of various phosphorylation likelihood based on (A) combined 

evidence and (B) individual positive identification evidence in PhosphoSitePlus (PSP) or PeptideAtlas (PA). Per each set, TP counts were derived from the FDR estimates within the 

set and the overall count of target amino acids in the set. 

 

 

 

 

 

Phosphorylation likelihood Ser count Ser % FDR 

(95% CI) 

Ser TP count Thr count Thr % FDR 

(95% CI) 

Thr TP count Tyr count Tyr % FDR 

(95% CI) 

Tyr TP 

count 

High in PSP and PA 16,978 0 16,978 2,747 0  2,747 986 0 986 

High in PSP or PA 24,536 49 (± 12) 12,513 6,871 59 (± 7) 2,817 8,960 49 (± 9) 4,570 

Medium in PSP and/or PA 35,126 54 (± 25) 16,158 13,253 86 (± 8) 1,855 7,471 69 (± 5)  2,316 

Low in PSP and/or PA 65,975 84 (± 11) 10,556 35,680 98 (± 5) 714 20,333 82 (± 9) 3,660 

Other in PA; No evidence in PSP 60,221 91 (± 4) 5,420 35,000 99 (± 1) 350 10,009 98 (± 4) 200 

Not phosphorylated in PA; No evidence in PSP 13,892 100 0 8,462 100 0 2,184 100 0 

Total excl. “Not phosphorylated” 202,836  61,625 93,551  8,483 47,759  11,732 

Phosphorylation likelihood Ser count Ser % FDR 

(95% CI) 

Ser TP count Thr count Thr % FDR 

(95% CI) 

Thr TP count Tyr count Tyr % FDR 

(95% CI) 

Tyr TP 

count 

High in PA 26,186 9 (± 7) 23,829 4,204 7 (± 1) 3,910 1,169 4 (± 3) 1,122 

High in PSP 32,306 29 (± 4) 22,937 8,161 46 (± 7) 4,407 9,763 44 (± 8) 5,467 

Medium in PA 20,517 42 (± 18) 11,900 5,297 70 (± 25) 1,589 1,460 44 (± 8) 818 

Medium in PSP 34,154 49 (± 28) 17,419 12,197 83 (± 9) 2,073 7,228 60 (± 11) 2,891 

Low in PA 12,950 45 (± 32) 7,123 4,895 88 (± 19) 587 1,324 57 (± 15) 569 

Low in PSP 66,777 81 (± 11) 12,688 35,173 97 (± 5) 1,055 20,191 71 (± 11) 5,855 

Total in PA 59,653  42,852 14,396  6,086 3,953  2,509 

Total in PSP 133,237  53,044 55,531  7,535 37,182  14,213 

A 

B 
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As noted in the “Introduction”, manually curated evidence for phosphorylation sites is also collated 

in UniProt. However, while this resource provides information pertaining to the publication providing 

this evidence, the numbers of individual observations are not reported, preventing a matched analysis 

being performed with PSP/PA. Nevertheless, we were able to extract all phosphorylation data from 

the human reference proteome in UniProt and separate phosphosites into sets according to the type 

of manually curated phosphosite evidence (experimental evidence, combinatorial computational and 

experimental evidence from large-scale experiments, sequence similarity with an orthologous 

protein). As before, the sets were analysed in terms of adjacent amino acids around target 

phosphosites (Fig. S3A-F). Due to potential phosphosite differences and biases associated with 

different discovery methods (motif frequency, for example), we suggest that our method should only 

be used to analyse sites from high-throughput studies because it was built primarily using sites of 

similar evidence type. This is further evident from the conservation analysis of UniProt sites (Fig. 

S3H, I) which revealed different conservation patterns between the set of sites identified by large-

scale studies and the other UniProt sets. As a result, we were able to estimate FDR for a set of UniProt 

sites with evidence from large-scale proteomics studies (Fig. S3G). In that set, we estimated average 

pSer FDR = 7% (CI ± 8%); pThr FDR = 22% (CI ± 14%) and pTyr FDR = 6% (CI ± 7%) (Fig. S3G), 

suggesting that there is a much higher proportion of true positive phosphosites in UniProt compared 

to PSP or PA datasets. The FDR difference between pSer and pThr follows the statistical expectation 

from analyses of large data sets with unbalanced counts of true positives for different residues. For 

example, if a study reported 1,200 phosphosites at 5% FDR, of which 1,000 are pSer and 200 are 

pThr, the false positives (~60) would assort approximately equally across pSer (~30 out of 1,000 i.e. 

3% FDR on pSer) and pThr (~30 out of 200 i.e. 15% on pThr), meaning that in the vast majority of 

studies (which do not correct for this issue) the general pThr FDR will be significantly higher than 

for pSer. For pTyr, the majority of sites comes from separate studies that specifically enrich for pTyr 

via antibodies, which likely accounts for the pTyr FDR being similar to the pSer FDR. 

3.4.4 Functional enrichment analysis 

In our analysis, we categorised all 20,271 proteins in the filtered human reference proteome (Table 

S5) according to what their highest ranked Ser, Thr and Tyr site was based on phosphorylation 

likelihood sets in Table 3. The resulting sets (Table S16) were analysed in DAVID[163] to compare 

functional enrichment patterns between phosphorylation likelihood sets. First, we found that across 

all datasets (Ser, Thr and Tyr) the protein sets containing sites ranked “High in both PSP and PA” 

were associated with the most significant (Benjamini–Hochberg adj. p-value <0.05) functional groups 

(Fig. S4) suggesting their functional coherence i.e., sharing mappings to keywords, ontology terms 

or pathways. Interestingly, proteins with sites from “Low in PSP and/or PA” set as their highest 
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ranked site and proteins which did not have any evidence phosphorylation evidence (“No evidence in 

PSP or PA” set) were also enriched for numerous functional categories suggesting that they too share 

some functional properties (Fig. S4). Proteins containing sites from the “Not phosphorylated” set as 

their highest ranked Ser/Thr/Tyr site were enriched for one significant functional group in the case of 

Tyr dataset and no functional groups in the case of Ser/Thr datasets, which was likely due to small 

protein sample size in those sets.  

To investigate this further, we compared the top 10 enriched functional groups between the protein 

sets and found that proteins containing Ser, Thr and Tyr sites with most phosphorylation evidence 

(“High in PSP and PA” set) were significantly enriched for categories and terms associated with 

phosphorylation such as “Phosphoprotein”, “Transcription”, “Nucleus” and “Alternative splicing” 

(Fig. 11) suggesting that those proteins were true phosphoproteins. There is a risk of generating 

circular evidence here, as the enriched term “Phosphoprotein” is a UniProt keyword, and will have 

been annotated based on literature evidence, potentially shared with PSP. UniProt does not yet load 

phosphorylation evidence from high-throughput data sets, and so classifications of phosphoproteins 

are generally independent of evidence used in PA. Other enriched keywords have also likely been 

determined based on independent evidence, and thus we believe are unbiased observations of our 

sets. Overall, 92.3%, 93.9% and 88.2% of proteins containing Ser, Thr and Tyr sites of the highest 

phosphorylation likelihood respectively were enriched for the term “Phosphoprotein”, which, as per 

description in UniProt, is a term assigned to a “protein which is post-translationally modified by the 

attachment of either a single phosphate group, or of a complex molecule, such as 5'-phospho-DNA, 

through a phosphate group”[13]. Furthermore, those proteins were enriched for “Acetylation” (Fig. 

11) which in some cases might indicate phosphorylation since crosstalk between acetylation and 

phosphorylation has been frequently reported[232, 233], alongside other modifications such as O-

glycosylation[234]. Another enriched function is “Alternative splicing” (Fig. 11) which is known to be 

controlled by reversible phosphorylation[235], further indicating that those proteins likely contain 

functional phosphosites. However, it is possible that this enrichment could correlate with the depth 

of analysis of the mentioned proteins rather than their phosphorylation likelihood, since extensively 

studied gene products (and abundant proteins with more easily detectable phosphosites) are likely to 

have better quality data associated with isoform identification and be consequently linked to 

“Alternative splicing”. 

In comparison, proteins that only had sites from “Low in PSP and/or PA” set as their highest ranked 

Ser, Thr and Tyr sites (i.e., proteins which did not have sites with strong phosphorylation evidence) 

were not enriched for clear phosphorylation-associated terms and were instead enriched for categories 
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such as “Glycoprotein”, “Signal” and “Disulfide bond” and “Membrane” (Fig. 11), suggesting that 

the majority of those proteins were likely non-phosphoproteins and their associated phosphosites with 

weak evidence were therefore likely false positives. Assuming that sites with no phosphorylation 

evidence in PSP or PA are likely non-phosphosites (although it is possible that phosphorylation has 

not been investigated or localised yet), potential high FDR in the “Low in PSP and/or PA” set was 

further supported by proteins with no phosphorylation evidence being enriched for similar functional 

groups (Fig. 11). In fact, we observed a clear decrease in the proportion of proteins enriched for 

phosphorylation-associated functional groups (where a set was enriched for at least 10 functional 

groups) going across our established sets suggesting higher phosphosite FDR in lower confidence 

sets (Fig. S5). 

Our investigation of UniProt terms linked to protein sets revealed that the enrichment for term 

“Phosphoprotein” and other terms likely to be associated with phosphorylation (“Alternative 

splicing”, “Nucleus”, “Acetylation”, “Transcription”) generally decreased across the sets of reduced 

confidence, which suggested higher FDR in sets with less phosphorylation evidence (Fig. 12). For 

example, only 13.0%, 31.7% and 36.3% of all proteins, which had Ser, Thr and Tyr sites respectively 

from “Low in PSP and/or PA” phosphorylation likelihood set as their most confident site, were 

marked as phosphoproteins in UniProt (Fig. 12; Table S17), suggesting that most proteins in those 

sets were not phosphoproteins, and further highlighting that the associated sites with only a single 

piece of evidence are likely false positive identifications. 
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Figure 11. Top 10 functional categories for which protein sets containing various highest ranked  (A) Ser, (B) Thr, (C) Tyr sites based on the amount of available phosphorylation 

evidence (“High in PSP and PA”, “Low in PSP and/or PA”, “No evidence in PSP or PA”) were significantly enriched in DAVID (Benjamini–Hochberg corrected p-value <0.05). For 

each protein set, the % of proteins enriched for a particular functional category is given as well as the log2(fold enrichment) for that set. The number of proteins in each set is presented 

by n.

B 

C 

A 



75 
 

           

Figure 12. The percentage of proteins within sets containing (A) Ser, (B) Thr, (C) Tyr sites of various phosphorylation likelihood as their highest ranked site, annotated with specific 

UniProt keywords. The number of proteins in each set is presented by n.

A B C 
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3.4.5 Secondary structure analysis 

We also investigated whether Ser, Thr and Tyr sites with strong phosphorylation evidence were 

located more frequently within specific protein secondary structures, when compared to sites with 

less evidence. For example, previous analysis of thousands of phosphosites from multiple species 

identified hotspots within domain families of proteins, particularly near domain interfaces and 

adjacent to catalytic residues, where they presumably regulate enzymatic output[113, 236]. We found 

that significantly more (Fisher’s test p-value <0.05) Ser, Thr and Tyr sites with the strongest 

phosphorylation evidence (“High in PSP and PA” set) were localised within coiled coils compared 

to sites in the “Not phosphorylated” set (Fig. 13). This might readily be explained by coiled coils 

being frequently found in transcription factors, the activity or subcellular location of which is often 

dependent on phosphorylation[237-239]. Therefore, the results in Figure 13 further indicated that there 

were more potential true Ser, Thr and Tyr phosphosites in “High in PSP and PA” set than in other 

sets. In terms of other analysed protein structures (beta strand, turn, alpha helix), there was no 

significant enrichment of sites from the highest phosphorylation confidence set within those 

structures when compared to the “Not phosphorylated” set (Fig. 13). In fact, our current reading of 

the literature suggests that it is still unclear whether phosphorylation sites are found on average to be 

localised more or less frequently within beta strands, turns or alpha helices, though clear evidence for 

localisation of PTMs at functionally important loci in proteins has been previously presented[240]. 
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Figure 13. Normalised counts of (A) Ser; (B) Thr; (C) Tyr amino acids of various phosphorylation likelihood based on 

evidence in PSP and PA which are found within protein structures (beta strand, alpha helix, turn, coiled coil). Significant 

(Fisher’s test p-value <0.05) enrichment of amino acids from “High in PSP and PA” set within protein structures is 

highlighted by the dot symbol (•) when compared against the “Not phosphorylated” set. 
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3.5 Conclusion    

In our analysis, we ranked all potential Ser, Thr and Tyr phosphosites in UniProt reference human 

proteome according to how much quantitative and qualitative phosphorylation evidence they were 

assigned in PSP and PA databases. Having analysed the sites and the proteins that contain them in 

terms of conservation, proximal site patterns, functional enrichment and structural properties, we 

established that Ser, Thr and Tyr sites with weak phosphosite identification evidence, particularly 

sites with a single piece of supporting evidence, were likely to be false positive identifications. This 

finding was further confirmed by FDR estimations across the established phosphorylation likelihood 

sets which revealed phosphosite FDR of 84%, 98% and 82% in sets of Ser, Thr and Tyr sites 

respectively where only one piece of identification evidence was present. Since there is a considerable 

presence of such sites in PSP and PA datasets, our results implied high FDR in both those datasets, 

although PSP was predicted to have a generally higher proportion of false positive phosphosites 

compared to PA. This is potentially a cause for concern since many potential false positives are 

presented to scientists as true phosphosites, without clear explanation of the likelihood of such claims. 

Nevertheless, using our FDR estimates we predicted that there are around 62,000 Ser, 8,000 Thr and 

12,000 Tyr true positive phosphosites in the human proteome that are supported by evidence in PSP 

and/or PA. These estimated counts are lower than other published estimates[57, 100, 241, 242] particularly 

for Ser/Thr sites, presumably due to the previous inclusion of false positives and subsequent 

overestimation of the number of true phosphosites. We conclude that researchers must be aware of 

the potential for false positive sites in both public and self-generated databases. As a general rule, 

phosphorylation sites with <5 independent observations should be treated with caution, and those 

with only one observation in a database are likely to be false positives. In a recent phosphoproteomics 

study from our group, we demonstrated the utility of the classification presented here, by matching 

the sites identified by LC-MS/MS to their evidence categories from PSP and PA[243]. For new 

phosphoproteomics studies, it will be common for some ambiguity to remain regarding phosphosite 

localisation, and many sites will be observed that would not pass a 1% or 5% false localisation rate 

cut-off from a single dataset, but for which there may be some supporting evidence. By evaluating 

new datasets in combination with all the evidence collated from the large number of previous studies, 

greater confidence can be assigned to “borderline” significant phosphosites that may indeed be 

correct, or conversely, sites with weak evidence that have never been reported can be rejected. Here, 

we have provided a methodological framework for estimating global FDR in large-scale 

phosphorylation data sets, which does not rely on native scores from search engines or site 

localisation software. Methods for estimating global FDR in meta-analyses of phosphosites are not 

yet robust, and thus we would recommend that other groups profile orthogonal properties of ranked 

sets, as we have done here, to estimate the real distribution of true and false phosphosites in their data.    
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Chapter 4 

Discovering Evolutionary and Functional Trends of Human 

Phosphorylation Sites  

 

4.1 Abstract 

Protein phosphorylation is the most important and frequently observed post-translational 

modification which is well-studied in relation to cell signalling pathways and disease across all life. 

The development of high-throughput proteomics pipelines has led to the discovery of large numbers 

of specific phosphorylated protein motifs and sites (phosphosites) across many eukaryotic species. 

Despite this, the vast majority of phosphosite discoveries are made in humans on serine (Ser), 

threonine (Thr) and tyrosine (Tyr) amino acids, with many other species only having a few 

experimentally confirmed or computationally predicted phosphosites. In addition, only a small 

fraction of the currently characterised human phosphoproteome has an annotated functional role. A 

common method of predicting functionally relevant phosphosites is conservation analysis which can 

identify conserved protein sequence regions and infer their functional relevance. However, extensive 

evolutionary studies which investigate phosphosite conservation across large numbers of species are 

scarce. In this Chapter, we explore the conservation of human phosphosites across 100 eukaryotic 

species and establish various phosphosite conservation patterns within specific species groups 

ranging from primates and other mammals to plants, fungi and protists. We link the observed 

evolutionary patterns to the functional relevance of phosphosites in those groups and also investigate 

the evolution of protein domains that encompass the target phosphosites. We identify several protein 

functions regulated by phosphorylation which range from ancient functions conserved across all life 

(cell cycle regulation, cytoskeleton formation, stress response, etc.) to relatively new functions only 

conserved in primates and other closely related species to humans (neuronal development, tissue and 

organ formation, immune response, etc.). We clearly demonstrate the importance of conservation 

analysis in predicting the functional significance of phosphosites and identifying organisms which 

can be used as biological models to study conserved signalling pathways relevant to human biology 

and disease. Furthermore, we apply conservation analysis to predict over 1,000,000 potential Ser, Thr 

and Tyr phosphosites in the analysed eukaryotes by using human protein sequences with confident 

phosphosites as a reference. Our results can ultimately be used to improve proteome annotations of 

species with few identified phosphosites and direct further downstream research surrounding the 

evolution and functional relevance of phosphosites in eukaryotes. 
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4.2 Introduction 

4.2.1 The extent of protein phosphorylation in humans and other eukaryotes 

In proteomics, kinase-regulated protein phosphorylation is the most important and frequently 

observed post-translational modification[47] which is well-studied in relation to cell signalling 

pathways and disease across all life[25, 26, 206]. The extent of protein phosphorylation in various 

eukaryotic species has been highlighted by several genome sequencing studies which revealed around 

500 kinase-encoding genes in humans[28, 244], 1,000 in Arabidopsis thaliana[245], 240 in Drosophila 

melanogaster[246] and 120 genes in Saccharomyces cerevisiae[247]. Furthermore, the development and 

optimisation of high-throughput proteomics pipelines such as tandem mass spectrometry (LC-

MS/MS) has led to the discovery of large numbers of specific phosphorylated protein motifs and sites, 

focussing primarily on the phosphorylation of canonical (established) serine (Ser), threonine (Thr) 

and tyrosine (Tyr) residues[29-33, 90]. Newly identified phosphorylation sites (phosphosites) are 

characterised and compiled in numerous publicly available resources which contain post-translational 

modification data from humans and other eukaryotic species (Table 5).  

However, as discussed in Chapter 3 and emphasised in similar studies, databases may not always 

account for phosphosite false discovery rate across large proteomics datasets which results in the 

accumulation of false positive identifications[100, 248]. Therefore, the number of “real” phosphosites in 

those resources may be lower than reported and researchers are advised to carefully evaluate the 

evidence behind phosphosites involved in their research. Nevertheless, our in-depth analysis of 

phosphorylation data from commonly used resources such as PhosphoSitePlus (PSP)[57] and 

PeptideAtlas (PA)[103] revealed that the count of “real” phosphosites in humans alone may exceed 

80,000[248]. As such, phosphorylation remains an active area of research, with new phosphosites being 

discovered all the time.    

Table 5. Examples of phosphorylation databases with eukaryotic data. 

Database name (version) Count of reported phosphorylation sites Species covered 

PhosphoSitePlus 

(v6.7.0.1)[57] 

>350,000 Human (63%); Mouse (28%); Rat 

(8%); Other eukaryotes (1%) 

dbPAF (Version 1.0)[249] >450,000 Human (51%); Mouse (25%); 

Yeast species (10%); Rat (8%); 

Fruit fly (4%); Roundworm (2%) 

Human Protein Reference 

Database (Release 9)[108] 

>50,000 Human (100%) 

iProteinDB (v1.0.1)[110]  >100,000 Six fruit fly species (around 17% 

per species) 

The Plant PTM Viewer 

(2021 build)[109] 

>300,000 Mouse-ear cress (38%); Maize 

(33%); Rice (13%); Wheat (12%); 

Algae (4%)  

PhosphoGRID (2.0)[250] >20,000 Baker’s yeast (100%) 
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4.2.2 Predicting conservation and functional relevance of phosphosites 

Despite numerous phosphosites being continuously reported and the extensive ongoing research 

surrounding the role of phosphorylation in proteomics, only a small fraction of the currently 

characterised human phosphoproteome has an annotated functional role[57, 113]. This is likely because 

the rate of phosphosite discovery is far greater than the rate at which each individual site or motif can 

be analysed experimentally. Furthermore, it has been proposed that a significant portion of 

phosphosites may have no regulatory function at all[114, 115]. The difficulty in distinguishing 

functionally significant phosphorylated regions from those that do not contribute to protein function 

is exacerbated by the added complexity of proteins having multiple phosphorylated sites within their 

sequence, as well as several kinase enzymes being able to phosphorylate multiple sites[30, 31].  

A common and effective method for predicting functionally significant phosphorylated protein 

regions is conservation analysis. At its simplest, conservation analysis works by comparing the amino 

acid sequence of a protein in question to the sequences of its homologues and identifying local regions 

of similarity which may have a common functional implication amongst the compared proteins[116]. 

Therefore, identifying conserved regions between protein homologues from different species 

(orthologues) may predict a common function and provide an insight into its mechanism and 

evolution. In fact, conservation analysis of genes and proteins often plays a central role in research 

surrounding model organisms and how they can be used to study human biology and disease[112, 120]. 

This is highlighted by various studies of organisms such as flies[121], worms[122], yeast[123] and 

mammals[122, 124] that uncovered novel molecular pathways and demonstrated a direct functional 

connection of those pathways to human biology by analysing conservation of the involved 

proteins[120, 122]. 

When it comes to studying the evolution and function of phosphorylated protein regions, it is 

generally hypothesised that functionally significant phosphosites would be highly conserved because 

their mutations to non-phosphosites would alter protein function and ultimately hinder evolutionary 

selection[125, 126]. Several studies demonstrated that Ser, Thr and Tyr phosphosites are indeed 

significantly more conserved compared to non-phosphosites in general[113, 126, 213]. Our large-scale 

profiling analysis of the reference human phosphoproteome assessed the conservation of human 

phosphosites across 100 eukaryotic species and also revealed that confident phosphosites are on 

average more conserved than sites with no phosphorylation evidence in the same protein sequences 

(Fig. 8 & Fig. 9)[248]. Therefore, identifying highly conserved phosphosites and exploring their 

functions could broaden our understanding of biological mechanisms and their evolution.  
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Multiple cross-species studies of phosphosites successfully characterised their conservation and 

linked it to functions such as cell cycle maintenance and metabolism[172, 174, 251]. However, extensive 

evolutionary studies which investigate phosphosite conservation across large numbers of species are 

scarce[111, 113]. One of the major aims of this Chapter is to therefore provide a further insight into 

general evolutionary and functional trends surrounding human phosphosites. This is achieved by 

calculating and analysing phosphosite conservation within specific groups of eukaryotic species 

(vertebrates and invertebrates, mammals only, primates only, etc.) and understanding their functional 

relevance within those groups. We also analyse functional enrichment of human protein sets with 

different phosphosite conservation patterns by using clusterProfiler[168] which is an open-source, user-

friendly R package that offers comprehensive analysis and visualisation of enriched functions. 

Additional functional annotations are mapped using DAVID online tool[163] which allows to extract 

functional terms from bioinformatics databases such as UniProt[13], KEGG[165], SMART[166] and 

InterPro[167]. Furthermore, we infer conservation patterns of prevalent human protein domains by 

linking phosphosite conservation to the data from the database Pfam[252] which offers accessible large-

scale bulk downloads of accurate domain annotations within protein sequences. 

4.2.3 Applying conservation analysis to predict phosphosites in eukaryotes 

The studies of phosphorylation sites and kinases are mostly limited to a specific set of species, with 

the most frequent phosphosite discoveries being made in humans, followed by several model 

organisms such as mouse, flies, worms, yeast and Arabidopsis (Table 5). As a result, the number of 

reported phosphosites varies between species, with most eukaryotes having little to no evidence of 

either experimentally confirmed or computationally predicted phosphosites[13, 57, 111]. For example, in 

the January 2023 build of PhosphoSitePlus database, there are only 24 characterised eukaryotes with 

any reported phosphorylation data in low or high-throughput studies, where species such as ferret, 

starfish and buffalo only have a single known phosphosite (Table 6)[57]. The process of identifying 

phosphosites with LC-MS/MS and subsequent proteome annotation can be expensive and time-

consuming, and its complexity also depends on the size of the proteome being annotated, as well as 

the availability of accurate experimental and genomic data for the species from which the proteome 

originates[253, 254]. As a result, phosphoproteomics studies are not attempted for the majority of the 

species. In fact, most experiments are designed and funded with the purpose of benefiting human life, 

as well as improving the understanding of human biology and diseases, which is often achieved by 

analysing a specific set of model organisms that have conserved functions in humans or the studies 

of which may bring benefit to human life[112, 120, 122].    
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Table 6. Approximate counts of phosphosites reported for eukaryotes in PhosphoSitePlus. 

Species Phosphosite count 

Human <240,000 

Mouse <110,000 

Rat <35,000 

Cow, Chicken, Rabbit, Pig <1,000 

Dog, Hamster, Frog, Sheep, Fruit fly <50 

Goat, Horse, Quail, Monkey, Guinea pig, Turkey, 

Cat, Marmoset, Torpedo, Ferret, Starfish, Buffalo 

<10 

 

As discussed previously, the analysis of conserved sequence regions between proteins can predict 

functionally relevant motifs and sites such as phosphosites when experimental validation is not 

readily available. In fact, various computational tools such as ConSurf[156], ACES[157], Ensembl 

Compara[159], NetPhos[255] and our own computational Python pipeline described in Chapter 2 

incorporate algorithms which analyse sequence conservation to predict functionally relevant sites 

within given protein sequences. Furthermore, some phosphosite annotations in UniProt are 

propagated from sequence similarity between a query sequence and a well-annotated homologous 

sequence with experimentally confirmed phosphosites, provided that the phosphorylated residue and 

the surrounding motif is conserved in the homologous sequence[13]. The propagations are usually 

limited between closely related species from the same taxonomic group and can be further validated 

if the kinase responsible for modifying the target is also conserved between the species[13]. In this 

Chapter, we expand the scope of phosphosite predictions using conservation analysis by mapping 

conserved phosphosites from the reference human proteome that have plenty of identification 

evidence to aligned sites in potential homologue sequences from 100 eukaryotic species. 

4.2.4 Aims of the Chapter 

• Expand on the conservation analysis of confident human phosphosites across 100 eukaryotic 

species introduced in Chapter 3 and establish phosphosite conservation patterns within 

specific groups of species.  

• Establish functional enrichment patterns within the defined clusters of proteins with varying 

phosphosite conservation to understand the evolution of functions regulated by phosphosites.  

• Link phosphosite conservation patterns to associated protein domains, thus providing an 

insight into their evolution between the analysed species and supporting the results of 

functional analysis.  

• Analyse multiple sequence alignments between reference human proteins containing 

confident phosphosites and their potential homologues from 100 eukaryotic species to predict 

new phosphosites in those species. 
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4.3 Method 

4.3.1 Establishing human phosphosite conservation patterns within eukaryotic species 

Conservation percentage scores across 100 eukaryotic species (Table S3) for all Ser, Thr and Tyr 

amino acids in the reference human proteome with any phosphorylation evidence were obtained by 

using Python conservation pipeline developed in Chapter 2 and following the methods described in 

Chapter 3. To ensure that only the most confident phosphosites were utilised in this Chapter’s 

analysis, the overall conservation data and multiple sequence alignments from Chapter 3 were 

extracted exclusively for our previously characterised “gold standard” set of phosphosites (i.e., 

phosphosites which had at least 5 pieces of identification evidence in PSP and PA databases). In total, 

the analysed set contained 16,978 Ser, 2,747 Thr and 986 Tyr sites across 5,709 proteins (Table S10). 

To establish general phosphosite evolutionary patterns within eukaryotes, the data was processed to 

determine percentage conservation scores within specific groups of species such as primates (n=18), 

other mammals (n=32), birds (n=12), fish (n=5), reptiles (n=4), amphibians (n=2), 

insects/invertebrates (n=11), fungi (n=4), plants (n=7) and protists (n=5). In addition, conservation 

scores were calculated for broader groups such as animals (n=84), vertebrates (n=73) and mammals 

(n=50). To allow downstream protein-level functional analysis, the average conservation of all 

Ser/Thr and Tyr phosphosites across each described species group was calculated for each protein in 

the “gold standard” set (Table S10). 

Taxonomic relationships between the selected 100 eukaryotic species were displayed with a 

phylogenetic tree built with NCBI’s Taxonomy Browser tool[256] using relevant UniProt proteome ID 

numbers as inputs (Table S3). The resulting phylogenetic tree was annotated and visualised using 

MEGA (version 10.2.2)[138] and iTOL (version 5)[257]. Additional silhouette images within the 

resulting tree were obtained from PhyloPic database (https://www.phylopic.org/).  

All proteins in the analysis (n=5,709) were then grouped into ten conservation clusters based on 

similarities in their Ser/Thr and Tyr phosphosite conservation patterns across the described species 

groups. The clustering was performed automatically using pheatmap package (version 1.0.12)[258] in 

R programming software[259], which applied the Euclidean distance method to assess similarity in 

phosphosite conservation patterns between target proteins and group them into specific clusters. The 

resulting protein clusters were presented as heatmaps and each cluster was manually named with an 

appropriate descriptive label which corresponded to the most observed conservation pattern within 

the cluster (i.e., at least 50% of proteins within the cluster had to match the label description in terms 

of their conservation patterns). The assigned labels characterised phosphosite conservation across 

species groups as “High” (phosphosites are ≥75% conserved within described species group) or 

https://www.phylopic.org/


85 
 

“Medium” (phosphosites are ≥50% conserved within described species group). Similar clustering 

analysis was performed on individual sites, where target Ser/Thr and Tyr phosphosites were grouped 

according to their percentage conservation across the species groups. To highlight the diversity of 

conservation patterns identified for target phosphosites, multiple sequence alignments for randomly 

selected proteins that accurately matched the description of the corresponding clusters of interest and 

had a characterised function in UniProt were annotated and visualised in Jalview (version 

2.11.2.3)[139]. 

4.3.2 Functional enrichment analysis of conservation clusters 

Each protein cluster was analysed with R package clusterProfiler (version 4.4.1)[168] to determine the 

functional enrichment of proteins with certain Ser/Thr and Tyr phosphosite conservation patterns 

against a control background of all analysed proteins (n=5,709) with at least one phosphosite from 

the “gold standard” set. For each cluster, a maximum of the 10 most enriched Gene Ontology (GO) 

terms were selected and visualised as dot plots, where the number of enriched proteins for a given 

GO term was provided and the statistical significance of the enrichment was measured with adjusted 

p-values. Clusters were counted as enriched for a particular GO term if their Benjamini–Hochberg 

adjusted p-value for the corresponding enrichment was <0.1. The functional enrichment analysis of 

the target protein clusters was extended by utilising DAVID online tool (version 6.8)[163] and again 

using all analysed proteins (n=5,709) as a control background. For each cluster, the top 10 (where 

possible) significant (Benjamini–Hochberg adjusted p-value <0.1) functional terms with the highest 

percentage of proteins mapped were identified, with any near synonymous terms being filtered out. 

In addition to mapping target clusters to GO terms, DAVID analysis was also used to determine 

whether the clusters were enriched for any KEGG pathways[165], UniProt keywords[13] and 

annotations from domain databases such as SMART[166] and InterPro[167].        

4.3.3 Linking phosphosite conservation data with protein domains 

In order to link protein domains which encompass target Ser, Thr and Tyr phosphosites with their 

conservation patterns across the species groups, domain data was extracted from Pfam database 

(version 35.0; November 2021 release)[252] and cross-referenced with the site-level conservation data 

by protein’s UniProt ID tag and site position within the protein sequence. In order to identify domains 

for which phosphosites with specific conservation patterns were enriched, fold enrichment (i.e., 

enrichment factor) was calculated for each domain against a control background of all phosphosites 

mapped to any Pfam domains. To calculate fold enrichment, a standard equation for enrichment 

analysis described in various enrichment pipelines such as DAVID (Database for Annotation, 

Visualization and Integrated Discovery)[163] was applied as follows: 
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𝑫𝒐𝒎𝒂𝒊𝒏 𝒇𝒐𝒍𝒅 𝒆𝒏𝒓𝒊𝒄𝒉𝒎𝒆𝒏𝒕 =  
𝒂/𝒃

𝑨/𝑩
 

a = Count of phosphosites with a specific conservation pattern mapped to domain X 

b = Count of all phosphosites with that specific conservation pattern 

A = Count of all phosphosites mapped to domain X 

B = Count of all phosphosites in the background distribution (i.e., all phosphosites mapped to any 

protein domain)  

 

The domain data was then filtered to only include domains with at least 2 mapped phosphosites. The 

top 10 domains with the highest percentage of mapped sites from each Ser/Thr and Tyr conservation 

pattern were visualised and log2(fold enrichment) was presented for easier interpretation of 

enrichment. The resulting data describing phosphosite conservation and mapped protein domains was 

summarised in an Excel spreadsheet. 

4.3.4 Predicting phosphosites across eukaryotes 

Multiple sequence alignments between target human proteins and their potential homologues from 

the selected species were processed with a separate Python code to identify all amino acids in the 

matched sequences which were aligned with target Ser, Thr and Tyr phosphosites in the human 

sequences. In addition, amino acids adjacent to the aligned sites at the +1 position in protein sequence 

were analysed. For every species in each alignment, if both the amino acid that is aligned with the 

human phosphosite and its +1 adjacent site were conserved in the human sequence (considering 

Ser/Thr substitutions), then that amino acid was predicted to be a phosphosite. In order to validate the 

resulting phosphosite predictions, phosphorylation data was extracted for mouse and Arabidopsis 

from PSP[57] and Plant PTM Viewer[109] databases, respectively, to determine how many of the 

predicted phosphosites in those species had experimental phosphorylation evidence. Additional 

validation of our phosphosite predictions was done by assessing the likelihood of a certain site in 

mouse being aligned with a human phosphosite and also having strong phosphorylation evidence (>5 

pieces of evidence in PSP). Finally, all resulting phosphosite predictions across 100 eukaryotic 

species were summarised in a convenient, easily accessible Excel file. 
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4.4 Results and Discussion 

4.4.1 Evolutionary and functional analysis of human phosphorylation sites 

In the previous Chapter, we analysed the global conservation of phosphosites from the human 

proteome and concluded that individual Ser, Thr and Tyr phosphosites from the “gold standard” set 

with strong identification evidence (Table S10) were on average 5%, 6% and 8% more conserved 

than our characterised set of corresponding non-phosphosites, respectively (Table S12)[248]. In this 

Chapter, we expanded on that analysis and investigated the conservation of the “gold standard” 

phosphosites (Table S10) across 100 eukaryotic species ranging from primates and other mammals 

to plants and fungi (Table S3, Fig. 14). By analysing average Ser/Thr and Tyr phosphosite 

conservation from each target human protein, we were able to split the phosphoproteins into 

independent clusters according to their similarity in phosphosite conservation patterns within specific 

groups of eukaryotes. Overall, our analysis successfully identified distinct phosphosite conservation 

patterns in human proteins (Table 7; Fig. 15; Table S18). For example, cluster C contained 197 

proteins which had at least one Ser or Thr phosphosite conserved across all analysed species, 

suggesting that these phosphosites were present in early eukaryotes such as fungi and were likely 

involved in regulating ancient protein functions (Table 7; Fig. 15A, cluster C). In comparison, cluster 

D contained 603 proteins in which Ser/Thr phosphosites were only conserved in primates, indicating 

their relatively recent evolution and potential significance in functions which are only relevant to 

primates (Table 7; Fig. 15A, cluster D). Various evolutionary patterns were also identified when 

conservation was assessed for individual phosphosites without taking into account the proteins they 

were found in (Fig. S6). For example, there were 162 Tyr phosphosites which were conserved 

primarily in animals which indicates their evolutionary divergence from lower eukaryotes (Fig. S6, 

cluster N1). The diversity of the established conservation patterns was further highlighted by multiple 

sequence alignments of the individual human protein examples which accurately matched the 

described phosphosite conservation pattern within the clusters (Fig. 16). 
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Figure 14. The phylogenetic relationship between groups of eukaryotic species involved in the conservation analysis of 

human phosphosites. 
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Table 7. Independent clusters of human phosphoproteins split according to their similarity in average Ser/Thr and Tyr 

phosphosite conservation patterns across established species groups. High and medium conservation indicates that 

phosphosites are ≥75% and ≥50% conserved across the species in each cluster, respectively. Cluster labels are also 

assigned for easier interpretation. 

Conservation pattern Phosphosite Protein count Phosphosite count Cluster label 

High in all vertebrates except birds Ser/Thr 45 80 A 

High in animals only Ser/Thr 384 820 B 

High or medium in all species Ser/Thr 197 379 C 

High in primates only Ser/Thr 603 1,650 D 

High in mammals only Ser/Thr 1,100 4,573 E 

Medium in all vertebrates except birds Ser/Thr 528 1,827 F 

High in mammals and medium in reptiles Ser/Thr 327 993 G 

High in all vertebrates except fish Ser/Thr 837 3,636 H1 

High in vertebrates only Ser/Thr 1,222 5,041 H2 

Medium in all vertebrates except 

amphibians 

Ser/Thr 274 726 H3 

High in all vertebrates and medium in 

plants 

Tyr 21 24 I 

High in all species Tyr 89 102 J 

Medium in all species except fungi and 

protists 

Tyr 27 40 K 

High in vertebrates only Tyr 190 313 L1 

High in animals only Tyr 103 160 L2 

Medium in primates only Tyr 10 10 M 

High in mammals only Tyr 69 85 N 

Medium in all vertebrates except fish and 

amphibians 

Tyr 67 82 O1 

High in all vertebrates except fish Tyr 53 61 O2 

Medium in all vertebrates except birds Tyr 74 109 P 
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Figure 15. Conservation patterns of (A) Ser/Thr and (B) Tyr phosphosites from human proteins across the groups of 

eukaryotic species. Each row in the heatmap represents an individual human protein and its phosphosite conservation 

across specific species groups which are separated into columns. Conservation is scored as a percentage out of all species 

per group and reflected by a colour gradient divided at quarterly intervals. The proteins were clustered based on their 

similarity in conservation patterns using the Euclidean distance method. For each cluster, a label is assigned which 

describes the most observed conservation pattern (i.e., at least 50% of proteins in the cluster follow the described 

phosphosite conservation pattern), where high and medium conservation refers to conservation scores of ≥75% and ≥50%, 

respectively. The total number of analysed proteins containing target phosphosites is given by n. 
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Figure 16. Sections of multiple sequence alignments of target human proteins with different conservation patterns of (A-

D) Ser/Thr and (E-H) Tyr phosphosites across eukaryotic species. For each alignment, the sequence of the human protein 

containing the phosphosites is located at the top and the aligned protein sequences of potential orthologues from other 

species are given below. Phosphorylated sites are marked by black rectangle boxes and their location within the human 

sequence is provided underneath in red. Alignments were annotated in Jalview. 
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Figure 17. Functional enrichment for Gene Ontology terms of human phosphoproteins with different (A) Ser/Thr and (B) Tyr phosphosite conservation patterns. The enrichment is 

visualised with dot plots generated using clusterProfiler. In each dot plot, the dots represent protein sets enriched for a specific functional term described on the y-axis. The size of the 

dots reflects the number of proteins in the enriched set and the colour corresponds to the significance of the functional enrichment determined by Benjamini–Hochberg adjusted p-

value. The position of the dots on the x-axis indicates the proportion of enriched proteins out of all analysed proteins in the protein set. The total number of proteins in each set is given 

by n. 

B 
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The differences in conservation patterns of human phosphosites are a likely result of their functional 

relevance within groups of species in which they are conserved[113, 125, 126], with some phosphosites 

being involved in ancient protein functions relevant to all life forms, and others contributing to 

relatively novel functions which are only conserved in specific species groups more closely related 

to humans (mammals or primates, for example). To investigate this further, we performed a functional 

enrichment analysis of proteins with different phosphosite conservation patterns to identify conserved 

functions which are potentially regulated by those phosphosites (Fig. 17 and Fig. S7). 

Firstly, we found that in 384, 1,222 and 1,100 human phosphoproteins, their phosphorylated Ser and 

Thr sites were on average conserved in broad species groups such as animals (Fig. 15A, cluster B), 

vertebrates (Fig. 15A, cluster H2) or mammals (Fig. 15A, cluster E), respectively (Table 7; Table 

S18). For example, Ser900, Ser916 and Ser930 sites in protein O75044 (SLIT-ROBO Rho GTPase-

activating protein 2; SRGAP2) were conserved in most vertebrates, but not in insects (Fig. 16A). It 

appears that the aligned insect sequences are unlikely to be true orthologues of the human protein as 

indicated by the lack of any conserved motifs in the analysed phosphorylated region (Fig. 16A). For 

human SRGAP2, there were also no significant matches found in BLAST (E-value of ≤0.00001) from 

plant species, fungi and protists. This conservation pattern can be explained by the functional 

relevance of SRGAP2 in neuronal morphogenesis during the development of cerebral cortex 

necessary for complex brain functions, which are expectedly not present in insects, plants, fungi and 

protists[260, 261]. This connection was further highlighted by the functional enrichment analysis, which 

revealed a general enrichment of target proteins for functional terms related to brain development 

such as “neuron differentiation”, “synapse” and “axon” (Fig. 17A, cluster H2). Most importantly, the 

conservation of the identified pathways regulated by proteins with Ser/Thr phosphosites characterised 

in our analysis suggests that the selected vertebrates can be used as model organisms to study human 

brain development pathways.  

In addition, we identified 197 proteins in which Ser/Thr phosphosites were conserved in all species, 

ranging from primates and other mammals to plants and single-celled organisms (Fig. 15A, cluster 

C). We linked those proteins to ancient molecular functions relevant across all life such as translation, 

metabolism and cell cycle regulation (Fig. 17A, cluster C). For example, human Thr196 site in protein 

Q15131 (cyclin-dependent kinase 10; CDK10) was well-conserved across all species (Fig. 16B) and 

its phosphorylation plays a role in promoting cell proliferation and transcription regulation[262]. This 

provides further evidence for the functional significance and conservation of CDK enzymes across 

life, with many CDK enzymes having been previously characterised across all species[263]. Additional 

DAVID analysis of proteins with Ser/Thr phosphosites conserved in all species (Fig. S7A, cluster C) 

revealed enrichment for methylation and acetylation which suggests that those post-translational 
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modifications, along with phosphorylation, play a role in key biological functions across all life, 

potentially as part of crosstalk between PTMs[43]. However, as similarly discussed in Chapter 3, we 

cannot rule out some biases that different PTM sites might have been more heavily studied in 

conserved proteins involved in the cell cycle. 

Interestingly, we also found that in around 11% of analysed proteins, their Ser/Thr phosphosites were 

only conserved in primates, indicating their potential relevance in relatively novel functions which 

diverged from other animals (Table 7; Fig. 15A, cluster D). For example, phosphorylated Thr834 in 

protein Q15572 (TATA box-binding factor RNA polymerase I subunit C; TAF1C) was conserved in 

primates but absent in other animals, and there were no BLAST matches found for that protein in 

lower eukaryotes (Fig. 16C). TAF1C is involved in functional pathways that regulate transcription[264] 

and our results suggest that those pathways may be exclusive to primates. Further functional 

enrichment analysis of proteins in cluster D inferred their involvement in tRNA processing and 

association with zinc finger-related terms including Kruppel-associated box (KRAB) zinc finger 

proteins (Fig. 17A; Fig. S7A, cluster D). In fact, previous studies also characterised groups of KRAB 

proteins which rapidly evolved in primates and adapted to regulate complex pathways involved in 

brain development[265, 266]. Furthermore, other proteins from cluster D were characterised as G-

antigen (GAGE) proteins (Fig. S7A, cluster D). Those proteins have been known to play a regulatory 

role in primate germ cell development and were proposed as candidates for immunotherapy of cancer 

due to their expression in many cancer tissues[267]. This highlights that identifying human 

phosphosites which are conserved in closely related species such as primates and other mammals can 

extend the availability of genetically similar species for the development of preclinical models used 

in drug development and testing. 

Another interesting conservation pattern was found for proteins in which Ser/Thr phosphosites were 

conserved in most vertebrates except fish (Fig. 15A, cluster H1). For example, phosphorylated Ser191 

in human protein P35908 (Type II keratin; KRT2) was conserved across mammals, reptiles, birds and 

amphibians, but BLAST did not produce any significant matches for that protein in any of the 5 fish 

species we analysed (Fig. 16D). The functional enrichment analysis of proteins in cluster H1 revealed 

that the conserved phosphosites may be involved in the formation of intermediate filaments during 

keratinisation (Fig. 17A; Fig. S7A, cluster H1), a process required for the development of 

epidermis[268]. Therefore, the results suggest that those functional pathways are absent in fish, likely 

because they are not necessary for survival in the aquatic environment. This conservation pattern was 

further highlighted by evolutionary studies which similarly identified groups of keratin proteins only 

conserved in tetrapods (i.e., four-legged vertebrates which evolved later than fish) (Fig. 14) and linked 
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those proteins to biological pathways involved in the development of tissues and organs such as skin, 

hair and nails necessary for protection against the friction caused by terrestrial movement[269, 270].   

In our analysis we also separately grouped human proteins according to the conservation of their Tyr 

phosphosites to further understand functional and evolutionary patterns of tyrosine phosphorylation 

in eukaryotes (Table 7; Fig. 15B; Table S18). In particular, we identified 89 proteins in which Tyr 

phosphosites were conserved in all species (Table 7) and linked this pattern to their potential 

involvement in ancient mechanisms that regulate protein folding, heat response and nucleotide-

binding (Fig. 17B; Fig. S7B, Cluster J). For example, we found that Tyr382 site in protein Q92630 

(Dual specificity tyrosine-phosphorylation-regulated kinase 2; DYRK2) was conserved across all 

species groups including animals and lower eukaryotes (Fig. 16E). DYRK2 is a serine-threonine 

kinase which plays an important role in regulating cell cycle, proliferation and apoptosis[271]. It is 

activated by autophosphorylation of the Tyr382 site which further explains the functional relevance 

and consequent conservation of that Tyr site across all species[271]. 

Furthermore, we identified 53 proteins in which Tyr phosphosites were on average conserved in most 

vertebrates except fish (Table 7; Fig. 15B, cluster O2; Table S18), which is a similar conservation 

pattern found in some proteins regulated by Ser/Thr phosphorylation (Fig. 15A, cluster H1). The 

proteins in cluster O2 were primarily enriched for functional terms describing cell motility pathways 

which are likely to be absent in fish (Fig. 17B; Fig. S7B, Cluster O2). One example of such protein 

is Q7Z406 (Myosin-14; MYH14), in which Tyr778 site was conserved across most vertebrates, but 

was mutated to phenylalanine in fish (Fig. 16F). This evolutionary pattern was also confirmed in 

another study which identified several myosin domains that emerged as a result of divergent evolution 

between fish and tetrapods[272]. Our results further highlight the functional relevance of tyrosine 

phosphorylation in tetrapods and help understand the evolution of established myosin-related 

functions such as cell signalling and motility[273, 274]. In addition, MYH14 (Fig. 16F) has been 

previously linked to hearing loss in humans[275] and therefore the species in which the functional Tyr 

phosphosite was found to be conserved can be used as potential clinical models to further study its 

involvement in human disease. 

Finally, our conservation analysis characterised 103 human proteins in which Tyr phosphosites were 

mostly conserved across animals, indicating an evolutionary divergence from lower eukaryotes 

(Table 7; Fig. 15B, cluster L2). We linked those proteins to the development of animal features by 

identifying functionally enriched terms such as “axon development”, “synapse organisation”, “tissue 

homeostasis” and “retina homeostasis”, in which tyrosine phosphorylation must play an important 

role (Fig. 17B, cluster L2). For example, one of the analysed proteins, Q14254 (Flotillin-2; FLOT2), 

which has phosphorylated Tyr163 site conserved in animals (Fig. 16G), is indeed known to be 
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regulated by tyrosine phosphorylation to facilitate axonal development and endocytosis[276, 277]. 

Furthermore, we were able to identify 69 proteins in which Tyr phosphosites were exclusively 

conserved in mammals (Table 7; Fig. 15B, cluster N) and linked those proteins to functions involved 

in immune response (Fig. 17B; Fig. S7B, Cluster N). For example, Tyr2 in protein P40121 

(Macrophage-capping protein; CAPG) was found to be conserved in mammals but absent in all other 

investigated groups of eukaryotes (Fig. 16H). This indicated that tyrosine phosphorylation might play 

an important role in regulating immune responses which are unique to mammalian systems. In 

addition, the results suggest that the selected mammals in which Tyr phosphosites were found to be 

conserved can potentially be used to study specific mammalian molecular pathways also involved in 

human immune responses. Some of those pathways may also extend to other vertebrates as indicated 

by a similar functional enrichment for immune system-related functions of a small number of proteins 

with conserved Tyr phosphosites in cluster L1 (Fig. 17B; Fig. S7B, Cluster L1). 

There were also other clusters of phosphosite conservation patterns identified in our analysis (Fig. 

15). However, we were unable to link some of those clusters to any specific functions which might 

have helped explain the observed conservation patterns (Fig. 17). This is likely a result of a small 

sample size of proteins involved in those clusters or weaker enrichment which did not yield any 

conclusive results. It is also possible that there were sequencing or annotation errors in proteomes of 

certain species used in our analysis or within the specific protein sequences aligned with our human 

targets. This could have in turn led to errors in resulting multiple sequence alignments, causing 

consequent inaccuracies in the characterisation of phosphosite conservation patterns and functional 

enrichment predictions as demonstrated by several studies[278-280]. Nevertheless, we were able to 

successfully establish clear conservation patterns of human Ser/Thr and Tyr phosphosites across 

groups of eukaryotic species and highlight those patterns with specific protein examples. 

Furthermore, we linked most phosphosites to their functional relevance in specific groups of species 

and provided a clear insight into the evolution of several protein functions regulated by 

phosphorylation. We also demonstrated that the analysis of phosphosite conservation described in 

this Chapter can identify species which can be used as potential biological models to study functions 

involved in human biology and disease. As a result, our method can be readily applied to study 

phosphosites and even other PTMs in terms of their evolution and functional significance.  

4.4.2 Linking phosphosite conservation to protein domains 

Having established specific conservation patterns of human phosphosites, we were able to identify 

relevant protein domains in which those phosphosites were found by linking the data from domain 

database Pfam[252]. In total, we successfully mapped 22% (4,576/20,711) of our analysed Ser, Thr and 

Tyr phosphosites to 1,419 different protein domains characterised in the Pfam database (Table S18). 
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It is likely that the unmapped phosphosites had an independent functional role outside of any given 

protein domain or belonged to a recently discovered protein which has not yet been annotated in 

Pfam. We also linked the domains with the conservation patterns of the associated phosphosites to 

further understand their evolution and functional relevance in eukaryotes (Table S18). By identifying 

frequently observed (enriched) domains per conservation cluster, we provided further evidence to 

support the functional relevance of conserved phosphosites within specific groups of eukaryotes (Fig. 

17, Fig. S7). 

For example, phosphosites conserved across most eukaryotic species were found within domains 

from protein kinases, heat shock proteins, proteins associated with apoptosis (indicated by the 

enrichment of “DEAD” domains[281]), as well as domains from actin and tubulin proteins (Fig. 18). 

As discussed previously, those phosphosites are therefore likely to be associated with ancient 

functions conserved in all life forms such as cell signalling, regulation of cell proliferation and death, 

stress response and cytoskeleton formation. Furthermore, phosphosites conserved in only animals 

were primarily linked with actin and kinase domains (Fig. 18), perhaps indicating their relevance in 

cell signalling pathways which evolved exclusively in animals to facilitate functions such as muscle 

development and contraction[15]. Interestingly, we also found an enrichment of Ser/Thr phosphosites 

conserved in mammals for the “KI67R” domain which is known to be associated with genome 

stability and mammalian immune response against highly proliferative cells[282]. This domain was 

further enriched in primates suggesting its potential involvement in additional, primate-exclusive 

signalling pathways (Fig. 18A). A similar pattern was found for Tyr phosphosites which were 

exclusively conserved in mammals or primates and enriched for protein domains known to be 

involved in immune response such as “LIME1”[283, 284], “Annexin”[285] and “Defensin_1”[286], further 

highlighting that Ser/Thr/Tyr phosphorylation plays a key role in immune system pathways of higher 

eukaryotes (Fig. 18B). Ser/Thr phosphosites conserved in primates were also linked to the “GAGE” 

domain (Fig. 18B) which reaffirmed our previous result that linked primate-specific phosphosites to 

GAGE-type proteins involved in germ cell line development and cancer (Fig. S7A, cluster D). 

Moreover, the domain analysis of phosphosites conserved in all vertebrates except fish revealed 

enrichment for the “Filament” domain (Fig. 18) involved in the formation of intermediate 

filaments[287]. This protein domain regulates cell signalling pathways likely to be specifically relevant 

to tetrapod survival such as movement and response to mechanical stress, which further highlights 

our results of the protein-level functional enrichment analysis (Fig. 17, clusters H1 and O2).  
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Figure 18. Protein domains from Pfam database (y-axis) for which (A) Ser/Thr and (B) Tyr phosphosites with specific conservation patterns across eukaryotes were enriched against 

a control background of all phosphosites mapped to any Pfam domains. For each conservation pattern, the percentage (%) of phosphosites with that pattern mapped to a specific domain 

is given, as well as the log2(fold enrichment). The total number of phosphosites with a particular conservation pattern mapped to any domain is presented by n. 

pY sites 
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Finally, we identified a small number of tyrosine phosphosites highly conserved in animals and plants 

which were enriched for a heat shock protein domain “HSP70” and domain “His_Phos_1” which 

belongs to a histidine phosphatase superfamily of proteins (Fig. 18). Upon further investigation, we 

found that those Tyr phosphosites were associated with enzymes called phosphoglycerate mutases. 

Those enzymes typically have a conserved histidine residue in their active site which is 

phosphorylated to regulate glucose metabolism during glycolysis[288]. By visualising an example 

alignment of protein P15259 (Phosphoglycerate mutase 2; PGAM2), we first found the 

phosphorylated target Tyr92 site which was highly conserved in all animals and plants, along with 

some fungi and protists (Fig. 19). According to UniProt and an associated study[289], the 

phosphorylated Tyr92 and its neighbouring His91 form a 4-amino acid binding site motif Glu-Arg-

His-Tyr in PGAM enzymes. Interestingly, however, the neighbouring His91 site was absent in plants 

(and some protists) where it was mutated to methionine but conserved in all other species (Fig. 19). 

Previous studies of PGAM enzymes in plants reported its involvement in plant growth and 

photosynthesis, suggesting different molecular pathways compared to other eukaryotic species which 

may not involve histidine in its binding site[290, 291]. In terms of the active site of PGAM with 

phosphorylated His, previous reports indicated that it is typically found and conserved at position 11 

of the PGAM sequence[292, 293]. In fact, we also found conserved His11 in PGAM2 (Fig. 19) isoform 

which confirms the functional relevance of that site in the characterised “His_Phos_1” protein domain 

that spans between positions 6 and 134 in the sequence. This result highlights the importance of non-

canonical histidine phosphorylation across eukaryotes and provides evidence of its involvement in 

phosphorylation motifs alongside conserved functional tyrosine sites. 

 
Figure 19. Sections of a multiple sequence alignment of human Phosphoglycerate mutase 2 (PGAM2) with its potential 

eukaryotic homologues. The target human sequence is located at the top. Conserved functional sites His11, His91 and 

Tyr92 are marked by black rectangle boxes and the flanking positions in the human sequence are given at the bottom of 

each alignment section. Alignment annotation was done in Jalview. 
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4.4.3 Predicting phosphorylation sites in eukaryotes 

In our conservation analysis we only used high-quality human phosphorylation sites with plenty of 

identification evidence in databases PhosphoSitePlus and PeptideAtlas (Table S10) in order to limit 

the potential use of false positive phosphosite identifications. As a result, we used those phosphosites 

and the proteins in which they were found as a reference set to predict phosphorylation sites in other 

eukaryotes. In particular, we analysed multiple sequence alignments between the target human 

proteins and their top protein matches in BLAST from other eukaryotes to identify any sites which 

were aligned with the human phosphosites. For each aligned amino acid site from a certain species, 

we assumed that it was likely to be a true phosphosite if it was the same as the human phosphosite 

(considering Ser/Thr substitutions) and if its adjacent site at the +1 position in the sequence was also 

conserved in the human protein (i.e., a site which is likely to also be involved in a typical 

phosphorylation motif[90]). Using this assumption, we predicted a total of 830,078 Ser, 148,818 Thr 

and 56,480 Tyr potential phosphosites in the analysed species (Table 8, Table S19). The majority of 

phosphosites were predicted for primates, likely due to their closest evolutionary relationship with 

humans compared to the other analysed species, leading to similarities in protein sequences and 

common functional relevance. In addition, by using confident human phosphosites as a reference, we 

predicted hundreds of potential phosphosites in lower eukaryotes such as plants, fungi and protists 

based on their sequence alignment with human sites and likely involvement in common functions 

regulated by phosphorylation (Table 8, Table S19).  

To validate our phosphosite predictions, we investigated how many of our predicted sites in species 

such as mouse and Arabidopsis had any actual experimental identification evidence in 

phosphorylation databases PSP[57] and Plant PTM Viewer[109], respectively. We found that 82% and 

75% of our predicted Ser/Thr and Tyr phosphosites in mouse had reported experimental evidence in 

PSP, respectively (Table S19). Out of those sites, 61% had at least 5 pieces of phosphorylation 

evidence, indicating a confident set of phosphosites with a low false discovery rate (Table S19) as 

discussed in Chapter 3. By taking into account the total number of Ser, Thr and Tyr phosphosites in 

the mouse proteome and the overall number of phosphosites reported in PSP for mouse, we estimated 

enrichment factors of 14 and 43 for identifying confident phosphorylation sites that had any 

experimental evidence in PSP and at least 5 pieces of evidence, respectively, against a probability of 

identifying those sites by random chance. In other words, our method is much more likely to identify 

confident phosphosites in mouse than if they were selected at random. Furthermore, we found that 

35% of our predicted Ser, Thr and Tyr phosphosites in Arabidopsis were supported by experimental 

evidence in Plant PTM Viewer resource (Table S19). The proportion of predicted Arabidopsis 

phosphosites mapped to experimental evidence was lower than for mouse predictions, likely because 
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many of the target Arabidopsis protein sequences were missing phosphosite annotations or because 

many sequences have not yet been analysed experimentally and reported in Plant PTM Viewer. 

Nevertheless, our results suggest that our method of analysing multiple sequence alignments between 

human proteins with confident phosphosites and their top sequence matches in BLAST from other 

eukaryotic species can successfully predict confident phosphosites in those species. In our analysis, 

the resulting phosphosite predictions in eukaryotes were based on the conservation of target sites and 

their adjacent +1 sites against the aligned human phosphosites. However, it might be possible to 

improve our phosphosite predictions by making sure that the whole phosphorylation motifs 

encompassing target phosphosites in the human protein sequences were conserved, which would 

further increase the likelihood of the aligned sites from other species being real phosphosites.  

To summarise, our phosphosite predictions and results from the functional enrichment analysis (Fig. 

17, Fig. S7) identified areas of potential functional relevance in protein sequences from species which 

do not have much experimental evidence or comprehensive protein sequence annotations. 

Researchers can therefore analyse our predicted phosphosites to ultimately improve protein sequence 

annotations in different eukaryotic species and direct further research involving the use of these 

species as biological models to study conserved cell signalling and disease development pathways in 

which phosphorylation plays an important role. 

Table 8. The counts of predicted Ser, Thr and Tyr phosphosites across 100 eukaryotic species. The species are ranked 

from high to low in terms of their total counts of predicted phosphosites. 

Species pSer count pThr count pTyr count Total predicted phosphosites 

Chimpanzee 16179 2625 938 19742 

Western lowland gorilla 15642 2547 909 19098 

Olive baboon 15569 2540 913 19022 

Crab-eating macaque 15574 2525 909 19008 

Rhesus macaque 15549 2531 894 18974 

Pygmy chimpanzee 15482 2527 900 18909 

Sooty mangabey 15413 2493 897 18803 

Green monkey 15075 2470 887 18432 

White-tufted-ear marmoset 14998 2415 878 18291 

Sumatran orangutan 14945 2439 894 18278 

Northern white-cheeked gibbon 14881 2455 876 18212 

Ma's night monkey 14879 2393 867 18139 

Black snub-nosed monkey 14670 2427 869 17966 

Drill 14601 2412 888 17901 

Bolivian squirrel monkey 14404 2347 851 17602 

Pacific walrus 13812 2256 870 16938 

Horse 13817 2252 853 16922 

Cat 13571 2251 833 16655 

Bovine 13502 2239 868 16609 

Yangtze river dolphin 13534 2223 821 16578 

Goat 13445 2241 843 16529 
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Beluga whale 13458 2196 840 16494 

Sperm whale 13360 2223 817 16400 

Coquerel's sifaka 13424 2163 808 16395 

Caribbean manatee 13285 2203 833 16321 

Small-eared galago 13229 2171 827 16227 

Giant panda 13101 2211 840 16152 

Mouse 13079 2196 875 16150 

Dog 13045 2200 824 16069 

Thirteen-lined ground squirrel 13074 2153 842 16069 

Pig 12993 2225 834 16052 

European domestic ferret 13024 2175 827 16026 

Philippine tarsier 12801 2124 800 15725 

Golden hamster 12699 2123 825 15647 

Sheep 12661 2119 809 15589 

Polar bear 12555 2168 817 15540 

African elephant 12554 2083 829 15466 

Ord's kangaroo rat 12464 2110 793 15367 

Western European hedgehog 12339 2072 816 15227 

Guinea pig 12270 1995 823 15088 

Little brown bat 12115 2054 769 14938 

Black flying fox 11981 2021 735 14737 

Rabbit 11903 1992 781 14676 

Naked mole rat 11678 1984 787 14449 

Atlantic bottle-nosed dolphin 11405 1897 690 13992 

Damaraland mole rat 11127 1926 783 13836 

Common wombat 10735 1887 758 13380 

Chinese hamster 9710 1687 645 12042 

Chinese alligator 8886 1666 669 11221 

American alligator 8225 1616 632 10473 

Weddell seal 8172 1467 590 10229 

Chinese softshell turtle 7951 1537 604 10092 

Green anole 7884 1533 617 10034 

African clawed frog 7540 1569 623 9732 

Zebra finch 7360 1375 596 9331 

Rock dove 7207 1402 586 9195 

Wild turkey 7234 1394 564 9192 

Blue-fronted Amazon parrot 7206 1395 553 9154 

Scaled quail 6831 1311 539 8681 

Western clawed frog 6648 1387 563 8598 

Duckbill platypus 6726 1248 515 8489 

Emperor penguin 6482 1257 520 8259 

Atlantic salmon 6216 1463 553 8232 

Greater amberjack 5948 1416 546 7910 

Anna's hummingbird 6131 1219 484 7834 

Little egret 6036 1201 480 7717 

Downy woodpecker 5961 1165 474 7600 

Mallard 5801 1186 483 7470 

Three-spined stickleback 5392 1308 497 7197 

Hoatzin 5504 1134 443 7081 

White-throated tinamou 5483 1061 469 7013 
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Japanese pufferfish 5203 1286 496 6985 

Rainbow trout 4812 1218 429 6459 

Red flour beetle 1341 567 193 2101 

Dampwood termite 1347 509 195 2051 

Clonal raider ant 1300 512 188 2000 

Fruit fly 1221 563 165 1949 

Jerdon's jumping ant 1247 478 168 1893 

Water flea 1145 454 190 1789 

Asian swallowtail butterfly 1133 482 159 1774 

Green bottle fly 1086 527 160 1773 

Mosquito 1064 501 163 1728 

Silk moth 984 427 153 1564 

Neoptera 661 293 116 1070 

Moss 445 224 82 751 

Wheat 424 205 82 711 

Slime mold 389 230 63 682 

Maize 393 204 77 674 

Wild banana 387 178 77 642 

Mouse-ear cress 392 177 65 634 

Rice 360 186 70 616 

Peanut 360 171 75 606 

Emericella nidulans 326 201 55 582 

Neurospora crassa 318 192 67 577 

Yarrowia lipolytica 264 160 57 481 

Chlamydomonas reinhardtii 274 141 51 466 

Baker's yeast 247 125 53 425 

Emiliania huxleyi 191 128 52 371 

Marine diatom 184 119 50 353 

Plasmodium falciparum 145 84 44 273 

Total 830,078 148,818 56,480 1,035,376 
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4.5 Conclusion 

In this Chapter, we analysed a set of confident human Ser, Thr and Tyr phosphosites in terms of their 

conservation across specific groups of eukaryotic species. We established various evolutionary trends 

for the target human phosphosites and linked them to key conserved protein functions, highlighting 

the importance of phosphorylation within different groups of eukaryotes. In particular, we established 

the relevance of phosphosites in several ancient functions involved in cell signalling and metabolism, 

as well as functions which were only conserved in species closely related to humans, such as 

regulation of brain and muscle development, motility and immune response. We explored the 

identified protein functions further and provided an insight into the evolution of protein domains 

containing the target phosphosites. Our results emphasised the importance of conservation analysis 

in predicting the functional significance of phosphosites and identifying organisms which can be used 

as biological models to study conserved signalling pathways relevant to human biology and disease.  

By providing a comprehensive dataset describing the conservation and functional relevance of human 

phosphosites (Table S18), we suggest directions for further phosphoproteomics research. For 

example, phosphosite conservation can be applied in the investigation of human kinase enzymes and 

their phosphosite pairings. Despite the presence of a large number of identified human 

phosphosites[57, 100, 248], less than 5% of the characterised human phosphoproteome has been linked to 

specific kinase enzymes responsible for the corresponding phosphorylation events[57, 102]. Similarly, 

comprehensive kinase-substrate pairings have only been reported for a small number of well-

researched kinase enzymes usually involved in cancer or neurodegenerative diseases, with several 

human kinases only having a few associated phosphosites or no known substrates at all[294, 295]. 

Numerous publicly available bioinformatics resources including NetPhorest[255] and NetworKIN[296] 

offer algorithms which analyse protein sequence data to predict kinase-substrate pairings. In addition, 

a recent large-scale proteomics study by Johnson et al. (2023) profiled the human kinome to identify 

likely kinase matches for many reported human Ser/Thr phosphosites and link the predictions to 

various cell signalling pathways[102]. Our analysis of confident human phosphosites can therefore be 

expanded to the motif-level and be used to validate the available kinase-substrate predictions (i.e., if 

a kinase phosphorylation motif or site is conserved then, it is more likely to be true), identify potential 

kinase substrates and enhance the understanding of kinase evolution.  

Furthermore, we successfully applied conservation analysis to predict over 1,000,000 potential Ser, 

Thr and Tyr phosphosites across various eukaryotic species ranging from primates and other 

mammals to plants, fungi and protists. Our predictions can ultimately be used to improve proteome 

annotations of species which do not have many experimentally confirmed phosphosites and which 

lack comprehensive curation. In conclusion, our analysis clearly demonstrates the diversity of 
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evolutionary patterns in protein functions regulated by phosphorylation and our results can also be 

used to infer phosphorylation sites in other species and direct further research surrounding the 

evolution and functional relevance of protein phosphorylation.  
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Chapter 5 

Thesis Conclusion and Future Research Directions 

The research described in this Thesis profiled the human phosphoproteome to estimate the true extent 

of protein phosphorylation, highlight the issue of high phosphosite false discovery rate in large 

datasets, analyse the evolutionary conservation trends of human phosphosites, explore their key 

functions and predict large numbers of phosphosites in other eukaryotic species. 

First, in Chapter 2, we developed and validated an accessible Python pipeline which can determine 

the conservation of specific amino acid sites such as PTMs and perform several steps of a typical 

conservation analysis in a single step. In particular, for each query protein sequence, the pipeline 

identifies its likely homologous sequences from the selected species using the BLAST algorithm, 

generates multiple sequence alignments and calculates the conservation of target amino acid sites. 

We demonstrated that the pipeline is robust, easy to use and can be readily applied to analyse the 

conservation of thousands of protein targets at once from several selected species. The pipeline also 

generates multiple useful outputs which can be used for an in-depth downstream analysis of target 

sequences, such as BLAST results, FASTA sequences of top hits from each species, MSAs and 

percentage conservation scores of the target and adjacent sites. Currently, it is possible to calculate 

the conservation of -1 and +1 sites around each target site in the protein sequence. However, in the 

future, it may be possible to extend this motif sequence to analyse the conservation of selected 

phosphorylation motifs rather than a set motif of three amino acids, which can be useful in linking 

conservation results to substrate-kinase relationships. Nevertheless, the current pipeline is ideal for 

studying the evolutionary conservation of any specific biological sites of interest such as PTMs across 

multiple species. The pipeline is supported by a guide containing detailed installation and running 

instructions, explanations of any inputs and outputs, a troubleshooting guide and links to example 

inputs and results. Finally, no prior knowledge of Python programming is required to run the pipeline 

and it can work on multiple systems including Windows, MacOS and Linux. In the future, it may also 

be possible to incorporate the pipeline into a convenient online tool which would make it even more 

accessible. 

In Chapter 3, we addressed the issue of the likely overestimation of true phosphosites in public 

databases by developing a method for independent FDR estimation and predicting a more realistic 

count of true identifications. In particular, we ranked all reported human Ser, Thr and Tyr 

phosphosites into sets according to the amount of identification evidence they had in public databases 

such as PSP and PA, and analysed the sets in terms of their orthogonal properties such as conservation 

across 100 species, sequence properties and functional annotations. We demonstrated significant 
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differences between the sets and estimated that around 62,000 Ser, 8,000 Thr and 12,000 Tyr 

phosphosites in the human proteome were likely to be true, which is lower than most published 

estimates. Remarkably, we reported an estimated FDR of 84%, 98% and 82% within sets of 

phosphorylated Ser, Thr and Tyr sites, respectively, that were supported by only a single piece of 

identification evidence - the majority of sites in PSP. In fact, our analysis estimated that a total of 

86,000 Ser, 50,000 Thr and 26,000 Tyr phosphosites were likely false-positive identifications, 

highlighting the significant potential of false positive data to be present in phosphorylation databases. 

As a general rule, the results in Chapter 3 suggested that phosphorylation sites with <5 independent 

observations should be treated with caution, and those with only one observation in a database are 

likely to be false positives. Overall, Chapter 3 provides a methodological framework for estimating 

global FDR in large-scale phosphorylation data sets, which does not rely on native scores from search 

engines or site localisation software. Methods for estimating global FDR in meta-analyses of 

phosphosites are not yet robust, and thus we recommend that other groups profile orthogonal 

properties of ranked sets to estimate the real distribution of true and false phosphosites in their data. 

The analysis in Chapter 3 investigated phosphosites from the human phosphoproteome which had 

any evidence in PSP and PA databases. However, it could be useful to expand the analysis and include 

all phosphosites from selected phosphorylation resources to obtain clearer estimates of database-level 

false discovery rates. Phosphosites from other species can also be considered. Finally, our 

methodology developed for the analysis of orthogonal phosphosite properties can be applied to study 

the emerging non-canonical phosphorylation in proteins. 

In Chapter 4, we analysed the evolutionary conservation of human phosphosites across different 

groups of eukaryotic species ranging from mammals and other eukaryotes to plants, fungi and 

protists. We also linked the conservation patterns of phosphosites to their functional relevance in their 

associated species to further understand the evolution of protein functions regulated by 

phosphorylation. In particular, we established the relevance of phosphosites in several ancient 

functions involved in cell signalling and metabolism, as well as functions which were only conserved 

in species closely related to humans, such as regulation of brain and muscle development, motility 

and immune response. The functions were analysed further by investigating protein domains 

containing the target phosphosites with varying conservation patterns. Our results emphasised the 

importance of conservation analysis in predicting the functional significance of phosphosites and 

identifying organisms which can be used as biological models to study conserved signalling pathways 

relevant to human biology and disease. We also proposed that the conservation analysis could be 

expanded to the motif-level and be used to validate the available kinase-substrate predictions (i.e., if 

a kinase phosphorylation motif or site is conserved, then it is more likely to be true), identify potential 
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kinase substrates and enhance the understanding of kinase evolution. In addition, since our analysis 

was limited to a specific set of around 20,000 human phosphosites which had strong phosphorylation 

evidence, it may be possible to include additional human phosphosites to obtain a bigger profile of 

phosphosite conservation in eukaryotes, although this would increase the risk of including potential 

false positive identifications as discussed in Chapter 3. 

Finally, we applied the conservation analysis in Chapter 4 to predict over 1,000,000 potential 

phosphosites in eukaryotes by using confident human phosphosites as a reference. Our predictions 

were validated by matching a significant proportion of the predicted phosphosites in mouse and 

Arabidopsis to actual experimental evidence reported in relevant databases. However, additional 

experimental validation can be carried out as part of further research to test the predictions. The 

predicted phosphosites could also be explored in relation to their known kinase enzymes or protein 

interactions in associated species to support their functional significance and their likelihood of being 

real identifications. Moreover, the conservation analysis of protein motifs encompassing the predicted 

phosphosites would also increase the confidence of predicted phosphorylation sites. Nevertheless, 

our resulting phosphosite predictions are a good starting point for further analysis and can ultimately 

be used to improve proteome annotations of species which do not have many experimentally 

confirmed phosphosites and which lack comprehensive curation. Overall, the analysis in Chapter 4 

clearly demonstrates the diversity of evolutionary patterns of phosphosites and the associated protein 

functions regulated by phosphorylation, highlights how several model organisms can be identified to 

study human functions and predicts phosphorylation sites in other species. 

In conclusion, this Thesis provides a comprehensive profiling analysis of human phosphosites in 

relation to their identification evidence in large datasets, conservation in eukaryotes and functional 

annotations, all of which are crucial aspects of proteomics research surrounding phosphorylation. 
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