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ABSTRACT 

 

As it is difficult to distinguish multiple rotor faults with similar dynamic phenomena in noisy 

environments, a multi-fault classification method is proposed by combining the extracted trajectory phase 

feature, a parameter-optimized variational mode decomposition (VMD) method and a light gradient 

boosting machine (LightGBM) model. The trajectory phase feature is extracted from an axis trajectory by 

fusing the frequency, amplitude and phase information related to rotor motion and can comprehensively 

describe the dynamic characteristics induced by different rotor faults. Firstly, the vibration displacement 

signals in two orthogonal directions are collected to construct the axis trajectories with twelve rotor states 

including healthy, unbalance, misalignment, single crack, multiple cracks and a mixture of them. 

Secondly, the trajectory phase feature is extracted from the vectorized axis trajectories, and the frequency 

spectra of trajectory phase angles under different rotor faults are analyzed through Fourier transform. 

Finally, a parameter-optimized VMD method combined with a LightGBM model is applied to classify 

multiple faults of rotor systems in different noisy environments based on the extracted trajectory phase 

feature. The twelve rotor states can be classified into nine categories based on the harmonic information 

of 1X-7X components (X is the rotating frequency of a rotor system) and other components with smaller 

amplitudes in the frequency spectra of trajectory phase angles. The average classification accuracy of the 

twelve rotor states exceeds 93.0% and the recognition rate for each kind of fault is greater than 77.5% in 

noisy environments. The simulated and experimental results demonstrate the effectiveness and 

adaptability of the proposed multi-fault classification method. This work can provide a reference for the 

condition monitoring and fault diagnosis of rotor systems in engineering. 
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1. Introduction 

 

As the core component of rotating machinery, a rotor system determines the safety, stability and 

production efficiency of mechanical equipment. Due to manufacturing and installation errors and the 

effects of alternating loads, a rotor system is prone to diverse faults like unbalance, misalignment and 

cracks, which seriously threaten the operation reliability of rotating machinery. In addition, the coupling 

of multiple faults will further affect the operation stability of a rotor system and accelerate the failure of 

rotating machinery, eventually causing catastrophic accidents and huge maintenance costs. Therefore, it is 

of vital importance to perform condition monitoring and fault diagnosis on rotor systems to ensure the 



healthy and stable operation of mechanical equipment [1]. 

Vibration-based methods have been commonly used in structural health monitoring and damage 

detection for the nondestructive, inexpensive, and expedient merits [2-4]. As one of the critical vibration 

responses of a rotor system, an axis trajectory of its shaft center is represented by vibration (displacement) 

signals in two perpendicular directions, which contains the amplitude and phase information of vibration 

responses in two orthogonal directions [5]. It also can comprehensively and visually reflect the motion 

status and the fault-induced changes in dynamic properties, serving an important role in dynamic analysis, 

condition monitoring and fault diagnosis of rotor systems [6]. 

A large number of investigations on axis trajectories have been carried out to study the dynamic 

phenomena of rotor systems with different faults. The dynamic influences of rub-impact on the trajectory 

shape and size of a rotor were studied during start-up and shutdown operating conditions [7, 8]. Li et al. 

[9, 10] analyzed the vibration responses of a mixed-flow pump under different rotor-stator interaction and 

flow rate condition based on axis trajectory plot, frequency spectrum and particle image velocimetry 

experiments. The nonlinear vibration behaviors of a rotor system under a coupling misalignment fault 

were investigated by analyzing the axis trajectory diagram, time waveform, frequency spectrum, and 

Poincare section diagram [11-13]. The dynamic responses of a cracked rotor are analyzed with the 

evolution of whirl orbit shape around 1/2, 1/3 and 1/4 subcritical speeds [14-17]. Ma et al. [18] studied 

the steady-state responses of a reduced dual-rotor system with nonlinear bearings and squeeze film 

damper based on rotor orbits and spectrum cascades. Shi et al. [19] found that the ring squeeze film 

damper can regulate the rotor vibration significantly, and help the rotor shaft trajectory quickly converge 

to a balanced state. Varney and Green [20] analyzed the influence of support asymmetry degree on the 

nonlinear vibration responses of rotor systems. Lin et al. [21] studied the dynamic characteristics of a 

rotor system with a loosened sliding bearing support under the same direction eccentricity and reverse 

eccentricity conditions. In addition, the study of coupling dynamic behaviors under various faults has 

also received some attention. Gasch [22] used the two-sided spectral order analysis method to study the 

effects of crack and unbalance faults on the forward and backward whirl orbit shape and size for a Laval 

rotor. Li et al. [23, 24] adopted rotor orbits to study the effects of the bolted-disk joint stiffness and 

eccentric phase difference on the dynamic characteristics of a rotor-bearing system at different rotating 

speeds . Ma et al. [25-27] analyzed the dynamic characteristics of a rotor system under rubbing, eccentric 

phase differences between two discs, oil-film force and seal force through the trajectory amplitude and 

shape, vibration waveform. 

Several scholars studied how to control or compensate rotor motion on the basis of the changes of the 

axis trajectories. Zhou et al. [28] proposed an adaptive unbalance compensation algorithm for a maglev 

rotor and verified its effectiveness by comparing the axis trajectory shape and size before and after 

compensation. Ahad et al. [29] used the orbit visualization plots to evaluate the control performance of a 

classical PID and modern state-space control strategies for the maglev rotor motion. Kalista et al. [30] 

adopted a general notch filter algorithm to control the trajectory shape of an active magnetic bearing 

(AMB) rotor system. Lahriri et al. [31] analyzed the axis trajectory plots of a rotor system under 

rub-impact fault and designed an improved annular bearing to mitigate the influence of rub-impact on the 

lateral motion. 

The axis trajectory contains very important information for fault diagnosis of rotor systems. The full 

spectrum analysis [7, 32] and energy identification methods [33, 34] were adopted to extract the shape 



characteristics of an axis trajectory to diagnose rub-impact faults for rotor systems. Some approaches 

based on orbit shape [11], nonlinear output frequency response functions [13] and average rotor 

centerline plots [35] were used to detect misalignment faults. Zhang et al. [36] identified a shallow crack 

in a rotor by combining vibration energy and whirl orbit. Xie et al. [5] diagnosed a rotor crack by 

studying the relationship between crack breathing effect and the transient characteristics of axis 

trajectory. 

The axis trajectory can provide a basis for multi-fault classification of rotor systems. Sinha [37] 

combined orbit plots and higher order spectra to identify crack and misalignment faults in a shaft. Xiang 

et al. [6] identified the crack and rub-impact faults of a rotor-bearing system based on the morphological 

characteristics of axis trajectories near 1/3 and 1/2 subcritical speeds. The feature-frequency separation 

methods based on singular value decomposition were presented to identify misalignment and rub impact 

faults in a rotor [38, 39]. Liu et al. [40] classified the orbit responses induced by rub, bouncing and 

pendulum vibration of an AMB rotor system during touchdowns through the mathematical expectation 

and discrete Fourier transform. Yang and Tavner [41] adopted EMD and high-resolution spectrum to 

purify a transient shaft trajectory and distinguished rotor-to-stator rub and fluid excitation faults of a 

centrifugal compressor. A two-dimensional sample entropy algorithm was proposed to extract the axis 

trajectory features and classify normal, unbalance, impact and collision faults of an AMB rotor [42]. 

The above researches provide a foundation for fault diagnosis of rotor systems based on the dynamic 

properties of axis trajectories, which mainly focus on a single or multiple faults (such as crack, 

misalignment, unbalance, rub-impact and collision) with different orbit morphological characteristics, 

and consider the simultaneous presence of only two single faults (crack and rub). However, in actual 

engineering, there are situations where rotor systems may suffer from the coupled faults (i.e. 

simultaneous multi-type faults) of unbalance, misalignment and cracks, owning to manufacturing and 

installation errors and the effects of alternating loads of rotating machinery. The axis trajectories of a 

rotor system with diverse faults may have similar shape features. For example, the axis trajectory shapes 

of both healthy and unbalanced horizontal rotors are elliptical, the axis trajectories at 1/2 subcritical speed 

under misalignment, crack and misalignment-crack faults all contain an inner loop. Moreover, the axis 

trajectories will be inevitably distorted as the practical collected vibration signals will be inevitably 

contaminated by ambient noise, resulting in a great difficulty in the multi-fault classification of rotor 

systems. 

The occurrence of multiple faults, the similarity of the morphological characteristics of the axis 

trajectory under multiple faults and the noise contamination will all increase the difficulty in fault 

identification of a rotor system based on axis trajectories. Focusing on these challenges, a multi-fault 

classification method combining the extracted trajectory phase feature, a parameter-optimized VMD 

method and a LightGBM model is proposed to distinguish twelve rotor states of different kinds 

(including healthy, three single faults and eight coupled faults) at nine signal-to-noise ratios (SNRs). 

Firstly, the vibration displacement signals of the shaft axis in two orthogonal directions are collected to 

synthesize the axis trajectories. Secondly, the trajectory phase feature is extracted by vectorizing the axis 

trajectories to characterize the fault-induced dynamic properties of a rotor system, and the frequency 

spectra of trajectory phase angles are analyzed through Fourier transform. Thirdly, a parameter-optimized 

VMD based on non-dominated sorting genetic algorithm-III (NSGA-III) is introduced to denoise the 

trajectory phase angles at different SNRs. Finally, the denoised trajectory phase angles are input into a 



LightGBM model to identify the multiple faults of a rotor system. 

The remainder is organized as follows. In Section 2, the extracted trajectory phase feature is detailed. 

A parameter-optimized VMD based on NSGA-III is introduced. The LightGBM model is reviewed and 

the general procedure of this method is shown. In Section 3, the dynamic responses of a rotor system 

model under various faults are analyzed, and the multi-fault classification results under different SNRs 

are given. The experimental validation is conducted and the results are discussed in Section 4. Finally, the 

conclusions are summarized in Section 5. 

 

2. Basic principle 

 

Focusing on the difficulty in distinguishing multiple rotor faults with similar dynamic behaviors in 

noisy environments, a multi-fault classification method is proposed by combining the extracted trajectory 

phase feature, a parameter-optimized VMD method and a LightGBM model in this section. 

The trajectory phase feature is extracted from an vectorized axis trajectory by integrating the 

frequency, amplitude and phase information related to rotor motion, which is utilized to characterize the 

rotor motion under different kinds of states (including healthy, unbalance, misalignment, single crack, 

multiple cracks, unbalance-misalignment, unbalance-single crack, unbalance-multiple cracks, 

misalignment-single crack, misalignment-multiple cracks, unbalance-misalignment-single crack, 

unbalance-misalignment-multiple cracks). 

A parameter-optimized VMD based on NSGA-III is presented to decompose and denoise the 

trajectory phase angles at different SNRs (20, 15, 10, 5, 0, -5, -10, -15, -20 dB). The improved VMD 

method can guarantee the signal decomposition accuracy and denoising performance in different noisy 

environments with less time loss over the traditional one. 

The LightGBM model has the advantages of high fitting speed, high accuracy, low memory 

consumption and supporting parallel data processing, which is thereby employed to identify multiple 

faults of a rotor system in this study. And the denoised trajectory phase angles are randomly divided into 

training samples and testing samples for LightGBM with a ratio of 7:3. 

For the sake of brevity, all data used in the proposed method are under the coupled fault of 

unbalance-misalignment-multiple cracks, unless otherwise specified. And letters A-L are used to denote 

the above twelve rotor states in the following text. 

 

2.1 Trajectory phase feature 

 

For a cracked rotor system (shown in Fig. 1), the vibration displacement signals in the Y and Z 

directions can be expressed as [43]: 
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where t is the sampling time; i represents different frequency components, i = 1, 2, 3, …; iA , iB  are the 

amplitudes of the i-th order frequency component in the Y and Z directions, respectively; i , i  are 

the initial time phases; if  is the frequency of the i-th order component. 

The vibration displacement signals in the Y and Z directions are usually analyzed separately by 

Fourier transform, shown in Figs. 2(a)-(b). As a result, the phase correlation between the motion in two 



directions of the same rotation plane are ignored, resulting in incomplete feature extraction and incorrect 

fault diagnosis results [32]. To unify the simulated and experimental coordinate systems below, all axis 

trajectories are generated by the vibration displacement signals in both Y and Z directions. 

 

 

Fig. 1. Model of cracked rotor system. 
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Fig. 2. Vibration responses of rotor system under unbalance-misalignment-multiple cracks, (a) 

Displacement signal in Y direction, (b) Displacement signal in Z direction, (c) Trajectory vectors. 
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An axis trajectory (shown in Fig. 2(c)) contains the amplitude and phase information of vibration 

responses in two orthogonal directions, and has a significant value for fault diagnosis of rotor systems [5]. 

However, in some special cases, rotor systems under different kinds of faults have similar axis 

trajectories, which will lead to misdiagnosis of rotor faults. For instance, the axis trajectory shapes of a 

healthy and an unbalanced horizontal rotor systems are elliptical, while those at 1/2 subcritical speed 

under misalignment, crack and misalignment-crack faults contain an inner loop. Therefore, further 

feature extraction of axis trajectories is essential to provide comprehensive discrimination information to 

accurately identify different kinds of faults of rotor systems. 

Inspired by the full spectrum method that fuses the frequency, amplitude and phase information of 

vibration signals in two perpendicular directions [43, 44], an axis trajectory is vectorized to extract 

adequate and valuable information on rotor motion. In the global YOZ coordinate plane, a series of 

trajectory vectors can be obtained by connecting the static coordinate origin to any point on the axis 

trajectory, shown in Fig. 2(c). Any trajectory vector jL  can be expressed as: 

 j j j L Y Z  (2) 

where jY  and jZ  are the vibration displacement vectors in the Y and Z directions, respectively. j = 1, 

2, 3, …, V; V is the number of data points on the axis trajectory. 

And the length jL  and phase j  of any trajectory vector can be derived as: 
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where   represents the Euclidean norm of a set. 

The extracted trajectory length and phase angle are depicted in Fig. 3. The values of trajectory length 

in Fig. 3(a) are always non-negative, missing the quadrant of the axis trajectory in both coordinates, so 

cannot be applied to classify the multiple faults of a rotor system. 

 

  

 (a) (b) 

Fig. 3. Extracted trajectory vector features under unbalance-misalignment-multiple cracks, (a) Length, (b) 

Phase angle. 

The phase feature of the axis trajectory integrates the frequency, amplitude and phase information of 

rotor motion in the Y and Z directions simultaneously. The extraction of trajectory phase feature needs a 

smaller computational effort than the full spectrum method as the axis trajectory does not need to be 



decomposed into a series of forward and backward whirl-filtered trajectories with different frequencies. It 

can be seen from Fig. 3(b) that the waveform of the trajectory phase angle in time domain approximates a 

rectangular wave. And there are more higher-order harmonic components in the frequency spectrum that 

are very sensitive to changes in structural stiffness, besides the first three harmonic components. Hence, 

the trajectory phase feature extracted from the axis trajectory can provide more comprehensive 

information of rotor motion, which can be utilized to characterize the dynamic properties of rotor systems 

with different kinds of faults. 

 

2.2 Parameter-optimized VMD 

 

VMD [45] is an adaptive and non-recursive signal decomposition method for non-stationary and 

nonlinear signals, which assumes that any signal is composed of a series of intrinsic mode functions 

(IMFs) each with a specific center frequency and a limited bandwidth. According to [46, 47], the mode 

number K and quadratic penalty term α have great influences on decomposition results. Accordingly, 

seeking the optimal parameter combination (K-α) is the core of the application of VMD, and is also one 

of the objectives of this work.  

NSGA-III [48, 49] is an evolutionary multi-objective optimization genetic algorithm based on 

reference points, which can ensure the diversity of population members via adaptively updating a number 

of well-spread reference points. 

In order to meet the above demands, a parameter-optimized VMD based on NSGA-III is presented to 

guarantee the signal decomposition accuracy and denoising performance in different noisy environments. 

The NSGA-III algorithm is improved to seek the optimal parameter combination (K-α) for the traditional 

VMD. 

Here, the optimal value problem of the mode number K and the quadratic penalty term α is 

transformed into a multi-objective optimization problem in NSGA-III, described as: 

find x = {K, α} to satisfy the following objective functions 
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where IMFk
 denotes the k-th IMF ( )ku t  obtained by VMD, 

k  is the center frequency of IMFk
, 

ˆ ( )ku   is the Fourier transform of ( )ku t ; SampEn(IMF )k  is the sample entropy of IMFk
 [42, 50]; 

2  is the center frequency of 
2IMF  (i.e. the natural frequency of a rotor system); 

k h   is the 

central frequency difference between any two IMFs; and 1 < k, h < K. 

The parameters K and α of the population members are mostly decimal numbers in the iterative 

process of NSGA-III [51], reducing the convergence rate of the objective functions and increasing the 

optimization cost, which even causes the results of signal decomposition to be inaccurate. Aiming at 

solving the issues, the traditional NSGA-III algorithm is improved by preprocessing population members 

before member selection in every iterative step, as follows: 



(1) Preprocessing of the mode number K 

 Round ( )p pK K   (6) 

(2) Preprocessing of the quadratic penalty term α 

 Round ( )p p    (7) 

where Kp and αp are the parameters of VMD at the p-th generation before preprocessing, pK 
 and p 

 

are the parameters obtained by preprocessing Kp and αp, and Round denotes the rounding function [51]. 

There are a series of Pareto optimal solutions in the F1 front, and the one that satisfies the box constraints 

and has the minimum sample entropy is selected as the optimal parameter combination (K-α) of VMD. 

 

 

Fig. 4. Flowchart of VMD parameter optimization. 

 

Moreover, in the conventional NSGA-III algorithm, it is only necessary to determine whether the 
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where tp is the time consumption at the p-th generation, and N is the preset population iteration number. 

In order to facilitate optimization efficiency and reduce time consumption, several measures are taken 

to modify the flow of the conventional NSGA-III algorithm. The modified algorithm needs to judge 

whether the members in the F1 front of each generation meet the convergence conditions. And the 

iteration is terminated once a member satisfies the criteria. The total time consumption after modification 

is described as 
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where *N  is the actual number of population iteration, *N ≤ N. The flowchart of the VMD parameter 

optimization based on NSGA-III is depicted in Fig. 4, and two modified parts are displayed with an 

orange background. 

 

2.3 LightGBM 

 

LightGBM [52] is an improved gradient boosting decision tree framework optimized by 

gradient-based one-side sampling, exclusive feature bundling, histogram algorithm and leaf-wise growth 

strategy with depth limitation. Its main idea is to update the model through continuous iterative training 

of decision trees. LightGBM has a good performance in pattern classification, which has been 

successfully applied to fault diagnosis in engineering [53, 54]. So a LightGBM model is used to identify 

the twelve rotor states in this work. 

 

2.4 General procedure of the proposed method 

 

As it is difficult to accurately distinguish different rotor faults with similar dynamic phenomena, a 

multi-fault classification method combining the extracted trajectory phase feature, a parameter-optimized 

VMD method and a LightGBM model is proposed to classify the twelve rotor states (including healthy, 

three single faults and eight coupled faults) in different noisy environments. This method mainly includes 

four steps, and the architecture is shown in Fig. 5. 

Step 1. Collect the vibration displacement signals in the Y and Z directions to synthesize the axis 

trajectories of the rotor system with the twelve states. 

Step 2. Vectorize the axis trajectories to extract the trajectory phase feature. 

Step 3. Utilize a parameter-optimized VMD method to decompose and denoise the trajectory phase 

angles at different SNRs. 

Step 4. The denoised trajectory phase angles are randomly divided into training samples and testing 

samples with a ratio of 7:3, which are then fed into a LightGBM model to classify diverse faults of rotor 

systems. 

 



 

Fig. 5. Architecture of proposed method. 

 

3. Multi-fault classification based on trajectory phase feature 

 

The rotor system model [15, 55] consists of a shaft (discretized into 60 Timoshenko beam elements), 

two discs (regarded as rigid bodies) and two ball bearings (simplified as springs and dampers), as shown 

in Fig. 1. Some of the systemic physical parameters are given in Table 1. The first critical speed is 

calculated from the stiffness and mass of a healthy rotor system. The Rayleigh damping coefficients a 

and b are calculated by assuming that the first two modal damping ratios are 0.005 and 0.01, respectively. 

Twelve rotor states are considered in this work including healthy, unbalance, misalignment, single 



crack, multiple cracks, unbalance-misalignment, unbalance-single crack, unbalance-multiple cracks, 

misalignment-single crack, misalignment-multiple cracks, unbalance-misalignment-single crack, 

unbalance-misalignment-multiple cracks. The unbalance fault is produced by an eccentric mass on the 

two discs and the misalignment is obtained by biasing bearing 1. The single crack is located in the 30th 

element, while the parallel multiple cracks are in the 26th and 36th elements with a same depth of 0.2D. 

The sampling point is located at the first disc with a sampling frequency of 1000 Hz, and the sampling 

time is 10 s. 

 

Table 1. Physical parameters of rotor system. 

Parameter Value Parameter Value 

Shaft diameter, D 0.01 m Polar moment of inertia of disc 1 5.76×10−4 kg·m2 

Shaft length 0.6 m Diametrical moment of inertia of disc 1 3.18×10−4 kg·m2 

Density of shaft (40Cr) 7.87×103 kg·m-3 Polar moment of inertia of disc 2 5.84×10−4 kg·m2 

Disc eccentricity 2.0×10-5 m Diametrical moment of inertia of disc 2 3.23×10−4 kg·m2 

First critical speed, Ω0 2520 rpm Rayleigh damping coefficient, a 0.684 

Mass of disc 1 0.759 kg Rayleigh damping coefficient, b 2.80×10-5 

Mass of disc 2 0.770 kg   

 

3.1 Dynamic responses analysis 

 

The occurrence of one or multiple faults will change the nonlinear stiffness and Rayleigh damping 

coefficients of a rotor system [55], which will aggravate the complexity of nonlinear vibration responses, 

resulting in more harmonic components in the frequency spectrum and more complex of the axis 

trajectory shape. 
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Fig. 6. Axis trajectories under different rotor states in noise-free environment, A: healthy, B: unbalance, C: 

misalignment, D: single crack, E: multiple cracks, F: unbalance-misalignment, G: unbalance-single crack, H: 

unbalance-multiple cracks, I: misalignment-single crack, J: misalignment-multiple cracks, K: 

unbalance-misalignment-single crack, L: unbalance-misalignment-multiple cracks. 

 

The simulated axis trajectory plots of the rotor system with the twelve states in a noise-free 

environment are displayed in Fig. 6. Noting that the rotating speed of the shaft is set to 1/3 subcritical 

speed [14], i.e. 840 rpm, to highlight the crack feature in vibration responses of the rotor system. 

According to the morphological characteristics of the axis trajectories, the twelve rotor faults can be 

preliminarily categorized into five groups, shown in Table 2. 

 

Table 2. Comparison of axis trajectories under twelve rotor states in noise-free environment. 

Axis trajectory Fault 

 

A: healthy 

B: unbalance 

F: unbalance-misalignment 

 

C: misalignment 

 

D: single crack 

E: multiple cracks 

I: misalignment-single crack 

J: misalignment-multiple cracks 

 

G: unbalance-single crack 

K: unbalance-misalignment-single crack 

 

H: unbalance-multiple cracks 

L: unbalance-misalignment-multiple cracks 

 

It can be seen from Fig. 6 and Table 2 that the axis trajectories with healthy (A), unbalance (B), and 



unbalance-misalignment (F) faults have the similar shape of an ellipse. The axis trajectory under 

misalignment (C) contains an inner loop. There are two inner loops on the top of the axis trajectories with 

a single crack (D), multiple cracks (E), misalignment-single crack (I) and misalignment-multiple cracks 

(J), while the trajectory size of the multi-crack rotor is larger than that of the single crack rotor. Both of 

the axis trajectories with unbalance-single crack (G) and unbalance-misalignment-single crack (K) 

contain two concaves. And the trajectories of unbalance-multiple cracks (H) and unbalance- 

misalignment-multiple cracks (L) include two inner loops. 

It can be also found that the unbalance fault reduces the system nonlinearity and stretches the axis 

trajectory along the Y direction by comparing the trajectories under misalignment (C) and 

unbalance-misalignment (F), single crack (D) and unbalance-single crack (G), multiple cracks (E) and 

unbalance-multiple cracks (H). From the trajectories with unbalance-single crack (G) and unbalance- 

multiple cracks (H), unbalance-misalignment-single crack (K) and unbalance-misalignment-multiple 

cracks (L), the multi-crack rotor has larger trajectories and stronger nonlinearity than the single crack 

rotor. This is because the interaction between multiple cracks increases the flexibility and alters the 

nonlinearity of stiffness of the rotor system [55]. In the cases of coupled faults, Figs. 6(B) and (F), (D) 

and (I), (E) and (J), (G) and (K), (H) and (L) show that the misalignment fault only has a slight effect on 

the trajectories of the cracked rotor. Therefore, the shape change of axis trajectories cannot reflect the 

diverse fault conditions of the rotor system. 

 

 

 (a) (b) 

Fig. 7. Frequency spectra with different rotor states in noise-free environment, (a) Displacement signals in Y 

direction, (b) Trajectory phase angles. 

 

Fig. 7 is the frequency spectra of the trajectory phase angles and the vibration displacement signals in 

Y direction obtaining through Fourier transform. It can be seen from Fig. 7(a) that there is no obvious 

harmonic information in the spectra of displacement signal under the states of healthy (A) and 

misalignment (C) since the magnitudes of the harmonic components are much smaller than those of other 

rotor faults. The unbalance fault (B) only arouses a 1X component, coinciding with the results in Ref. [42] 

and [44]. The unbalance-misalignment fault (F) induces a significant 1X and a slight 2X component, 

while the remaining eight faults have excited 1X, 2X and 3X components of different magnitudes.  

It is evident from Fig. 7(b) that the spectra of trajectory phase angles show richer harmonic 
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components compared to Fig. 7(a), which will be beneficial to represent the dynamic properties of the 

rotor system under different kinds of faults. The spectra contain 3X, 5X 7X components and a dominant 

1X under the sates of healthy (A), unbalance (B), unbalance-misalignment (F), unbalance-single crack (G) 

and unbalance-misalignment-single crack (K). In addition, the 3X component is dominant in the 

conditions of single crack (D), multiple cracks (E), misalignment-single crack (I) and misalignment- 

multiple cracks (J). The spectra contain 1X-7X components under the faults of unbalance-multiple cracks 

(H) and unbalance-misalignment-multiple cracks (L). It can be observed that the magnitudes of 2X and 

6X components induced by misalignment (C) are more significant than those of other faults, which can 

be used as the features of the misalignment fault. 

 

 

 (a) (b) 

 

 (c) (d) 

Fig. 8. Partial enlargement of frequency spectra of trajectory phase angles with different rotor states in 

noise-free environment, (a) 0-10 Hz, (b) 35-42 Hz, (c) 60-70 Hz, (d) 85-98 Hz. 

 

There are many other harmonic components with smaller amplitudes in the spectra of trajectory phase 

angles besides the 1X-7X components, which also provide valuable discriminative information for 

different faults. Fig. 8 shows the spectra of trajectory phase angles in the frequency bands of 0-10 Hz, 

35-42 Hz, 60-70 Hz and 85-98 Hz, in which the obvious differences are marked by nine black rings. The 

twelve states of the rotor system can be classified into nine categories based on the harmonic information 

of trajectory phase feature, depicted in Fig. 9, compared to the five categorizations through the axis 

trajectory plots (shown in Table 2). Therefore, the extracted trajectory phase feature has significant 

superiority in characterizing the dynamic properties of the rotor system with different states. However, 

  

 

 

 

 
 

 

 



although the spectra of trajectory phase angles can provide more harmonic details, it is still difficult to 

classify the twelve rotor states fully, since some harmonic components containing valuable discrepancy 

information have relatively small magnitudes. 

 

 

Fig. 9. Classification results of twelve rotor states based on trajectory phase feature. 

 

3.2 Classification results without noise 

 

To fully exploit the distinguishing information of different kinds of faults contained in the trajectory 

phase feature, a LightGBM model is introduced to classify the twelve states of the rotor system based on 

the extract trajectory phase feature. Some of hyper-parameters of the LightGBM model are chosen to 

ensure the classification accuracy, listed in Table 3, and the others are default values. 

 

Table 3. Hyper-parameters of LightGBM model. 

Parameter Value Parameter Value 

Objective Multiclass Learning_rate 0.01 

N_estimators 200 Max depth 30 

Num_class 12 Num_leaves 200 

 

The extracted trajectory phase angles under the twelve rotor states in a noise-free environment are fed 

into the LightGBM model. Data in each kind of fault contains 6000 samples, of which 70% are randomly 

selected as training set for the model training, and the remaining 30% are used as testing set to evaluate 

the model performance. To illustrate the universality of the trajectory phase feature, the same samples are 

imported into the XGBoost [56] and GBDT [57] models. The hyper-parameter N_estimators for the two 

models are 15 and 150 respectively, and other hyper-parameters are same as LightGBM or the default 

values. The classification results of the three models for different rotor states are listed in Table 4. And 

the corresponding confusion matrices are shown in Fig. 10, where the horizontal axis represents the 

predicted rotor states and the vertical axis denotes the actual ones. The values on main diagonal of 

confusion matrix indicate the recognition accuracy of each kind of fault, while others are the 

misdiagnosis rate of the relevant faults. 

 

 



Table 4. Classification results of three machine learning models for twelve rotor states. 

Model 
Accuracy (%) Time 

(s) A B C D E F G H I J K L Mean 

LightGBM 100 96.3 100 98.9 95.2 93.8 100 100 100 98.9 100 100 98.6 170 

XGBoost 100 100 100 96.6 92.9 100 100 98.6 99.0 96.6 100 100 98.6 200 

GBDT 100 100 100 100 88.0 100 100 100 100 91.0 100 100 98.2 730 

 

 

 (a) (b) 

 

(c) 

Fig. 10. Confusion matrices of three machine learning models, (a) LightGBM, (b) XGBoost, (c) GBDT. 

 

It can be seen from Table 4 and Fig. 10 that both LightGBM and XGBoost models can accurately 

identify seven rotor states, and the minimum recognition rates for any fault are 93.8% 

(unbalance-misalignment) and 92.9% (multiple cracks), respectively. The GBDT model can accurately 

classify ten rotor states with a lowest identification rate of 88.0% for the multiple cracks fault. The 

foregoing three models have all achieved a mean classification accuracy over 98.0% for the twelve rotor 

states, in which the LightGBM model has faster fitting speed and lower time consumption. It is worth 

noting that the average recognition accuracy of the three models is less than 10.0% by taking the 



vibration displacement signals with the twelve states as the input samples directly. Therefore, the 

extracted trajectory phase feature has a good applicability and can excellently realize the multi-fault 

classification of rotor systems. 

 

3.3 Classification results with noise 

 

In practice, the raw vibration displacement signals of a rotor system are vulnerable to noise 

contamination, which will cause intricate and distorted axis trajectories, eventually resulting in poor 

recognition accuracy and incorrect diagnosis results. The parameter-optimized VMD method is 

introduced to decompose and denoise the trajectory phase angles under different SNRs (20, 15, 10, 5, 0, 

-5, -10, -15, -20 dB) for the multi-fault classification of the rotor system in noisy environments. 

The axis trajectory and trajectory phase angle under the coupled fault of unbalance-misalignment- 

multiple cracks at SNR = -20 dB are shown in Fig. 11. It can be observed from Fig. 11(a) that the noisy 

axis trajectory has become messy. And the extracted trajectory phase angle in Fig. 11(b) also becomes 

miscellaneous, and the harmonic components are almost completely masked by noise. 

 

 
 (a) (b) 

Fig. 11. Vibration responses under unbalance-misalignment-multiple cracks at SNR = -20 dB, (a) Axis 

trajectory, (b) Trajectory phase angle. 

 

Then the parameter-optimized VMD method (with K = 11 and α = 2730) is applied to decompose and 

denoise the trajectory phase angle, and a group of IMFs can be obtained, displayed in Fig. 12. The first 

two IMFs (whose center frequencies are equal to the fundamental and natural frequency of the rotor 

system, respectively), and other ones with the sample entropy satisfying Eq. (10) are selected to 

reconstruct the trajectory phase angle shown in Fig. 13. 

 
SampEn(IMF )

max{SampEn(IMF )}

k

k

  (10) 

where max{SampEn(IMF )}k
 denotes the maximum sample entropy, η is set as 0.5. 



 
Fig. 12. Decomposition result of parameter-optimized VMD. 

 

 

Fig. 13. Denoised reconstructed trajectory phase angle. 

 



As can be seen from Figs. 11(b) and 13 that the denoised reconstructed phase angle has filtered out 

most of the Gaussian white noise, although there are still some residual noise components. Meanwhile, 

the valuable information relating to rotor motion is also highlighted. The first six frequency components 

associated with the system vibration are marked with red dots in Fig. 13 and their coordinate values are 

displayed in the red box. 

After noise reduction, the reconstructed trajectory phase angles under the twelve states are imported 

into the LightGBM model for the multi-fault classification of the rotor system at different SNRs. And the 

classification results are given in Table 5 and mapped to accuracy diagram in Fig. 14. 

 

Table 5. Classification results of twelve rotor states at different SNRs. 

SNR (dB) 
Accuracy (%) 

A B C D E F G H I J K L Mean 

20 100 100 100 92.2 100 100 100 100 89.8 100 100 100 98.5 

15 88.7 100 100 100 100 97.2 100 100 100 98.9 100 97.7 98.5 

10 96.3 90.8 100 94.7 100 100 100 96.1 88.3 96.6 100 100 96.9 

5 100 100 100 93.0 91.3 96.7 97.6 100 100 82.3 100 100 96.7 

0 100 98.8 100 97.7 88.8 100 100 95.1 87.2 91.6 100 97.1 96.4 

-5 90.5 98.8 100 97.5 98.8 90.7 98.5 100 95.7 95.5 100 90.4 96.3 

-10 94.3 97.8 92.8 93.7 92.8 96.4 97.3 95.5 96.8 100 96.3 96.5 95.9 

-15 100 96.0 97.6 98.9 100 95.8 100 98.7 97.6 96.1 79.4 83.5 95.3 

-20 98.5 98.8 98.9 98.4 97.8 97.0 90.1 96.6 100 92.8 79.5 80.2 94.1 

 

 

Fig. 14. Classification accuracy diagram of twelve rotor states at different SNRs. 

 

It can be observed from Table 5 and Fig. 14 that the average recognition accuracy of the LightGBM 

model for the twelve rotor states decreases gradually with the increase of SNR, while the minimum 

average recognition accuracy has exceeded 94.0%. When the SNRs are -15 dB and -20 dB, the 

classification accuracy for the first ten faults is greater than 92.5%, and that for the unbalance- 



misalignment-single crack (K) and unbalance-misalignment-multiple cracks (L) faults is about 80.0%. 

Therefore, the proposed method can enable effective multi-fault classification of the rotor system at 

different SNRs. And the extracted trajectory phase feature has excellent robustness to noise, even in 

strong noisy environments. 

 

4. Experimental Verification 

 

In this section, the vibration experiments with twelve rotor states of different kinds (including healthy, 

unbalance, misalignment, single crack, multiple cracks, unbalance-misalignment, unbalance-single crack, 

unbalance-multiple cracks, misalignment-single crack, misalignment-multiple cracks, unbalance- 

misalignment-single crack, unbalance-misalignment-multiple cracks) are performed to validate the 

feasibility and applicability of the proposed method. The rotation speed of the shaft is 1/3Ω0’ (Ω0’ is the 

first critical speed of the experimental bench, 2562 rpm). The sampling frequency is 5000 Hz, two 

measuring points are located at the first disc and in the middle of rotating shaft. 

 

4.1 Experimental setup 

 

The test bench mainly contains six parts: two ball bearings, two discs, four eddy current displacement 

sensors, three rotating shafts (healthy, single crack, multiple cracks), a flexible coupling and a servo 

motor, shown in Fig. 15. Table 6 gives the parameters of each component. The length of each rotating 

shaft is 0.6 m and the diameter is 0.01 m. The breathing crack on shaft is slit by wire cutting with a depth 

of 0.002 m. The unbalance fault is generated by adjusting the eccentric bolts mounted on two shaft discs. 

The misalignment fault is obtained by a spacer with a thickness of 0.001 m installed under the first 

bearing seat. Two sensors at identical measuring point have a relative angle of π/2 rad to collect the 

vibration displacement signals in the Y and Z directions. 

 

 

Fig. 15. Illustration of rotor test bench, ① Bearing 1, ② Disc 1, ③ Eddy current displacement sensors, ④ 

Shaft, ⑤ Disc 2, ⑥ Bearing 2, ⑦ Flexible coupling, ⑧ Servo motor. 
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Table 6. Parameters of test bench. 

Part Type Quantity 

Bearing SKF-6300 2 

Disc 45# steel 2 

Shaft 40Cr 3 

Flexible coupling LM-45-10-24 1 

Servo motor SIEMENSE G90A IP55 1 

Eddy current displacement sensor ZA21-0803 4 

Motor control system VFD-M 1.5 kW 1 

Signal acquisition system DHDAS5922N 1 

 

4.2 Data Description 

 

Fig. 16 shows the experimental axis trajectories under the twelve rotor states, which has similar shapes 

to the simulated ones. Coinciding with the simulated axis trajectories in Figs. 6(A)-(B) and (F), the 

experimental ones under the states of healthy, unbalance, and unbalance-misalignment have the similar 

trajectory shape of a ring. The simulated and experimental trajectories under the misalignment fault both 

contain an inner loop, shown in Figs. 6(C) and 16(C). The experimental axis trajectories with a single 

crack, multiple cracks, unbalance-multiple cracks, misalignment-single crack, misalignment-multiple 

cracks, unbalance-misalignment-multiple cracks all include two inner loops, same as the simulated ones 

in Fig. 6.  

As can be seen from Figs. 16(G) and (K) that the experimental trajectories under unbalance-single 

crack and unbalance-misalignment-single crack have an or two inner loops, while the simulated ones 

contain two concaves shown in Figs. 6(G) and (K). The reason is that the depth of the single crack 

obtained by wire cutting is greater than 0.002 m (the actual depth is 0.0023 m), leading to the increase in 

nonlinearity of stiffness of the rotor system. Additionally, the test noise and the rotation speed fluctuation 

of the servo motor causes some undesirable small disturbances in the experimental trajectories. 
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 I J K L 

Fig. 16. Experimental axis trajectories with different rotor states, A: healthy, B: unbalance, C: misalignment, 

D: single crack, E: multiple cracks, F: unbalance-misalignment, G: unbalance-single crack, H: 

unbalance-multiple cracks, I: misalignment-single crack, J: misalignment-multiple cracks, K: 

unbalance-misalignment-single crack, L: unbalance-misalignment-multiple cracks. 

 

4.3 Experimental results and discussions 

 

To verify the generalization ability of the proposed method, the trajectory phase angles extracted from 

the experimental axis trajectories are input into the LightGBM, XGBoost and GBDT models. The 

classification results of the twelve rotor states are given in Table 7, and the confusion matrices are 

displayed in Fig. 17. 

It can be observed that the average classification accuracy of the three models has exceeded 94.5% for 

the twelve states, and the minimum identification accuracy is about 90.0% for any fault. Consequently, 

the proposed method has a good adaptability to experimental data, despite there are more misdiagnosis 

cases than the simulated results. 

 

Table 7. Experimental classification results of three machine learning models for twelve rotor states. 

Model 
Accuracy (%) 

A B C D E F G H I J K L Mean 

LightGBM 100 95.8 96.4 99.0 98.4 100 100 100 97.7 97.7 96.6 98.7 98.4 

XGBoost 96.4 95.8 90.7 95.7 96.8 95.1 100 97.6 94.2 91.1 88.0 93.8 94.6 

GBDT 98.8 95.8 98.8 99.0 94.0 96.4 100 98.8 97.7 97.7 95.4 98.7 97.6 

 

 (a) (b) 



 

(c) 

Fig. 17. Confusion matrices of three models for experimental data, (a) LightGBM, (b) XGBoost, (c) GBDT. 

 

The trajectory phase angles extracted from the experimental axis trajectories at different SNRs (20, 15, 

10, 5, 0, -5, -10, -15, -20 dB) are fed into the LightGBM model after noise attenuation. The multi-fault 

classification results are shown in Table 8, and the accuracy diagram is displayed in Fig. 18.  

It can be found from Table 8 and Fig. 18 that the mean classification accuracy under different SNRs 

exceeds 93.0% and the recognition rate of any kind of fault is over 77.5%. And there is a minimum 

recognition rate around 78.0% for the misalignment (C) and single crack (D) faults as SNR = -15 dB and 

-20 dB, respectively. Hence, based upon the experimental trajectory phase feature, the proposed method 

can classify different rotor states in different noisy environments, coinciding with the simulated results in 

Table 5 and Fig. 14. 

 

Table 8. Experimental classification results of twelve rotor states at different SNRs. 

SNR (dB) 
Accuracy (%) 

A B C D E F G H I J K L Mean 

20 100 98.9 97.5 95.5 98.8 96.7 98.9 100 97.0 98.7 95.2 98.8 98.0 

15 97.8 97.5 96.7 98.9 98.7 94.9 100 100 97.5 93.3 95.7 95.6 97.2 

10 95.6 94.8 100 100 97.0 97.8 98.9 97.9 97.5 97.0 94.7 93.9 97.1 

5 95.8 96.3 96.8 96.6 98.7 96.0 100 97.3 94.3 98.5 97.8 90.4 96.5 

0 96.2 92.0 97.4 92.9 97.4 93.3 98.8 96.4 96.3 100 94.8 98.8 96.2 

-5 97.6 95.2 93.6 94.0 92.3 93.8 98.6 96.3 96.3 97.6 98.8 94.9 95.8 

-10 100 98.8 95.1 96.6 98.6 93.5 85.4 100 91.2 90.6 95.6 92.9 94.9 

-15 83.9 98.7 78.9 96.6 91.3 92.8 97.7 98.9 96.8 98.8 96.3 97.2 94.0 

-20 97.3 81.6 98.8 77.7 91.8 96.0 95.2 96.4 98.8 97.2 97.9 89.7 93.2 

 



 

Fig. 18. Experimental classification accuracy diagram of twelve rotor states at different SNRs. 

 

To verify the correctness of the proposed method, the experimental classification accuracy of healthy 

state (A), misalignment (C), single crack (D) and misalignment-single crack (I) is compared with that in 

Ref. [58] as SNR = 10 dB, 0 and -10 dB. The relevant results are listed in Table 9. 

It can be found from Table 9 that the mean classification accuracy of the proposed method achieves 

96.6%, greater than 95.9% with the method in Ref. [58], especially the classification accuracy maintains 

a high value (95.7%) in a strong noise environment when SNR is -10 dB, which verifies the good 

robustness to noise of the proposed method in multi-fault classification of rotor systems. 

 

Table 9. Comparison of classification accuracy at different SNRs. 

SNR (dB) 
Classification accuracy (%) 

Method in Ref. [58] Proposed method 

10 100 98.3 

0 100 95.7 

-10 87.67 95.7 

Mean 95.9 96.6 

 

5. Conclusions 

 

As it is difficult to distinguish multiple rotor faults with similar dynamics phenomena in noisy 

environments, a multi-fault classification method is proposed by combining the phase feature of axis 

trajectory, a parameter-optimized VMD method and a LightGBM model. The trajectory phase feature is 

extracted from an axis trajectory to characterize the rotor motion under healthy, three single faults and 

eight coupled faults by integrating the frequency, amplitude and phase information in axis trajectory. A 

parameter-optimized VMD method based on NSGA-III is applied to decompose and denoise the 

trajectory phase angles at different SNRs (20, 15, 10, 5, 0, -5, -10, -15, -20 dB). And the LightGBM 

model is introduced for the multi-fault classification of rotor systems. Simulations and experiments are 



performed to verify the proposed method. The specific conclusions are presented below. 

(1) The Fourier spectra of trajectory phase angles contain many harmonic components including the 

1X-7X components and other components with smaller amplitudes, which can provide sufficient 

discrepancy information for the multi-fault classification of rotor systems. 

(2) The twelve rotor states can be classified into nine categories based on the phase feature of axis 

trajectory. 

(3) The proposed method can classify multiple faults of rotor systems in different noisy environments. 

The average classification accuracy of the twelve states exceeds 93.0%, and the recognition rate for any 

fault is greater than 77.5%. 

The method in this work can enable effective multi-fault classification of rotor systems in noisy 

environments, which is promising for the condition monitoring and fault diagnosis of rotating machine in 

engineering. However, this research only focuses on the rotor system at 1/3 subcritical speed, without 

considering the influence of speed change, which will be the priority of future work. 
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