
System Verification and Runtime Monitoring with Multiple
Weakly-Hard Constraints
YI-TING HSIEH, TZU-TAO CHANG, CHEN-JUN TSAI, SHIH-LUN WU, CHING-YUAN
BAI, KAI-CHIEH CHANG, and CHUNG-WEI LIN, National Taiwan University, Taiwan

EUNSUK KANG, Carnegie Mellon University, USA

CHAO HUANG, University of Liverpool, UK

QI ZHU, Northwestern University, USA

A weakly-hard fault model can be captured by an (𝑚,𝑘) constraint, where 0 ≤ 𝑚 ≤ 𝑘 , meaning that there are

at most𝑚 bad events (faults) among any 𝑘 consecutive events. In this paper, we use a weakly-hard fault model

to constrain the occurrences of faults in system inputs. We develop approaches to verify properties for all

possible values of (𝑚,𝑘), where 𝑘 is smaller than or equal to a given 𝐾 , in an exact and efficient manner. By

verifying all possible values of (𝑚,𝑘), we define weakly-hard requirements for the system environment and

design a runtime monitor based on counting the number of faults in system inputs. If the system environment

satisfies the weakly-hard requirements, the satisfaction of desired properties is guaranteed; otherwise, the

runtime monitor can notify the system to switch to a safe mode. This is especially essential for cyber-physical

systems which need to provide guarantees with limited resources and the existence of faults. Experimental

results with discrete second-order control, network routing, vehicle following, and lane changing demonstrate

the generality and the efficiency of the proposed approaches.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; Real-
time systems; Dependable and fault-tolerant systems and networks; • Security and privacy→ Sys-
tems security.

Additional Key Words and Phrases: Formal verification, runtime monitoring, weakly-hard models

ACM Reference Format:
Yi-Ting Hsieh, Tzu-Tao Chang, Chen-Jun Tsai, Shih-Lun Wu, Ching-Yuan Bai, Kai-Chieh Chang, Chung-Wei

Lin, Eunsuk Kang, Chao Huang, and Qi Zhu. 2023. System Verification and Runtime Monitoring with Multiple

Weakly-Hard Constraints. 1, 1 (July 2023), 28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A weakly-hard fault model can be captured by an (𝑚,𝑘) constraint, where 0 ≤ 𝑚 ≤ 𝑘 , meaning

that there are at most𝑚 bad events (faults) among any 𝑘 consecutive events. Weakly-hard models

have been studied in a number of works for real-time systems [1–3, 5, 6, 10, 11, 13, 19, 20, 27, 28],

mostly from the perspective of scheduling constraints. In this paper, we use a weakly-hard model to

Authors’ addresses: Yi-Ting Hsieh, r09922082@ntu.edu.tw; Tzu-Tao Chang, b05703092@ntu.edu.tw; Chen-Jun Tsai,

r11922055@ntu.edu.tw; Shih-Lun Wu, b06902080@ntu.edu.tw; Ching-Yuan Bai, b05502055@ntu.edu.tw; Kai-Chieh Chang,

r08922054@ntu.edu.tw; Chung-Wei Lin, cwlin@csie.ntu.edu.tw, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd.,

Taipei, , Taiwan, 10617; Eunsuk Kang, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania, USA,,

eunsukk@andrew.cmu.edu; Chao Huang, University of Liverpool, Liverpool, UK, L69 3BX, chao.huang2@liverpool.ac.uk;

Qi Zhu, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA,, qzhu@northwestern.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

XXXX-XXXX/2023/7-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: July 2023.

HTTPS://ORCID.ORG/0000-0001-8309-7028
HTTPS://ORCID.ORG/0000-0002-9300-1787
HTTPS://ORCID.ORG/0000-0002-7700-4099
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0001-8309-7028
https://orcid.org/0000-0002-9300-1787
https://orcid.org/0000-0002-7700-4099
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Hsieh et al.

constrain the occurrences of faults, and verify properties of discrete systems under suchweakly-hard

fault model.

1.1 Motivating Applications and Usages
Verifying system properties under the weakly-hard fault model has various applications, such as:

• In a real-time system, a deadline miss can be considered as a bad event (fault). Our approaches

can help find the maximum number of deadline misses allowed while guaranteeing system

properties, which can then be used to reduce computation/communication load and maximize

resource saving (e.g., CPU or network resource) with a less critical mode of the system.

• In a networked system, a message without authentication can be modeled as a bad event

(fault), and again, our approaches can be applied to maximize resource saving (e.g., reduce
the computation and transmission of message authentication codes) by allowing messages

without authentication, while still ensuring system properties. Note that a system that only

authenticates partial messages has also been proposed [17].

• In the systems above, a deadline miss (e.g., due to a denial-of-service attack) or a compromised

message can be caused by a malicious attacker. From the perspective of an attacker, our

approaches can be applied to minimize attack cost while still causing the system to reach a

state violating properties.

More generally speaking, our verification approaches under the (𝑚,𝑘) weakly-hard fault model

bring important usages for system engineering of cyber-physical systems which need to provide

guarantees with limited resources and the existence of faults:

• If the environment and system design (e.g., via scheduling) ensure that the fault occurrences
satisfy the (𝑚,𝑘) constraint, the system properties are satisfied.

• If the environment and system design cannot ensure that the fault occurrences always satisfy

the (𝑚,𝑘) constraint, a runtime monitor should be developed to monitor the occurrences of

faults and adapt the system to a safe (more conservative) mode when the (𝑚,𝑘) constraint is
violated.

For example, applications of connected vehicles, such as intersection management and cooperative

adaptive cruise control, rely on periodic messages from other vehicles or roadside units. However,

a message may be missing due to network faults or even malicious attacks. With the verification

results, a connected vehicle can monitor the number of missing messages during runtime. If the

corresponding (𝑚,𝑘) constraint is violated, the connected vehicle should switch to a safe mode

(e.g., slowing down or stopping immediately). It should be emphasized that, in practice, the cost of

a network without missing messages is too high, or even it may not be possible to predict how the

environment behaves, so the satisfaction of the (𝑚,𝑘) constraint cannot be guaranteed. Therefore,
a runtime monitor for the (𝑚,𝑘) constraint is desired.

1.2 Target Problem and Contributions
In this paper, given a labelled transition system 𝑆 , a property 𝑃 , and a positive integer 𝐾 , we aim to

find a subset of the (𝑚,𝑘) constraints, where 1 ≤ 𝑚 ≤ 𝑘 ≤ 𝐾 , such that, if the environment satisfies

at least one constraint in the subset, then 𝑆 guarantees to satisfy 𝑃 ; otherwise, if the environment

does not satisfy any constraint in the subset, then 𝑆 cannot guarantee to satisfy 𝑃 , which should

lead 𝑆 to switch to a safe mode. Based on the subset, we can then develop a runtime monitor to

verify whether the environment satisfies at least one constraint in the subset. Unlike some existing

runtime-monitoring approaches (without an explicit model of 𝑆), this paper assumes that the model

of 𝑆 is given, but the satisfaction of an (𝑚,𝑘) constraint can only be verified during runtime.

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 3

Table 1. The overview of the proposed approaches.

Property & System Single (𝑚,𝑘) Constraint Multiple (𝑚,𝑘) Constraints
Reachability & Mask-Compressing Layered BFS, Dual-Layered BFS

Finite-State Machine (Section 5.2) (Sections 5.3 and 5.4)

General Property & Not Algorithms 1, 2, and 3

General System Covered (Sections 3.2, 3.3, and 3.4)

The runtime monitor relies on a safety table which stores the satisfaction condition of property 𝑃

under each (𝑚,𝑘) constraint. Since 1 ≤ 𝑚 ≤ 𝑘 ≤ 𝐾 , there are 𝐾 (𝐾+1)
2

possible (𝑚,𝑘) pairs and thus

𝐾 (𝐾+1)
2

constraints in the safety table. A straightforward approach evaluating each (𝑚,𝑘) constraint
one by one needs to verify the property

𝐾 (𝐾+1)
2

times, where each individual verification may be

expensive to carry out. To remedy this problem, we propose approaches to compute the safety

table in a more efficient way.

The main contributions of this paper include
1
:

• We derive theorems that state various logical relationships between weakly-hard constraints.

Based on these relationships, we reduce the problem of computing a safety table to that of

computing its satisfaction boundary and propose approaches that require verifying at most

2𝐾 times to compute this satisfaction boundary.

• Based on the resulting satisfaction boundary, we define weakly-hard requirements for the

system environment and design a lightweight runtime monitor that dynamically checks the

satisfaction of the weakly-hard requirements.

• We prove that, without being given a satisfaction boundary as an input, an optimal determin-

istic approach does not exist. Then, given a satisfaction boundary as an input, we introduce

an optimal approach which can be used to appraise the efficiency of the proposed approaches.

The correctness of the optimal approach and the uniqueness of its evaluated weakly-hard

constraints.

• We consider a special case of reachability of finite-state machines. We propose a layered

Breadth-First Search (BFS) approach which computes the satisfaction boundary for all (𝑚,𝑘)
constraints (1 ≤ 𝑚 ≤ 𝑘 ≤ 𝐾) with the same computational complexity as evaluating a single

(𝑚,𝐾) constraint (𝐾 is the upper bound of all possible values of 𝑘). We further propose a

dual-layered BFS approach to make the computation more efficient.

• Experimental results with discrete second-order control, network routing, and lane changing

demonstrate the generality and the efficiency of the proposed approaches.

1.3 Overview of Proposed Approaches and Paper Organization
We overview the proposed approaches in this paper in Table 1. There are six approaches: the mono-

tonic approach (Algorithm 1) in Section 3.2, the monotonic approach with dynamic upper bound of

satisfaction boundary (Algorithm 2) in Section 3.3, the lowest-cast-first heuristic (Algorithm 3) in

Section 3.4, the mask-compressing approach in Section 5.2, the layered BFS approach in Section 5.3,

1
The preliminary version of this paper is published at the 2020 International Conference on Runtime Verification (RV) [26].

This journal version adds new technical contents as follows. (1) We consider the existence of an optimal deterministic

approach. (2) We refine the implementation of the layered Breadth-First Search (BFS) approach to make it more efficient.

(3) We propose a dual-layered BFS approach which is more efficient than the layered BFS approach. (4) We consider two

more applications, network routing and lane changing, to demonstrate the applicability and scalability of weakly-hard fault

modeling and the proposed approaches.

, Vol. 1, No. 1, Article . Publication date: July 2023.

4 Hsieh et al.

and the dual-layered BFS approach in Section 5.4. The first three approaches are for general proper-

ties, general systems, and multiple weakly-hard constraints, with different evaluation orders. They

decide the orders of evaluating the weakly-hard constraints and need to call a verification approach

for a single weakly-hard constraint. Note that the first three approaches assume that one can verify

a property 𝑃 under a single weakly-hard constraint — this paper does not cover how to achieve

that, except in the special case of reachability for finite-state machines. The last three approaches

are exactly for the special case of reachability for finite-state machines. The mask-compressing

approach is for a single weakly-hard constraint, and thus it can be plugged into (called by) the

first three approaches, while the layered BFS approach and the dual-layered BFS approach are for

multiple weakly-hard constraints.

The paper is organized as follows. Section 2 provides the problem formulation. Section 3 describes

how we solve the problem for general properties and systems and introduces a runtime monitor.

Section 4 discusses optimal approaches. Section 5 considers the special case of reachability for

finite-state machines. Section 6 presents the experimental results. Section 7 reviews the related

work, and Section 8 concludes the paper.

2 PROBLEM FORMULATION
In this paper, we consider a labelled transition system 𝑆 = ⟨𝑄, Σ, 𝑅,𝑄0⟩ where 𝑄 is the set of states,

Σ is the set of alphabet, 𝑅 ⊆ 𝑄 × Σ ×𝑄 is the transition relation, and 𝑄0 ⊆ 𝑄 is the set of initial

states. Without loss of generality, a subset of the alphabet represents input events {0, 1} ⊆ Σ, where
0 and 1 represent a normal and faulty environmental event, respectively. We use 𝜎 ∈ Σ∗ = {0, 1}∗
to represent an input trace. We are interested in evaluating whether a property 𝑃 is satisfied

with inputs under the constraints of weakly-hard fault models. As mentioned in the overview in

Section 1.3, we discuss a general property 𝑃 , which can be defined by any property specification

language, in Section 3 and the reachability property in Section 5.

Definition 1. Weakly-Hard Fault Model. A weakly-hard fault model is defined by (𝑚,𝑘), mean-
ing that there are at most𝑚 faulty events (denoted as 1’s) among any 𝑘 consecutive events in the input
trace. The corresponding constraint is denoted as𝑊 (𝑚,𝑘).
Based on the definition, an input trace 𝜎 |=𝑊 (𝑚,𝑘) if and only if 𝜎 has at most𝑚 1’s in any

size-𝑘 window of 𝜎 .

Definition 2. Weakly-Hard Constraint Set. Given 𝐾 ∈ Z+, the weakly-hard constraint set is
defined as 𝐶 (𝐾) B {𝑊 (𝑚,𝑘) | 1 ≤ 𝑚 ≤ 𝑘 ≤ 𝐾}.
Given a system 𝑆 , a property 𝑃 , and a positive integer 𝐾 , the goal of the approaches in the

following sections is to find a subset of 𝐶 (𝐾), such that, if the environment satisfies at least one

constraint in the subset, then 𝑆 guarantees to satisfy 𝑃 ; otherwise, if the environment does not

satisfy any constraint in the subset, then 𝑆 cannot guarantee to satisfy 𝑃 , which should lead 𝑆

to switch to a safe mode. We do not consider the case of𝑚 = 0 as, if there is no faulty event, 𝑆

should be designed to satisfy 𝑃 , which should be regarded as a design-time problem (although our

approach can also be used to handle this special case).

The subset that leads 𝑆 to guarantee 𝑃 is stored in a safety table which keeps the satisfaction

condition of 𝑃 under each𝑊 (𝑚,𝑘) in 𝐶 (𝐾). A safety table is defined as follows.

Definition 3. Safety Table. Given 𝐾 ∈ Z+, a safety table𝑇 ∈ {True, False, N/A}𝐾×𝐾 is defined as

𝑇 [𝑚,𝑘] =

True if𝑚 ≤ 𝑘 and ∀𝜎 |=𝑊 (𝑚,𝑘), 𝑆 |= 𝑃 ;
False if𝑚 ≤ 𝑘 and ∃𝜎 |=𝑊 (𝑚,𝑘), 𝑆 ̸ |= 𝑃 ;
𝑁 /𝐴 if𝑚 > 𝑘 .

(1)

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 5

(1,2) (2,2)

(1,1) N/A

k

m

True / Satisfied

False / Unsatisfied

A B C

1
1

0

0 0,1

Fig. 1. (a) An example safety table and (b) its satisfaction boundary.

For𝑚 > 𝑘 , 𝑇 [𝑚,𝑘] is not applicable as the corresponding weakly-hard fault model is undefined.

All𝑊 (𝑚,𝑘), where𝑇 [𝑚,𝑘] = True, exactly forms the subset that leads 𝑆 to guarantee 𝑃 .𝑇 [𝑚,𝑘] is
determined when the property 𝑃 under𝑊 (𝑚,𝑘) is verified or falsified. Computing the safety table

is the goal of the approaches in the following sections, and the safety table is the results (outputs)

of them.

Based on the safety table, we can then develop a runtime monitor to verify whether the environ-

ment satisfies at least one constraint in the subset that leads 𝑆 to guarantee 𝑃 . Note that a safety

table is computed off-line in the design phase, and the satisfaction of 𝑃 under each𝑊 (𝑚,𝑘) in𝐶 (𝐾)
needs to be stored and accessed during runtime.

An example is shown in Figure 1. Given a system 𝑆 as a finite-state machine in Figure 1(a), state

𝐴 is the initial state, states 𝐴 and 𝐵 are safe, state 𝐶 is unsafe, and the property 𝑃 is that 𝑆 must

always be in a safe state. The corresponding safety table is in Figure 1(b). 𝑇 [1, 1] and 𝑇 [2, 2] are
False because it is possible that an input trace has all 1’s and leads 𝑆 to reach the unsafe state𝐶 . On

the other hand, 𝑇 [1, 2] is True because any input trace has at most one 1’s in any size-2 window so

that 𝑆 will only reach the safe states 𝐴 and 𝐵. A larger example safety table is shown in Figure 2(a).

3 GENERAL APPROACHES AND RUNTIME MONITOR DESIGN
In this section, we first define the strength of weakly-hard constraints (Section 3.1). We then derive

the fundamental theorems of logical relationships between weakly-hard constraints and propose

an algorithm to compute the safety table and its corresponding satisfaction boundary based on

these theorems (Section 3.2). We further derive advanced theorems of logical relationships between

weakly-hard constraints and propose an improved algorithm (Section 3.3) and a lowest-cost-first

heuristic (Section 3.4) taking all properties into account. Based on the computed safety table and

the satisfaction boundary, we can design a runtime monitor (Section 3.5).

3.1 Strength of Weakly-Hard Constraint
Definition 4. Strength of Weakly-Hard Constraints. Given twoweakly-hard constraints𝑊 (𝑚,𝑘)

and𝑊 (𝑚′, 𝑘 ′), we define that𝑊 (𝑚,𝑘) is stronger than𝑊 (𝑚′, 𝑘 ′), denoted as𝑊 (𝑚,𝑘) ≻𝑊 (𝑚′, 𝑘 ′),
if and only if any input trace that satisfies𝑊 (𝑚,𝑘) also satisfies𝑊 (𝑚′, 𝑘 ′).

Understanding the logical relationships between constraints allows us to determine the satisfac-

tion of properties under some𝑊 (𝑚,𝑘) constraints directly from the known verification results of

other𝑊 (𝑚′, 𝑘 ′) constraints. From an algorithm design perspective, exploiting these relationships

by evaluating the constraints in a proper order leads to a significant improvement in efficiency.

3.2 Monotonic Approach
Theorem 1. For any𝑚,𝑚′, 𝑘 ∈ Z+,𝑚 < 𝑚′ ≤ 𝑘 ,𝑊 (𝑚,𝑘) ≻𝑊 (𝑚′, 𝑘).

Proof. By definition, for any input trace 𝜎 |=𝑊 (𝑚,𝑘), it has at most𝑚 1’s in any size-𝑘 window

of 𝜎 . Since𝑚 < 𝑚′, it follows that 𝜎 |=𝑊 (𝑚′, 𝑘). □

, Vol. 1, No. 1, Article . Publication date: July 2023.

6 Hsieh et al.

(1,8) (2,8) (3,8) (4,8)

(1,7) (2,7) (3,7) (4,7)

(1,6) (2,6) (3,6)

(1,5) (2,5)

(1,4) (2,4)

(1,3)

(1,2)

(5,8) (6,8) (7,8) (8,8)

(5,7) (6,7) (7,7)

(4,6) (5,6) (6,6)

(3,5) (4,5) (5,5)

(3,4) (4,4)

(2,3) (3,3)

(2,2)

(1,1)

N/A

k

m

(a)

(1,8) (2,8) (3,8) (4,8)

(1,7) (2,7) (3,7) (4,7)

(1,6) (2,6) (3,6)

(1,5) (2,5)

(1,4) (2,4)

(1,3)

(1,2)

(5,8) (6,8) (7,8) (8,8)

(5,7) (6,7) (7,7)

(4,6) (5,6) (6,6)

(3,5) (4,5) (5,5)

(3,4) (4,4)

(2,3) (3,3)

(2,2)

(1,1)

N/A

k

m

(b)

True / Satisfied False / Unsatisfied Satisfaction Boundary

Fig. 2. (a) An example safety table and (b) its satisfaction boundary.

Implication 1. For any𝑚,𝑚′, 𝑘 ∈ Z+,𝑚 < 𝑚′ ≤ 𝑘 , if a property 𝑃 is unsatisfied under𝑊 (𝑚,𝑘),
then 𝑃 is unsatisfied under𝑊 (𝑚′, 𝑘); if a property 𝑃 is satisfied under𝑊 (𝑚′, 𝑘), then 𝑃 is satisfied
under𝑊 (𝑚,𝑘).
Theorem 2. For any𝑚,𝑘, 𝑘 ′ ∈ Z+,𝑚 ≤ 𝑘 ′ < 𝑘 ,𝑊 (𝑚,𝑘) ≻𝑊 (𝑚,𝑘 ′).
Proof. By definition, for any input trace 𝜎 |=𝑊 (𝑚,𝑘), it has at most𝑚 1’s in any size-𝑘 window

of 𝜎 . If we reduce the window size to 𝑘 ′, the maximum number of 1’s in the window only remains

the same or decreases, so it follows that 𝜎 |=𝑊 (𝑚,𝑘 ′). □

Implication 2. For any𝑚,𝑘, 𝑘 ′ ∈ Z+,𝑚 ≤ 𝑘 ′ < 𝑘 , if a property 𝑃 is unsatisfied under𝑊 (𝑚,𝑘),
then 𝑃 is unsatisfied under𝑊 (𝑚,𝑘 ′); if a property 𝑃 is satisfied under𝑊 (𝑚,𝑘 ′), then 𝑃 is satisfied
under𝑊 (𝑚,𝑘).
By Implication 1, the problem of computing a safety table can be reduced to the problem of

computing the satisfaction boundary of the safety table. The satisfaction boundary is defined as

follows.

Definition 5. Satisfaction Boundary. For each 𝑘 , the satisfaction boundary 𝐵(𝑘) is the maxi-
mum𝑚 such that 𝑇 [𝑚,𝑘] (in the safety table) is True.

The satisfaction boundary of the safety table in Figure 2(a) is shown in Figure 2(b). The reduction

is crucial because we only need to store the satisfaction boundary rather than the whole safety

table for the runtime monitor.

Implications 1 and 2 imply that evaluating constraints in a monotonic manner (i.e., increasing
𝑚 and increasing 𝑘 until a given 𝐾) can compute the satisfaction boundary without evaluating

all constraints in 𝐶 (𝐾). We assume that we can verify a property 𝑃 under a single𝑊 (𝑚,𝑘) — an

example of verifying reachability under a single𝑊 (𝑚,𝑘) is described in Section 5. We propose

the monotonic approach (Algorithm 1) to compute the satisfaction boundary 𝐵(𝑘) for each 𝑘 ≤ 𝐾 .
For each 𝑘 ≤ 𝐾 , the algorithm increases𝑚 until 𝑃 is unsatisfied and obtains 𝐵(𝑘) (Lines 5–11). By

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 7

Algorithm 1Monotonic Approach

1: procedure Get_satisfaction_boundary(𝑆, 𝑃, 𝐾)
2: 𝐵 ← []
3: 𝑚 ← 0

4: for 𝑘 ← 1 to 𝐾 do ⊲ Get satisfaction boundary for each 𝑘

5: while𝑚 < 𝑘 do
6: if 𝑆 ̸ |= 𝑃 under𝑊 (𝑚 + 1, 𝑘) then
7: break
8: end if
9: 𝑚 ←𝑚 + 1
10: end while
11: 𝐵 [𝑘] ←𝑚

12: end for
13: return 𝐵
14: end procedure

Implication 1, since 𝑃 is unsatisfied under𝑊 (𝐵(𝑘) + 1, 𝑘), 𝑃 is unsatisfied under𝑊 (𝑚,𝑘) where
𝑚 > 𝐵(𝑘) + 1, and thus there is no need to verify 𝑃 under𝑊 (𝑚,𝑘) where 𝑚 > 𝐵(𝑘) + 1. For
example, as shown in Figure 3(a), if 𝑃 is unsatisfied under𝑊 (3, 4), then 𝑃 is unsatisfied under

𝑊 (4, 4), which does not need to be evaluated. Then, 𝑘 is increased by 1 (Line 4), and the same

procedure repeats and starts with𝑚 = 𝐵(𝑘 − 1) + 1 (not𝑚 = 1). By Implication 2, since 𝑃 is satisfied

under𝑊 (𝐵(𝑘 − 1), 𝑘 − 1), 𝑃 is satisfied under𝑊 (𝐵(𝑘 − 1), 𝑘), and thus there is no need to verify 𝑃

under𝑊 (𝐵(𝑘 − 1), 𝑘). For example, as shown in Figure 3(b), if 𝑃 is satisfied under𝑊 (3, 4), then
𝑃 is satisfied under𝑊 (3, 5) (and𝑊 (3, 𝑘) where 𝑘 ≥ 5), which does not need to be evaluated. The

algorithm terminates when 𝐵(𝑘) is computed for each 𝑘 ≤ 𝐾 , and the satisfaction boundary is

returned (Line 13).

Assuming the complexity of verifying 𝑃 under a single weakly-hard constraint is 𝑂 (𝑋), the
complexity of Algorithm 1 is 𝑂 (2𝐾 · 𝑋) = 𝑂 (𝐾 · 𝑋), since both 𝑚,𝑘 are non-decreasing in the

algorithm and bounded above by𝐾 . It is a significant improvement over brute-forcing each𝑊 (𝑚,𝑘)
in 𝐶 (𝐾), which has the complexity 𝑂 (𝐾2 · 𝑋).

3.3 Monotonic Approach with Dynamic Upper Bound of Satisfaction Boundary
Theorem 3. For any𝑚,𝑘, 𝑥 ∈ Z+,𝑚 < 𝑘, 𝑥 ≥ 2,𝑊 (𝑚,𝑘) ≻𝑊 (𝑥𝑚, 𝑥𝑘).

Proof. For any input trace 𝜎 |= 𝑊 (𝑚,𝑘) and size-(𝑥𝑘) window of 𝜎 , the window can be

constructed by 𝑥 size-𝑘 windows, and each of which has at most𝑚 1’s. Thus, there are at most 𝑥𝑚

1’s in the size-(𝑥𝑘) window, and it follows that 𝜎 |=𝑊 (𝑥𝑚, 𝑥𝑘). □

Implication 3. For any𝑚,𝑘, 𝑥 ∈ Z+,𝑚 < 𝑘, 𝑥 ≥ 2, if a property 𝑃 is unsatisfied under𝑊 (𝑚,𝑘),
then 𝑃 is unsatisfied under𝑊 (𝑥𝑚, 𝑥𝑘); if a property 𝑃 is satisfied under𝑊 (𝑥𝑚, 𝑥𝑘), then 𝑃 is satisfied
under𝑊 (𝑚,𝑘).

Theorem 4. For any𝑚,𝑘, 𝑥 ∈ Z+,𝑚 < 𝑘 ,𝑊 (𝑚,𝑘) ≻𝑊 (𝑚 + 𝑥, 𝑘 + 𝑥).

Proof. For any input trace 𝜎 |= 𝑊 (𝑚,𝑘) and size-(𝑘 + 𝑥) window of 𝜎 , the window can be

constructed by combining two windows of sizes 𝑘 and 𝑥 , respectively. Since 𝜎 |=𝑊 (𝑚,𝑘), there
are at most 𝑚 1’s in the size-𝑘 window. On the other hand, there are at most 𝑥 1’s in the size-

𝑥 window. Thus, there are at most (𝑚 + 𝑥) 1’s in the size-(𝑘 + 𝑥) window, and it follows that

𝜎 |=𝑊 (𝑚 + 𝑥, 𝑘 + 𝑥). □

, Vol. 1, No. 1, Article . Publication date: July 2023.

8 Hsieh et al.

(1,8) (2,8) (3,8) (4,8)

(1,7) (2,7) (3,7) (4,7)

(1,6) (2,6) (3,6)

(1,5) (2,5)

(1,4) (2,4)

(1,3)

(1,2)

(5,8) (6,8) (7,8) (8,8)

(5,7) (6,7) (7,7)

(4,6) (5,6) (6,6)

(3,5) (4,5) (5,5)

(4,4)

(2,3) (3,3)

(2,2)

(1,1)

(3,4)

N/Ak

m

(a)

k

m

(b)

True / Satisfied False / Unsatisfied Not Determined Yet

(1,8) (2,8) (4,8)

(1,7) (2,7) (4,7)

(1,6) (2,6)

(1,5) (2,5)

(1,4) (2,4)

(1,3)

(1,2)

(5,8) (6,8) (7,8) (8,8)

(5,7) (6,7) (7,7)

(4,6) (5,6) (6,6)

(4,5) (5,5)

(4,4)

(2,3) (3,3)

(2,2)

(1,1)

N/A

(3,8)

(3,7)

(3,6)

(3,5)

(3,4)

Implication

Implication 1

Implication 4

Implication 3

Implication 2

Fig. 3. An illustration of Algorithms 1 (which applies Implications 1 and 2 only) and 2 (which applies Im-
plications 1, 2, 3, and 4). To have a clear comparison, we focus on the implications of𝑊 (3, 4) only. (a) If
𝑃 is unsatisfied under𝑊 (3, 4), then 𝑃 is unsatisfied under𝑊 (4, 4). Algorithm 2 further implies that 𝑃 is
unsatisfied under𝑊 (6, 8) and𝑊 (𝑚,𝑘) where 𝑘 ≥ 5 and𝑚 ≥ 𝑘 − 1. (b) If 𝑃 is satisfied under𝑊 (3, 4), then 𝑃
is satisfied under𝑊 (3, 𝑘) where 𝑘 ≥ 5.

Implication 4. For any𝑚,𝑘, 𝑥 ∈ Z+,𝑚 < 𝑘 , if a property 𝑃 is unsatisfied under𝑊 (𝑚,𝑘), then
𝑃 is unsatisfied under𝑊 (𝑚 + 𝑥, 𝑘 + 𝑥); if a property 𝑃 is satisfied under𝑊 (𝑚 + 𝑥, 𝑘 + 𝑥), then 𝑃 is
satisfied under𝑊 (𝑚,𝑘).

Implications 3 and 4 imply the satisfaction of a property 𝑃 beyond the same𝑚 or 𝑘 . Integrating

with the previously proposed monotonic approach which increases𝑚 and 𝑘 , we exploit the impli-

cations and propose the monotonic approach with dynamic upper bound of satisfaction boundary

(Algorithm 2) to compute the satisfaction boundary 𝐵(𝑘) for each 𝑘 ≤ 𝐾 . The main difference

between Algorithms 1 and 2 is that the former one considers the search range for the satisfaction

boundary from an𝑚 to 𝑘 , while the latter one dynamically reduces the search range whenever 𝑃 is

unsatisfied under a constraint.

Specifically, suppose the algorithm is in the process of computing 𝐵(𝑘), and 𝑃 is unsatisfied

under𝑊 (𝑚 + 1, 𝑘) (Line 9). By Implication 3, 𝑃 is unsatisfied for each𝑊 (𝑥 · (𝑚 + 1), 𝑥𝑘), 𝑥 ≥ 2,

and thus 𝑥 · (𝑚 + 1) − 1 is an upper bound of 𝐵(𝑥𝑘) (Lines 10–14). Similarly, by Implication 4, 𝑃 is

unsatisfied for each𝑊 ((𝑚 + 1) + 𝑥, 𝑘 + 𝑥), 𝑥 ∈ Z+, and thus (𝑚 + 1) + 𝑥 − 1 is an upper bound of

𝐵(𝑘 + 𝑥) (Lines 15–19). An example is shown in Figure 3(a), if 𝑃 is unsatisfied under𝑊 (3, 4), then
𝑃 is unsatisfied under𝑊 (4, 4),𝑊 (6, 8), and𝑊 (𝑚,𝑘) where 𝑘 ≥ 5 and𝑚 ≥ 𝑘 − 1, and they do not

need to be evaluated. If 𝑃 is satisfied under𝑊 (3, 4), then the implication is the same as Algorithm 1,

as shown in Figure 3(b).

3.4 Lowest-Cost-First Heuristic
Since the implications of the theorems do not necessarily restrict the order of evaluating each

𝑊 (𝑚,𝑘) in 𝐶 (𝐾), the efficiency can be further improved by a good evaluation order. We suppose

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 9

Algorithm 2Monotonic Approach with Dynamic Upper Bound of Satisfaction Boundary

1: procedure Get_satisfaction_boundary(𝑆, 𝑃, 𝐾)
2: 𝐵 ← []
3: 𝑚 ← 0

4: for 𝑘 ← 1 to 𝐾 do ⊲ Initialize satisfaction boundary

5: 𝐵 [𝑘] = 𝑘
6: end for
7: for 𝑘 ← 1 to 𝐾 do ⊲ Get satisfaction boundary for each 𝑘

8: while𝑚 < 𝐵 [𝑘] do
9: if 𝑆 ̸ |= 𝑃 under𝑊 (𝑚 + 1, 𝑘) then
10: 𝑥 ← 2

11: while 𝑥 · 𝑘 ≤ 𝐾 do ⊲ Implication 3

12: 𝐵 [𝑥𝑘] ← min(𝐵 [𝑥𝑘], 𝑥 · (𝑚 + 1) − 1)
13: 𝑥 ← 𝑥 + 1
14: end while
15: 𝑥 ← 1

16: while 𝑘 + 𝑥 ≤ 𝐾 do ⊲ Implication 4

17: 𝐵 [𝑘 + 𝑥] ← min(𝐵 [𝑘 + 𝑥], (𝑚 + 1) + 𝑥 − 1)
18: 𝑥 ← 𝑥 + 1
19: end while
20: break
21: end if
22: 𝑚 ←𝑚 + 1
23: end while
24: 𝐵 [𝑘] ← min(𝐵 [𝑘],𝑚)
25: end for
26: return 𝐵
27: end procedure

Algorithm 3 Lowest-Cost-First Heuristic

1: procedure Get_safety_table(𝑆, 𝑃, 𝐾)
2: 𝑇 ← {undefined} ⊲ Initialize as undefined for the safety table

3: while 𝑇 has undefined element do
4: Select the lowest-cost undefined𝑊 (𝑚,𝑘)
5: if 𝑆 |= 𝑃 under𝑊 (𝑚,𝑘) then
6: 𝑇 [𝑚,𝑘] ← True

7: else
8: 𝑇 [𝑚,𝑘] ← False

9: end if
10: Recursively update 𝑇 by Implications 1, 2, 3, and 4

11: end while
12: return 𝑇
13: end procedure

that we can estimate the verification (time) cost for each𝑊 (𝑚,𝑘) in 𝐶 (𝐾), e.g., based on the

complexity as a function of𝑚 and 𝑘 . Intuitively, evaluating lower-cost constraints which implies

, Vol. 1, No. 1, Article . Publication date: July 2023.

10 Hsieh et al.

Algorithm 4 Runtime Monitoring

1: procedure Runtime_Monitoring(𝐾, 𝐵 [])
2: for 𝑘 ← 1 to 𝐾 do
3: 𝐼 [𝑘] ← 0 ⊲ Store the last 𝑘-th input

4: 𝑁1 [𝑘] ← 0 ⊲ Store the number of 1’s among the last 𝑘 inputs

5: end for
6: 𝑖 ← 0

7: while 1 do ⊲ During runtime

8: 𝑥 = Get_Input()

9: for 𝑘 ← 1 to 𝐾 do
10: 𝑁1 [𝑘] ← 𝑁1 [𝑘] + 𝑥 − 𝐼 [(𝑖 − 𝑘)%𝐾]
11: if 𝑁1 [𝑘] > 𝐵 [𝑘] then ⊲ Exceed the satisfaction boundary

12: Switch to a safe mode

13: end if
14: end for
15: 𝐼 [𝑖] ← 𝑥

16: 𝑖 ← (𝑖 + 1)%𝐾
17: end while
18: end procedure

more constraints or higher-cost constraints is preferred. We propose the lowest-cost-first heuristic

(Algorithm 3) which iteratively selects a not-yet-evaluated constraint in 𝐶 (𝐾) by the estimated

cost (Line 4), evaluates it (Lines 5–9), and processes all implied constraints after each evaluation

(Line 10). The lowest-cost-first heuristic, though not optimal, provides the flexibility of evaluating

constraints in𝐶 (𝐾) by different orders. The lowest-cost-first heuristic, though not optimal, provides

the flexibility of evaluating constraints in orders different from the previous monotonic approaches.

System designers can decide the order according to the system features.

3.5 Runtime Monitor Design
Based on the satisfaction boundary computed above, we design a runtime monitor to verify whether

the environment satisfies each𝑊 (𝑚,𝑘) in 𝐶 (𝐾). Depending on the satisfaction boundary, we can

then determine whether a property 𝑃 can be guaranteed. If 𝑃 cannot be guaranteed, we can switch

the system to a safe mode. As shown in Algorithm 4, the runtime monitor only needs to store the

satisfaction boundary 𝐵 [], instead of the safety table, in advance, reducing the space complexity

from 𝑂 (𝐾2) to 𝑂 (𝐾).
Besides the satisfaction boundary, the runtime monitor only needs two additional arrays, 𝐼 [𝑘]

for the last 𝑘-th inputs and 𝑁1 [𝑘] for the number of 1’s among the last 𝑘 inputs, where 1 ≤ 𝑘 ≤ 𝐾 .
During runtime (Lines 7–17), the runtime monitor reads an input (Line 8) and, for each 𝑘 (Line 9),

it updates the number of 1’s among the last 𝑘 inputs, 𝑁1 [𝑘] (Line 10), and checks if it exceeds the

satisfaction boundary 𝐵 [𝑘] (Line 11). If yes, it means that 𝑃 is not guaranteed to be satisfied, and

the system switches to a safe mode (Line 12). The runtime monitor then stores the input (Line 15)

and continues monitoring.

4 DISCUSSION ON OPTIMAL APPROACHES
In this section, we define optimal approaches. The main purposes are to appraise the efficiency of

the proposed approaches in Section 3 (by checking if any evaluation of weakly-hard constraints is

actually not necessary) and demonstrate that there exists no deterministic algorithm that computes

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 11

an optimal verified set without being given a satisfaction boundary as an input, i.e., an optimal

approach needs to know the satisfaction boundary in advance. It should be emphasized that an

optimal approach cannot be applied to solve the problem defined in Section 2 where the satisfaction

boundary is not given.

4.1 Definitions
Definition 6. Verified Set. Given a system, a property, and an approach, the verified set of the

approach is the set of weakly-hard constraints verified (not by implications) by the approach to compute
the satisfaction boundary.

Definition 7. Implied Set. Given a system, a property, and an approach, the implied set of the
approach is the set of weakly-hard constraints implied by the weakly-hard constraints in the verified
set.

Based on the definitions, the union of the verified set and the implied set is𝐶 (𝐾). Assuming that

the verification cost for each weakly-hard constraint can be 1, its complexity, or its runtime, we

can define an optimal approach and an optimal verified set as follows:

Definition 8. Optimal Approach. For any system and any property, an optimal approach com-
putes the satisfaction boundary and minimizes the total verification cost.

Definition 9. Optimal Verified Set. Given a system and a property, the verified set of an optimal
approach is an optimal verified set.

Theorem 5. There exists no optimal approach without being given a satisfaction boundary as an
input.

Proof. Given 𝐾 ∈ Z+, for any (deterministic) approach without being given a satisfaction

boundary, the first verified𝑊 (𝑚,𝑘) is always the same. Since there is no single𝑊 (𝑚,𝑘) that
appears in all the optimal verified sets after we enumerate all possible satisfaction boundaries,

the first verified𝑊 (𝑚,𝑘) is not in the optimal verified sets of some systems and some properties.

Therefore, there exists no optimal approach without being given a satisfaction boundary as an

input. □

Consider an example with 𝐾 = 8 and assume that the verified set of an approach is {𝑊 (1, 2),
𝑊 (1, 3), 𝑊 (2, 5), 𝑊 (3, 7), 𝑊 (3, 8)} and the optimal verified set is {𝑊 (1, 2), 𝑊 (2, 5), 𝑊 (3, 7),
𝑊 (3, 8)}, where the given property 𝑃 is satisfied under𝑊 (3, 8). By Theorems 2 and 3,𝑊 (1, 3) ≻
𝑊 (3, 8), and thus 𝑃 is satisfied under𝑊 (1, 3), which does not need to be evaluated. Therefore,

𝑊 (1, 3) is not included in the optimal verified set. However, the approach does not know the

satisfaction boundary in advance, so evaluating𝑊 (3, 8) first does not make it an optimal approach

— if 𝑃 is unsatisfied under𝑊 (3, 8),𝑊 (1, 3) still needs to be evaluated. Furthermore, if 𝑃 is unsatisfied

under𝑊 (1, 3), evaluating𝑊 (3, 8) is a waste as it can be implied by𝑊 (1, 3).

4.2 Optimal Verified Set Computation
Given the satisfaction boundary 𝐵, we propose Algorithm 5 to compute an optimal verified set,

as Definition 9. We first initialize a 2-dimensional array 𝐼 (Lines 2–7). 𝐼 [𝑚′] [𝑘 ′] ← 𝑊 (𝑚,𝑘)
means that𝑊 (𝑚′, 𝑘 ′) can be implied by𝑊 (𝑚,𝑘), i.e., either𝑊 (𝑚′, 𝑘 ′) ≻𝑊 (𝑚,𝑘) or𝑊 (𝑚,𝑘) ≻
𝑊 (𝑚′, 𝑘 ′), which depends on the satisfaction boundary 𝐵. For example, if a property 𝑃 is satisfied

under𝑊 (𝑚,𝑘), 𝐼 [𝑚′] [𝑘 ′] ← 𝑊 (𝑚,𝑘) means𝑊 (𝑚′, 𝑘 ′) ≻ 𝑊 (𝑚,𝑘); otherwise, if a property 𝑃

is unsatisfied under𝑊 (𝑚,𝑘), 𝐼 [𝑚′] [𝑘 ′] ← 𝑊 (𝑚,𝑘) means𝑊 (𝑚,𝑘) ≻ 𝑊 (𝑚′, 𝑘 ′). Then, we can
iteratively update 𝐼 (Lines 8–14) by 𝐵 and Implications 1, 2, 3, and 4. For each𝑊 (𝑚,𝑘), we can find

, Vol. 1, No. 1, Article . Publication date: July 2023.

12 Hsieh et al.

Algorithm 5 Optimal Verified Set Computation

1: procedure Compute_Optimal_Verified_Set(𝐾, 𝐵 [])
2: 𝐼 ← [][]
3: for 𝑘 ← 1 to 𝐾 do
4: for𝑚 ← 1 to 𝑘 do
5: 𝐼 [𝑚] [𝑘] ←𝑊 (𝑚,𝑘) ⊲ Initialize array 𝐼

6: end for
7: end for
8: for 𝑘 ← 1 to 𝐾 do
9: for𝑚 ← 1 to 𝑘 do
10: for𝑊 (𝑚′, 𝑘 ′) implied by𝑊 (𝑚,𝑘) do ⊲ Use 𝐵 and Implications in Section 3

11: 𝐼 [𝑚′] [𝑘 ′] ← 𝐼 [𝑚] [𝑘]
12: end for
13: end for
14: end for
15: return the set of𝑊 (𝑚,𝑘) where 𝐼 [𝑚] [𝑘] =𝑊 (𝑚,𝑘)
16: end procedure

a set of𝑊 (𝑚′, 𝑘 ′) which can be implied by𝑊 (𝑚,𝑘) (Lines 10–12) since the satisfaction boundary

is given. After that, an optimal verified set is a set of𝑊 (𝑚,𝑘) where 𝐼 [𝑚] [𝑘] =𝑊 (𝑚,𝑘) (Line 15).
The size of the optimal verified set is at most 𝐾 . It should also be mentioned that Algorithm 5

is applicable to any verification cost (e.g., 1, its complexity, or its runtime) for each weakly-hard

constraint. This is because a weakly-hard constraint is in the optimal verified set if and only if

it cannot be implied by any other constraint in 𝐶 (𝐾) — this is not affected by the definition of a

verification cost.

4.3 Correctness and Uniqueness
Wewill prove that Algorithm 5 outputs an optimal verified set, and the optimal verified set is unique.

We will demonstrate that any weakly-hard constraint in the optimal verified set cannot be implied

by any other constraint in 𝐶 (𝐾). To complete the proof, we provide the following definitions first.

Definition 10. Trace Set. The trace set of a weakly-hard constraint𝑊 (𝑚,𝑘) is defined as 𝑆 (𝑊 (𝑚,𝑘)) =
{𝜎 | 𝜎 |=𝑊 (𝑚,𝑘)}.

Definition 11. Equivalence of Weakly-Hard Constraints. Given two weakly-hard constraints
𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′), we define that𝑊 (𝑚,𝑘) is equivalent to𝑊 (𝑚′, 𝑘 ′), denoted as𝑊 (𝑚,𝑘) =
𝑊 (𝑚′, 𝑘 ′), if and only if 𝑆 (𝑊 (𝑚,𝑘)) = 𝑆 (𝑊 (𝑚′, 𝑘 ′)).

Theorem 6. For any𝑚,𝑚′, 𝑘, 𝑘 ′ ∈ Z+,𝑚 < 𝑘,𝑚′ < 𝑘 ′, if𝑊 (𝑚,𝑘) =𝑊 (𝑚′, 𝑘 ′), then𝑚 =𝑚′ and
𝑘 = 𝑘 ′.

Proof. If 𝑚 ≠ 𝑚′ or 𝑘 ≠ 𝑘 ′, then there is a trace 𝜎 such that either “𝜎 |= 𝑊 (𝑚,𝑘) and 𝜎 ̸ |=
𝑊 (𝑚′, 𝑘 ′)” or “𝜎 |= 𝑊 (𝑚′, 𝑘 ′) and 𝜎 ̸ |= 𝑊 (𝑚,𝑘),” where 𝜎 can be set as follows: if 𝑚 ≠ 𝑚′,
then 𝜎 = 1

max(𝑚,𝑚′)
so that 𝜎 |= 𝑊 (max(𝑚,𝑚′), 𝑘) and 𝜎 ̸ |= 𝑊 (min(𝑚,𝑚′), 𝑘 ′); if 𝑚 = 𝑚′ and

𝑘 ≠ 𝑘 ′, then 𝜎 = 1
𝑚
0
min(𝑘,𝑘′)−𝑚

1 so that 𝜎 |= 𝑊 (𝑚,min(𝑘, 𝑘 ′)) and 𝜎 ̸ |= 𝑊 (𝑚,max(𝑘, 𝑘 ′)). By
contraposition, if𝑊 (𝑚,𝑘) =𝑊 (𝑚′, 𝑘 ′), then𝑚 =𝑚′ and 𝑘 = 𝑘 ′. □

Definition 12. Comparability of Weakly-Hard Constraints. Given two weakly-hard con-
straints𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′), we define that𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′) are comparable if and only

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 13

if either𝑊 (𝑚,𝑘) ≻𝑊 (𝑚′, 𝑘 ′),𝑊 (𝑚′, 𝑘 ′) ≻𝑊 (𝑚,𝑘), or𝑊 (𝑚,𝑘) =𝑊 (𝑚′, 𝑘 ′); otherwise, we define
that𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′) are incomparable.

4.3.1 Other Single-Constraint Implications. Here, we prove that, for any pair of weakly-hard

constraints, the implication between them is covered by Theorems 1, 2, 3, and 4. As a result, we do

not need to consider other implications by single weakly-hard constraints.

Theorem 7. For any𝑚,𝑚′, 𝑘, 𝑘 ′ ∈ Z+,𝑚 < 𝑘 ,𝑚 < 𝑚′,𝑚 ∤ 𝑚′,
⌊
𝑚′

𝑚

⌋
· 𝑘 +𝑚′ −

⌊
𝑚′

𝑚

⌋
·𝑚 < 𝑘 ′,

𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′) are incomparable.

Proof. We first prove that𝑊 (𝑚,𝑘) ≻𝑊 (𝑚′, 𝑘 ′) is false. Let 𝑘∗ =
⌊
𝑚′

𝑚

⌋
· 𝑘 +𝑚′ −

⌊
𝑚′

𝑚

⌋
·𝑚 + 1

and 𝜎 = (1𝑚0𝑘−𝑚)
⌊
𝑚′
𝑚

⌋
1

𝑘∗−
⌊
𝑚′
𝑚

⌋
·𝑘
. It is trivial that 𝜎 |= 𝑊 (𝑚,𝑘), but 𝜎 ̸ |= 𝑊 (𝑚′, 𝑘∗) because 𝜎

has its length 𝑘∗ and (𝑚′ + 1) 1’s. Therefore, for 𝑘 ′ ≥ 𝑘∗, 𝜎 ̸ |= 𝑊 (𝑚′, 𝑘 ′). We then prove that

𝑊 (𝑚′, 𝑘 ′) ≻𝑊 (𝑚,𝑘) is false. Let 𝜎 = 1
𝑚′
0
𝑘′−𝑚′

. It is trivial that 𝜎 |=𝑊 (𝑚′, 𝑘 ′), but 𝜎 ̸ |=𝑊 (𝑚,𝑘)
because there are more than𝑚 1’s in the first 𝑘 inputs. Combining the two proofs,𝑊 (𝑚,𝑘) and
𝑊 (𝑚′, 𝑘 ′) are incomparable. □

Theorem 8. For any𝑚,𝑚′, 𝑘, 𝑘 ′ ∈ Z+,𝑚 < 𝑘 ,𝑚 < 𝑚′,𝑚 | 𝑚′, 𝑚′
𝑚
·𝑘 < 𝑘 ′,𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′)

are incomparable.

Proof. We first prove that𝑊 (𝑚,𝑘) ≻𝑊 (𝑚′, 𝑘 ′) is false. Let 𝑘∗ = 𝑚′

𝑚
·𝑘+1 and 𝜎 = (1𝑚0𝑘−𝑚)𝑚

′
𝑚 1.

It is trivial that 𝜎 |= 𝑊 (𝑚,𝑘), but 𝜎 ̸ |= 𝑊 (𝑚′, 𝑘∗) because 𝜎 has its length 𝑘∗ and (𝑚′ + 1) 1’s.
Therefore, for 𝑘 ′ ≥ 𝑘∗, 𝜎 ̸ |= 𝑊 (𝑚′, 𝑘 ′). We then prove that𝑊 (𝑚′, 𝑘 ′) ≻ 𝑊 (𝑚,𝑘) is false. Let
𝜎 = 1

𝑚′
0
𝑘′−𝑚′

. It is trivial that 𝜎 |=𝑊 (𝑚′, 𝑘 ′), but 𝜎 ̸ |=𝑊 (𝑚,𝑘) because there are more than𝑚 1’s

in the first 𝑘 inputs. Combining the two proofs,𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′) are incomparable. □

Theorems 7 and 8 cover all cases when two weakly-hard constraints are incomparable.

Theorem 9. For any 𝑚1,𝑚2,𝑚3, 𝑘1, 𝑘2, 𝑘3 ∈ Z+,𝑚1 ≤ 𝑘1,𝑚2 ≤ 𝑘2,𝑚3 ≤ 𝑘3, if𝑊 (𝑚1, 𝑘1) ≻
𝑊 (𝑚2, 𝑘2) and𝑊 (𝑚2, 𝑘2) ≻𝑊 (𝑚3, 𝑘3), then𝑊 (𝑚1, 𝑘1) ≻𝑊 (𝑚3, 𝑘3).

Proof. By Definition 4, any input trace that satisfies𝑊 (𝑚1, 𝑘1) also satisfies𝑊 (𝑚2, 𝑘2), and any
input trace that satisfies𝑊 (𝑚2, 𝑘2) also satisfies𝑊 (𝑚3, 𝑘3). Therefore, any input trace that satisfies
𝑊 (𝑚1, 𝑘1) also satisfies𝑊 (𝑚3, 𝑘3). □

Theorem 9 is the transitive law for the comparability of weakly-hard constraints, and we can

combine the theorems to get more implications.

Theorem 10. For any𝑚,𝑚′, 𝑘, 𝑘 ′ ∈ Z+,𝑚 < 𝑘 ,𝑚′ < 𝑘 ′, (𝑚,𝑘) ≠ (𝑚′, 𝑘 ′),𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′)
are either incomparable or comparable and implied by the combination of Theorems 1, 2, 3, and 4.

Proof. Given an𝑊 (𝑚,𝑘), we define Γ = {𝑊 (𝑚′, 𝑘 ′) | (𝑚,𝑘) ≠ (𝑚′, 𝑘 ′),𝑚′ ≥ 𝑚}. Any𝑊 (𝑚′, 𝑘 ′) ∈
Γ is corresponding to one of the following cases:

• If 𝑘 ′ = 𝑘 , then𝑊 (𝑚,𝑘) ≻𝑊 (𝑚′, 𝑘 ′) or𝑊 (𝑚′, 𝑘 ′) ≻𝑊 (𝑚,𝑘) by Theorem 1.

• If𝑚′ =𝑚, then𝑊 (𝑚,𝑘) ≻𝑊 (𝑚′, 𝑘 ′) or𝑊 (𝑚′, 𝑘 ′) ≻𝑊 (𝑚,𝑘) by Theorem 2.

• If𝑚′ > 𝑚,𝑚 ∤𝑚′, 𝑘 ′ ≤
⌊
𝑚′

𝑚

⌋
·𝑘+𝑚′−

⌊
𝑚′

𝑚

⌋
·𝑚, then𝑊 (𝑚,𝑘) ≻𝑊 (𝑚′, 𝑘 ′) by the combination

of Theorems 2, 3, and 4.

• If𝑚′ > 𝑚,𝑚 ∤𝑚′, 𝑘 ′ >
⌊
𝑚′

𝑚

⌋
·𝑘 +𝑚′−

⌊
𝑚′

𝑚

⌋
·𝑚, then𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′) are incomparable

by Theorem 7.

• If𝑚′ > 𝑚,𝑚 | 𝑚′, 𝑘 ′ ≤ 𝑚′

𝑚
· 𝑘 , then𝑊 (𝑚,𝑘) ≻𝑊 (𝑚′, 𝑘 ′) by the combination of Theorems 2

and 3.

• If𝑚′ > 𝑚,𝑚 | 𝑚′, 𝑘 ′ > 𝑚′

𝑚
· 𝑘 , then𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′) are incomparable by Theorem 8.

, Vol. 1, No. 1, Article . Publication date: July 2023.

14 Hsieh et al.

□

Theorem 10 shows that Theorems 1, 2, 3, 4, 7, and 8 cover all possible cases for a pair of

weakly-hard constraints. However, Theorems 7 and 8 indicate that the weakly-hard constraints are

incomparable. As a result, we only need to consider Theorems 1, 2, 3, and 4 for the implications by

a single weakly-hard constraint.

4.3.2 Multiple-Constraint Implications. Here, we prove that, if the combination of 𝑛 weakly-

hard constraints {𝑊 (𝑚1, 𝑘1),𝑊 (𝑚2, 𝑘2), . . . ,𝑊 (𝑚𝑛, 𝑘𝑛)} implies another weakly-hard constraint

𝑊 (𝑚,𝑘), then a weakly-hard constraint𝑊 (𝑚𝑖 , 𝑘𝑖) ∈ {𝑊 (𝑚1, 𝑘1),𝑊 (𝑚2, 𝑘2), . . . ,𝑊 (𝑚𝑛, 𝑘𝑛)} im-

plies𝑊 (𝑚,𝑘). As a result, we do not need to consider the implications by multiple weakly-hard

constraints.

Theorem 11. If there is a set of 𝑛 weakly-hard constraints {𝑊 (𝑚1, 𝑘1),𝑊 (𝑚2, 𝑘2), . . . ,𝑊 (𝑚𝑛, 𝑘𝑛)}
and another weakly-hard constraint𝑊 (𝑚,𝑘) such that 𝑆 (𝑊 (𝑚,𝑘)) ⊆ ⋃𝑛

𝑖=1 𝑆 (𝑊 (𝑚𝑖 , 𝑘𝑖)), then there
must be a weakly-hard constraint𝑊 (𝑚𝑖 , 𝑘𝑖) ∈ {𝑊 (𝑚1, 𝑘1),𝑊 (𝑚2, 𝑘2), . . . ,𝑊 (𝑚𝑛, 𝑘𝑛)} such that
𝑊 (𝑚,𝑘) ≻𝑊 (𝑚𝑖 , 𝑘𝑖).

Proof. Let 𝜎 = (1𝑚0𝑘−𝑚)𝑛 and Γ = {𝑊 (𝑚′, 𝑘 ′) |𝑚′ < 𝑘 ′}. Any𝑊 (𝑚′, 𝑘 ′) ∈ Γ is corresponding

to one of the following cases:

• If𝑚′ < 𝑚, then 𝜎 ̸ |=𝑊 (𝑚′, 𝑘 ′) since𝑚′ < 𝑚.

• If𝑚′ =𝑚,𝑘 ′ > 𝑘 , then 𝜎 ̸ |=𝑊 (𝑚′, 𝑘 ′) since the (𝑘 + 1)-th element in 𝜎 is 1.

• If𝑊 (𝑚,𝑘) and𝑊 (𝑚′, 𝑘 ′) are incomparable, then 𝜎 ̸ |= 𝑊 (𝑚′, 𝑘 ′) as 𝜎 is used in proving

Theorems 7 and 8.

• For another other𝑊 (𝑚′, 𝑘 ′), the proof in Theorem 10 states that𝑊 (𝑚,𝑘) ≻𝑊 (𝑚′, 𝑘 ′) and
thus 𝜎 |=𝑊 (𝑚′, 𝑘 ′).

Considering all cases, if 𝜎 |= 𝑊 (𝑚′, 𝑘 ′), then𝑊 (𝑚,𝑘) ≻ 𝑊 (𝑚′, 𝑘 ′). Therefore, Theorem 11 is

proved. □

Theorem 11 indicates that we do not need to consider the implications by multiple weakly-hard

constraints. If 𝑆 (𝑊 (𝑚,𝑘)) ⊆ ⋃𝑛
𝑖=1 𝑆 (𝑊 (𝑚𝑖 , 𝑘𝑖)) and 𝑃 is satisfied under each𝑊 (𝑚𝑖 , 𝑘𝑖), then 𝑃 is

satisfied under𝑊 (𝑚,𝑘). By Theorem 11, the implication (𝑃 is satisfied under𝑊 (𝑚,𝑘)) can actually

be obtained from a single-constraint implication.

On the other hand, another implication is that, if 𝑆 (𝑊 (𝑚,𝑘)) ⊇ ⋃𝑛
𝑖=1 𝑆 (𝑊 (𝑚𝑖 , 𝑘𝑖)) and 𝑃 is

unsatisfied under at least one𝑊 (𝑚𝑖 , 𝑘𝑖), then 𝑃 is unsatisfied under𝑊 (𝑚,𝑘). This implication

can also be obtained from a single-constraint implication (from a constraint𝑊 (𝑚𝑖 , 𝑘𝑖) making 𝑃

unsatisfied).

4.3.3 Completion of Proof.

Theorem 12. Algorithm 5 outputs an optimal verified set, and the optimal verified set is unique.

Proof. By Theorem 11 and the explanation above, a multiple-constraint implication can be

obtained from a single-constraint implication. By Theorem 10, a single-constraint implication

between constraints which are comparable is covered by Theorems 1, 2, 3, and 4. Therefore, there

is no other implication, and Algorithm 5 outputs the unique optimal verified set. □

It should be mentioned that there are many optimal paths, and each of them includes the same set

of (𝑚,𝑘) (where 𝐼 [𝑚] [𝑘] =𝑊 (𝑚,𝑘)) with different sequences (orders), as returned by Algorithm 5.

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 15

(A,0) (B,1) (C,1) (A,0) (B,1) (A,0) (B,1) (C,1)

(a) (b) (c)

Fig. 4. The mask-compressing approach constructs the graphs from the example in Figure 1 for (a)𝑊 (1, 1),
(b)𝑊 (1, 2), and (c)𝑊 (2, 2).

5 REACHABILITY ANALYSIS FOR FINITE-STATE MACHINES
In this section, we consider a special case of system verification with weakly-hard constraints —

reachability analysis for finite-state machines. We first propose a mask-compressing approach

(Section 5.2) to verify reachability under a single weakly-hard constraint . The mask-compressing

approach serves as the example of verifying a property 𝑃 (reachability) under a single constraint in

𝐶 (𝐾), and thus it can be plugged into (called by) the approaches in Section 3. Then, we propose a

layered BFS approach (Section 5.3) which computes the safety table in a more efficient way — the

layered BFS approach computes the safety table with the same complexity as evaluating a single

(𝑚,𝐾) constraint (𝐾 is the upper bound of all possible values of 𝑘). We also propose a dual-layered

BFS approach (Section 5.4) which has the same theoretical complexity but reduces the number of

BFS traverses.

5.1 Problem Definition
A non-deterministic finite-state machine model 𝑆 is defined as ⟨𝑄, Σ, 𝛿, 𝑃𝑟 , 𝑞0, 𝐹 ⟩ where 𝑄 is the

finite set of states, Σ = {0, 1} is the set of input symbols, 𝛿 ⊆ 𝑄 × Σ × 𝑄 is the transition table,

𝑃𝑟 : 𝛿 → (0, 1] is the transition probability satisfying

∀(𝑞, 𝑥) ∈ 𝑄 × Σ,
∑

𝑞∈𝑄,(𝑞,𝑥,𝑞) ∈𝛿
𝑃𝑟 (𝑞, 𝑥, 𝑞) = 1, (2)

where 𝑞0 is the initial state, and 𝐹 ⊆ 𝑄 is the finite set of unsafe states. Given a finite-state machine

𝑆 and a positive integer 𝐾 , the goal is to determine whether the property 𝑃 of “never reaching an

unsafe state” is satisfied with all possible traces under each𝑊 (𝑚,𝑘) in 𝐶 (𝐾).

5.2 Mask-Compressing Approach
We develop the masking-compressing approach to verify the reachability property 𝑃 under a

single weakly-hard constraint𝑊 (𝑚,𝑘). Again, it should be emphasized that the mask-compressing

approach serves as the example of verifying a property 𝑃 (reachability) under a single constraint in

𝐶 (𝐾), and thus it can be plugged into (called by) the approaches in Section 3. The mask-compressing

approach traverses a finite-state machine with all possible traces that satisfy the weakly-hard

constraint. It records the previous 𝑘 − 1 inputs and considers the possibility of the next input. Since

there are at most𝑚 1’s among any 𝑘 consecutive inputs, if there have been𝑚 1’s among previous

𝑘 − 1 inputs, then the next input must be 0.

Given the previous 𝑘 − 1 inputs, we encode them by compressing them into a (𝑘 − 1)-bit
mask. Formally, given a finite state machine 𝑆 = ⟨𝑄, Σ, 𝛿, 𝑃𝑟 , 𝑞0, 𝐹 ⟩, we define a graph to perform

verification for a single weakly-hard constraint𝑊 (𝑚,𝑘) as follows:
• The vertex set is the set product of the states of 𝑆 and the (𝑘 − 1)-bit mask.

• There is a directed edge from 𝑣𝑞,𝑚𝑎𝑠𝑘 to 𝑣𝑞,𝑚𝑎𝑠𝑘 if and only if

(𝑞, 𝑚𝑎𝑠𝑘 % 2, 𝑞) ∈ 𝛿, (3)

(𝑚𝑎𝑠𝑘 · 2) % 2
𝑘−1 +𝑚𝑎𝑠𝑘 % 2 =𝑚𝑎𝑠𝑘, (4)

, Vol. 1, No. 1, Article . Publication date: July 2023.

16 Hsieh et al.

Count1(𝑚𝑎𝑠𝑘) +𝑚𝑎𝑠𝑘 % 2 ≤ 𝑚, (5)

where 𝑞 and 𝑞 are states,𝑚𝑎𝑠𝑘 and𝑚𝑎𝑠𝑘 are (𝑘 − 1)-bit masks ((𝑞,𝑚𝑎𝑠𝑘) or (𝑞,𝑚𝑎𝑠𝑘) can
be regarded as the index of a vertex), and Count1() counts the number of 1’s in a mask.

Equation (3) is for the transition in 𝑆 , Equation (4) is for the 1-bit “shift” of the mask, and Equation (5)

is for the number of 1’s bounded by the weakly-hard fault model. An example is shown in Figure 4.

The mask-compressing approach constructs the graphs from the example in Figure 1 for𝑊 (1, 1),
𝑊 (1, 2), and𝑊 (2, 2), respectively. After constructing the graph, we can traverse the graph with a

BFS starting from 𝑣𝑞0,0, and 𝑃 is unsatisfied if and only if we can reach a vertex 𝑣𝑞,𝑚𝑎𝑠𝑘 where 𝑞 ∈ 𝐹 .
Note that this is equivalent to verifying the composition of 𝑆 and the state machine representing a

single weakly-hard constraint𝑊 (𝑚,𝑘). Here, we use the mask-compressing approach because the

bit operations not only support more efficient computation but also consumes less memory.

The graph has at most |𝑄 | · 2𝑘 vertices and |𝛿 | · 2𝑘 edges, and thus the complexity is 𝑂 (𝑁 · 2𝑘),
where 𝑁 = |𝑄 | + |𝛿 |, for the mask-compressing approach verifying the reachability property 𝑃

under a single𝑊 (𝑚,𝑘). The complexity is optimal to the problem because we always need to

keep track of the previous 𝑘 − 1 inputs and the current input (implying 2
𝑘
possible cases) so that

we can update the number of 1’s (among 𝑘 consecutive events) once there is a new input. When

plugging the masking-compressing approach into the approaches in Section 3, the complexities are

as follows:

• Algorithm 1: 𝑂

(∑𝐾
𝑘=1

2 · 𝑁 · 2𝑘
)
= 𝑂

(
𝑁 · 2𝐾+1 − 𝑁 · 2

)
= 𝑂 (𝑁 · 2𝐾).

• Algorithm 2: 𝑂

(∑𝐾
𝑘=1

𝑁 · 2𝑘
)
= 𝑂

(
𝑁 · 2𝐾+1 − 𝑁 · 2

)
= 𝑂 (𝑁 · 2𝐾).

• Algorithm 3: it depends on the cost estimation and constraint implication.

5.3 Layered BFS Approach
Here, we propose the layered BFS approach which computes the safety table in a more efficient

way. The key insight of the layered BFS approach is that multiple weakly-hard constraints𝑊 (𝑚,𝑘)
with the same 𝑘 can be verified together within a BFS.

Theorem 13. For𝑊 (𝑚,𝑘),𝑊 (𝑚 + 1, 𝑘) ∈ 𝐶 (𝐾), the graph for𝑊 (𝑚,𝑘) constructed by the mask-
compressing approach is a subgraph of the graph for𝑊 (𝑚 + 1, 𝑘).

Proof. By Equation (5), if an edge is in the graph for𝑊 (𝑚,𝑘), it must also be in the graph for

𝑊 (𝑚 + 1, 𝑘). □

Theorem 14. Each reachable vertex in the graph for𝑊 (𝑚 + 1, 𝑘) is also reachable from the initial
states of the graph for𝑊 (𝑚,𝑘).

Proof. It is straightforward by Theorem 13. Note that the initial vertices for the graphs for

𝑊 (𝑚,𝑘) and𝑊 (𝑚 + 1, 𝑘) are the same. □

Theorem 13 implies that evaluating𝑊 (𝑚,𝑘) leads to the results for all𝑊 (𝑚′, 𝑘), where 1 ≤
𝑚′ ≤ 𝑚. Thus, only the graph for𝑊 (𝑘, 𝑘) needs to be traversed for all𝑊 (𝑚′, 𝑘), where 1 ≤ 𝑚′ ≤ 𝑘 .
Theorem 14 further implies that we can perform BFS for 𝑘 iterations from the graph for𝑊 (1, 𝑘) to
the graph for𝑊 (𝑘, 𝑘), called the “layered BFS approach” in this paper. Formally, we denote the sets

of edges and vertices in the graph for𝑊 (𝑚,𝑘) as 𝐸𝑚 and𝑉𝑚 respectively. For the𝑚-th iteration (as

a layer), we perform BFS on the graph𝐺𝑚 = (𝑉𝑚, 𝐸𝑚). We exploit the previous result of the BFS on

𝐺𝑚−1 = (𝑉𝑚−1, 𝐸𝑚−1) and thus avoid redundancy as 𝐺𝑚−1 ⊆ 𝐺𝑚 .
An example is shown in Figure 5(a), where vertices 𝑣1 and 𝑣2 are reachable (satisfying Equation (3))

and other vertices are unreachable (not satisfying Equation (3)). After performing the BFS for

𝑊 (𝑚,𝑘), we can collect a vertex set 𝑉 ′𝑚 :

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 17

(b)

Gm,k

v1 v2

v4 v5
Gm + 1, k

v3

Gm, k - 1
Gm

v1 v2

v3 v4
Gm + 1

(a)

(A,0) (B,1) (C,1)

H1 H2

(c)

Fig. 5. (a) An example layered BFS from𝑊 (𝑚,𝑘) to𝑊 (𝑚 + 1, 𝑘). Vertices 𝑣1 and 𝑣2 are reachable under
𝑊 (𝑚,𝑘). Vertices 𝑣3 and 𝑣4 are unreachable under𝑊 (𝑚,𝑘) but reachable under𝑊 (𝑚 + 1, 𝑘). (b) An example
dual-layered BFS from𝑊 (𝑚,𝑘) to𝑊 (𝑚,𝑘 − 1) and then to𝑊 (𝑚 + 1, 𝑘). Vertices 𝑣1 and 𝑣2 are reachable
under𝑊 (𝑚,𝑘). Vertex 𝑣3 is unreachable under𝑊 (𝑚,𝑘) but reachable under𝑊 (𝑚,𝑘 − 1). Vertices 𝑣4 and
𝑣5 are unreachable under𝑊 (𝑚,𝑘) and𝑊 (𝑚,𝑘 − 1) but reachable under𝑊 (𝑚 + 1, 𝑘). (c) The graphs from
the example in Figure 1, where the small graph 𝐻1 is 𝐺1 of the layered BFS (𝑘 = 2) as well as 𝐺1,2 for the
dual-layered BFS, and the large graph 𝐻2 is 𝐺2 of the layered BFS (𝑘 = 2) as well as 𝐺1,1 = 𝐺2,2 for the
dual-layered BFS. Note that the dual-layered BFS just needs one traverse for 𝑘 = 1 and 𝑘 = 2, but the layered
BFS needs one traverse for each of 𝑘 = 1 and 𝑘 = 2.

• For each 𝑣 ′ ∈ 𝑉 ′𝑚 , there exists a vertex 𝑣 ∈ 𝑉𝑚 such that (𝑣, 𝑣 ′) ∈ 𝐸𝑚+1.
In the example, 𝑉 ′𝑚 = {𝑣3, 𝑣4} and the corresponding edges in 𝐸𝑚+1 are (𝑣1, 𝑣3) and (𝑣2, 𝑣4), respec-
tively. By Theorems 13 and 14, after starting from the vertices in 𝑉 ′𝑚 and performing the BFS on

𝐺𝑚+1, we traverse all vertices in𝑉𝑚+1 without repeating the BFS on𝐺𝑚 . Note that the mask of each

vertex in 𝑉 ′𝑚 satisfies𝑊 (𝑚 + 1, 𝑘). After the iterations from𝑊 (𝑚,𝑘) to𝑊 (𝑘, 𝑘), each vertex in

𝐺𝑘 is traversed only once. Moreover, if an unsafe state is reached in the𝑚-th iteration, 𝑃 is only

guaranteed to be satisfied under𝑊 (𝑚′, 𝑘), where𝑚′ < 𝑚. The corresponding graphs from the

example in Figure 1 are shown in Figure 5(c).

Since each vertex in the graph for𝑊 (𝑘, 𝑘) only needs to be traversed once, the complexity for

a given 𝑘 is 𝑂 (𝑁 · 2𝑘), where 𝑁 = |𝑄 | + |𝛿 |. The total complexity for all 𝑘 is 𝑂

(∑𝐾
𝑘=1

𝑁 · 2𝑘
)
=

𝑂
(
𝑁 · 2𝐾+1 − 𝑁 · 2

)
= 𝑂 (𝑁 · 2𝐾). This shows that the layered BFS approach computes the satisfac-

tion boundary with the same complexity as Algorithms 1 and 2 as well as verifying a single (𝑚,𝐾)
constraint (𝐾 is the upper bound of all possible values of 𝑘).

5.4 Dual-Layered BFS Approach
In the layered BFS approach, the graph for 𝑊 (𝑚,𝑘) is constructed by the mask-compressing

approach with a (𝑘 − 1)-bit mask, whereas the graph for𝑊 (𝑚,𝑘 − 1) is constructed with a (𝑘 − 2)-
bit mask. As a result, the same input trace is encoded into different vertices and edges in the two

graphs, and thus it requires two traversals to perform verification. Here we propose to construct

both graphs with a (𝑘 − 1)-bit mask so that the weakly-hard constraints𝑊 (𝑚,𝑘) and𝑊 (𝑚,𝑘 − 1)
can be verified within a BFS.

Theorem 15. For𝑊 (𝑚,𝑘),𝑊 (𝑚,𝑘 − 1) ∈ 𝐶 (𝐾), the graph for𝑊 (𝑚,𝑘) constructed by the mask-
compressing approach with a (𝑘 − 1)-bit mask is a subgraph of the graph for𝑊 (𝑚,𝑘 − 1), also
constructed with a (𝑘 − 1)-bit mask.

Theorem 16. For𝑊 (𝑚,𝑘 − 1),𝑊 (𝑚 + 1, 𝑘) ∈ 𝐶 (𝐾), the graph for𝑊 (𝑚,𝑘 − 1) constructed by the
mask-compressing approach with a (𝑘 − 1)-bit mask is a subgraph of the graph for𝑊 (𝑚 + 1, 𝑘), also
constructed with a (𝑘 − 1)-bit mask.

Theorem 15 implies that evaluating𝑊 (𝑚,𝑘 − 1) leads to the result of𝑊 (𝑚,𝑘), and Theorem 16

implies that evaluating𝑊 (𝑚 + 1, 𝑘) leads to the result of𝑊 (𝑚,𝑘 − 1). Therefore, a single BFS on

, Vol. 1, No. 1, Article . Publication date: July 2023.

18 Hsieh et al.

the graph for𝑊 (𝑘, 𝑘) allows us to compute the satisfaction boundaries 𝐵(𝑘 − 1) and 𝐵(𝑘). Formally,

we denote the sets of edges and vertices in the graph for𝑊 (𝑚,𝑘) as 𝐸𝑚,𝑘 and 𝑉𝑚,𝑘 respectively.
Upon performing the BFS on 𝐺𝑚,𝑘−1 = (𝐸𝑚,𝑘−1,𝑉𝑚,𝑘−1), we exploit the previous result of BFS on
𝐺𝑚,𝑘 = (𝐸𝑚,𝑘 ,𝑉𝑚,𝑘) and avoid redundancy as 𝐺𝑚,𝑘 ⊆ 𝐺𝑚,𝑘−1. Similarly, upon performing the BFS

on𝐺𝑚+1,𝑘 = (𝐸𝑚+1,𝑘 ,𝑉𝑚+1,𝑘), we exploit the previous result of BFS on𝐺𝑚,𝑘−1 and avoid redundancy
as 𝐺𝑚,𝑘−1 ⊆ 𝐺𝑚+1,𝑘 . Note that all these graphs are constructed with a (𝑘 − 1)-bit mask.

An example is shown in Figure 5(b), where vertices 𝑣1 and 𝑣2 are reachable under𝑊 (𝑚,𝑘),
vertex 𝑣3 is unreachable under𝑊 (𝑚,𝑘) but reachable under𝑊 (𝑚,𝑘 − 1), and vertices 𝑣4 and 𝑣5 are
unreachable under𝑊 (𝑚,𝑘) and𝑊 (𝑚,𝑘 − 1) but reachable under𝑊 (𝑚 + 1, 𝑘). During the BFS on

𝐺𝑚,𝑘 , we collect two vertex sets 𝑉 ′
𝑚,𝑘−1 and 𝑉

′
𝑚+1,𝑘 :

• For each 𝑣 ′ ∈ 𝑉 ′
𝑚,𝑘−1, there exists a vertex 𝑣 ∈ 𝑉𝑚,𝑘 such that (𝑣, 𝑣

′) ∉ 𝐸𝑚,𝑘 and (𝑣, 𝑣 ′) ∈ 𝐸𝑚,𝑘−1.
• For each 𝑣 ′ ∈ 𝑉 ′

𝑚+1,𝑘 , there exists a vertex 𝑣 ∈ 𝑉𝑚,𝑘 such that (𝑣, 𝑣 ′) ∉ 𝐸𝑚,𝑘−1 (thus (𝑣, 𝑣 ′) ∉
𝐸𝑚,𝑘) and (𝑣, 𝑣 ′) ∈ 𝐸𝑚+1,𝑘 .

In the example,𝑉 ′
𝑚,𝑘−1 = {𝑣3} and𝑉

′
𝑚+1,𝑘 = {𝑣4}. After the BFS on𝐺𝑚,𝑘 and upon the BFS on𝐺𝑚,𝑘−1,

we start from the vertices in 𝑉 ′
𝑚,𝑘−1 and avoid redundant traversal of 𝐺𝑚,𝑘 . Similarly, during the

BFS on 𝐺𝑚,𝑘−1, we collect a vertex set 𝑉
′′
𝑚+1,𝑘 :

• For each 𝑣 ′′ ∈ 𝑉 ′′
𝑚+1,𝑘 , there exists a vertex 𝑣 ∈ 𝑉𝑚,𝑘−1 \𝑉𝑚,𝑘 such that (𝑣, 𝑣 ′′) ∉ 𝐸𝑚,𝑘−1 and

(𝑣, 𝑣 ′′) ∈ 𝐸𝑚+1,𝑘 .
In the example, 𝑉 ′′

𝑚+1,𝑘 = {𝑣5}. After the BFS on 𝐺𝑚,𝑘−1 and upon the BFS on 𝐺𝑚+1,𝑘 , we start from
the vertices in 𝑉 ′

𝑚+1,𝑘 ∪𝑉
′′
𝑚+1,𝑘 and avoid redundant traversal of 𝐺𝑚,𝑘−1. As a result, every vertex in

𝐺𝑘,𝑘 is traversed at most once in order to compute 𝐵(𝑘 − 1) and 𝐵(𝑘), and thus half of the BFS can

be reduced. The corresponding graphs from the example in Figure 1 are shown in Figure 5(c). Note

that the dual-layered BFS approach just needs one traverse for 𝑘 = 1 and 𝑘 = 2, but the layered BFS

approach needs one traverse for each of 𝑘 = 1 and 𝑘 = 2.

If an unsafe state 𝑞 ∈ 𝐹 is reached during the BFS on 𝐺𝑚,𝑘 , it is clear that 𝐵(𝑘) = 𝑚 − 1. By

Implication 2, 𝐵(𝑘 − 1) =𝑚 − 1. On the other hand, if an unsafe state 𝑞 ∈ 𝐹 is reached during the

BFS on 𝐺𝑚,𝑘−1, it is clear that the 𝐵(𝑘 − 1) =𝑚 − 1. Since 𝐺𝑚,𝑘 has already been traversed without

reaching any unsafe states, by Implication 4, 𝐵(𝑘) =𝑚.

The total complexity for all 𝑘 is 𝑂

(∑𝐾
𝑘=1

𝑁 ·2𝑘
2

)
= 𝑂

(
𝑁 · 2𝐾 − 𝑁

)
= 𝑂 (𝑁 · 2𝐾). It is the same as

the complexity of the layered BFS approach, but the dual-layered BFS approach is more efficient as

it can reduce half of the BFS.

Note that the graphs constructed by the mask-compressing approach, the layered BFS approach,

and the dual-layered BFS approach can be used to store which transitions (or edges) are constrained

(or blocked) by weakly-hard constraints. However, for complicated properties, e.g., nested Linear

Temporal Logic (LTL) properties, the complexity may be much higher. The main idea of the layered

BFS approach and the dual-layered BFS approach is that we do not need to re-traverse a vertex if

the vertex has been traversed, but re-traversing may be needed for complicated properties.

6 EXPERIMENTAL RESULTS
To compare the efficiency of different approaches, we implemented a brute-force approach that

evaluates all constraints in 𝐶 (𝐾) one by one (BF), the monotonic approach (MONO, Algorithm 1),

the monotonic approach with dynamic upper bound of satisfaction boundary (MONO-DUB, Al-

gorithm 2), the lowest-cost-first heuristic (LCF, Algorithm 3), which defines the estimated cost

for evaluating𝑊 (𝑚,𝑘) as ∑𝑚
𝑖=0

(
𝑘−1
𝑖

)
, the optimal approach (OPT, Algorithm 5), the layered BFS

approach (L-BFS), and the dual-layered BFS approach (DL-BFS). Except the optimal approach, the

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 19

layered BFS approach, and the dual-layered BFS approach, the other four approaches call the mask-

compressing approach when they need to evaluate a single constraint in𝐶 (𝐾). The approaches are
implemented in C++ (for verification) and Python (for input generation and runtime computation)

2
.

The whole experiments are run on a Linux desktop with the Intel Core i7-9700 processor and 16GB

memory.

6.1 Discrete Second-Order Control
6.1.1 Setting. The case study is a discrete second-order controller under perturbation attacks.The

following parameters are in meter, second, or their combinations. We denote the control value, its

first-order derivative, and its second-order derivative at time 𝑡 as 𝑥 (𝑡), ¤𝑥 (𝑡), and ¥𝑥 (𝑡), respectively.
The objective of the controller is to maintain 𝑥 at a fixed value (0 in our case), and the attacker

attempts to shift 𝑥 away from the fixed value. A control configuration is formally defined as

⟨𝑥min, 𝑥max, ¤𝑥min, ¤𝑥max, ¥𝑥𝐶 , 𝑆atk⟩, where
• [𝑥min, 𝑥max] is the safe range. If 𝑥 exceeds the range, the safety property is violated.

• [¤𝑥min, ¤𝑥max] is the physical constraint for the first order derivative of 𝑥 . If the controller

attempts to set ¤𝑥 to a value larger (smaller) than ¤𝑥max (¤𝑥min), ¤𝑥 is set to the corresponding

limit.

• ¥𝑥𝐶 is the constant magnitude for the second order derivative of 𝑥 , i.e., ¥𝑥 (𝑡) ∈ {−¥𝑥𝐶 , 0, ¥𝑥𝐶 }.
• 𝑆atk is the set of possible attack values on 𝑥 .

Suppose the control value 𝑥 deviates away from 0, the policy of the controller is to accelerate

until ¤𝑥 reaches the limit (¤𝑥min, ¤𝑥max) and decelerate when the control value 𝑥 is approaching 0. The

timing to start the deceleration is determined such that ¤𝑥 = 0 when 𝑥 = 0, and we denote the value

of 𝑥 at which the deceleration starts as 𝑥dec, which is

𝑥dec (𝑡) = ¤𝑥 (𝑡) · 𝑡dec (𝑡) −
1

2

· sign(¤𝑥 (𝑡)) · ¥𝑥𝐶 · 𝑡dec (𝑡)2, (6)

where 𝑡dec (𝑡) = | ¤𝑥 (𝑡) |
¥𝑥𝐶 is the time required to decelerate ¤𝑥 (𝑡) to 0. The transition functions of the

controller can be expressed as

𝑥 (𝑡 + 1) ← 𝑥 (𝑡) + ¤𝑥 (𝑡) + 𝑝atk (𝑡), (7)

¤𝑥 (𝑡 + 1) ← max

(
min

(
¤𝑥 (𝑡) + ¥𝑥 (𝑡), ¤𝑥max

)
, ¤𝑥min

)
, (8)

¥𝑥 (𝑡 + 1) ← −sign
(
𝑥 (𝑡) + 𝑝atk (𝑡)

)
· sign

(
|𝑥 (𝑡) + 𝑝atk (𝑡) | − |𝑥dec (𝑡) |

)
· ¥𝑥𝐶 , (9)

where 𝑝atk denotes the perturbation attack. Equation (7) is for the transition of 𝑥 , where the control

value is affected by both the first-order derivative and the perturbation attack. Equation (8) is for

the transition of ¤𝑥 , with the updated value clipped to [¤𝑥min, ¤𝑥max] to satisfy the physical constrain.

Equation (9) is for the transition of ¥𝑥 , where the sign of ¥𝑥 is determined by the relative position of

𝑥 with respect to 0 and whether the system is decelerating as 𝑥 approaches 0. The safety property

is 𝑥 ∈ [𝑥min, 𝑥max], meaning that the control value stays in the safe range.

For any controller configuration ⟨𝑥min, 𝑥max, ¤𝑥min, ¤𝑥max, ¥𝑥𝐶 , 𝑆atk⟩, we can define a finite state

machine ⟨𝑄, Σ, 𝛿, 𝑃𝑟 , 𝑞0, 𝐹 ⟩, where
• 𝑄 = {(𝑥, ¤𝑥, ¥𝑥) |𝑥, ¤𝑥 ∈ Z, 𝑥 ∈ [𝑥min, 𝑥max], ¤𝑥 ∈ [¤𝑥min, ¤𝑥max], ¥𝑥 ∈ {−¥𝑥𝐶 , 0, ¥𝑥C}} ∪ {𝑞unsafe}.
• Σ = 𝑆atk ∪ {0}.
• 𝛿 is defined exactly from the transition functions above.

• 𝑃𝑟 ((𝑥, ¤𝑥, ¥𝑥), 𝑝atk, (𝑥 ′, ¤𝑥 ′, ¥𝑥 ′)) = 1

|𝑆atk | .

2
The implementation is available at https://gitlab.com/ntu-cps-lab/WeaklyHardVerification2022 .

, Vol. 1, No. 1, Article . Publication date: July 2023.

20 Hsieh et al.

Table 2. Discrete second-order control: runtime (in second) with different values of |𝑄 |.

|𝑄 | BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

280 2.069 0.105 0.103 0.102 0.055 0.105 0.074

314 2.506 0.146 0.144 0.144 0.071 0.147 0.099

331 9.817 1.683 1.641 1.641 1.234 1.752 1.786

341 54.730 9.624 5.128 5.128 2.655 5.621 4.434

351 61.834 11.526 5.546 5.546 3.127 6.178 4.027

361 58.244 11.098 5.039 5.039 2.802 7.088 4.450

371 63.565 12.462 5.258 5.258 2.900 7.613 4.141

381 65.523 12.995 5.229 5.229 2.900 7.999 4.329

m1 20
1

20

k

| Q | = 280

| Q | = 314

| Q | = 331

Others

Fig. 6. Discrete second-order control: computed satisfaction boundaries.

Table 3. Discrete second-order control: runtime (in second) with different values of 𝐾 .

𝐾 BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

14 0.388 0.062 0.057 0.057 0.032 0.061 0.041

16 1.200 0.217 0.172 0.172 0.146 0.184 0.186

18 3.047 0.373 0.333 0.333 0.177 0.356 0.289

20 9.817 1.683 1.641 1.641 1.234 1.752 1.786

22 31.041 6.596 6.555 6.555 2.931 7.023 5.297

• 𝑞0 = (0, 0, 0).
• 𝐹 = {𝑞unsafe}.

𝑞unsafe represents the state where the control value 𝑥 is out of the range [𝑥min, 𝑥max]. Verifying
whether the control value is in the safe range under perturbation attacks is reduced to solving for

the reachability of 𝑞unsafe for the finite-state machine.

6.1.2 Experiment on |𝑄 |. We experimented on how each approach scales with respect to the number

of states in the finite-state machine, |𝑄 |. To create different numbers of states, we fixed ¤𝑥min = −4,
¤𝑥max = 4, ¥𝑥C = 2, and 𝑆atk = {5} and experimented with (𝑥min, 𝑥max) = {±30,±40,±50, . . . ,±100},
resulting |𝑄 | from 280 to 381. A larger safe range [𝑥min, 𝑥max] of the control value 𝑥 allows the

controller to have a larger margin to recover from attacks. 𝐾 is set to 20.

The results are shown in Table 2, and the corresponding satisfaction boundaries are illustrated

in Figure 6, where all approaches generate the same satisfaction boundaries. The monotonic

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 21

approach runs significantly faster than the brute-force approach because the verification results

under many weakly-hard constraints are implied by Implications 1 and 2. For larger number of

states, the runtime differences are even larger. We then compare the monotonic approach, the

monotonic approach with dynamic upper bound of satisfaction boundary (monotonic-dynamic),

and the lowest-cost-first heuristic. The results are aligned with the theoretical expectations. The

monotonic-dynamic approach runs strictly faster than the monotonic approach for every setting

with the addition implications by Implications 3 and 4, and the lowest-cost-first heuristic performs

same as the monotonic-dynamic approach. The optimal approach finds the optimal verified set,

the runtime corresponding to the the optimal verified set is smaller than the runtimes of the other

approaches. However, it needs to know the satisfaction boundary in advance, so the main purpose

of the optimal approach is to evaluate the efficiency of the other approaches. It can be observed

that the runtime of the optimal approach may not be monotonic to |𝑄 | as different |𝑄 | lead to

different boundaries and thus different optimal verified sets, where a large |𝑄 | may have a smaller

optimal verified set. The layered BFS approach runs faster than the monotonic approach in most

cases, and it has comparable runtime as the monotonic-dynamic approach and the lowest-cost-first

heuristic. Moreover, the dual-layered BFS approach mostly has the best efficiency among all other

approaches except the optimal approach.

6.1.3 Experiment on 𝐾 . We experimented on how each approach scales with respect to 𝐾 . We fixed

𝑥min = −50, 𝑥max = 50, ¤𝑥min = −4, ¤𝑥max = 4, ¥𝑥const = 2, and 𝑆atk = {5}. The results are shown in

Table 3, where we report the results with 𝐾 = 14, 16, 18, 20, 22. Similar to the previous experiment,

the proposed approaches outperform the brute-force approach significantly. This is aligned with the

theoretical complexity analysis that the brute-force approach needs to evaluate𝑂 (𝐾2) weakly-hard
constraints, and the other approaches need to evaluate 𝑂 (𝐾) weakly-hard constraints only. It

should be emphasized that the verification of a property under a single weakly-hard constraint

𝑊 (𝑚,𝑘) usually needs to store the last 𝑘 inputs, and thus the complexity is at least 𝑂 (2𝑘). If the
property is more complicated (e.g., in Linear Temporal Logic), the complexity can be even higher.

Therefore, reducing the number of evaluations of weakly-hard constraints is really advantageous to

the efficiency of computing the safety table or the satisfaction boundary. It should also be mentioned

that the layered BFS approach and the dual-layered BFS approach are especially for the reachability

of finite-state machines, and the other proposed approaches are general and compatible with other

verification approaches for a single weakly-hard constraint.

6.2 Network Routing
6.2.1 Setting. The case study is network routing of Extranet, where there are two routing paths

with the same source and destinations on one router. The following parameters are in a general

time unit. We denote the delay levels of two routing paths at time 𝑡 as 𝑙1 (𝑡) and 𝑙2 (𝑡). We also

denote the waiting times (for recovery) of two routing paths at time 𝑡 as 𝑤1 (𝑡) and 𝑤2 (𝑡). The
objective of the network routing is to switch between two routing paths to keep the connection

between the source and the destination. A routing configuration is formally defined as ⟨𝜏1, 𝜏2, 𝛾⟩,
where

• 𝜏1 and 𝜏2 are the thresholds of two routing paths, respectively. If delay level 𝑙𝑖 (𝑡) exceed 𝜏𝑖 ,
the 𝑖-th routing path is considered to be congested, and it needs to recover.

• 𝛾 is the time (measured by the number of inputs) that a routing path needs to recover.

We introduce the following variables:

• 𝑠 (𝑡) ∈ {0, 1} denotes whether the two routing paths are switched at time 𝑡 .

• 𝑐 (𝑡) ∈ {0, 1} denotes whether both of the two routing path are congested.

, Vol. 1, No. 1, Article . Publication date: July 2023.

22 Hsieh et al.

• 𝑑 (𝑡) ∈ {0, 1} denotes whether a packet is delayed.
We also introduce the following transition functions:

• If 𝑠 (𝑡) = 0, meaning that the first routing path is in use (not switched to the second routing

path), then

𝑙1 (𝑡 + 1) ← 𝑙1 (𝑡) + (2 · 𝑑 (𝑡) − 1); 𝑤2 (𝑡 + 1) ← 𝑤2 (𝑡) + 1; 𝑙2 (𝑡 + 1) ← 0; 𝑤1 (𝑡 + 1) ← 0, (10)

meaning that 𝑙1 (𝑡 + 1) is increased or decreased by 1 from 𝑙1 (𝑡) if 𝑑 (𝑡) is 1 or 0, respectively,
and 𝑤2 (𝑡 + 1) is increased by 1 from 𝑤2 (𝑡). 𝑙2 (𝑡 + 1) and 𝑤1 (𝑡 + 1) will be set to the initial

value until switching to the second routing path.

• If 𝑠 (𝑡) = 1, meaning that the second routing path is in use (switched from the first routing

path), then

𝑙2 (𝑡 + 1) ← 𝑙2 (𝑡) + (2 · 𝑑 (𝑡) − 1); 𝑤1 (𝑡 + 1) ← 𝑤1 (𝑡) + 1; 𝑙1 (𝑡 + 1) ← 0; 𝑤2 (𝑡 + 1) ← 0, (11)

meaning that𝑤1 (𝑡 + 1) is increased by 1 from𝑤1 (𝑡), and 𝑙2 (𝑡 + 1) is increased or decreased

by 1 from 𝑙2 (𝑡) if 𝑑 (𝑡) is 1 or 0, respectively. 𝑙1 (𝑡 + 1) and𝑤2 (𝑡 + 1) will be set to the initial
value until switching to the first routing path.

• The two routing paths are switched at time 𝑡 + 1 if the delay of the routing path in use at

time 𝑡 exceeds the corresponding threshold, and the waiting time (for recovery) of the other

routing path at time 𝑡 exceeds the threshold 𝛾 , i.e.,

𝑠 (𝑡 + 1) ←

1, if 𝑠 (𝑡) = 0, 𝑙1 (𝑡) > 𝜏1,𝑤2 (𝑡) > 𝛾 ;
0, if 𝑠 (𝑡) = 1, 𝑙2 (𝑡) > 𝜏2,𝑤1 (𝑡) > 𝛾 ;
𝑠 (𝑡), otherwise.

(12)

• Both of the two routing path are congested if the delay of the routing path in use at time 𝑡

exceeds the corresponding threshold, and the waiting time (for recovery) of the other routing

path at time 𝑡 does not exceed the threshold 𝛾 , i.e.,

𝑐 (𝑡 + 1) ←

1, if 𝑠 (𝑡) = 0, 𝑙1 (𝑡) > 𝜏1,𝑤2 (𝑡) ≤ 𝛾 ;
1, if 𝑠 (𝑡) = 0, 𝑙2 (𝑡) > 𝜏2,𝑤1 (𝑡) ≤ 𝛾 ;
0, otherwise.

(13)

The safety property is 𝑐 (𝑡) = 0, meaning that at least one routing path is not congested.

For any network routing configuration ⟨𝜏1, 𝜏2, 𝛾⟩, we can determine a finite state machine

⟨𝑄, Σ, 𝛿, 𝑞0, 𝐹 ⟩, where
• 𝑄 = {(𝑙1, 𝑙2,𝑤1,𝑤2, 𝑠, 𝑐)}.
• Σ = {0, 1}, which is the input as 𝑑 (𝑡).
• 𝛿 is defined exactly from the transition functions above.

• 𝑞0 = (0, 0, 0, 0, 0, 0).
• 𝐹 = {𝑞unsafe}

𝑞unsafe represents the state where 𝑐 (𝑡) is 1, meaning that the delay level of one routing path exceeds

its threshold and the other routing path is still recovering. Verifying whether we can keep the

connection (at least one routing path not congested) between the source and the destination is

reduced to solving for the reachability of 𝑞unsafe for the finite state machine. Similar to the discrete

second-order control, we compare those approaches as well as the optimal verified set obtained by

the optimal approach.

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 23

Table 4. Network routing: runtime (in second) with different values of |𝑄 |.

|𝑄 | BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

678 9.421 1.930 1.229 1.229 0.513 1.196 0.924

1,238 23.362 5.595 3.599 3.599 3.485 4.051 3.378

1,842 36.928 8.630 6.340 6.340 5.345 6.928 6.266

2,452 43.097 11.263 8.314 8.314 8.283 9.284 9.572

3,062 50.155 15.406 11.237 11.237 9.847 13.336 11.835

Table 5. Network routing: runtime (in second) with different values of 𝐾 .

𝐾 BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

12 0.599 0.260 0.160 0.160 0.115 0.189 0.147

14 2.329 0.858 0.539 0.539 0.493 0.568 0.471

16 9.298 2.855 1.875 1.875 1.829 2.243 1.826

18 23.362 5.595 3.599 3.599 3.485 4.051 3.378

20 129.864 31.260 20.351 20.351 17.040 22.938 19.651

6.2.2 Experiment on |𝑄 |. We experimented on how each approach scales with respect to the number

of states in the finite-state machine, |𝑄 |. To create different numbers of states, we fixed 𝜏1 = 20 and

𝜏2 = 16 and experimented with 𝛾 = {20, 30, 40, 50, 60}, resulting |𝑄 | from 678 to 3,062. A larger 𝛾

makes it more difficult to keep the connection between the source and the destination. 𝐾 is set to

18. The results are shown in Table 4, and all approaches generate the same satisfaction boundaries.

Similar to the previous case study, the proposed approaches outperform the brute-force approach

significantly. The monotonic approach with dynamic upper bound of satisfaction boundary and the

lowest-cost-first heuristic are generally good in this case study. The dual-layered BFS approach is

also good, even using less runtime than the optimal verified set obtained by the optimal approach. It

should be noted that an optimal approach defined in Definition 8 only considers approaches which

consider weakly-hard constraints one by one and utilize some implications between weakly-hard

constraints. Therefore, an approach considering multiple weakly-hard constraints, such as the

dual-layered BFS approach, may use less runtime than an optimal approach.

6.2.3 Experiment on 𝐾 . We experimented on how each approach scales with respect to K. We fixed

𝜏1 = 20, 𝜏2 = 16, and 𝛾 = 40. The results are shown in Table 5, where we report the results with

𝐾 = 12, 14, 16, 18, 20. Similar to the previous case study, the proposed approaches outperform the

brute-force approach significantly. Among them, the dual-layered BFS approach has the smallest

runtimes.

6.3 Lane Changing
6.3.1 Setting. The case study is lane changing with two acceleration controllers on two vehicles

driving on two lanes along a road segment with length 𝑥max. The following parameters are in meter,

second, or their combinations. We denote the position, velocity, and acceleration of the vehicle on

the primary lane at 𝑡 as 𝑥 (𝑡), 𝑣 (𝑡), and 𝑎(𝑡), and those of the vehicle on the secondary lane as 𝑥 ′(𝑡),
𝑣 ′(𝑡), and 𝑎′(𝑡), respectively. Each vehicle receives messages including the position, velocity, and

acceleration of the other vehicle. The objective of a controller is to perform lane changing while

each vehicle may miss some messages from the other vehicle. A controller is formally defined as

⟨𝑣max, 𝑎min, 𝑎max⟩, where

, Vol. 1, No. 1, Article . Publication date: July 2023.

24 Hsieh et al.

• [0, 𝑣max] is the physical constraint for the velocity. If the controller attempts to set 𝑣 to a

value larger (smaller) than 𝑣max (0), 𝑣 is set to the corresponding limit.

• [𝑎min, 𝑎max] is the acceleration range.

We introduce the following variables:

• 𝑐 (𝑡) ∈ {0, 1} denotes whether lane changing has happened.
• 𝑠 (𝑡) ∈ {0, 1} denotes whether the vehicle on the primary lane successfully receives a message

from the vehicle on the secondary lane.

• 𝑠 ′(𝑡) ∈ {0, 1} denotes whether the vehicle on the secondary lane successfully receives a

message from the vehicle on the primary lane.

• 𝑙 denotes the length of a vehicle.

The transition functions of the controller on the main lane can be expressed as

𝑥 (𝑡 + 1) ← min

(
𝑥 (𝑡) + 𝑣 (𝑡) + 1

2

· 𝑎(𝑡), 𝑥max

)
, (14)

𝑣 (𝑡 + 1) ← max (min (𝑣 (𝑡) + 𝑎(𝑡), 𝑣max) , 0) , (15)

𝑎(𝑡 + 1) ←

0, if 𝑠 (𝑡) = 0;

𝑎min, if 𝑠 (𝑡) = 1, |𝑥 ′(𝑡) − 𝑥 (𝑡) | < 2𝑙 , 𝑣 (𝑡) < 𝑣 ′(𝑡);
𝑎max, if 𝑠 (𝑡) = 1, |𝑥 ′(𝑡) − 𝑥 (𝑡) | < 2𝑙 , 𝑣 (𝑡) ≥ 𝑣 ′(𝑡);
𝑎(𝑡), otherwise.

(16)

The transition functions of the controller on the secondary lane can be expressed as

𝑥 ′(𝑡 + 1) ← min

(
𝑥 ′(𝑡) + 𝑣 ′(𝑡) + 1

2

· 𝑎′(𝑡), 𝑥max

)
, (17)

𝑣 ′(𝑡 + 1) ← max (min (𝑣 ′(𝑡) + 𝑎′(𝑡), 𝑣max) , 0) , (18)

𝑎′(𝑡 + 1) ←

𝑎max, if 𝑠 ′(𝑡) = 0;

𝑎min, if 𝑠 ′(𝑡) = 1, |𝑥 (𝑡) − 𝑥 ′(𝑡) | < 2𝑙 , 𝑣 (𝑡) ≥ 𝑣 ′(𝑡);
𝑎max, if 𝑠 ′(𝑡) = 1, |𝑥 (𝑡) − 𝑥 ′(𝑡) | < 2𝑙 , 𝑣 (𝑡) < 𝑣 ′(𝑡);
𝑎′(𝑡), otherwise.

(19)

We also introduce the following transition function:

𝑐 (𝑡 + 1) ←

1, if 𝑐 (𝑡) = 1;

1, if 𝑐 (𝑡) = 0, 𝑥 (𝑡) ≠ 𝑥max or 𝑥
′(𝑡) ≠ 𝑥max, |𝑥 ′(𝑡) − 𝑥 (𝑡) | ≥ 2𝑙 ;

0, otherwise.

(20)

The safety property is 𝑐 (𝑡) = 1, meaning that lane changing has completed, or 𝑥 (𝑡) ≠ 𝑥max or

𝑥 ′(𝑡) ≠ 𝑥max, meaning that the vehicles have not reached the end of the road segment.

For any controller configuration ⟨𝑣max, 𝑎min, 𝑎max, 𝑣
′
max

, 𝑎′
min
, 𝑎′

max
⟩, we can determine a finite state

machine ⟨𝑄, Σ, 𝛿, 𝑞0, 𝐹 ⟩, where
• 𝑄 = {(𝑥, 𝑣, 𝑎, 𝑥 ′, 𝑣 ′, 𝑎′) |𝑥, 𝑥 ′ ∈ [0, 𝑥max], 𝑣, 𝑣 ′ ∈ [0, 𝑣max], 𝑎, 𝑎′ ∈ [𝑎min, 𝑎max]}.
• Σ : {00, 01, 10, 11}, which is the input as 𝑠 (𝑡) and 𝑠 ′(𝑡).
• 𝛿 is defined exactly from the transition functions above.

• 𝑞0 = (0, 0, 0, 0, 0, 0).
• 𝐹 = {𝑞unsafe}

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 25

Table 6. Lane changing: runtime (in second) with different values of |𝑄 |.

|𝑄 | BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

46,835 19.987 2.794 2.365 2.365 1.747 2.584 1.708

72,333 31.002 4.342 3.687 3.687 2.737 3.957 2.817

97,206 40.772 7.880 4.166 4.166 4.077 5.120 3.863

125,152 54.559 10.698 5.453 5.453 5.330 7.240 4.623

155,941 67.018 13.447 7.025 7.025 6.879 8.192 5.980

189,535 81.403 15.820 8.456 8.456 8.294 10.557 7.047

Table 7. Lane changing: runtime (in second) with different values of 𝐾 .

𝐾 BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

4 2.739 0.763 0.280 0.280 0.280 0.640 0.416

5 6.485 1.978 0.872 0.872 0.709 1.360 0.840

6 15.600 3.298 0.898 0.898 0.721 2.640 1.700

7 34.249 5.514 3.155 3.155 2.978 5.131 3.264

8 81.403 15.820 8.456 8.456 8.294 10.557 7.047

𝑞unsafe represents the state where 𝑥 (𝑡) = 𝑥 ′(𝑡) = 𝑥max and 𝑐 (𝑡) = 0. Verifying whether the two

vehicles can successfully change their lanes is reduced to solving for the reachability of 𝑞unsafe for

the finite state machine. Similar to the previous case studies, we compare those approaches as well

as the optimal verified set obtained by the optimal approach.

6.3.2 Experiment on |𝑄 |. We experimented on how each approach scales with respect to the

number of states in the finite-state machine, |𝑄 |. To create different numbers of states, we fixed

𝑣max = 𝑣 ′
max

= 10, 𝑎max = 𝑎′
max

= 5, 𝑎min = 𝑎′
min

= −5, and 𝑙 = 4 and experimented with

𝑥max = {50, 60, 70, 80, 90, 100}, resulting |𝑄 | from 46,835 to 189,535. A larger range 𝑥max of the

control value 𝑥 allows the controller to change the lane more easily. 𝐾 is set to 8. The results are

shown in Table 6, and all approaches generate the same satisfaction boundaries. Similar to the

previous case studies, the proposed approaches outperform the brute-force approach significantly.

The dual-layered BFS approach is especially good in this case study, even using less runtime than

the optimal verified set obtained by the optimal approach in the most cases. Similarly, an optimal

approach defined in Definition 8 only considers approaches which consider weakly-hard constraints

one by one and utilize some implications between weakly-hard constraints. Therefore, an approach

considering multiple weakly-hard constraints, such as the dual-layered BFS approach, may use less

runtime than an optimal approach.

6.3.3 Experiment on 𝐾 . We experimented on how each approach scales with respect to K. We

fixed 𝑥max = 100, 𝑣max = 𝑣 ′
max

= 10, 𝑎max = 𝑎′
max

= 5, 𝑎min = 𝑎′
min

= −5, and 𝑙 = 4. The results are

shown in Table 7, where we report the results with 𝐾 = 4, 5, 6, 7, 8. Similar to the previous case

studies, the proposed approaches outperform the brute-force approach significantly. Among them,

the monotonic approach with dynamic upper bound of satisfaction boundary, the lowest-cost-first

heuristic, and the dual-layered BFS approach have smaller runtimes.

6.4 Summary
The three case studies demonstrate the applicability and scalability of weakly-hard fault modeling

and the proposed approaches. Based on the case studies, the monotonic approach with dynamic

upper bound of satisfaction boundary, the lowest-cost-first heuristic, and the dual-layered BFS

, Vol. 1, No. 1, Article . Publication date: July 2023.

26 Hsieh et al.

approach generally have better efficiency. It should bementioned that the dual-layered BFS approach

is especially for reachability analysis for finite-state machines, so it is not applicable to general

properties and general systems. The applicability of them is summarized in Section 1.3 and Table 1.

7 RELATEDWORK
Starting from [11], which is the first work that introduced the notion of (𝑚,𝑘) constraint, weakly-
hard systems have been studied from various perspectives in the last two decades. Research

interests range from real-time systems [2] to network systems [16]. Most of the works focus

on the schedulability analysis for periodic tasks under various assumptions such as bi-modal

execution and non-preemptiveness [3, 5, 18, 25], or the temporal behavior analysis of overloaded

systems [1, 10, 12, 23, 27].

Stable controller synthesis is another important topic in the context of weakly-hard constraints.

Based on the extensive studies on the stability under probabilistic deadline misses [22, 24], authors

in [4] propose a switched controller to stabilize a weakly-hard system with linear dynamic, while a

non-switched controller is discussed in [21].

The most related work is the safety verification for weakly-hard systems, where however, only a

few prior works have been devoted to this topic. [8] was the first work that attempts to provide a

formal analysis for linear dynamical systems with weakly-hard constraints. In this paper, a weakly-

hard system with linear dynamic is modeled as a hybrid automaton and then the reachability of

the generated hybrid automaton is verified by the tool SpaceEx [9]. [7] transforms the behavior

of a linear weakly-hard system into a program, and then uses program verification techniques,

such as abstract interpretation and SMT solvers to analyze the safety. In contrast, the infinite-time

safety problem of general nonlinear weakly-hard systems is considered in [15]. By modeling a

weakly-hard system as a hybrid automaton, which is similar to that in [8], authors in [15] convert

the infinite-time safety problem into a finite one and then apply linear programming to obtain a

sufficient condition of the initial state to ensure the safety, which is further improved in [14].

The fundamental difference between the above works, and this paper, is that we focus on discrete

systems rather than continuous systems. Since a variety of systems are discrete in practice, we

believe the study on specific discrete systems is necessary. Benefiting from this, our technique can

generate sound and complete verification results with respect to the weakly-hard constraints for

large scale problems.

8 CONCLUSION
In this paper, we used a weakly-hard fault model to constrain the occurrences of faults in system

inputs. We developed approaches to verify properties for multiple weakly-hard constraints in

an exact and efficient manner. By verifying multiple weakly-hard constraints and storing the

verification results as a safety table or the corresponding satisfaction boundary, we defined weakly-

hard requirements for the system environment and designed a runtime monitor that guarantees

desired properties or notifies the system to switch to a safe mode. Experimental results with discrete

second-order control, network routing, and lane changing demonstrated the generality and the

efficiency of the proposed approaches. Future directions include properties in LTL under weakly-

hard constraints, other models of computation (such as timed automata or hybrid systems to catch

the notion of time, although weakly-hard constraints will be used to model the discrete parts of

timed automata or hybrid systems due to the nature of weakly-hard constraints which count the

numbers of some events) under weakly-hard constraints, and system-specific cost estimation for

the lowest-cost-first heuristic.

, Vol. 1, No. 1, Article . Publication date: July 2023.

System Verification and Runtime Monitoring with Multiple Weakly-Hard Constraints 27

ACKNOWLEDGEMENTS
This work is supported by the Asian Office of Aerospace Research and Development (AOARD),

jointly with the Office of Naval Research Global (ONRG), award FA2386-19-1-4037, the Taiwan

Ministry of Education (MOE) grant NTU-111V1901-5, the Taiwan National Science and Technology

Council (NSTC) grants NSTC-111-2636-E-002-018 and NSTC-112-2636-E-002-010. It is also sup-

ported by the US National Science Foundation (NSF) grants CNS-2038853 and CCF-2144860, and

the Office of Naval Research (ONR) grant N00014-19-1-2496.

REFERENCES
[1] L. Ahrendts, S. Quinton, T. Boroske, and R. Ernst. 2018. Verifying weakly-hard real-time properties of traffic streams

in switched networks. In Euromicro Conference on Real-Time Systems, Vol. 106. 15:1–15:22.
[2] G. Bernat, A. Burns, and A. Liamosi. 2001. Weakly hard real-time systems. IEEE Trans. Comput. 50, 4 (2001), 308–321.
[3] G. Bernat and R. Cayssials. 2001. Guaranteed on-line weakly-hard real-time systems. In IEEE Real-Time Systems

Symposium. IEEE, 22–35.

[4] R. Blind and F. Allgöwer. 2015. Towards networked control systems with guaranteed stability: Using weakly hard

real-time constraints to model the loss process. In IEEE Conference on Decision and Control. IEEE, IEEE, 7510–7515.
[5] H. Choi, H. Kim, and Q. Zhu. 2019. Job-class-level fixed priority scheduling of weakly-hard real-time systems. In IEEE

Real-Time Technology and Applications Symposium. IEEE, 241–253.

[6] H. Choi, H. Kim,, and Q. Zhu. 2021. Toward practical weakly hard real-time systems: a job-class-level scheduling

approach. IEEE Internet of Things Journal 8, 8 (2021), 6692–6708.
[7] P. S. Duggirala and M. Viswanathan. 2015. Analyzing real time linear control systems using software verification. In

IEEE Real-Time Systems Symposium. IEEE, IEEE, 216–226.

[8] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle. 2014. Formal analysis of timing effects on closed-loop properties

of control software. In IEEE Real-Time Systems Symposium. IEEE, 53–62.

[9] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler. 2011.

SpaceEx: scalable verification of hybrid systems. In International Conference on Computer-Aided Verification. Springer,
Springer, 379–395.

[10] A. Gujarati, M. Nasri, R. Majumdar, and B. Brandenburg. 2019. From iteration to system failure: characterizing the

FITness of periodic weakly-hard systems. In Euromicro Conference on Real-Time Systems. 9:1–9:23.
[11] M. Hamdaoui and P. Ramanathan. 1995. A dynamic priority assignment technique for streams with (𝑚,𝑘)-firm

deadlines. IEEE Trans. Comput. 44, 12 (1995), 1443–1451.
[12] Z. A. H. Hammadeh, R. Ernst, S. Quinton, R. Henia, and L. Rioux. 2017. Bounding deadline misses in weakly-hard

real-time systems with task dependencies. In Design, Automation and Test in Europe Conference. 584–589.
[13] Z. A. H. Hammadeh, S. Quinton, M. Panunzio, R. Henia, L. Rioux, and R. Ernst. 2017. Budgeting under-specified tasks

for weakly-hard real-time systems. In Euromicro Conference on Real-Time Systems, Vol. 76. 17:1–17:22.
[14] C. Huang, K.-C. Chang, C.-W. Lin, and Q. Zhu. 2020. SAW: a tool for safety analysis of weakly-hard systems. In

Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, Cham,

543–555.

[15] C. Huang, W. Li, and Q. Zhu. 2019. Formal verification of weakly-hard systems. In ACM International Conference on
Hybrid Systems: Computation and Control. ACM, 197–207.

[16] C. Huang, K. Wardega, W. Li, and Q. Zhu. 2019. Exploring weakly-hard paradigm for networked systems. In Workshop
on Design Automation for CPS and IoT. 51–59.

[17] V. Lesi, I. Jovanov, and M. Pajic. 2017. Network scheduling for secure cyber-physical systems. In IEEE Real-Time
Systems Symposium. IEEE, 45–55.

[18] J. Li, Y. Song, and F. Simonot-Lion. 2006. Providing real-time applications with graceful degradation of QoS and fault

tolerance according to (𝑚,𝑘)-firm model. IEEE Transactions on Industrial Informatics 2, 2 (2006), 112–119.
[19] H. Liang, Z. Wang, R. Jiao, and Q. Zhu. 2020. Leveraging weakly-hard constraints for improving system fault tolerance

with functional and timing guarantees. In IEEE/ACM International Conference On Computer Aided Design. 1–9.
[20] H. Liang, Z. Wang, D. Roy, S. Dey, S. Chakraborty, and Q. Zhu. 2019. Security-driven codesign with weakly-hard

constraints for real-time embedded systems. In IEEE International Conference on Computer Design. IEEE, 217–226.
[21] S. Linsenmayer and F. Allgower. 2017. Stabilization of networked control systems with weakly hard real-time dropout

description. In IEEE Conference on Decision and Control. IEEE, 4765–4770.
[22] P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin. 2019. DMAC: deadline-miss-aware control. In Euromicro

Conference on Real-Time Systems. 1:1–1:24.

, Vol. 1, No. 1, Article . Publication date: July 2023.

28 Hsieh et al.

[23] S. Quinton and R. Ernst. 2012. Generalized weakly-hard constraints. In International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation. Springer, 96–110.

[24] L. Schenato. 2009. To zero or to hold control inputs with lossy links? IEEE Trans. Automat. Control 54, 5 (2009),

1093–1099.

[25] Y. Sun and M. Di Natale. 2017. Weakly hard schedulability analysis for fixed priority scheduling of periodic real-time

tasks. ACM Transactions on Embedded Computing Systems 16, 5s (2017), 171:1–171:19.
[26] S.-L. Wu, C.-Y. Bai, K.-C. Chang, Y.-T. Hsieh, C. Huang, C.-W. Lin, E. Kang, and Q. Zhu. 2020. Efficient system verification

with multiple weakly-hard constraints for runtime monitoring. In International Conference on Runtime Verification,
Jyotirmoy Deshmukh and Dejan Ničković (Eds.). Springer, 497–516.

[27] W. Xu, Z. A. H. Hammadeh, A. Kröller, R. Ernst, and S. Quinton. 2015. Improved deadline miss models for real-time

systems using typical worst-case analysis. In Euromicro Conference on Real-Time Systems. 247–256.
[28] Q. Zhu, W. Li, H. Kim, Y. Xiang, K. Wardega, Z. Wang, Y. Wang, H. Liang, C. Huang, J. Fan, and H. Choi. 2020. Know the

unknowns: addressing disturbances and uncertainties in autonomous systems. In IEEE/ACM International Conference
On Computer Aided Design.

, Vol. 1, No. 1, Article . Publication date: July 2023.

	Abstract
	1 Introduction
	1.1 Motivating Applications and Usages
	1.2 Target Problem and Contributions
	1.3 Overview of Proposed Approaches and Paper Organization

	2 Problem Formulation
	3 General Approaches and Runtime Monitor Design
	3.1 Strength of Weakly-Hard Constraint
	3.2 Monotonic Approach
	3.3 Monotonic Approach with Dynamic Upper Bound of Satisfaction Boundary
	3.4 Lowest-Cost-First Heuristic
	3.5 Runtime Monitor Design

	4 Discussion on Optimal Approaches
	4.1 Definitions
	4.2 Optimal Verified Set Computation
	4.3 Correctness and Uniqueness

	5 Reachability Analysis for Finite-State Machines
	5.1 Problem Definition
	5.2 Mask-Compressing Approach
	5.3 Layered BFS Approach
	5.4 Dual-Layered BFS Approach

	6 Experimental Results
	6.1 Discrete Second-Order Control
	6.2 Network Routing
	6.3 Lane Changing
	6.4 Summary

	7 Related Work
	8 Conclusion
	References

