
Making Sense of Heterogeneous Maritime Data

Manolis Pitsikalis
Department of Computer Science

University of Liverpool
Liverpool, United Kingdom

e.pitsikalis@liverpool.ac.uk

Alexei Lisitsa
Department of Computer Science

University of Liverpool
Liverpool, United Kingdom

a.lisitsa@liverpool.ac.uk

Patrick Totzke
Department of Computer Science

University of Liverpool
Liverpool, United Kingdom

p.totzke@liverpool.ac.uk

Simon Lee
Denbridge Marine Ltd.

Liverpool, United Kingdom

simon.lee@denbridgemarine.com

Abstract—While an abundance of real-time maritime informa-
tion exists and is readily available to monitoring authorities, there
are still many instances in which ships are found to be engaged in
dangerous or illegal activities. In order to prevent such activities,
authorities employ Vessel Traffic Services systems since they
promote safety at sea while also assisting in management of ports.
In this paper we report on research done in cooperation with
Denbridge Marine Ltd., a global provider of maritime solutions,
and present an application integrated in a Vessel Tracking
Services system that allows the detection of normal vessel activity
as well as dangerous or illegal situations in real-time, using
information from the Automatic Identification System, a radar
sensor and other information. We use a set of phenomena
representing maritime activities of interest in the language of
Phenesthe, our Complex Event Processing engine, and detect
them on real maritime data streams from the area of Liverpool,
United Kingdom. We evaluate our application and show that our
system is capable of detecting and visualising maritime activities
on the map in real time. Finally, we study and demonstrate
the significance of using data from the Automatic Identification
System along with radar data for maritime monitoring.

Index Terms—maritime monitoring, complex event processing,
temporal logic, AIS, RADAR

I. INTRODUCTION

Shipping is an important pillar of world trade, it allows

the transportation of goods between countries and continents.

Consequently, in order to safeguard shipping there are a lot

of technologies that can provide maritime data for vessel

monitoring. For example, the Automatic Identification Sys-

tem (AIS) allows the transmission of timestamped positional

and identity information from vessels, radar systems produce

positional data from vessel targets in range, CCTV cameras

in ports record high resolution vessel footage and so on.

However, vessels are still found to be involved in dangerous

situations or illegal activities that need immediate intervention.

For instance, while AIS is a popular and valuable source

of information in maritime monitoring systems, it is typical

for vessels involved in illegal activities to turn off their AIS

This work has been funded by the Engineering and Physical Sciences
Research Council (EPSRC) Centre for Doctoral Training in Distributed
Algorithms at the University of Liverpool, and Denbridge Marine Limited,
United Kingdom.

transceivers or spoof their information. As a result, systems

that rely solely on AIS information are inadequate when

it comes to dark ships i.e., ships that don’t transmit AIS

information and are involved in illegal activities. Therefore,

in order to be fully effective, maritime monitoring systems

need to use multiple sources of often heterogeneous data and

be capable of providing in real-time useful intelligence.

In this paper we report on work that has been conducted as

part of a collaboration between the University of Liverpool

and Denbridge Marine Ltd1, a provider of Vessel Traffic

Services (VTS) systems to ports and harbours. VTS systems

act to facilitate safety of life at sea as well as assisting

in the management of ports. Port management includes, but

is not limited to: collision avoidance, berth management,

surveillance of unidentified vessels and monitoring of speed

and direction of maritime traffic. We present an application in-

tegrated in a VTS system that uses radar and AIS information

as its main input source along with a collection of indicative

maritime phenomena definitions specified in the language of

Phenesthe [1], our Complex Event Processing engine. Finally,

we evaluate the efficiency of our application with real maritime

data streams and study the significance of fusing multiple

sources of vessel data for maritime monitoring. Therefore, the

contributions of this paper are the following:

• a maritime monitoring application that uses several

sources of heterogeneous data (e.g., AIS, radar, maritime

areas of interest, static vessel data etc.),

• an evaluation of the efficiency of our application and a

study of the significance of using radar as an additional

source of information.

This paper is organised as follows. In Section II we discuss

work related to ours, while in Section III we present the back-

ground for our setup. In Section IV we present a collection of

indicative maritime phenomena definitions, next in Section V

we evaluate our maritime monitoring application. Finally, in

Section VI we summarise our contribution and discuss future

work.

1https://www.denbridgemarine.com
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II. RELATED WORK

There is a considerable amount of literature focusing in

maritime safety and maritime surveillance. For example, works

such as [2]–[4] utilise vessel related information (e.g., AIS

data, vessel images, SAR images) for ship type classification.

Other works, such as ours, focus on detecting maritime ac-

tivities of interest. For instance, Kontopoulos I. et al. in [5]

convert vessel trajectories into images and employ deep neural

networks for classifying vessel activities. In another work,

Zhou Y. et al. [6], use natural language analytics techniques on

a textual representation of trajectories for detecting maritime

anomalies. While the aforementioned approaches can detect

specific maritime activities or anomalies with some success,

they don’t allow the integration of an expert’s knowledge into

their models.

Roy J. in [7] argues that human experts understand much

better the nature of surveillance data, therefore it is very

important to allow domain experts express their knowledge

into the models in use. This direction follow the approaches

presented in [8], [9]. In detail, Pitsikalis M. et al. in [8] present

a composite maritime event recognition system where mar-

itime activities are formalised in the language of the Run-Time

Event Calculus (RTEC). However, in both [8], [9], the main

source of dynamic maritime vessel data is AIS, consequently

vessels that switch off their AIS transponders on purpose

can evade possible detections. Moreover, while the language

of RTEC allows the definition of several maritime activities,

it does not offer Allen’s algebra [10] relations on intervals.

Allen’s algebra relations on intervals are particularly useful

in phenomena definitions since they allow the specification of

the temporal arrangement of phenomena when it’s known. For

example, as we will present later in Section IV, a phenomenon

formalising vessel trips can be defined with little effort using

relations from Allen’s interval algebra. In this paper, we

present a maritime monitoring system that allows maritime

domain experts with no previous programming knowledge to

write definitions describing maritime phenomena of interest.

Furthermore, instead of relying in only one source of dynamic

vessel information, we use both AIS and radar data.

III. PRELIMINARIES

We perform maritime monitoring using maritime data trans-

mitted over AIS, and data coming from a radar system placed

in the area of Liverpool, United Kingdom. Additionally, we

use a stream of zone interaction events produced when vessels

enter or leave a zone of interest (e.g., a port, an anchorage

etc.). We combine all dynamic information into a single stream

and feed it in Phenesthe which in turn produces a stream of

detected time-associated maritime phenomena. In this Section

we will present briefly the input data sources, Phenesthe, and

the architecture of our application.

A. Fused maritime data stream

Our input stream provides the relevant dynamic information

of vessels derived from the use of a radar sensor and the AIS.

The radar sensor allows the use of Kalman-based filters [11] on

TABLE I
PHENOMENA OF THE INPUT STREAM.

Input Phenomenon Description
pos(TID ,LA,LO ,V ,C ,S) A position message. TID ,LA,

LO ,V ,C and S stand for
track id, latitude, longitude,
speed (knots), course over
ground, and information source.

zone interaction(TID ,Z , IT ) An input phenomenon occurring
when a target (TID) enters or
leaves a zone (Z). IT can be
either ‘entry’ or ‘exit’.

vessel tracks; hence when radar detected, the radar components

of the track stream provide filtered dynamic information of

position, course and speed every 3 seconds. On the other

hand, AIS transmitted data contains the self-reported dynamic

parameters of position, speed and heading (provided that the

vessel is equipped with an electronic compass), plus ancillary

static/voyage-related information that includes the length, the

beam, the Maritime Mobile Service Identity (MMSI) number

and International Maritime Organisation (IMO) number. The

reporting time frequency for dynamic information transmitted

over AIS ranges from 2 seconds to 3 minutes for Class A

transponders or 3 seconds to 3 minutes for Class B transpon-

ders, depending upon the vessel’s speed. The ancillary data is

reported roughly every 6 minutes per vessel. In our case, the

coverage of the AIS basestation is approximately 30 nautical

miles, while for the radar sensor, an IALA target type 4 in

good weather conditions can be detected in approximately 9.7

nautical miles [12].

Both radar and AIS information, is combined by the track

manager module of Denbridge Marine Ltd. which produces the

fused input track stream. Within the fused input track stream,

targets may be radar-tracked only, AIS only, or correlated

radar and AIS, depending on the vessel’s location within

the coverage area. In contrast with the original reporting

frequencies, the fused input track stream reports the last

known dynamic information of all tracks every 2 seconds. This

ensures that no changing dynamic track data is ever lost but

does mean repetition of the track reports for vessels that have

a low repetition rate due to being moored or being equipped

with a Class B transponder. We produce the final input stream

of our architecture by merging into the fused input stream zone

interaction events denoting the entry or the exit of vessels from

specific zones (e.g., a port, an anchorage area etc.). These

zone interactions events are produced by applying point in

polygon algorithms on the vessels’ positions and the relevant

zones. Consequently, the final input stream (AIS + RADAR)

is composed of temporally sorted instantaneous events that

may contain either dynamic vessel information, or a zone

interaction. A description of the input phenomena is available

in Table I.

B. Complex Event Processing with Phenesthe

We detect maritime temporal phenomena with our publicly

available Complex Event Processing engine Phenesthe [1].
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Phenesthe, allows the definition of instantaneous and durative

temporal phenomena and the relations between them. Given

an input stream and a set of temporal phenomena definitions,

Phenesthe will produce a stream of time associated temporal

phenomena. In this section we will briefly describe the lan-

guage of Phenesthe and its processing principles. A complete

presentation of Phenesthe is available in [1] while a summary

of the syntax of the language is presented in Table II.
1) Language: Time, in Phenesthe, is represented by an in-

finite non empty set T = Z
+
0 of non-negative integers ordered

via the ‘<’ relation. Temporal phenomena are divided into

three types events, states, and dynamic temporal phenomena.

Similar to temporal phenomena, the formulae of the language,

are divided in three types: Φ•, Φ− and Φ=. Formulae of Φ•

are true on instants of time, formulae of Φ− hold in disjoint

intervals, while formulae of Φ= hold in possibly non-disjoint

intervals. The three types of formulae allow the definition of

phenomena as folllows:

• Events are defined using formulae of Φ•. Formulae of Φ•

are true on instants of time and utilise the logical con-

nectives of conjunction (∧), disjunction (∨), and negation

(¬). Additionally, Φ• formulae may use the start and end
predicates to refer to the starting or the ending time of

intervals where formulae of Φ− hold. Finally, Φ• formulae

may use the newly introduced ‘∈’ connective between a

formula that is true on instants (Φ•) and a formula that

is true on disjoint intervals (Φ−).

• States are defined using formulae that hold in disjoint

maximal intervals, i.e., formulae of Φ−. Formulae of Φ−

may utilise the temporal operators of temporal union (�),

intersection (�) and complement (\) between formulae

that hold on disjoint intervals (Φ−). Moreover, they may

utilise the maximal range operator (�) between two

formulae of Φ•. Finally, we extend the temporal operators

for defining states, presented in [1], with an iteration

operator (@) and an operator for filtering intervals (filter)
based on their size. We will describe these extensions in

Section IV.

• Dynamic temporal phenomena are defined using for-

mulae that hold in possibly non disjoint intervals (Φ=).

Formulae of Φ= allow the specification of the temporal

relations between events, states and dynamic temporal

phenomena. In detail, formulae of Φ= may use the seven

basic relations of Allen’s interval algebra [10], before,

overlaps, contains, meets, starts, finishes, and equals.

2) Processing: Phenesthe uses time-windows, in other

words, it performs temporal queries at equally distanced

query times tq , with a step s (i.e., tq+1 − tq = s) over a

window ω of a user specified size |ω|. At each temporal query

time Phenesthe processes the temporal phenomena definitions

according to their dependencies and in parallel if possible.

When a temporal phenomenon is processed, a list of the

instants or the intervals at which it is true or holds is stored

for possible later use. Consequently, phenomena definitions

are processed only once without recomputations in a bottom

up manner. At the same time, Phenesthe uses a redundancy

TABLE II
SYNTAX SUMMARY OF THE LANGUAGE USED BY PHENESTHE. ‘L, R’

CORRESPOND TO LEFT AND RIGHT OPERANDS, WHILE THE � MAY BE ONE

OF THE FOLLOWING SYMBOLS {<,≥,=}.

Type Symbol Φ• Φ− Φ= Duration

Φ•

∧ l, r
∨ l, r
¬ r
start r
end r
∈ l r

Φ−

� l, r
� l, r
� l, r
\ l, r
@� l r
filter� l r

Φ=

before l, r l, r l, r
overlaps l, r l, r
contains r l, r l, r
meets l, r l, r
starts l l, r l, r
finishes l l, r l, r
equals l, r l, r

TRACK
MANAGER

Atemporal  
Data

Output
Stream

Phenomena
Definitions 

Phenesthe

AIS
 

RADAR

Input Processing VisualisationReporting
Database

Fig. 1. Architecture of our maritime monitoring system.

handling mechanism for bookkeeping. During this process,

instants or intervals are classified as redundant and non-

redundant. Redundant information, refers to data that will be

outside the next temporal window and will not contribute to

any further detections, while non-redundant information refers

to information that will be outside the next temporal window

but will possibly contribute in detections in a future query.

Redundant information is discarded, while non redundant

information is kept until classified otherwise.

C. Architecture

The complete architecture of our maritime monitoring sys-

tem can be divided in three components, the input component,

the processing component, and finally the visualisation compo-

nent. Figure 1 shows these components. The input component

contains the input sources (AIS and radar), the track manager

and the reporting database. The reporting database contains

ancillary AIS information and ‘entry’ or ‘exit’ events to spe-

cific zones as well as other information that does not change

frequently. The processing component contains, Phenesthe,

which has access to a set of maritime phenomena definitions,
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Fig. 2. Three moored vessels. The vessels and the detections are depicted on
the map of the iVision VTS system of Denbridge Marine Ltd. The first line
of the label contains the ship’s name, the second line shows the track id, and
finally the third line shows the phenomenon detected.

the stream produced from the input component, and other

information such as ship types, vessel names etc. provided

by the reporting database. Finally the visualisation component

contains the graphical interface of Denbridge Marine Ltd.

VTS system (iVision) which consumes the output stream of

Phenesthe and shows relevant information on the map.

IV. MARITIME PHENOMENA DEFINITIONS

Maritime phenomena may concern regular maritime traf-

fic, dangerous situations or illegal activities. In this section,

we present a subset of the maritime phenomena definitions

included in our maritime monitoring application.

A. Stationary vessels

Vessels can be stationary for several reasons. In this section

we present phenomena definitions related to stationary vessels.

1) Moored vessel: According the IMO [13], mooring refers

to securing a vessel in a particular place by means of wires

or ropes made fast to the shore. Taking into account that it’s

important for authorities to know the ports a vessel has been

to we provide the definition below:

state phenomenon in zone(TID ,Zone) :
zone interaction(TID ,Zone, entry) �
zone interaction(TID ,Zone, exit).

state phenomenon moored(TID ,Port) :
stopped(TID , , ) �
(in zone(TID ,Port) ∧ port(Port)).

(1)

In order to define among others, the moored(TID ,Port)
state, we define first the state in zone(TID ,Zone). The

in zone state is defined using the maximal range operator (�)

between two zone interaction(TID ,Zone,Type) events cor-

responding to the entry or the exit respectively of a vessel

with track id TID in a zone Zone (e.g., a port, an anchorage

area, an operator defined area or other areas). According to

the first rule of rule set (1), in zone holds for the maximal

time intervals that start when a vessel enters a Zone and end

when it exits. The stopped(TID ,Lat ,Lon) state, included in

Fig. 3. Two vessels at anchor (lower part), and a vessel underway (top part).
The red polygon corresponds to an anchorage area, while the shapes around
the vessels correspond to radar blobs.

the definition of the moored/2 state, is a user defined state

that holds when a vessel’s speed is less than an operator

defined threshold (e.g., 0.5 knots) for more than an operator

defined temporal threshold (e.g., 10 minutes). Additionally,

the stopped/3 state stores the coordinates (Lat ,Lon) of the

position where the vessel started its stop. port(Zone) is an

atemporal predicate that is true if Zone is a port. Finally,

the � temporal operator computes the intervals at which both

formulae (left and right) hold2. Therefore, a vessel will be

detected as moored at a Port if it is stopped inside a port

zone. Figure 2 shows an example of three moored vessels,

detected using the above pattern.

2) Vessel at anchor: Vessels when there is limited space in

ports or due to other reasons may get anchored in designated

anchorage areas. In our case, we extract anchorage areas

around Liverpool from S-57 ACHARE objects3. When a vessel

is anchored, due to strong weather or other reasons it may

perform an anchor watch violation. An anchor watch violation

is a dangerous situation that involves an anchored vessel

exiting without permission, an operator defined perimeter

around its anchorage point. Here we present a definition for

detecting anchored vessels and anchor watch violations.

state phenomenon at anchor(TID ,Zone,Lat ,Lon) :
stopped(TID ,Zone,Lat ,Lon) �
(in zone(TID ,Zone) ∧ anchorage(Zone)).

event phenomenon aw violation(TID ,Zone) :
(pos(TID ,Lat1 ,Lon1 , , , ) ∈
at anchor(TID ,Zone,Lat2 ,Lon2 )) ∧
distance(Lat1 ,Lon1 ,Lat2 ,Lon2 ,D) ∧
anchor perimeter(Zone,Athr ) ∧D < Athr.

(2)

The anchored/4 state as defined in the first rule of rule

set (2) holds for the time periods a vessel is stopped within

an anchorage area. Next, we define anchor watch violation as

an event, i.e., it is true in instants of time. According to the

second rule of rule set (2) an anchor watch violation occurs

2A detailed description of the intersection operator is available in [1].
3http://www.s-57.com/
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while the vessel is anchored and a position message is received

with coordinates exceeding the perimeter threshold set for that

anchorage area. The perimeter thresholds are defined by the

operators of the system.

B. Moving vessels

In the previous section, we presented definitions describing

maritime phenomena involving stationary vessels. Here, we

present a set of definitions involving moving vessels.

1) In range: In general, but especially in ports, it is

important to know which vessels are in range and for how

long. Below we present a definition describing vessels in

range.

state phenomenon in range(TID) :
pos(TID ,Lat ,Lon, ,V1 , ) @< 600.

(3)

in range/1 is defined using the iteration operator (@<). A

formula φ @� d, where φ ∈ Φ•, � ∈ {<,≥,−} and d ∈ Z
+

holds for a time interval that starts when φ is true at a t0,

continues to hold if the next occurrences of φ at ti (i > 0)

satisfy the constraint ti − ti−1 � d and finally ends at a tn if

the constraint tn+1 − tn � d is not satisfied. For example, as

specified in rule (3), the state in range holds for the disjoint

time intervals where position messages are received and the

distance between each consequent pair does not exceed 600

seconds.

2) Vessel underway: According to IMO a vessel is un-

derway if it is not at anchor, or made fast to the shore, or

aground [13]. We define underway in a similar manner as

in [8]. Below is the definition of underway in the language of

Phenesthe:

state phenomenon underway(TID) :
(pos(TID , , , ,V1 , ) ∧ V1 > 2.7 �
pos(TID , , , ,V2 , ) ∧ V2 ≤ 2.7) filter≥ 300.

(4)

The underway/1 state is defined using the maximal range

operator and filtering. A formula φ filter� d where � ∈ {<,≥
,=}, φ ∈ Φ− and d ∈ Z

+, holds for the intervals where φ is

true, and the size of the intervals is {<,≥,=} d. In the case of

rule (4), the intervals at which underway holds, start when a

position message has speed greater than 2.7 knots, end when a

position messages is received with speed ≤ 2.7 knots, and the

duration is greater than 300 seconds. An example detection of

vessels underway is available in Figure 3 (top right).

3) Vessel trip: In order to ensure abidance to regulations

and safety, authorities must monitor vessel trips. A trip starts

when a vessel stops being moored or anchored, then gets

underway, and finally reaches its destination port or anchorage

area. We define vessel trips as follows:

dynamic phenomenon trip(TID ,ZoneA,ZoneB) :
end(moored(TID ,ZoneA)) ∨
end(anchored(TID ,ZoneA, , )) before
(underway(TID) before
(start(moored(TID ,ZoneB)) ∨
start(anchored(TID ,ZoneB , , )))).

(5)

TABLE III
MARITIME PHENOMENA.

Phenomenon Description

stop {start , end}(TID) Vessel’s speed is {<,≥} 0.5 knots.

aw violation(TID ,Z ) Anchor watch violation in zone Z.

stopped(TID) A vessel is stopped.

stopped(TID ,LA,LO) A vessel is stopped with

initial coordinates (LA,LO).

anchored(TID ,Z ,LA,LO) A vessel is anchored in anchorage
Z, with initial coordinates (LA,LO).

moored(TID ,P) A vessel is moored in port P .

stopped in zone(TID ,Z ) A vessel is stopped in zone Z.

underway(TID) A vessel is underway.

trip(TID ,A,Z ) Vessel trip from area A to area B.

trip/3 is defined as a dynamic temporal phenomenon. As

defined in rule (5) the trip dynamic temporal phenomenon

holds for the intervals that start when a vessel stops being

moored or anchored at a ZoneA, next the vessel is underway,

and finally end when the vessel starts being moored or

anchored at ZoneB .

V. EVALUATION

We evaluate the efficiency of our maritime monitoring

system using a real stream of maritime data that is composed

of both AIS and radar information. Additionally, we study

the significance of using both AIS and radar information by

comparing the detected phenomena when consuming positions

signals originating from AIS with the detected phenomena

produced when consuming both information sources.

A. Setup

We evaluate the efficiency of our application using the

phenomena definitions presented in Table III. In detail, we

feed the AIS + RADAR stream to Phenesthe for 8 days,

starting from the 1st of April 2022, with the query step set

to 3 minutes and the window size increasing every 48 hours

in an exponential manner (ω = 1, 2, 4, 8 hours). At any given

time during that period there were around 80 to 160 AIS or

radar tracks for consideration within the system. Moreover, in

order to study the significance of radar information we execute

Phenesthe for 48 hours on the following input streams: (a) the

AIS + RADAR stream (b) the AIS stream which contains

the same events as the AIS + RADAR stream minus radar

positional messages. All experiments were conducted under

SWI-Prolog 7.6.4, on a machine with an Intel Core i7-8700

Processor and a DDR4-2666 8GB RAM, running openSUSE

Leap 15.2.

B. Results

The results of our evaluation are available in Figure 4.

Subfigures 4a and 4b show the average number of input

events and the average processing time per recognition query

for |ω| ∈ {1, 2, 4, 8} hours and s = 3 minutes, while

Subfigures 4a and 4d illustrate the number of input events
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Fig. 4. Results of our evaluation. The experiments, regarding efficiency were
conducted for |ω| = {1, 2, 4, 8} hours while the window sliding step was
set to 3 min. The experiments regarding the significance of RADAR were
conducted with |ω| = s = 1 hour. Plots (a) and (c) show the average number
of input events (thousands), plot (b) shows the average processing time (sec)
per temporal query, while plot (d) shows boxplots describing the number of
instants/intervals at which user defined phenomena are true.

and the number of instants/intervals at which user defined

phenomena are true or hold per query via boxplots when the

input stream is AIS + RADAR or AIS , with |ω| and s set to

1 hour.

Concerning efficiency, it can be seen from Subfigures 4a

and 4b that Phenesthe is able to produce detections of maritime

phenomena in approximately 2.5 seconds when the window

size is set to 1 hour (≈140K input events) or approximately

16 seconds when the window size is set to 8 hours (≈820K

input events). Considering the above, we can safely say that

Phenesthe is able to handle significant load of maritime

information without sacrificing efficiency.

Regarding the significance of radar in maritime monitor-

ing, results show (Subfigures 4c and 4d) that when using

the AIS + RADAR stream, position signals originating from

radar only, constitute around 26% of the input stream. Similar

behaviour is observed on the number of instants at which

user event definitions are true when using as input the

AIS + RADAR and the AIS streams. While the number of

intervals at which user defined states and dynamic temporal

phenomena hold on average per query are not significantly

different when using each stream respectively, in both phe-

nomena types, there are more phenomena detections when

using the AIS + RADAR stream as opposed to the AIS
stream. Conclusively, the results of this study show that radar

information can be a valuable source of information when it

comes to maritime monitoring.

VI. SUMMARY

We presented a maritime monitoring application along with

a set of indicative maritime phenomena definitions specified in

the language of Phenesthe. We evaluated our system on real

maritime streams containing information from AIS, a radar

sensor and other contextual information. Regarding efficiency,

the results of our evaluation show that our application is

capable of providing maritime phenomena detections in real-

time. Furthermore, our study on the significance of radar as

an additional source of information shows that a radar sensor

can provide useful maritime data that is otherwise unavailable

if relying only on AIS.

Our future work involves an extension of Phenesthe for

the learning of temporal phenomena definitions from ground

truth data. Moreover, we aim to compare Phenesthe, both

theoretically and experimentally, to other CEP systems.
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