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Abstract

How to efficiently represent a graph in computer memory is a fundamental data
structuring question. In the present paper, we address this question from a combinato-
rial point of view. A representation of an n-vertex graph G is called implicit if it assigns
to each vertex of G a binary code of length O(log n) so that the adjacency of two vertices
is a function of their codes. A necessary condition for a hereditary class X of graphs to
admit an implicit representation is that X has at most factorial speed of growth. This
condition, however, is not sufficient, as was recently shown in [19]. Several sufficient
conditions for the existence of implicit representations deal with boundedness of some
parameters, such as degeneracy or clique-width. In the present paper, we analyze more
graph parameters and prove a number of new results related to implicit representation
and factorial properties.
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1 Introduction

Every simple graph with n vertices can be represented by a binary word of length
(
n
2

)
(one

bit per pair of vertices), and if no a priori information about the graph is known, this rep-
resentation is optimal. However, for graphs belonging to certain classes, this representation
can be substantially shortened. For instance, the Prüfer code allows representing a labelled
tree with n vertices by a binary word of length n log n. This is optimal among all represen-
tations of a labelled graph, because we need log n bits for each vertex just to represent its
label. Of course, those n log n bits describing the vertex labels do not in general describe
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the graph itself, since these bits do not necessarily allow us to determine the adjacencies.
However, for graphs in some classes, it is possible to represent the labels by only O(log n)
bits per vertex in such a way that vertex adjacency becomes a function of the labels. We
emphasize that this function and the constant hidden in the O-notation are specific to the
class, and if such a function and a constant exist, then we say that graphs in this class
admit an implicit representation or, with some abuse of terminology, that the class itself
admits an implicit representation.

The idea of implicit representation was introduced in [20]. Implicit representations are
important for a number of reasons. First, they are order-optimal, i.e. within a constant
factor of an optimal representation. Second, they allow one to store information about
graphs locally, which is crucial in distributed computing. Finally, they have a wide range of
applicability: many classes of practical or theoretical importance admit implicit represen-
tations, such as graphs of bounded vertex degree, of bounded clique-width, planar graphs,
interval graphs, permutation graphs, line graphs, and numerous others.

To better describe the area of applicability of implicit representations, let us observe
that, if a class X admits an implicit representation, then the number of n-vertex labelled
graphs in X , also known as the speed of X , must be 2O(n logn), since the number of graphs
cannot be larger than the number of binary words representing them. In the terminology
of [7], hereditary classes containing 2Θ(n logn) n-vertex labelled graphs have factorial speed
of growth. The family of factorial classes, i.e. hereditary classes with a factorial speed of
growth, is rich and diverse. In particular, it contains all classes mentioned earlier and a
variety of other classes, such as unit disk graphs, classes of graphs of bounded arboricity,
of bounded functionality [2], etc. The authors of [20] asked whether every hereditary class
of speed 2O(n logn) admits such a representation.

Recently, Hatami and Hatami [19] answered this question negatively by proving the
existence of a factorial class of bipartite graphs that does not admit an implicit represen-
tation. This negative result raises the following natural question: if the speed alone is not
responsible for the existence of an implicit representation, then what is responsible for it?

Searching for an answer to this question, we remark that many, if not most positive
results from the literature on implicit representations are associated with specific graph
parameters. More concretely, implicit representations can often be constructed when certain
parameters, for instance degeneracy, clique-width [28], or twin-width [8], are bounded. In
order to better understand this phenomenon – and indeed, because these types of graph
parameters, whose boundedness implies factoriality, are interesting in their own right – a
closer analysis is warranted.

We carry out such a study in Section 3, in which we begin by analyzing a parameter
called symmetric difference. Directly from the definition, one sees that the parameter gen-
eralizes degeneracy and twin-width, in the sense that if a class has bounded degeneracy,
respectively twin-width, then it has bounded symmetric difference. We show in Subsec-
tion 3.1 that symmetric difference also generalizes contiguity, and that among bipartite
graphs, forbidding the graph from Figure 1 also bounds the symmetric difference. Noting
that bipartite chain graphs admit implicit representations, we then define in Subsection 3.2
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a parameter which, roughly speaking, measures the number of parts in which we need to
partition the vertex set of a graph in order for the adjacency between the parts to be a
bipartite chain graph. We further generalize that parameter in Subsection 3.3, by allowing
more complex (but still well-behaved) adjacencies between the parts. Finally, in Subsec-
tion 3.4, we study the h-index (which generalizes the maximum degree), and provide a list
of all minimal induced obstructions to its boundedness, proving a conjecture from [3].

Section 4 then compiles a number of results on classes of bipartite graphs admitting im-
plicit representations. In Subsection 4.1, we show that forbidding the graph from Figure 1
yields an implicit representation, and as a consequence, so does boundedness of the param-
eter described in Subsection 3.3. Then in Subsection 4.2, we provide partial results towards
a conjecture that merely forbidding one-sided copies of the graph from Figure 1 is in fact
enough to yield an implicit representation. Finally, in Subsection 4.3, we identify several
subclasses of chordal bipartite graphs admitting implicit representations: the one obtained
by forbidding a claw whose edges are subdivided once; the one obtained by forbidding a
certain graph containing the two graphs in Figure 2; and the ones obtained by forbidding
any bipartite chain graph.

Finally, in Section 5, we focus on factorial properties. A motivation for this section’s
results is that, although [19] showed that factorial speed is not sufficient to guarantee
an implicit representation, factoriality is still a necessary condition, and so a good sanity
check to determine whether a class has an implicit representation is proving that it has
factorial speed. In this direction, we show factoriality of four subclasses of bipartite graphs:
the hereditary closure of hypercubes (settling an open problem from [2]), as well as three
subclasses of chordal bipartite graphs, each defined by forbidding one of the graphs from
Figure 4.

All relevant preliminary information can be found in Section 2, and Section 6 concludes
the paper with a number of open problems.

2 Preliminaries

All graphs in this paper are simple, i.e. undirected, without loops or multiple edges. The
vertex set and the edge set of a graph G are denoted V (G) and E(G), respectively. The
neighbourhood of a vertex x ∈ V (G), denoted N(x), is the set of vertices adjacent to x,
and the degree of x, denoted deg(x), is the size of its neighbourhood. The codegree of x is
the number of vertices non-adjacent to x. By [n] we denote the set of integers between 1
and n inclusive.

As usual, Kn, Pn and Cn denote a complete graph, a chordless path and a chordless
cycle on n vertices, respectively. Si,j,k is a tree with exactly three leaves with distances
i, j, k from the only vertex of degree 3. By nG we denote the disjoint union of n copies of
G.

The subgraph of G induced by a set U ⊆ V (G) is denoted G[U ]. If G does not contain
an induced subgraph isomorphic to a graph H, we say that G is H-free, or that G excludes
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H, or that H is a forbidden induced subgraph for G.
In a graph, a clique is a subset of pairwise adjacent vertices and an independent set is a

subset of pairwise non-adjacent vertices. A homogeneous set is a subset of vertices, which
is either a clique or an independent set.

A graph G = (V,E) is bipartite if its vertex set can be partitioned into two independent
sets. A bipartite graph given together with a bipartition of its vertex set into two indepen-
dent sets A and B will be denoted G = (A,B,E). The bipartite complement of a bipartite
graph G = (A,B,E) is the bipartite graph G̃ := (A,B, (A×B)−E). The bi-codegree of a
vertex x in a bipartite graph G = (A,B,E) is the degree of x in G̃. By Kn,m we denote a
complete bipartite graph with parts of size n and m. The graph K1,n (for some n) is called
a star. A chain graph is a bipartite graph whose vertices in one of the parts can be linearly
ordered with respect to the inclusion of their neighbourhoods. The class of chain graphs is
precisely the class of 2K2-free bipartite graphs.

Given two bipartite graphs G1 = (A1, B1, E1) and G2 = (A2, B2, E2), we say that G1

does not contain a one-sided copy of G2 if there is no induced copy of G2 in G1 with A2 ⊆ A1

or there is no induced copy of G2 in G1 with A2 ⊆ B1.
We say that a graph G is co-bipartite if it is the complement of a bipartite graph, and

that G is split if the vertex set of G can be partitioned into a clique and an independent
set.

2.1 Graph classes

A class of graphs is hereditary if it is closed under taking induced subgraphs. It is well
known that a class X is hereditary if and only if X can be described by a set of minimal
forbidden induced subgraphs. In this section, we introduce a few hereditary classes that
play an important role in this paper.

Most of our results deal with hereditary classes of bipartite graphs, which is motivated
by the negative result in [19] and the following argument. A natural way to transform any
graph into a bipartite graph is to interpret its adjacency matrix as a bipartite adjacency
matrix. This extends to a transformation between hereditary classes: transform every graph
in a hereditary class to a bipartite graph and take the hereditary closure of the obtained
set of bipartite graphs. As was shown in [18], this transformation preserves the factorial
speed of growth as well as the existence of an implicit representation1.

Monogenic classes of bipartite graphs. Even in the case of monogenic classes of
bipartite graphs, i.e. classes of bipartite graphs defined by a single forbidden induced
bipartite subgraph, characterizing which classes are factorial is not straightforward. In
[4], Allen identified nearly all factorial classes in this family, with the exception of P7-free
bipartite graphs. This exceptional class was characterised as factorial in [25], which leads to
a dichotomy presented in Theorem 1 below. This theorem follows readily from the results in
[4] and [25] and Lemma 1. The graph Ft,p mentioned in the lemma is presented in Figure 1.

1In [18], the transformation was shown to preserve a specific type of implicit representations, but the
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Figure 1: The graph Ft,p

Lemma 1. A bipartite graph H is simultaneously a forest and the bipartite complement of
a forest if and only if H is an induced subgraph of a P7, of an S1,2,3 or of a graph Ft,p.

Proof. The “if” part of the proof is obvious. To prove the “only if” part, assume a bipartite
graph H = (A,B,E) is simultaneously a forest and the bipartite complement of a forest.
Then any two vertices of the same colour in H share at most one neighbour and at most
one non-neighbour. Therefore, if one of the parts of H contains at most two vertices then
H is an induced subgraph of a graph Ft,p for some t and p. From now on, we assume that
each part of H contains at least three vertices, say a1, a2, a3 ∈ A and b1, b2, b3 ∈ B.

Suppose first that neither H nor H̃ contain vertices of degree more than 2. Then every
connected component of H (and of H̃) is a path. None of the components of H is trivial
(a singleton), since otherwise the opposite part has size at most two, contradicting our
assumption. Also, the number of non-trivial components is at most 2, since 3P2 = C̃6. If
H is connected, then H = Pk with k ≤ 7, since P̃8 contains a C4. If H consists of two
components Pk and Pt (k ≥ t ≥ 2), then k, t ≤ 4, since otherwise an induced 3P2 = C̃6

arises. Moreover, if k = 4, then t = 2, since otherwise H̃ contains a vertex of degree at least
3. It follows that H is an induced subgraph of P7. If k ≤ 3, then H is again an induced
subgraph of P7.

We are left with the case in which H (or H̃ – the cases are symmetric) contains a vertex
of degree at least 3. Say this vertex is a1, and that it is adjacent to b1, b2, b3 in H. Then each
of a2 and a3 has exactly one neighbour in {b1, b2, b3} and these neighbours are different,
since otherwise an induced C4 or an induced C̃4 arises. Without loss of generality, let a2

be adjacent to b2 and let a3 be adjacent to b3.
Assume A contains at least one more vertex, say a4. Then by the same arguments a4

has exactly one neighbour in {b1, b2, b3} and this neighbour must be different from b2 and b3,
i.e. a4 is adjacent to b1. But then a2, a3, a4, b1, b2, b3 induce 3P2 = C̃6. This contradiction
shows that A = {a1, a2, a3}.

Assume B contains at least one more vertex, say b4. Then b4 is not adjacent to a1, since
otherwise an induced C4 or an induced C̃4 arises. Additionally, b4 is adjacent to exactly
one of a2 and a3, since otherwise an induced C6 or an induced C̃4 arises. Without loss of
generality, suppose b4 is adjacent to a2. If B contains one more vertex, say b5, then by
the same arguments, b5 is adjacent to exactly one of a2 and a3. If b5 is adjacent to a2,
then a1, a3, b4, b5 induce a C̃4, and if b5 is adjacent to a3, then a1, a2, a3, b1, b4, b5 induce
3P2 = C̃6. A contradiction in both cases shows B = {b1, b2, b3, b4} and hence H is an
induced S1,2,3.

argument works for arbitrary implicit representations.
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Theorem 1. For a bipartite graph H, the class of H-free bipartite graphs has at most
factorial speed of growth if and only if H is an induced subgraph of one of the following
graphs: P7, S1,2,3 and Fp,q.

Proof. The factorial speed of Ft,p-free bipartite graphs and S1,2,3-free bipartite graphs was
shown in [4], while for P7-free bipartite graphs, it was shown in [25]. If H is not an induced
subgraph of P7, S1,2,3 or Ft,p, then by Lemma 1, either H or H̃ contains a cycle. It follows
that the speed of the class of H-free bipartite graphs is superfactorial (this is a well-known
fact that can also be found in [4]).

A similar dichotomy of monogenic classes of bipartite graphs with respect to the exis-
tence of an implicit representation is not known yet. Since at most factorial speed of growth
is a necessary condition for a class to admit an implicit representation, it readily follows
from Theorem 1 that if a class of H-free bipartite graphs admits an implicit representation
then H is an induced subgraph of P7, S1,2,3, or Fp,q. It is known that the class of S1,2,3-free
bipartite graphs admits an implicit representation because this class has bounded clique-
width [21] and graph classes of bounded clique-width admit an implicit representation [28].
Prior to this work, the question remained open for the other two cases. In Section 4.1 we
resolve the case of Fp,q-free bipartite graphs, by showing that any such class admits an
implicit representation.

Chordal bipartite graphs. A bipartite graph is chordal bipartite if it has no chordless
(induced) cycles of length at least 6. The class of C4-free chordal bipartite graphs is precisely
the class of forests, which is factorial and admits an implicit representation. Despite this
‘closeness’ to the class of forests, the class of chordal bipartite graphs is superfactorial
[27] and hence does not admit an implicit representation. This makes the class of chordal
bipartite graphs a natural area for the study of factorial and implicitly representable graph
classes.

It is known that classes of Kp,q-free chordal bipartite graphs have bounded tree-width
[12], and hence admit an implicit representation. Some other subclasses of chordal bipar-
tite graphs are not known to admit an implicit representation, but they are known to be
factorial. These include classes of chordal bipartite graphs excluding a fixed forest [24]. In
the present paper we reveal a number of new factorial subclasses of chordal bipartite graphs
and show that some of them admit an implicit representation. Among other results, we
show that the class of S2,2,2-free chordal bipartite graphs, and any class of chordal bipartite
graphs avoiding a fixed chain graph admit an implicit representation.

2.2 Tools

Several useful tools to produce an implicit representation have been introduced in [6]. In
this section, we mention two such tools, and generalize one of them.

The first result deals with the notion of locally bounded coverings, which can be defined
as follows. Let G be a graph. A set of graphs H1, . . . ,Hk is called a covering of G if the
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union of H1, . . . ,Hk coincides with G, i.e. if V (G) =
k⋃

i=1
V (Hi) and E(G) =

k⋃
i=1

E(Hi).

Theorem 2. [6] Let X be a class of graphs and c a constant. If every graph G ∈ X
can be covered by graphs from a class Y admitting an implicit representation in such a
way that every vertex of G is covered by at most c graphs, then X also admits an implicit
representation.

The second result deals with the notion of partial coverings and can be stated as follows.

Theorem 3. [6] Let X be a hereditary class. Suppose there is a constant d and a hereditary
class Y which admits an implicit representation such that every graph G ∈ X contains a
non-empty subset A ⊆ V (G) with the properties that G[A] ∈ Y and each vertex of A has at
most d neighbours or at most d non-neighbours in V (G) − A. Then X admits an implicit
representation.

Next we provide a generalisation of Theorem 3 that will be useful later.

Theorem 4. Let X be a hereditary class. Suppose there is a constant d and a hereditary
class Y which admits an implicit representation so that every graph G ∈ X contains a
non-empty subset A ⊆ V (G) with the following properties:

(1) G[A] ∈ Y,

(2) V (G)−A can be split into two subsets B1 and B2 with no edges between them, and

(3) every vertex of A has at most d neighbours or at most d non-neighbours in B1 and at
most d neighbours or at most d non-neighbours in B2.

Then X admits an implicit representation.

Proof. Let G be an n-vertex graph in X . We assign to the vertices of G pairwise distinct
indices recursively as follows. Let {1, 2, . . . , n} be the index range of G, and let A, B1, and
B2 be the partition of V (G) satisfying the conditions (1)-(3) of the theorem. We assign to
the vertices in A indices from the interval {|B1|+ 1, |B1|+ 2, . . . , n− |B2|} bijectively in an
arbitrary way. We define the indices of the vertices in B1 recursively by decomposing G[B1]
and using the interval {1, 2, . . . , |B1|} as its index range. Similarly, we define the indices of
the vertices in B2 by decomposing G[B2] and using the interval {n − |B2| + 1, n − |B2| +
2, . . . , n} as its index range.

Now, for every vertex v ∈ A its label consists of six components:

1. the label of v in the implicit representation of G[A] ∈ Y;

2. the index of v;

3. the index range of B1, which we call the left index range of v;

4. the index range of B2, which we call the right index range of v;
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5. a boolean flag indicating whether v has at most d neighbours or d non-neighbours in
B1 and the indices of those at most d vertices;

6. a boolean flag indicating whether v has at most d neighbours or d non-neighbours in
B2 and the indices of those at most d vertices.

For the third and the fourth component we store only the first and the last elements of the
ranges, and therefore the total label size is O(log n). The labels of the vertices in B1 and
B2 are defined recursively.

Note that two vertices can only be adjacent if either they have the same left and right
index ranges or the index of one of the vertices is contained in the left or right index range
of the other vertex. In the former case, the adjacency of the vertices is determined by the
labels in the first components of their labels. In the latter case, the adjacency is determined
using the information stored in the components 5 and 6 of the labels.

In the context of bipartite graphs, Theorem 4 can be adapted as follows.

Theorem 5. Let X be a hereditary class of bipartite graphs. Suppose there is a constant d
and a hereditary class Y which admits an implicit representation so that every graph G ∈ X
contains a non-empty subset A ⊆ V (G) with the following properties:

(1) G[A] ∈ Y,

(2) V (G)−A can be split into two subsets B1 and B2 with no edges between them, and

(3) every vertex v of A has at most d neighbours or at most d non-neighbours in the part
of B1 which is opposite to the part of A containing v, and at most d neighbours or at
most d non-neighbours in the part of B2 which is opposite to the part of A containing
v.

Then X admits an implicit representation.

3 Graph parameters

It is easy to see that classes of bounded vertex degree admit an implicit representation.
More generally, bounded degeneracy in a class provides us with an implicit representation,
where the degeneracy of a graph G is the minimum k such that every induced subgraph of
G contains a vertex of degree at most k.

Spinrad showed in [28] that bounded clique-width also yields an implicit representation.
The recently introduced parameter twin-width generalizes clique-width in the sense that
bounded clique-width implies bounded twin-width, but not vice versa. It was shown in [8]
that bounded twin-width also implies the existence of an implicit representation.

The notion of graph functionality, introduced in [2], generalizes both degeneracy and
twin-width in the sense that bounded degeneracy or bounded twin-width implies bounded
functionality, but not vice versa. The graphs of bounded functionality have at most factorial
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speed of growth [6]. However, whether they admit an implicit representation is wide-open.
To approach this question, we begin by analysing a parameter intermediate between twin-
width and functionality.

3.1 Symmetric difference

Let G be a graph. Given two vertices x, y, we define the symmetric difference of x and y
in G as the number of vertices in V (G)−{x, y} adjacent to exactly one of x and y, and we
denote it by sd(x, y). We define the symmetric difference sd(G) of G as the smallest number
such that any induced subgraph of G has a pair of vertices with symmetric difference at
most sd(G).

This parameter was introduced in [2], where it was shown that bounded clique-width im-
plies bounded symmetric difference. Paper [2] also identifies a number of classes of bounded
symmetric difference. Below we reveal more classes where this parameter is bounded.

The first result deals with classes of graphs of bounded contiguity. This includes, for
instance, bipartite permutation graphs, which have contiguity 1 [11]. The notion of conti-
guity was introduced in [16] and was motivated by the need for compact representations of
graphs in computer memory. One approach to achieving this goal is finding a linear order
of the vertices in which the neighbourhood of each vertex forms an interval. Not every
graph admits such an ordering, in which case one can relax this requirement by looking for
an ordering in which the neighbourhood of each vertex can be split into at most k inter-
vals. The minimum value of k which allows a graph G to be represented in this way is the
contiguity of G, denoted cont(G).

Theorem 6. For any k ≥ 1, any graph of contiguity k has symmetric difference at most
2k.

Proof. It suffices to show that any graph G of contiguity k has a pair of vertices with
symmetric difference at most 2k. Let x1, . . . , xn be a linear order of the vertices in which
the neighbourhood of every vertex consists of at most k intervals, and let

S :=

n−1∑
i=1

sd(xi, xi+1).

Since the neighbourhood of an arbitrary vertex y consists of at most k intervals in the linear
order, there are at most 2k pairs of consecutive vertices xi, xi+1 such that y is adjacent to
one of them, but not adjacent to the other. Therefore, y contributes at most 2k to S, and
hence S ≤ 2kn. Since there are n − 1 terms in the sum, one of them must be at most 2k
(unless n ≤ 2k + 1, in which case the statement is trivial).

The second result deals with classes of Ft,p-free bipartite graphs (see Figure 1 for an
illustration of Ft,p). These classes have unbounded clique-width for all t, p ≥ 2. To show
that they have bounded symmetric difference, we assume without loss of generality that
t = p.
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Theorem 7. For each t ≥ 2, every Ft,t-free bipartite graph G = (B,W,E) has symmetric
difference at most 2t.

Proof. It is sufficient to show that G has a pair of vertices with symmetric difference at most
2t. For two vertices x, y, we denote by dd(x, y) the degree difference | deg(x)− deg(y)| and
for a subset U ⊆ V (G), we write dd(U) := max{dd(x, y) : x, y ∈ U}. Assume without loss
of generality that dd(W ) ≤ dd(B) and let x, y be two vertices in B with dd(x, y) = dd(B),
deg(x) ≥ deg(y).

Write X := N(x)−N(y). Clearly, dd(B) ≤ |X|. If |X| ≤ 2, then sd(x, y) ≤ 4 ≤ 2t and
we are done.

Now assume |X| ≥ 3. First observe that dd(X) ≤ dd(W ) ≤ dd(B) ≤ |X|. Let
x1, x2, . . . , x|X| be a sequence of vertices of X with decreasing degree order, i.e. deg(xi) ≥
deg(xj) for all i > j. Since

∑|X|−1
i=1 (deg(xi)−deg(xi+1)) = dd(X) ≤ |X|, and each summand

is non-negative, by the Pigeonhole principle it easily follows that d(xi) − d(xi+1) ≤ 1 for
some i. So X contains two vertices p and q with with dd(p, q) ≤ 1. Finally, we conclude
that sd(p, q) ≤ 2t, since otherwise both P := N(p) − N(q) and Q := N(q) − N(p) have
size at least t, in which case x, y, p, q together with t vertices from P and t vertices from Q
induce the forbidden graph Ft,t.

The symmetric difference is also bounded in the class of S1,2,3-free graphs, since these
graphs have bounded clique-width [21]. For the remaining class from Theorem 1, i.e. the
class of P7-free bipartite graphs, the boundedness of symmetric difference is an open ques-
tion.

Conjecture 1. The symmetric difference is bounded in the class of P7-free bipartite graphs.

We also conjecture that every class of graphs of bounded symmetric difference admits
an implicit representation.

Conjecture 2. Every class of graphs of bounded symmetric difference admits an implicit
representation.

We will verify this conjecture for the classes of Ft,p-free bipartite graphs in Section 4.

3.2 Chain partition number

Let G be a graph and let k be the minimum number of subsets in a partition of V (G) into
homogeneous sets such that the edges between any pair of subsets form a chain graph. We
call k the chain partition number of G.

This notion was never formally introduced in the literature, but it implicitly appeared
in [5], where the author proved a result which can be stated as follows.

Theorem 8. [5] The chain partition number is unbounded in a hereditary class X if and
only if X contains at least one of the following six classes: the class M of (bipartite)
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graphs of vertex degree at most 1, the class M̃ of the bipartite complements of graphs in
M, the classes of complements of graphs in M and M̃, and two related subclasses of split
graphs obtained from graphs in M and M̃ by creating a clique in one of the parts of their
bipartition.

Bounded chain partition number implies implicit representation by Theorem 2 and the
fact that chain graphs admit an implicit representation.

3.3 Double-star partition number

The results in [5] suggest one more parameter that generalizes the chain partition number.
To define this parameter, let us call a class X of bipartite graphs double-star-free if there
is a constant p such that no graph G in X contains an unbalanced copy of 2K1,p, i.e. an
induced copy of 2K1,p in which the centres of both stars belong to the same part of the
bipartition of G. In particular, every class of double-star-free graphs is Ft,p-free for some
t, p. We will say that a class X of graphs is of bounded double-star partition number if
there are constants k and p such that the vertices of every graph in X can be partitioned
into at most k homogeneous subsets such that the edges between any pair of subsets form
a bipartite graph that does not contain an unbalanced copy of 2K1,p. We observe that if
p = 1, we obtain a class of bounded chain partition number.

Classes of bounded double-star partition number have been defined in the previous
paragraph through two constants, k and p. By taking the maximum of the two, we can talk
about a single constant, which can be viewed as a graph parameter defining the family of
classes of bounded double-star partition number. In Section 4 we will show that any class
in this family admits an implicit representation.

Similarly to Theorem 8, classes of bounded double-star partition number admit a char-
acterisation in terms of minimal hereditary classes where the parameter is unbounded. In
this characterisation, the class M of graphs of vertex degree at most 1 is replaced by the
class S of star forests in which the centers of all stars belong to the same part of the
bipartition.

Seven more classes are obtained by various complementations either between the two
parts of the bipartition or within these parts. Together with the class S itself this gives
eight different classes of bipartite, co-bipartite and split graphs (notice that complementing
the part containing the centers of the stars and the part containing the leaves of the stars
produce different classes of graphs). We will refer to all of them as the “classes related to
S”.

Theorem 9. [5] A hereditary class X is of unbounded double-star partition number if and
only if X contains at least one of the following ten classes: the class of P3-free graphs
(disjoint union of cliques), the class of P 3-free graphs (complete multipartite graphs), the
class S and the seven classes related to S.
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3.4 h-index

We observed earlier that the family of classes of bounded chain partition number forms
a subfamily of classes of bounded double-star partition number. One other interesting
restriction of the latter family consists of classes of bounded h-index. The h-index h(G)
of a graph G is the largest k ≥ 0 such that G has k vertices of degree at least k. This
parameter is important in the study of dynamic algorithms [13].

To see that bounded h-index does indeed imply bounded double-star partition number,
we note that all classes in Theorem 9, except star forest, contain either all complete graphs or
all complete bipartite graphs. The implication then follows since complete graphs, complete
bipartite graphs and star forests have unbounded h-index (which gives us the contrapositive
statement).

In fact, as we show in Theorem 10 below, those three classes are the only minimal classes
of unbounded h-index. We note that a “prototype” of this characterisation appeared in [3],
where the set of minimal classes of unbounded h-index was identified within the class of
cographs. It was also conjectured in [3] that this characterisation extends to the universe
of all graphs, which is what we now show.

Theorem 10. The classes of star forests, complete bipartite graphs and complete graphs
are the only three minimal hereditary classes of graphs of unbounded h-index.

Proof. It is routine to check that h-index is unbounded in these three classes. Hence it
remains to show that any class X for which h-index is unbounded contains one of the three
classes. To do this, it suffices to show that for each n, there exists d = d(n) such that
any graph of h-index d or greater contains, as an induced subgraph, either a clique Kn,
or a complete bipartite graph Kn,n, or a star forest nK1,n. We start with the following
observation:

(*) For any pair of positive integers n,m, there exists an integer zn,m such that any
bipartite graph with zn,m vertices of degree at least zn,m in one side of its bipartition
contains either a Kn,n, or an induced star forest mK1,n.

We prove the observation by induction on m. The statement is true for m = 1, as we
can simply take zn,1 := n for any n. Now let m > 1. Write Rb(i, j) for the bipartite Ramsey
number, i.e. the smallest integer such that any bipartite graph with Rb(i, j) vertices in each
side either contains Ki,i, or the bipartite complement of Kj,j . Put zn,m := Rb(n, zn,m−1),
and let G = (A,B,E) be a bipartite graph containing a set S ⊆ A of zn,m vertices of degree
at least zn,m.

Pick a vertex s ∈ S of minimum degree, and consider the bipartite graph G′ induced by
the sets S and N(s). As both |S| ≥ zn,m and |N(s)| ≥ zn,m, G′ contains by construction
either a Kn,n, or two sets S′ ⊆ S, T ⊆ N(s) of size zn,m−1 with no edges between them. In
the former case we are done, so consider the latter. Note that, by minimality of the degree
of s, since each vertex in S′ has at least |T | = zn,m−1 non-neighbours in N(s), each vertex in
S′ must have at least zn,m−1 neighbours outside N(s). Let G′′ be the graph induced by the
vertices in S′, together with their neighbourhoods outside of N(s). Applying the induction
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hypothesis to G′′, we find that G′′ contains either a Kn,n, or an induced (m−1)K1,n. In the
former case we are once more done; in the latter, we note that adjoining vertex s together
with any n vertices from T to the (m−1)K1,n yields a mK1,n, and the observation is proven.

The second ingredient is as follows:

(**) For any positive integer n, there exists an integer m = m(n) with the following
property: if G is a graph whose vertex set can be partitioned into m independent sets
of size n, then G contains a Kn, an induced Kn,n, or an independent set of size n2

which is the union of n of the original independent sets.

To show this, write Rc(i) for the multicolour Ramsey number – the smallest integer
such that, for any edge colouring with c colours of a complete graph on Rc(i) vertices, there
is a monochromatic clique on i vertices. Put m := R

2n2 (2n).
Now let G be a graph with vertex set V (G) = V1 ∪ V2 ∪ . . . ∪ Vm (the Vi are disjoint),

such that for all i, Vi is independent and |Vi| = n. For each i, fix an ordering of the
vertices in Vi, that is, a bijection ϕi : Vi → [n]. For each i, j with 1 ≤ i < j ≤ m, put
Eij := {(ϕi(x), ϕj(y)) : x ∈ Vi, y ∈ Vj , and {x, y} ∈ E(G)}. Intuitively, Eij ⊆ [n] × [n] is
simply the edge set between Vi and Vj , where we orient the edges from the lower to the
higher index, and identify the two sets with copies of [n] via their respective orderings.

Consider an auxiliary complete graph with vertex set [m]; for each i < j, we colour the
edge {i, j} with the set Eij . We note that there are 2n

2
possible colours, corresponding to

the subsets of [n]× [n]; we find a monochromatic clique on 2n vertices i1 < i2 < · · · < i2n.
Note that Ei1i2 = Eikil for all 1 ≤ k < l ≤ 2n. If Ei1i2 is empty, then Vi1 ∪ Vi2 ∪ · · · ∪ Vin

induces an independent set of size n2. If there exists 1 ≤ t ≤ n such that Ei1i2 contains
(t, t), then {ϕ−1

ir
(t) : 1 ≤ r ≤ n} is a Kn. Finally, if for some s 6= t, Ei1i2 contains (s, t) and

not (s, s) nor (t, t), then {ϕ−1
ir

(s) : 1 ≤ r ≤ n} ∪ {ϕ−1
ir

(t) : n + 1 ≤ r ≤ 2n} induces a Kn,n

in G.

We can now put these two facts together to obtain our main result.

(***) For any integer n, there exists an integer d = d(n) such that any graph of h-index at
least d contains either a Kn, a Kn,n, or a nK1,n.

Write R(p, q) for the usual Ramsey number – the smallest number such that a graph
on R(p, q) vertices contains either a clique of size p, or an independent set of size q. Put
N := R(n, n), and let d := R(n, zN,m(n)), where z and m are defined as in (*) and (**)
respectively. Suppose that a graph G contains a set S of d vertices of degree at least d.
Then either G[S] contains a Kn, in which case we are done, or it contains an independent
set S′ ⊆ S of size z = zN,m(n). Note that each vertex of S′ has degree at least zN,m(n)

outside S. Write G′ for the bipartite graph with parts S′ and T ′ := V (G) \ S′, and with
E(G′) := {{x, y} ∈ E(G) : x ∈ S′, y ∈ T ′} (that is, G is obtained from G′ by removing
all edges with both endpoints in T ′). By definition of z, G′ contains either a KN,N , or an
induced star forest m(n)K1,N . A KN,N in this bipartite graph translates into either an

13



induced Kn,n in G or a Kn in G; indeed, look at the N vertices of the KN,N lying in T ′:
by construction, the graph induced by them in G must contain an independent set of size
n, or a clique of size n.

It remains to consider the case where G′ contains an induced star forest m(n)K1,N .
Note that each K1,N is induced in G′, but not necessarily in G. However, by a similar
argument to the case above, either G contains a Kn (and we are done), or we may find a
m(n)K1,n induced in G′ and not necessarily in G, but such that each separate K1,n is also
induced in G. In particular, the leaves of each separate K1,n form an independent set in
G. Consider the graph H ⊆ G induced by the leaves of those m(n) K1,n’s. By definition of
m(n), H either contains a Kn (and we are done), an induced Kn,n (and we are done), or
the n2 leaves of n of the K1,n’s induce an independent set. In this final case, G contains an
induced nK1,n, and this proves the theorem.

4 Implicit representations

In this section, we identify a number of new hereditary classes of graphs that admit an
implicit representation.

4.1 Ft,p-free bipartite graphs

In this section we show that Ft,p-free bipartite graphs admit an implicit representation for
any t and p. Together with Theorem 7 this verifies Conjecture 2 for these classes.

Without loss of generality we assume that t = p and split the analysis into several
intermediate steps. The first step deals with the case of double-star-free bipartite graphs.

Lemma 2. Let G = (A,B,E) be a bipartite graph that does not contain an unbalanced
induced copy of 2K1,t. Then G has a vertex of degree at most t− 1 or bi-codegree at most
(t− 1)(t2 − 4t + 5).

Proof. Let x ∈ A be a vertex of maximum degree. Write Y for the set of neighbours of x,
and Z for its set of non-neighbours in B (so B = Y ∪ Z). We may assume |Y | ≥ t and
|Z| ≥ (t− 1)(t2 − 4t + 5) + 1, since otherwise we are done.

Note that any vertex w ∈ A is adjacent to fewer than t vertices in Z. Indeed, if w ∈ A
has t neighbours in Z, then it must be adjacent to all but at most t− 1 vertices in Y (since
otherwise a 2K1,t appears), so its degree is greater than that of x, a contradiction.

We now show that Z has a vertex of degree at most t−1. Pick members z1, . . . , zt−1 ∈ Z
in a non-increasing order of their degrees, and write Wi for the neighbourhood of zi. Since
G does not contain an unbalanced induced copy of 2K1,t and deg(zi+1) ≤ deg(zi), for all

1 ≤ i ≤ t− 2, |Wi+1 −Wi| ≤ t− 1. It is not difficult to see that in fact, |Wi+1 −
i⋂

s=1
Ws| ≤

(t− 1)i, and in particular, |Wt−1 −
t−2⋂
i=1

Wi| ≤ (t− 1)(t− 2).
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With this, we can compute an upper bound on the number of vertices in Z which have

neighbours in Wt−1: by the degree condition given above, each vertex in Wt−1 ∩
t−2⋂
i=1

Wi is

adjacent to no vertices in Z other than z1, . . . , zt−1. Each of the at most (t − 1)(t − 2)

vertices in Wt−1−
t−2⋂
i=1

Wi has at most t− 2 neighbours in Z other than zt−1. This accounts

for a total of at most (t − 1) + (t − 1)(t − 2)2 = (t − 1)(t2 − 4t + 5) vertices which have
neighbours in Wt−1, including zt−1 itself. By assumption on the size of Z, there must be a
vertex z ∈ Z which has no common neighbours with zt−1. Since 2K1,t is forbidden, one of
z and zt−1 has degree at most t− 1, as claimed.

An immediate implication of this result, combined with Theorem 5 (applied with B2 =
∅), is that double-star-free bipartite graphs admit an implicit representation.

Corollary 1. The class of bipartite graphs excluding an unbalanced induced copy of 2K1,t

admits an implicit representation for any fixed t.

Together with Theorem 2 this corollary implies one more interesting conclusion.

Corollary 2. The classes of graphs of bounded double-star partition number, and in par-
ticular those of bounded h-index, admit an implicit representation.

Our next step towards implicit representations of Ft,t-free bipartite graphs deals with
the case of F 1

t,t-free bipartite graphs, where F 1
t,t is the graph obtained from Ft,t by deleting

the isolated vertex.

Lemma 3. The class of F 1
t,t-free bipartite graphs admits an implicit representation.

Proof. It suffices to prove the result for connected graphs (this follows for instance from
Theorem 2). Let G be a connected F 1

t,t-free bipartite graph and let v be a vertex of maximum
degree in G. We denote by Vi the set of vertices at distance i from v.

First, we show that the subgraph G[{v} ∪ V1 ∪ V2] admits an implicit representation.
To this end, we denote by u a vertex of maximum degree in V1, by U the neighbourhood
of u in V2, W := V2 − U , and V ′1 := V1 − {u}.

Let x be a vertex in V ′1 and assume it has t neighbours in W . Then x has at least t
non-neighbours in U (due to maximality of u), in which case the t neighbours of x in W ,
the t non-neighbours of x in U together with x, u and v induce an F 1

t,t. This contradiction
shows that every vertex of V ′1 has at most t − 1 neighbours in W , and hence the graph
G[V ′1 ∪W ] admits an implicit representation by Theorem 5 (applied with B2 = ∅).

To prove that G[V ′1 ∪ U ] admits an implicit representation, we observe that this graph
does not contain an unbalanced induced copy of 2K1,t. Indeed, if the centers of the two
stars belong to V ′1 , then they induce an F 1

t,t together with vertex v, and if the centers of
the two stars belong to U , then they induce an F 1

t,t together with vertex u. Therefore,
the graph G[{v} ∪ V1 ∪ V2] can be covered by at most four graphs (two of them being the
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stars centered at v and u), each of which admits an implicit representation, and hence by
Theorem 2 this graph admits an implicit representation.

To complete the proof, we observe that every vertex of V2 has at most t− 1 neighbours
in V3 (note that, by the definition of the sets Vi, any neighbour of V2 is either in V1 or in V3).
Indeed, if a vertex x ∈ V2 has t neighbours in V3, then x has at least t non-neighbours in V1

(due to maximality of v), in which case the t neighbours of x in V3, the t non-neighbours of
x in V1 together with x, v, and any neighbour of x in V1 (which must exist by definition)
induce an F 1

t,t.
Now we apply Theorem 3 with A = {v}∪V1 ∪V2 to conclude that G admits an implicit

representation, because every vertex of A has at most t− 1 neighbours outside of A.

The last step towards implicit representations of Ft,t-free bipartite graphs is similar to
Lemma 3 with some modifications.

Theorem 11. The class of Ft,t-free bipartite graphs admits an implicit representation.

Proof. By analogy with Lemma 3 we consider a connected Ft,t-free bipartite graph G, denote
by v a vertex of maximum degree in G and by Vi the set of vertices at distance i from v.
Also, we denote by u a vertex of maximum degree in V1, by U the neighbourhood of u in
V2, W := V2 − U , and V ′1 := V1 − {u}.

Let x be a vertex in V ′1 and assume it has t neighbours and one non-neighbour y in
W . Then x has at least t non-neighbours in U (due to maximality of u), in which case
the t neighbours of x in W , the t non-neighbours of x in U together with x, y, u and v
induce an Ft,t. This contradiction shows that every vertex of V ′1 has either at most t − 1
neighbours or at most 0 non-neighbours in W , and hence the graph G[V ′1 ∪W ] admits an
implicit representation by Theorem 5 (applied with B2 = ∅).

To prove that G[V ′1 ∪ U ] admits an implicit representation, we show that this graph is

F̃ 1
t,t-free (we emphasize that in F̃ 1

t,t the isolated vertex belongs to one part of the bipartition
and the centers of the stars to the other part). Indeed, if the centers of the two stars of
F̃ 1
t,t belong to V ′1 , then F̃ 1

t,t together with vertex v induce an Ft,t, and if the centers of the

two stars of F̃ 1
t,t belong to U , then F̃ 1

t,t together with vertex u induce an Ft,t. Therefore,
the graph G[{v} ∪ V1 ∪ V2] can be covered by at most four graphs (two of them being the
stars centered at v and u), each of which admits an implicit representation, and hence by
Theorem 2 this graph admits an implicit representation.

To complete the proof, we observe that every vertex of V2 has either at most t − 1
neighbours or 0 non-neighbours in V3. Indeed, if a vertex x ∈ V2 has t neighbours and one
non-neighbour y in V3, then x has at least t non-neighbours in V1 (due to maximality of v),
in which case the t neighbours of x in V3, the t non-neighbours of x in V1 together with x,
y, v, and any neighbour of x in V1 induce an Ft,t.

Finally, we observe that if a vertex x ∈ V2 has t neighbours in V3, then V5 (and hence Vi

for any i ≥ 5) is empty, because otherwise an induced Ft,t arises similarly as in the previous
paragraph, where vertex y can be taken from V5. Now we apply Theorem 5 (with B2 = ∅)
with A = {v} ∪ V1 ∪ V2 to conclude that G admits an implicit representation. Indeed, if
each vertex of V2 has at most t − 1 neighbours in V3, then each vertex of A has at most
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t − 1 neighbours outside of A, and if a vertex of V2 has at least t neighbours in V3, then
Vi = ∅ for i ≥ 5 and hence every vertex of A has at most t − 1 neighbours or at most 0
non-neighbours in the opposite part outside of A.

4.2 One-sided forbidden induced bipartite subgraphs

In the context of bipartite graphs, some hereditary classes are defined by forbidding one-
sided copies of bipartite graphs. Consider, for instance, the class of star forests, whose
vertices are partitioned into an independent set of black vertices and an independent set
of white vertices. If the centers of all stars have the same colour, say black, then this
class is defined by forbidding a P3 with a white center. Very little is known about implicit
representations for classes defined by one-sided forbidden induced bipartite subgraphs. It
is known, for instance, that bipartite graphs without a one-sided P5 admit an implicit
representation. This is not difficult to show and also follows from the fact P6-free bipartite
graphs have bounded clique-width and hence admit an implicit representation (note that
P6 is symmetric with respect to swapping the bipartition). Below we strengthen the result
for one-sided forbidden P5 to one-sided forbidden Ft,1. We start with a one-sided forbidden
F 1
t,1, where again F 1

t,1 is the graph obtained from Ft,1 by deleting the isolated vertex.

Lemma 4. The class of bipartite graphs containing no one-sided copy of F 1
t,1 admits an

implicit representation.

Proof. Let G = (U, V,E) be a bipartite graph containing no copy of F 1
t,1 with the vertex of

largest degree in U . To prove the lemma, we apply Theorem 5.
If G is edgeless, then the conclusion trivially follows from Theorem 5 with A = V (G).

Otherwise, let u be a vertex of maximum degree in U . We split the vertices of V into the set
V1 of neighbours and the set V0 of non-neighbours of u. Assume there exists a vertex x ∈ U
that has neighbours both in V1 and in V0. We denote by V10 the set of non-neighbours
of x in V1 and by V01 the set of neighbours of x in V0. We note that |V01| ≤ |V10|, since
deg(x) ≤ deg(u). Additionally, |V10| < t, since otherwise t vertices in V10, a vertex in V01

and a common neighbour of u and x (these vertices exist by assumption) together with u
and x induce a forbidden copy of F 1

t,1. Therefore, x has at most t− 1 non-neighbours in V1

and at most t− 1 neighbours in V0. Now we define three subsets A,B1, B2 as follows:

A consists of vertex u, the vertices of U that have neighbours both in V1 and in V0,
and the vertices of U that have neighbours neither in V1 nor in V0,

B1 consists of V1 and the vertices of U that have neighbours only in V1,

B2 consists of V0 and the vertices of U that have neighbours only in V0.

With this notation, the result follows from Theorem 5.

Theorem 12. The class of bipartite graphs containing no one-sided copy of Ft,1 admits an
implicit representation.
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Proof. Let G = (U, V,E) be a connected bipartite graph containing no one-sided copy of
Ft,1 with the vertex of largest degree in U . Let v be a vertex in V and let Vi the set of
vertices at distance i from v. Then the graph G1 := G[V1∪V2] does not contain a one-sided
copy of F̃ 1

t,1 with the vertex of largest degree in V1 (we emphasize that in F̃ 1
t,1 the isolated

vertex belongs to one part of the bipartition and the vertex of degree t to the other part).
Indeed, a one-sided copy of F̃ 1

t,1 with the vertex of largest degree in V1 together with v
would induce a one-sided copy of Ft,1 with the vertex of largest degree in U . Therefore, by
Lemma 4 the graph G1 admits an implicit representation.

For any i > 1, the Gi := G[Vi ∪ Vi+1] does not contain a one-sided copy of F 1
t,1 with

the vertex of largest degree in Vi (for odd i) or with the vertex of largest degree in Vi+1

(for even i), since otherwise together with v this copy would induce a one-sided copy of
Ft,1 with the vertex of largest degree in U . Therefore, by Lemma 4 the graph Gi admits
an implicit representation for all i > 1. Together with Theorem 2 this implies an implicit
representation for G.

For general one-sided forbidden Ft,p the question remains open. Moreover, it remains
open even for one-sided forbidden 2P3. It is interesting to note that if we forbid 2P3 with
black centers and if all black vertices have incomparable neighbourhoods, then the graph
has bounded clique-width [10] and hence admits an implicit representation. However, in
general the clique-width of 2P3-free bipartite graphs is unbounded and the question of
implicit representation for one-sided forbidden 2P3 remains open.

4.3 Subclasses of chordal bipartite graphs

Any subclass of chordal bipartite graphs excluding a forest is factorial, as was shown in [24].
However, implicit representations for such subclasses are in general unavailable. Below we
provide an implicit representation for the class of S2,2,2-free chordal bipartite graphs, which
recently attracted attention in a different context [26]. We emphasize that the class of S2,2,2-
free bipartite graphs (without the restriction to chordal bipartite graphs) is superfactorial
and hence does not admit an implicit representation.

Theorem 13. The class of S2,2,2-free chordal bipartite graphs admits an implicit represen-
tation.

Proof. Similarly to Lemma 3 we consider a connected graph G in the class and a vertex
of maximum degree v in G. We also denote by Vi the vertices of distance i from v and
show that for any i, the bipartite graph Gi := G[Vi ∪ Vi+1] belongs to a class that admits
an implicit representation. First, we observe that G (and hence each Gi) is C6-free (since

it is chordal), and that C6 ∈ M̃, since the bipartite complement of C6 is 3K2. It remains
to show that each Gi is pK2-free for some constant p, implying that Gi has bounded chain
partition number (Theorem 8) and hence admits an implicit representation (Theorem 2).

The fact that G1 is 3K2-free is obvious, since otherwise an induced S2,2,2 can be easily
found. Now we show that Gi is 3K2-free for all i. Assume the contrary: there is a minimum
i > 1 such that Gi contains a 3K2 induced by vertices a1, a2, a3 ∈ Vi and b1, b2, b3 ∈ Vi+1
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with ajbj ∈ E(G) for all j. Then at least two of a1, a2, a3 have a common neighbour in Vi−1,
since otherwise an induced 3K2 arises in Gi−1, contradicting the minimality of i. Without
loss of generality assume a1 and a2 are adjacent to a vertex c ∈ Vi−1. To avoid an induced
S2,2,2, vertex c is not adjacent to a3 and i ≤ 2 (since otherwise we may consider a neighbour
d ∈ Vi−2 of c and e ∈ Vi−3 of d). We must thus have i = 2.

Now consider a neighbour d ∈ V1 of a3. If d has 2 or 0 neighbours in {a1, a2}, then
an induced S2,2,2 can be easily found (with centres d or c respectively). So, assume d is
adjacent to a2 and non-adjacent to a1. Then v has a neighbour e non-adjacent to a2, since
otherwise the degree of a2 is greater than the degree of v. If e is not adjacent to a1, then
an induced S2,2,2 with centre c arises. Similarly, if it is not adjacent to a3, then an induced
S2,2,2 with centre d arises. However, and if e is adjacent to both a1 and a3, then vertices
a1, a2, a3, c, d, e induce a C6, which is forbidden. A contradiction in all cases shows that Gi

is 3K2-free for all i and completes the proof.

We observe that the class of S2,2,2-free chordal bipartite graphs extends the class of
bipartite permutation graphs, which has bounded symmetric difference by Theorem 6.
One may ask whether this result can be extended to S2,2,2-free chordal bipartite graphs;
the answer is negative: it is possible to construct S2,2,2-free chordal bipartite graphs with
arbitrarily large symmetric difference. For brevity, we omit the full construction. We
mention, however, that our examples have the form G = (A,B ∪ C,E), where G[A ∪ B]
and G[A∪C] are chain graphs. We call such graphs linked chain graphs (and one can show
that linked chain graphs are S2,2,2-free chordal bipartite).

Several factorial subclasses of chordal bipartite graphs defined by forbidding a unicyclic
graph (i.e. a graph containing a single cycle) have been identified in [12]. In particular, a
factorial upper bound was shown for Q-free chordal bipartite and A-free chordal bipartite
graphs (see Figure 2 for the graphs Q and A).

r
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Figure 2: The graphs Q (left) and A (right)

Below we strengthen these results in two ways. First, we extend both of them to the
class of Dk-free chordal bipartite graphs, where a Dk is the graph obtained from a cycle
C4 = (v1, v2, v3, v4) by adding one pendant edge to v1, one pendant edge to v2 and k
pendant edges to v4. Second, we show that Dk-free chordal bipartite graphs admit an
implicit representation, which is a stronger statement than a factorial upper bound on
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the size of the class. We observe that the class of Dk-free bipartite graphs (without the
restriction to chordal bipartite graphs) is superfactorial and hence does not admit an implicit
representation. In our proof, we make use of the fact that any chordal bipartite graph has
a vertex which is not the centre of a P5 [15].

Theorem 14. The class of Dk-free chordal bipartite graphs admits an implicit representa-
tion.

Proof. We consider a connected graph G in the class and a vertex v in G which is not the
centre of a P5. We denote by Vi the vertices of distance i from v and show that for any i, the
bipartite graph Gi := G[Vi∪Vi+1] belongs to a class that admits an implicit representation.

Since v is not the centre of a P5, the graph G1 is a chain graph, and hence admits an
implicit representation. For i > 1, we show that the graph Gi does not contain a one-
sided copy of F 1

1,k with the vertex of large degree in Vi. Indeed, assume that Gi contains

a one-sided copy of F 1
1,k with the vertex of large degree in Vi, and denote the two vertices

of this copy in Vi by a and b. By definition, a and b have neighbours in Vi−1. If they have
a common neighbour c in Vi−1, then the copy of F 1

1,k together with c and any neighbour
of c in Vi−2 induce a Dk (where V0 = {v}). If a and b have no common neighbours in
Vi−1, then an induced cycle of length at least 6 can be easily found, which is forbidden for
chordal bipartite graphs. A contradiction in both cases shows that Gi does not contain a
one-sided copy of F 1

1,k and hence admits an implicit representation by Lemma 4. Therefore,
by Theorem 2, G admits an implicit representation as well.

Noting that Q and A are chain graphs, we next provide a different generalisation of
these results by showing that the class of chordal bipartite graphs avoiding a chain graph
admits an implicit representation. Chain graphs have a well-known universal construction
[23]. More specifically, any chain graph on n vertices is induced in the universal chain graph
Zn on 2n vertices with parts a1, . . . , an and b1, . . . , bn, and with ai adjacent to bj whenever
j ≥ i (see Figure 3 for an illustration). It thus suffices to show that, for fixed k, the class
of Zk-free chordal bipartite graphs admits an implicit representation.

b1

a1

b2

a2

b3

a3

b4

a4

b5

a5

Figure 3: The graph Z5

Theorem 15. The class of chordal bipartite graphs avoiding a fixed chain graph admits an
implicit representation.
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Proof. As discussed above, it suffices to show the claim for Zk-free chordal bipartite graphs.
We prove this by induction on k. This is clear when k = 1, since those graphs are edgeless,
and when k = 2, since those graphs are cographs and hence have bounded clique-width. In
general, assume the statement is true for some k ≥ 2, and consider the class of Zk+1-free
chordal bipartite graphs. As in the proof of Theorem 14, we find a vertex which is not
the centre of a P5, and define the graphs Gi in the same way. Once more, G1 is a chain
graph. For i > 1, we show that the graph Gi contains no induced copy of Zk. Suppose for
a contradiction that there was such a copy, labelled as in Figure 3, with the a vertices in
Vi and the b vertices in Vi+1. We then note that, by chordality, the graph induced by the a
vertices together with their neighbours in Vi−1 is a chain graph (otherwise a 2K2 together
with bk and a shortest path between the 2K2’s going through the Vj with j < i− 1 would
induce a large cycle). Since every a vertex has a neighbour in Vi−1, it follows that there
must be a vertex bk+1 in Vi−1 adjacent to all a vertices. Together with a vertex ak+1 from
Vi−2 adjacent to bk+1, we obtain an induced Zk+1, which is the desired contradiction. As
before, from Theorem 2 and using the induction hypothesis, we are done.

5 Factorial properties

A factorial speed of growth, as we mentioned in the introduction, is a necessary condition
for a hereditary class to admit an implicit representation, and hence determining the speed
is the first natural step towards identifying new classes that admit such a representation.
In this section, we prove a number of results related to the speed of some hereditary classes
of bipartite graphs.

5.1 Hypercubes

We repeat that bounded functionality implies at most factorial speed of growth. Whether
the reverse implication is also valid was left as an open question in [2]. It turns out that the
answer to this question is negative. This is witnessed by the class Q of induced subgraphs
of hypercubes. Indeed, in [2] it was shown that Q has unbounded functionality. On the
other hand, it was shown in [17] that the class admits an implicit representation and is, in
particular, factorial; in fact, more generally, the hereditary closure of Cartesian products
of any finite set of graphs [18] and even of any class admitting an implicit representation
[14], admits an implicit representation. These results, however, are non-constructive and
they provide neither explicit labeling schemes, nor specific factorial bounds on the number
of graphs. Below we give a concrete bound on the speed of Q.

Theorem 16. There are at most n2n n-vertex graphs in Q.

Proof. Let Qn denote the n-dimensional hypercube, i.e. the graph with vertex set {0, 1}n,
in which two vertices are adjacent if and only if they differ in exactly one coordinate. To
obtain the desired bound, we will produce, for each labelled n-vertex graph in Q, a sequence
of 2n numbers between 1 and n which allows us to retrieve the graph uniquely.
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As a preliminary, let G ∈ Q be a connected graph on n vertices. By definition of Q, G
embeds into Qm for some m. We claim that, in fact, G embeds into Qn−1. If m < n, this is
clear. Otherwise, using an embedding into Qm, each vertex of G corresponds to an m-digit
binary sequence. For two adjacent vertices, the sequences differ in exactly one position.
From this, it follows inductively that the n vertices of G all agree in at least m − (n − 1)
positions. The coordinates on which they agree can simply be removed; this produces an
embedding of G into Qn−1. Additionally, by symmetry, if G has a distinguished vertex r,
we remark that we may find an embedding sending r to (0, 0, . . . , 0).

We are now ready to describe our encoding. Let G ∈ Q be any labelled graph with
vertex set {x1, . . . , xn}. We start by choosing, for each connected component C of G:

• a spanning tree TC of C;

• a root rC of TC ;

• an embedding ϕC of TC into Qn−1 sending rC to (0, 0, . . . , 0).

Write Ci for the component of xi. We define two functions p, d : V (G)→ [n] as follows:

p(xi) =

{
i, if xi = rCi ;

j, if xi 6= rCi , and xj is the parent of xi in TCi .

d(xi) =

{
1, if xi = rCi ;

j, if xi 6= rCi , and ϕCi(xi) and ϕCi(xp(xi)) differ in coordinate j.

One easily checks that the above maps are well-defined; in particular, when xi is not a
root, the embeddings of xi and of its parent do, indeed, differ in exactly one coordinate.
The reader should also know that the value of d on the roots is, in practice, irrelevant –
setting it to 1 is an arbitrary choice.

We now claim that G can be restored from the sequence p(x1), d(x1), . . . , p(xn), d(xn).
To do so, we first note that this sequence allows us to easily determine the partition of
G into connected components. Moreover, for each connected component C, we may then
determine its embedding ϕC into Qn−1: ϕC(rC) is by assumption (0, 0, . . . , 0); we may then
identify its children using p, then compute their embeddings using d; we may then proceed
inductively. This information allows us to determine the adjacency in G as claimed, and
the encoding uses 2n integers between 1 and n as required.

We conjecture that a stronger bound holds.

Conjecture 3. There exists a constant c such that the number of n-vertex graphs in Q is
at most cnn!, i.e. the class Q is small,

If Conjecture 3 is true, the class Q would be an explicit counter-example to the small
conjecture [8], which says that every small class has bounded twin-width. This conjecture
is known to be false [9], but, to the best of our knowledge, no explicit counter-example is
available.
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5.2 Subclasses of chordal bipartite graphs

A super-factorial lower bound for the number of labelled n-vertex chordal bipartite graphs
was shown in [27]. This result was improved in [12] by showing that the speed remains
super-factorial for the class of (2C4, 2C

+
4 )-free chordal bipartite graphs, where 2C+

4 is the
graph obtained from 2C4 by adding an edge between the two copies of C4. In this section,
we show that for every proper induced subgraph H of 2C4 or of 2C+

4 , the speed of H-free
chordal bipartite graphs is factorial. There are precisely three maximal such subgraphs,
which we denote by X, Y and Z (see Figure 4).

r r r
r rr r

r r r
r rr r

r r r r
rr r

Figure 4: The graphs X (left), Y (middle), and Z (right)

In the proof, we use the following analogue of Theorem 2 proved in [22].

Theorem 17. [22] Let X be a class of graphs and c a constant. If every graph G ∈ X can
be covered by graphs from a class Y of at most factorial speed of growth in such a way that
every vertex of G is covered by at most c graphs, then X also has at most factorial speed of
growth.

We also use the following result.

Theorem 18. [24] For any forest F , the class of chordal bipartite graphs excluding F has
at most factorial speed of growth.

We observe that it is unknown whether the last result can be strengthened by replacing
“at most factorial speed of growth” with “implicit representation”. In particular, it re-
mains an open problem whether a factorial upper bound obtained for the three subclasses
chordal bipartite graphs in the next three theorems can be strengthened to an implicit
representation.

Theorem 19. The class of X-free chordal bipartite graphs is factorial.

Proof. Let G be a connected X-free chordal bipartite graph, let v be a vertex of G, and let
Vi be the set of vertices of G at distance i from v. Assume G[Vi ∪ Vi+1] (i ≥ 1) contains an
induced P12 = (x1, . . . , x12) with even-indexed vertices in Vi and odd-indexed vertices in
Vi+1. To avoid an induced cycle of length at least 6, vertices x2 and x4 must have a common
neighbour a ∈ Vi−1. Similarly, vertices x8 and x10 must have a common neighbour b ∈ Vi−1.
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If b is adjacent to x2, then vertices x1, x2, x3, x8, x9, x10, b induce an X in G. Similarly, an
induced X arises if b is adjacent to x4, and if a is adjacent to x8 or x10. Therefore, b is
adjacent neither to x2 nor to x4, and a is adjacent neither to x8 nor to x10, and hence a 6= b.
If additionally a or b is not adjacent to x6, then an induced cycle of length at least 6 can be
easily found. Finally, if both a and b are adjacent to x6, then vertices x2, x3, x4, x6, x7, a, b
induce an X in G. A contradiction in all possible cases shows that Vi and Vi+1 induce a
P12-free chordal bipartite graph for all i ≥ 1. By Theorems 17 and 18 this implies that the
speed of X-free chordal bipartite graphs is at most factorial. Since this class contains all
chain graphs, its speed is at least factorial.

Theorem 20. The class of Y -free chordal bipartite graphs is factorial.

Proof. This class contains all chain graphs and hence its speed is at least factorial. To prove
that the speed is at most factorial, we will show that every graph G in this class has either
a vertex of bounded degree or a pair of vertices of bounded symmetric difference. If G has
a vertex x of bounded degree, we create a record of the neighbours of x and delete x. If
the symmetric difference of two vertices x and y is bounded, we create a record containing
vertex y and the vertices in the symmetric difference of x and y, and delete x. Applying this
procedure recursively, we create a record of length O(n log n) (where n = |V (G)|), which
allows us to restore the graph and shows that the class is at most factorial.

Let G be a Y -free chordal bipartite graph, let v be a vertex of G which is not the center
of a P5, and let Vi be the set of vertices of G at distance i from v. Then V1 and V2 induce
a 2K2-free bipartite graph, i.e. a chain graph. If two vertices ai, aj in V1 have the same
neighbourhood, then sd(ai, aj) = 0 and we are done. Therefore, we assume that all vertices
in V1 have pairwise different neighbourhoods. Using the notation of Figure 3, we denote
the vertices of V1 by a1, . . . , ak. Also, for i = 1, . . . , k− 1, let Bi := N(ai)−N(ai+1). Note
that for each i the set Bi is non-empty.

If deg(v) ≤ 4, we are done, so assume k ≥ 5. Let b be a vertex in Bk−4 and as-
sume b has at least 3 neighbours c1, c2, c3 in V3. Let b′ be a vertex in Bk−2. Then b′

has either two neighbours or two non-neighbours among c1, c2, c3. If b′ is adjacent to c1

and c2, then b, b′, c1, c2, v, ak−1, ak induce a Y . If b′ is not adjacent to c1 and c2, then
b, b′, c1, c2, v, ak−3, ak−2 induce a Y . A contradiction in both cases shows that b has at most
2 neighbours in V3 and hence sd(v, b) ≤ 6.

Theorem 21. The class of Z-free chordal bipartite graphs is factorial.

Proof. Let G be a connected Z-free chordal bipartite graph given together with a bipartition
of its vertices into an independent set of white vertices and an independent set of black
vertices. We will show that G either contains no P14, or it has two vertices of symmetric
difference at most 2. If G is P14-free, then G belongs to a factorial class by Theorem 18.
Using this, it is then routine to produce a (not necessarily implicit) representation of G
using O(n log n) bits by iteratively removing vertices of low symmetric difference until we
are left with a P14-free graph.

To show that G either contains no P14, or it has two vertices of symmetric difference
at most 2, we assume that G contains a P14, and extend it to a maximal induced tree that
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we denote by T . We claim that the vertices in T are not distinguished by the vertices in
G − T . This immediately yields our two vertices of low symmetric difference: if T has at
least three leaves, then it has two in the same side of the bipartition, and the only two
vertices possibly distinguishing them are their neighbours in T . If T has only two leaves,
it is a path, and we can easily find two vertices on the path with symmetric difference at
most 2 (even at most 1). Therefore, it suffices to prove the following claim.

Claim. Let T be as above, and let x ∈ G− T . Then NT (x) is either empty, or consists of
all vertices of T lying in one part of the bipartition.

Proof of claim. Suppose x has, without loss of generality, a white neighbour in T , and let
D be the set of all white neighbours of x in T . We prove the claim in a series of steps.

i. |D| ≥ 2, since otherwise the tree T is not maximal.

ii. If w,w′ ∈ D, then w′′ ∈ D for each white vertex w′′ lying on the path in T between
w and w′, since otherwise an induced cycle of length at least 6 arises.

From the above, we immediately obtain:

iii. Every vertex of D belongs to a C4 in T ∪ {x}.

We then note:

iv. No vertex of T −D lies at distance 4 or more from D, since otherwise an induced Z
arises.

In particular, any white vertex is at distance at most 2 from D. Since T contains a P14

(and hence has two white vertices at distance 12), the triangle inequality implies:

v. There exist two vertices in D at distance at least 8.

Together with ii., this in turn implies:

vi. There exists an induced path P = (v1, . . . , v9) in T (with edges vivi+1) such that
v1, v3, v5, v7, v9 ∈ D.

Let w0 be a white vertex in T −D closest to P in T , and let Q = (w0, w1, . . . , wk) be the
unique path from w0 to P in T (with wk ∈ V (P )). If k = 1, say wk = v4 (without loss of
generality), then w0, w1, v5, x, v7, v8, v9 induce a Z. If k ≥ 2, then x is adjacent to w2 (due
to the choice of w0), and assuming, without loss of generality, that w2 is different from v7

and v9, we conclude that w0, w1, w2, x, v7, v8, v9 induce a Z. A contradiction in both cases
shows that T −D contains no white vertices, thus proving the claim and the theorem.
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6 Conclusion

In this paper, we proved several results related to graph parameters, implicit representation
and factorial properties and raised a number of open questions. In particular, we asked (in
the form of conjectures) whether bounded symmetric difference implies implicit representa-
tion and whether symmetric difference is bounded in the class of P7-free bipartite graphs.
Concerning implicit representations, one of the minimal classes for which this question is
open is the class of P7-free chordal bipartite graphs. It is also open for the three subclasses
of chordal bipartite graphs from Section 5.2, for the class of bipartite graphs excluding
a one-sided forbidden copy of an unbalanced 2P3. An explicit description of a labelling
scheme that provides an implicit representation for induced subgraphs of hypercubes also
remains an open problem.

Acknowledgement. We would like to thank the anonymous referee for many helpful
suggestions, which improved the presentation of this paper.
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