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Abstract
The SU(3) gauge theory with Nf = 8 nearly massless Dirac fermions has long been of theoretical

and phenomenological interest due to the near-conformality arising from its proximity to the con-

formal window. One particularly interesting feature is the emergence of a relatively light, stable

flavor-singlet scalar meson σ (JPC = 0++) in contrast to the Nf = 2 theory QCD. In this work, we

study the finite-volume dependence of the σ meson correlation function computed in lattice gauge

theory and determine the σ meson mass and decay constant extrapolated to the infinite-volume

limit. We also determine the infinite volume mass and decay constant of the flavor-nonsinglet

scalar meson a0.

I. INTRODUCTION

SU(3) gauge theory with Nf flavors of massless Dirac fermions has a conformal window
for Nfc ≤ Nf ≤ 16 [1, 2]. See [3] for a review of the early history of constraining Nfc

and see [4] for the most recent review. While it is not known with certainty whether the
massless Nf = 8 theory is inside or outside the conformal window [5–7], our collaboration
has previously published results [8, 9] indicating the massless Nf = 10 theory is likely inside
the conformal window and for the rest of this paper we will assume the massless Nf = 8
theory is very close to the edge of the conformal window. If it is inside the conformal window
it is most likely a very strongly coupled CFT [10]. If it is outside the conformal window,
spontaneous chiral symmetry breaking and confinement produce massless Nambu-Goldstone
bosons and a spectrum of other hadronic states which may be different relative to QCD due
to the proximity of the conformal window.

The continuum SU(3) gauge theory with Nf = 8 Dirac fermions with small vector-like
mass terms is not an IR conformal theory. The small mass terms explicitly break chiral
symmetry, confinement occurs and a massive spectrum of hadronic states is generated.
Another scenario may be possible at stronger lattice coupling but we don’t consider that
here [10].

In our previous papers [11–13], we identified two specific features of the low-energy spec-
trum which were different from QCD. First, the pion decay constant Fπ strongly depends
on the fermion mass unlike QCD where Fπ is nearly constant with a small, linear correction
in the fermion mass. Second, the flavor-singlet scalar meson σ (JPC = 0++) has a light
mass Mσ < 1.5 Mπ in the fermion mass region where we compute it, well below the energy
threshold for decay to two pions, whereas in QCD it is somewhat heavier Mσ > 1.9 Mπ

[14–22], remaining just below decay threshold across in an equivalent fermion mass range.
The QCD picture is somewhat consistent with our earlier Nf = 4 calculation [12]. However,
we also identified several features of the Nf = 8 theory which appeared similar to QCD
calculations in an equivalent range of fermion masses: the ratios Mρ/Fπ and Mnucleon/Fπ,
the decay constants Fπ, Fρ and Fa1 appear consistent with QCD KSRF relations [23, 24]
and the I = 2 ππ scattering length aππ appears to agree with QCD.

In this paper, we focus larger volume calculations at the various fermion masses (App. A)
which will allow us to extrapolate our results to the infinite volume limit, removing one
potential source of systematic error (Sec. II E). We also introduce an improved method for
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analyzing σ meson correlation functions with a new subtraction scheme in the rest frame
combined with simultaneous analysis in several moving frames (Secs. II B and IIC). We
rely heavily on the method of Bayesian model averaging [25] (Sec. III). We present new
calculations of the flavor-singlet scalar decay constant FS and the flavor-nonsinglet scalar
meson a0 mass and decay constant Fa0 (Sec. IID). We also comment briefly on the chiral
condensate and its contribution to the Gell-Mann-Oakes-Renner (GMOR) relation and its
generalizations (Sec. II F).

As described in our earlier paper [12] we have chosen the bare lattice parameter β = 4.8
such that the lattice spacing a is as coarse as possible given our current action, so that we
can get as close to the chiral limit amq → 0 as possible with available computing resources.
We are working on calculations at amq = 0.00056 which may provide further insights in the
near future. If the massless Nf = 8 theory is conformal and sufficiently strongly coupled
[10] then it is likely a new lattice action that allows for even coarser lattice spacings will be
necessary to make further progress.

Phenomenologically, theories that exhibit approximate conformal behavior at strong cou-
pling are anticipated to produce large anomalous dimensions over a wide interval of scales,
which can make them attractive as candidate composite Higgs models [26–30]. In particular,
the SU(3) Nf = 8 theory has been used to build composite Higgs models in [31–33]. The
construction of a low energy EFT for the lightest composites, to which the rest of the Stan-
dard Model can be coupled is a crucial intermediate step in the creation of these models. In
a separate letter [34], we discuss various effective models that can be fit to our data.

II. STAGGERED TWO-POINT CORRELATION FUNCTION CONSTRUCTION

AND MODELING

A. Staggered two-point correlation function construction

The continuum Nf = 8 theory is approximated on a finite lattice by an SU(2)-doublet of
staggered fermion fields (χ1 χ2) that carry only an SU(3) color index at each lattice site. Each
component of the doublet represents four non-degenerate Dirac fermion “tastes” with spin
and taste degrees of freedom spread out over 24 sites of local hypercubes. In the continuum
limit where the bare gauge coupling g20 → 0, these tastes become degenerate and equivalent
to four Dirac flavors. Hence the doublet of staggered fields becomes a degenerate Nf = 8
theory in this continuum limit. Staggered fermions have a remnant of chiral symmetry
that can lead to (Nf/4)

2 Nambu–Goldstone bosons when taking the massless chiral limit at
finite lattice spacing, assuming the chiral symmetry is spontaneously broken by the gauge
interactions. However, to recover the full flavor symmetry it is essential to take the g20 → 0
continuum limit prior to the mq → 0 chiral limit.

In general, a staggered meson two-point correlaton function where source and sink oper-
ators have the same quantum numbers Q is (schematically)

CQ(p⃗, |t− t0|) =

〈∑
x⃗

eip⃗·(x⃗−x⃗0)χ(x⃗+ δ⃗′, t)ΓQ(x⃗, δ⃗
′)τχ(x⃗, t) χ(x⃗0 + δ⃗, t0)ΓQ(x⃗0, δ⃗)τχ(x⃗, t)

〉
(1)

where ΓQ(x⃗, δ⃗) are phases which refer to the spin-taste structure of the interpolating opera-
tors with quantum numbers Q, and τ is either an SU(2) generator for a non-singlet correlator
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or a 2 × 2 identity matrix for a singlet correlator under the SU(2) staggered doublet sym-
metry. There are various phase conventions possible, one common choice is [35]. Not shown
are gauge matrices required to make the whole thing gauge-invariant, e.g. connecting sites

(x⃗, t) and (x⃗ + δ⃗′, t). Also, translation invariance of the ensemble average ⟨ · ⟩ guarantees
the correlation function depends only on the distance |t − t0| and not the source position
(x⃗0, t0).

In our earlier paper [12], the LSD Collaboration constructed correlation functions with
p⃗ = 0 for local and point-split operators. In this study, we focused on constructing singlet
and non-singlet correlation functions of local operators at several different momenta p⃗ with
much higher statistics. On each gauge configuration, we generate a unique set of N random
source points (x⃗0, t0)n and construct a primitive staggered meson “connected” correlator

C(x⃗, t) =
1

N

∑
n

Tn Trcolor

[
GF (x⃗0, t0; x⃗, t) G

†
F (x⃗, t; x⃗0, t0)

]
(2)

where GF (x⃗0, t0; x⃗, t) is a 3× 3 color matrix of single staggered fermion propagator from the
site (x⃗0, t0) to the site (x⃗, t) and Tn represents the translation of the n-th source location

(x⃗0, t0)n to the origin (⃗0, 0). Then, we record the value of this averaged primitive correlator
for every sink point (x⃗, t) in the lattice volume. We refer to this as a connected correlator
because valence fermion lines connect the source and sink points. With post-processing
we can project this primitive correlator into eight different non-singlet staggered meson
quantum number channels of different momenta p⃗ using Fourier transform

CQ(p⃗, t) =
∑
x⃗

eip⃗·x⃗ C(x⃗, t) ϕQ(x⃗). (3)

For example, if we choose the phase ϕQ(x⃗) = 1, we get the correlation function for the π5

meson, which is the pseudo-Nambu–Goldstone boson.
Also in our earlier work, we explained in detail how we construct a “disconnected” cor-

relator, where valence fermion lines do not connect the source and sink points

D(p⃗, |t− t0|) =
∑
x⃗

∑
x⃗0

ei(x⃗−x⃗0)·p⃗ Tr [GF (x⃗0, t0; x⃗0, t0)] Tr [GF (x⃗, t; x⃗, t)] (4)

using a diluted noisy estimator to compute the trace at each site on the lattice for each gauge
configuration, which is again recorded as a single value per site in the lattice volume. With
post-processing, we can compute the disconnected correlator for any spatial momentum p⃗
using FFT and the fast convolution algorithm

Õ(p⃗, ω) =
∑
x⃗,t

ei(p⃗·x⃗+ωt) Tr [GF (x⃗, t; x⃗, t)] (5)

D(p⃗, t) =
∑
ω

e−iωt
∣∣∣Õ(p⃗, ω)

∣∣∣2 (6)

where the result is automatically invariant under any lattice translation. In an Nf -flavor
theory, the flavor-singlet scalar correlator for the σ meson is then

Cσ(p⃗, t) =

(
Nf

4

)2

D(p⃗, t)− Nf

4
Ca0,1(p⃗, t) (7)
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and where Ca0,1(p⃗, t) is the flavor-nonsinglet scalar meson correlator constructed from Eq. (3)
with the appropriate choice of phases. Note this normalization is different from [12] where
we dropped an overall factor of Nf/4.

Regarding the naming convention of mesons, we note that the continuum SU(8) flavor
representation is broken by lattice artifacts to a subgroup SU(2) × taste, a discrete subgroup
of SU(4). Meson names will follow the PDG convention for two-flavor mesons: π, a0,
ρ, . . . plus an additional subscript to indicate the representation under the discrete taste
group: π5, a0,1, ρi, . . . There is only one scalar meson which is a singlet over the whole
flavor group which we name σ and no subscript is required. The effects of taste-breaking
were discussed previously [12] and we will not expand on it, so the taste index not play a
significant role here with one important exception. In the continuum two-flavor theory, the
decay a0 → ππ is forbidden by isospin symmetry. However, in our staggered Nf = 8 theory,
the decay a0,1 → π5π5 is allowed because the π5 and the a0,1 are not in the same SU(2)
flavor subgroup, as indicated by the different taste indices. It is analogous to the decay of
a0 → KK in continuum three-flavor theory.

B. Model for Staggered Meson Correlation Functions

We will consider three different types of models for staggered meson two-point correlation
functions in this paper. As we are employing Bayesian model averaging, further discussed
in Sec. III, we don’t have to choose a particular model but rely on the computed model
probabilities to distinguish the most likely models for a given correlation function. Within
each model type, the number of free parameters in each specific instance of the model will
depend upon the number of oscillating and non-oscillating states included.

The model we will use for the staggered meson correlation function in the time domain
(Model A) is

C(p⃗, t) = c0δp⃗,0 +
∑
n

cn
2 (1− e−EnNt) sinh(En)

[
e−Ent + e−En(Nt−t)

]
+(−1)t

∑
j

c′j

2
(
1− e−E′

jNt

)
sinh(E ′

j)

[
e−E′

jt + e−E′
j(Nt−t)

]
(8)

where we have chosen to use a particular “relativistic” normalization for the amplitudes. As
is typical for the staggered fermions, there are a set of states labeled by n whose contributions
do not oscillate in time and another set of states labeled by j, with different quantum
numbers, that oscillate in time with a factor (−1)t. The energies En and E ′

j are understood
to depend implicitly on the spatial momentum p⃗. We also allow for the possibility of a
t-independent contribution to the correlation function, c0, which is generally not present for
flavor-nonsinglet correlation functions due to translation invariance of the ensemble average.
But, it is the dominant contribution to the flavor-singlet σ correlation function and must
be treated carefully in order to extract reliable estimates of model parameters. Note that
the constant only contributes to the p⃗ = 0 correlator, so one method of dealing with this
constant is to work with p⃗ ̸= 0 correlators. Given that we are interested in the energy of the
σ meson in the rest frame, limp⃗→0Eσ(p⃗) = Mσ, this approach requires a good understanding
of the dispersion relation on the lattice.

To motivate the normalization of amplitudes cn and c′j in Eq. (8), we can perform the
discrete cosine transform (DCT-I) of the time-domain correlation function into the frequency
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domain analytically

C̃(p⃗, k) = c0δp⃗,0δk,0 +
1

Nt

∑
n

cn

Ê2
n + ω̂2

k

+
1

Nt

∑
j

c′j

Ê ′2
j + ω̂′2

k

(9)

where

Ên = 2 sinh
En

2
, ω̂k = 2 sin

2πk

2Nt

, ω̂′
k = 2 sin

(
π

2
− 2πk

2Nt

)
. (10)

Comparing the expression for two different spatial momenta p⃗, the energies En and E ′
j will

be different, defining some lattice dispersion relation. But the amplitudes cn and c′j are
momentum independent as normalized, and therefore frame-independent as expected in a
Lorentz-invariant theory, hence a “relativistic” normalization.

In our previous work, we considered another method of dealing with the constant c0 which
was to analyze the finite difference correlation function for the p⃗ = 0 σ meson

∆σ(t) = Cσ(t+ 1)− Cσ(t). (11)

In the model, the cancellation of c0 is exact but in our lattice calculation there is inherent
statistical noise contributing to each time slice, so the cancellation is not exact. In this work,
we propose an improved subtraction scheme for p⃗ = 0 correlation functions

C(t) = C(t)− 1

Nt

Nt−1∑
t′=0

C(t′) (12)

for states that have a time-independent part, like the σ meson. Given our frequency analysis
above, we can see the subtraction is the zero-frequency component of the correlation function

C(t) = C(t) − C̃(0). Furthermore, we know explicitly the functional form of the residual
constant that comes from the integral of the t-dependent part of the correlation function

c0 − C̃(0) = − 1

Nt

∞∑
n=1

cn

M̂2
n

− 1

Nt

∞∑
j=1

c′j

4 + M̂ ′2
j

(13)

Because some of the fit parameters appear in the residual constant, we will include that part
in the fit and shift the constant (Model B)

C(t) = c0 +
nmax∑
n

cn
2 (1− e−MnNt) sinh(Mn)

[
e−Mnt + e−Mn(Nt−t)

]
− cn

NtM̂2
n

+

jmax∑
j

(−1)tc′j

2
(
1− e−M ′

jNt

)
sinh(M ′

j)

[
e−M ′

jt + e−M ′
j(Nt−t)

]
−

c′j

Nt(4 + M̂ ′2
j )

(14)

c0 = − 1

Nt

∞∑
n=nmax+1

cn

M̂2
n

− 1

Nt

∞∑
j=jmax+1

c′j

4 + M̂ ′2
j

.

In counting free parameters, model B will have one more free parameter than model A and
the interpretation of the value of this parameter, c0, will depend strongly on the choice of
nmax and jmax. In particular, we expect c0 → 0 within statistical uncertainties as the number
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of states included in a particular model instance approaches the limit of available statistics
to properly constrain them.

We will also consider a modification of model B (Model C) where we constrain c0 = 0.
It will have the same number of free parameters as model A in an instance where they
include the same number of states. In the context of Bayesian model averaging, we expect
that model B will have a higher relative probability than model C in instances where c0
is statistically non-zero. But with increasing numbers of states eventually model C should
become more probable, also indicating the limit in which the power of the available statistics
to constrain parameters has been exhausted.

C. Staggered Meson Dispersion Relation

The functional momentum dependence of energies EQ(p⃗) extracted from analysis of two-
point correlation functions CQ(p⃗, t) is a complicated, non-perturbative problem because
Lorentz symmetry is broken by the lattice discretization so the theory is not invariant under
boosts. Still, Lorentz symmetry is fully recovered in the continuum limit. Naively we can
expect

a2E2
Q(p⃗) = a2M2

Q + a2p2 +O(a4p4) (15)

where we explicitly show the lattice spacing a in this dimensionless relation and define the
spatial momentum components pi = 2πni/(aNs) and ni ∈ {−Ns/2 + 1, · · · , 0, · · · , Ns/2}
and Ns is the number of lattice sites in the spatial directions.

To improve upon this estimate, one would have to understand the dynamics on the lattice
of the eigenstates corresponding to these energies. This is a challenging problem since the
eigenstates are not simple single-hadron excitations, in general, but are more likely strongly-
interacting multi-hadron states. But, the lowest energy state with given quantum numbers Q
may reasonably be expected to behave like a single-hadron state, particularly if it’s energy
is well below the nearest multi-hadron threshold. In this case, we can approximate the
dispersion relation with that of a non-interacting boson on the lattice [36]

Ê2
Q = M̂2

Q + p̂2 +O(p̂4) (16)

ÊQ = 2 sinh
aEQ

2
, M̂Q = 2 sinh

aMQ

2
, p̂i = 2 sin

api
2

(17)

In the second equation, we have explicitly put in the lattice spacing dependence a. Both
lattice dispersion relations correspond to the same continuum relation as a → 0.

In either of these models, Eqs. (15) or (17), the finite size of the lattice along spatial
directions Ns directly controls the spacing between the discrete momenta but is not expected
to appear explicitly in the finite lattice spacing corrections O(a4p4) or O(p̂4). When we fit
our lattice data on two or more volumes at the same value of the bare coupling and mass,
we will parameterize our fits so that the same lattice corrections are used on all volumes.

D. Staggered Meson Decay Constants

The normalization in Eq. (8) was chosen such that cn → |⟨0 |O|n, p⃗ = 0⟩|2 in the contin-
uum limit with the usual continuum relativistic normalization. Following Eq. (7.5) of [37]
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we define the pion decay constant

√
2F̂π5

(
Ê2

π5
− p̂2

)
= 2mq

1√
Nf

⟨0 |P5| π5(p⃗)⟩ =⇒ F̂π5 =
1√
2

mq

√
|cπ5 |

Ê2
π5

− p̂2
(18)

where Nf in this equation is the number of continuum flavors of a single staggered fermion,

i.e. Nf = 4. Note we put the hat on the symbol for F̂π5 to indicate the form of the lattice
dispersion relation used. We could have just as easily used the other form of the lattice
dispersion relation, which would lead to a slight different definition of the decay constant.
Both definitions should converge to the continuum one in the limit of zero lattice spacing.
This definition is slightly different than ones previously used by the LSD Collaboration for
the pion decay constant [12, 13], but the difference is not statistically significant.

For the isotriplet scalar form factor, there does not seem to be a conventional normal-
ization [38, 39] for the decay constant in QCD as it is an unstable resonance. See review
“Scalar Mesons below 1 GeV” in [40]. In our Nf = 8 theory over the range of fermion masses
we’ve studied, the non-singlet scalar meson appears to be stable, although close in energy
to its decay threshold. We choose to normalize it analogously with the pion decay constant

F̂a0,1 =
1√
2

mq

√
|ca0,1|

Ê2
a0,1

− p̂2
(19)

where ca0,1 is the residue of the first pole in the frequency domain representation of the
non-singlet scalar two-point correlation function, Eq. (9).

For the isosinglet scalar decay constant, we use the normalization defined in Eq. (72) of
[41]

F̂S

(
Ê2

σ − p̂2
)
= mq ⟨0 |S(0, 0)|σ(p⃗)⟩ (20)

where the scalar current is defined as S(x⃗, t) =
∑Nf/4

i=1 χi(x⃗, t)χi(x⃗, t). The two-point corre-
lation function of this scalar current is defined in Eq. (7) and, in terms of this correlation
function, the decay constant is defined

F̂S =
mq

√
|cσ|

Ê2
σ − p̂2

. (21)

In particular, the normalization used in Eq. (7) is essential to correctly normalizing the
decay constant.

E. Finite Volume Corrections

In QCD, finite volume corrections to the pion mass and pion decay constant extracted
from a two-point correlation function calculated on a periodic torus of spatial size L can be
computed in chiral perturbation theory provided MπL ≫ 1 and FπL ≫ 1. See Eq. (6.15)
of [42], for example. In Nf = 8 over the range of fermion masses for which we have relevant
lattice calculations, chiral perturbation theory is unlikely to be a good effective description
for two reasons: the strong fermion mass dependence of Fπ and the stable σ meson with
Mσ ≪ 4πFπ. So it is not expected that finite volume corrections computed in chiral pertur-
bation theory (ChiPT) will exactly match the numerical calculations. Still, it seems likely
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that whatever low energy effective theory replaces ChiPT will have much the same struc-
ture as these arise from contributions of virtual pion degrees of freedom that probe the finite
volume by wrapping the spatial cycles of the torus, and the pion still is the lightest hadron
in the eight-flavor theory. There may be additional contributions from σ-meson degrees of
freedom, but they are expected to be sub-leading due to the somewhat heavier mass.

We will follow the approach used in [13] and use ChiPT-inspired forms to model our finite
volume corrections

MQ(L) = MQ(∞)

[
1 + αQ

M2
π

(4πFπ)2

∞∑
n=1

4 κ(n)√
n MπL

K1(
√
n MπL)

]
(22)

FQ(L) = FQ(∞)

[
1 + βQ

M2
π

(4πFπ)2

∞∑
n=1

4 κ(n)√
n MπL

K1(
√
n MπL)

]
. (23)

The function κ(n) counts the number of lattice vectors n⃗ with integer-valued components
of length

√
n, see Tab. I. In QCD, it is common to expand the sum over modified Bessel

functions K1, assuming MπL ≫ 1 and keep only the leading term, particularly if MπL ≳ 4
in all, leading to

∞∑
n=1

4 k(n)√
n MπL

K1(
√
n MπL) ≈

12
√
2π

(MπL)3/2
e−MπL (24)

In an earlier paper [13], we also used this approximation for the finite volume extrapolation
of Mπ and Fπ. We did not observe any significant change in the result if we included more
terms in the expansion. In this analysis, we will be conservative and not expand the modified
Bessel functions and truncate the sum only after the first eight terms (up to n = 8) although
we expect it will not make a significant difference relative to keeping just the leading term.

n n⃗ |n⃗| κ(n)

0 (0,0,0) 0 1

1 (1,0,0) 1 6

2 (1,1,0)
√
2 12

3 (1,1,1)
√
3 8

4 (2,0,0) 2 6

5 (2,1,0)
√
5 24

6 (2,1,1)
√
6 24

7 — — 0

8 (2,2,0)
√
8 12

9 (2,2,1) 3 24

9′ (3,0,0) 3 6

TABLE I. The number of lattice vectors n⃗ with integer-valued components of length
√
n. Note

there are no vectors of length
√
7 and, starting at length 3, there may be multiple inequivalent sets

of vectors under the cubic group.

Since the infinite volume extrapolation described in this section implicitly assumes that
the pion is a pseudo-Nambu-Goldstone boson, one should use caution when modeling the
extrapolated data provided later in this paper, particularly if one wants to explore other finite
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volume corrections, e.g. due to a light isosinglet scalar. If one assumes that the massless
limit of the theory approaches a conformal fixed point, possible finite volume corrections
were discussed in [43]. In either case, one should use the finite volume data provided in the
supplementary materials [44] when performing further analysis.

F. The GMOR Relation and Near-Conformality

As a guide to constructing low energy effective descriptions Nf = 8 theory, it would be
useful to characterize the extent to which one or a few light states dominates the low-energy
dynamics. An important phenomenological tool for characterizing the degree to which the
dynamics of the Nambu–Goldstone pions dominates low-energy phenomena in QCD was first
described by Gell-Mann, Oakes and Renner (GMOR) [45]. In their original derivation, they
a priori assumed pion-pole dominance and derived the GMOR relation as a consequence.
Our derivation will not initally assume pole-dominance but start with the integral of the
axial Ward–Takehashi identity. In our notation, this can be written

Nt−1∑
t=0

Cπ5 (⃗0, t) =
1

mq

Trcolor

[
GF (⃗0, 0; 0⃗, 0)

]
(25)

which is an exact spectral identity on each gauge configuration, not just in the ensemble
average. In the chiral limit mq → 0 of a theory with spontaneous chiral symmetry breaking,
the trace on the right hand side will approach a constant following the Banks–Casher relation
[46, 47] and the integrated pion correlation function will diverge due to the massless Nambu–
Goldstone pion. Using Eqs. (9) and (18) we can identify the rate of this divergence with
parameters in our fit functions

Nt−1∑
t=0

Cπ5 (⃗0, t) →
cπ5

M̂2
π5

= 2
F̂ 2
π5
M̂2

π5

m2
q

as mq → 0. (26)

Using the normalization of the isosinglet scalar current in Eq. (20) leads to a generalization
of the GMOR relation for general Nf

mq ⟨S⟩ = mq
Nf

4
⟨χχ⟩ ≥ Nf

2
F̂ 2
π5
M̂2

π5
. (27)

Now, if we assume spontaneous symmetry breaking and pion pole-dominance, the inequality
becomes an equality in the limit mq → 0 and ⟨S⟩ approaches a well-defined low energy
constant, which is the usual GMOR relation.

Patella [48] has noted that Eq. (27) should also be true in a mass-deformed CFT with
a large mass anomalous dimension (1 < γ∗ < 2) due to a large contribution to the pion
correlation function generated by the running of the mass. They propose examining the
GMOR ratio

RG(mq) ≡
mq ⟨χχ⟩
2F̂ 2

π5
M̂2

π5

=


1 , (near-conformal)

1 < RG(0) < ∞ , (CFT, 1 < γ∗ < 2)

∞ , (CFT, 0 < γ∗ < 1)

as mq → 0 (28)

for an indication of whether the theory is near-conformal or conformal in the chiral limit.
In a near-conformal scenario, it is not clear at what fermion mass mq one would expect to
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see the transition from the approximately hyperscaling regime where RG(mq) > 1 to the
spontaneously broken regime where RG(mq) → 1 as mq → 0. Just observing RG(mq) > 1
at some finite fermion mass is not sufficient to establish IR conformality. In particular, one
must follow the correct order of limits: volume to infinity, lattice spacing to zero, and then
fermion mass to zero.

III. BAYESIAN MODEL AVERAGING

A. General Setup

One of the challenges observed in our previous analysis of the light meson spectrum in the
Nf = 8 theory [12] were large systematic errors due to fit parameters varying significantly
over a range of different fits while χ2/dof did not. We define log p(D|M) by the usual
chi-squared prescription

log p(D|M) ∝ −1

2

∑
t,t′∈T1

(C(t)− fM(t)) Σ−1
tt′ (C(t′)− fM(t′)) (29)

where C(t) is correlation function computed from our lattice ensemble D, fM(t) is the
function for model M to be fitted by minimizing the log-likelihood, T1 is the subset of times
selected for fitting and Σtt′ is the covariance of the correlation function C(t) on the subset T1.
Assuming all the quantities are properly estimated from the ensemble, the log-likelihood is
expected to sample the chi-squared distribution for degrees of freedom equal to the number
of times in T1 minus the number of free parameters in M .

Subsequent to our earlier analysis, Jay and Neil proposed [25] a Bayesian model averaging
analysis framework which estimates log p(M |D), the probability that a model M is a good
representation of the data selection D. One suggested estimator of the model probability
is based on the Akaike Information Criterion (AIC), provided nuisance model parameters
are assigned to account for data subsets not included in the fit. For example, let M be a
model with NM free parameters and the maximal data set has NT times available to be fit.
If we perform the fit only on a subset of times T1 of size N1 then the number of data points
not included N0 = NT −N1 must be assigned nuisance parameters. Thus, for the AIC, the
number of relevant parameters is NM +N0 and the model probability [49] is

log p(M |D) ∝ log p(D|M)− (NM +N0) (30)

After the model probability has been estimated for the full set of models {M} to be consid-
ered for the analysis, we normalize this set of probabilities:

∑
{M} p(M |D) = 1. In App. B,

we provide some details how we perform this sum accurately given the potential for widely
varying values of log p(M |D).

With an reasonable estimate of the model probability, it seems straightforward to con-
struct expectation values and variances of model parameters over the set of possible models
considered. For example, the expected value of a model parameter is

E(a) =
1

Σ1

∑
{M |a∈M}

aM p(M |D) Θ [p(M |D)− pcut]

Σ1 =
∑

{M |a∈M}

p(M |D) Θ [p(M |D)− pcut] (31)
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where, to make sure the notation is clear, we compute a weighted average over only the
subset of models that contain the parameter, {M |a ∈ M} and further consider only models
where the model weight is greater than some pre-determined minimum pcut, as enforced by
the Heavyside function Θ.

The variance of the model-averaged expectation value has two contributions. The first,
and usually dominant, contribution is the weighted average over models of the square of the
error estimate σa,M for the parameter aM in a given model M

E(σ2
a) =

1

Σ1

∑
{M |a∈M}

σ2
a,M p(M |D) Θ [p(M |D)− pcut] (32)

The second, usually sub-dominant, contribution is the weighted variance of the model esti-
mates of parameters aM , relative to the model-averaged expectation E(a)

Var(a) =
Σ1

Σ2
1 − Σ2

∑
{M |a∈M}

(aM − E(a))2 p(M |D) Θ [p(M |D)− pcut]

Σ2 =
∑

{M |a∈M}

p(M |D)2 Θ [p(M |D)− pcut] (33)

The final error estimate for the model average of a parameter is to add the two contributions
in quadrature

σa =
√
E(σ2

a) + Var(a) (34)

Now we can discuss the motivation behind the probability cut pcut. In our experience,
the model-averaged E(a) tend to be dominated by a few choices whose p(M |D) ∼ O(1).
It seems reasonable to expect that E(σ2

a) should be similarly dominated by choices whose
p(M |D) ∼ O(1) and not p(M |D) ∼ O(pcut). However, we have observed cases of overfitting
for certain models where as the data selection changes such that p(M |D) decreases, σ2

a,M

increases at a faster rate, leading to those very unlikely model choices to dominate the
model average of the squared error E(σ2

a). pcut can be adjusted to minimize the impact of
this scenario.

To understand how this can happen, we recall that uncertainty of a two-point meson
correlation function grows exponentially in Euclidean time [50]

Var [CQ(p⃗, t)] ∼ exp [2 (EQ(p⃗)−Mπ5) t] (35)

Now, for a given model function M with its fixed number of exponential terms, there is
a certain tmin for which −χ2/2 ∼ (NM − tmax + tmin − 1)/2, indicating a good fit using
the usual chi-squared criteria χ2/dof ∼ 1. For fits on the interval [t, tmax], t < tmin, there
will be no good fits according to chi-squared, whereas for fits on the interval [t, tmax], t >
tmin, −χ2/2 will approximately increase by (t− tmin)/2 indicating continued goodness-of-fit.
However, as the minimum t increases in a given fit, the number of times not included in
the fit also increases: ∆N0 = t − tmin. The net effect of increasing t > tmin is to decrease
p(M |D) ∝ exp(−(t − tmin)/2). If EQ(p⃗) − Mπ5 > 1/4 we expect that the uncertainties in
model parameters will grow faster than the model probability decreases as t > tmin. Based
on these considerations, we have found pcut = 10−3 is a reasonable choice for this analysis and
we adopt it throughout. While this analysis was nearing completion, an alternate approach
to dealing with these challenges was proposed [51]. It would be interesting to compare these
two approaches in future analyses.
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In our analysis of I = 2 π5π5 scattering [13], we implemented Bayesian model averag-
ing. As we had hoped, the systematic uncertainties for π5-related observables were greatly
reduced in that paper relative to earlier paper [12]. Also, the problem with uncertainties
increasing for t > tmin was not apparent because we were considering primarily π5-related
observables. We expect this will not be the case for σ and a0,1-related observables.

B. Shrinkage Estimator of Covariance

Suppose one wants to estimate from a multivariate sample a particular element of the
covariance matrix, then one usually uses the standard unbiased sample estimator

Σij =
1

N − 1

N∑
n=1

(x
(n)
i − x̄i)(x

(n)
j − x̄j) (36)

which is derived from the maximum likelihood estimate (MLE) of covariance of a multivari-
ate Gaussian distribution. By the central limit theorem, as N → ∞ the standard estimator
approaches the MLE for any distribution. To estimate a full RK×K covariance matrix, there
are K(K + 1)/2 independent matrix elements that must be estimated, requiring N inde-
pendent samples for each one. Furthermore, accurate estimation of the covariance is crucial
when using the chi-squared prescription in Eq. (29) since the inverse of the covariance matrix
is used and the consequence of poorly-estimated small eigenmodes is amplified. Empirically,
it has been found that approximately 50K(K+1)/2 samples are needed in lattice QCD cal-
culations for the standard estimator to be sufficiently accurate for chi-squared fitting [52, 53]
.

If you only care about this particular matrix element, or perhaps one more, then this is
the optimal estimator to use. However, if you want to simultaneously estimate three or more
elements of the covariance matrix, Stein [54] proved that this was not the optimal estimator
in the sense of minimizing the combined mean square error, i.e.

∑
ij(Σij − Σ∗

ij)
2 where Σ∗

ij

is the true but unknown covariance. This was so counterintuitive at the time, it was called
Stein’s paradox.

For our purposes, Stein’s improved estimator will take the form of the linear shrinkage
estimator of covariance

σij(λ) = λΣiiδij + (1− λ)Σij, λ ∈ [0, 1] (37)

and for a given sample ensemble, there exists some optimal λ∗ that minimizes the MSE and
λ∗ → 0 as N → ∞. Since we don’t know the true covariance Σ∗ we must estimate the
optimal value. Based on work by Ledoit and Wolf [55], Schäfer and Strimmer [56] gave a
fairly straightforward estimator for optimal value of λ

λ̂∗ =

∑
i≤j V̂ar(Σij)∑

i ̸=j Σ
2
ij

(38)

In App. C, we show a one-pass algorithm to compute the sample estimate of V̂ar(Σij).
The shrinkage estimator of covariance has been suggested for use in lattice quantum field

theory (LQFT) applications for some time [57, 58]. Only recently has the shrinkage estimator
been actually employed for use in published lattice QCD analyses [59–62]. Recent work by
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Ledoit and Wolff [63, 64] have proposed an improved non-linear shrinkage estimator. Burda
and Jarosz [65] have also developed an improved shrinkage estimator and have developed an
open-source Python library called shrinkage to assist in calculations. In this analysis, we
have conservatively chosen to use linear shrinkage rather than one of the newer alternatives.

IV. DETAILED EXAMPLE OF MODEL-AVERAGING ANALYSIS ON A SINGLE

ENSEMBLE

We will discuss in detail our analysis of the 963 × 192, β = 4.8, m = 0.00125 ensemble
which is the larger volume companion to the 643 × 128 ensembles discussed in our previous
work [12, 13]. It will also serve as a detailed example of how we implemented our model-
averaging analysis.

A. Data Selection

In order to compare models fit to different data subsets, we need to first identify the
maximal data set T which could be considered for any model. Although our staggered
meson two-point correlation function data is computed from t = 0 to t = Nt − 1 = 191, the
data are first symmetrized: (C(t) +C(Nt − t))/2 → C(t) and now the largest possible data
set is from t = 0 to t = Nt/2 = 96. As already mentioned [50], the signal-to-noise decreases
exponentially at large times, so for most correlators, particularly at non-zero momenta p⃗ ̸= 0,
there is insufficient signal to reasonably include those data points in the analysis particularly
since this will exacerbate the problem of reliable covariance estimation. We will not use data
for t = 0, 1 given the difficulties of interpreting a staggered correlation function separated
by one unit in time in terms of a transfer matrix [37]. We compute the jackknife ratio
CQ(p⃗, t)/CQ(p⃗, 1) and choose a minimum value for this quantity for each state Q where
there is still good signal-to-noise for all p⃗. This defines tmax for each Q and p⃗.

Fig. 1 shows examples of our procedure. On the left, for the π5 meson, we see good signal
for all momenta to the middle of the lattice and we also see nice straight lines on the log plot
indicating clear signal of a single decaying exponential. On the right, for the a0,1 meson,
the situation is somewhat different. There does seem to be pretty good signal to the middle
of the lattice, but the nature of the signal changes at large times, with an apparent change
of slope and an oscillating signal becoming dominant. We use a rough model to guide our
choice of where to draw a horizontal line based on the dispersion relation E2

Q = M2
Q + p2

and assuming that a single exponential dominates the correlation function at times tc where
it crosses the line

CQ(p⃗, tc)

CQ(p⃗, 1)
= e−

√
M2

Q+p2(tc−1) = const =⇒ tc(p⃗) ∝
1√

M2
eff + p2

(39)

We compare the computed values to this model and we see good agreement along the shown
cut line. If we lower the cut line, the observed values deviate from the prediction, partic-
ularly for p2 = 4, so we conservatively set the cut line at 3 × 10−6. Note, this model will
not work well as tc → Nt/2 since it does not include the additional contribution due to pe-
riodic boundary conditions which becomes important in that region. A modified expression
involving hyperbolic cosines can be derived but we didn’t need it here.
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FIG. 1. Two-point correlation functions for π5 and a0,1 mesons. In the right panel, data points

below the horizontal line at 3× 10−6 were not included in any fits.

FIG. 2. Two-point correlation functions for σ meson. Left panel shows the unsubtracted p⃗ =

0 correlator. Center panel shows p⃗ = 0 subtracted correlator. Right panel data points below

horizontal line for p⃗ ̸= 0 not included in fits. The data from the central panel is included on the

right by shifting upwards by a sufficiently large constant C(p⃗ = 0, t) + 0.045 so that the result is

positive and can be displayed on a log plot. The shifted data cannot be used in the data selection

analysis.

The situation for the σ meson correlator is more complicated. In Fig. 2 on the left is
the unsubtracted correlator Cσ(p⃗ = 0, t). It should be clear that just subtracting some
constant value around c0 = 262.08 · · · in an uncorrelated way, following Eq. (8), would
be unsatisfactory because the signal-to-noise would fall below one in a few time units. The
center panel shows Cσ(p⃗ = 0, t) and, following Eq. (14), the previously large positive constant
has been replaced with a three orders of magnitude smaller negative constant and greatly
enhanced signal-to-noise. However, we still need to figure out at what time tc the signal-
to-noise of the exponentially decaying part of the correlator falls below an acceptable level.
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FIG. 3. Relative model probabilities for the p⃗ = 0 π5 σ and a0,1 mesons. The different models are

labeled by a letter A, B, C and integers (nmax, jmax), the number of non-oscillating and oscillating

states, as described in Sec. II B. The range of time values in each fit [tmin, tmax] are shown in the

figures. The uppermost curves correspond to tmax as the maximum value in Tab. II and the lower

curves correspond to decreasing tmax by one.

We cannot judge this from the central panel since the large time behavior is dominated by
the integral of the correlation function. Instead, we compute the ratio Cσ(p⃗, t)/Cσ(p⃗, 1) for
p⃗ ̸= 0 and rely on our crude model Eq. (39) to extrapolate to p⃗ = 0, shown in right panel.
The results in the data selection procedure are summarized in Tab. II.

p⃗ = (0, 0, 0) p⃗ = (1, 0, 0) p⃗ = (1, 1, 0) p⃗ = (1, 1, 1) p⃗ = (2, 0, 0)

π5 [2,96] [2,96] [2,96] [2,96] [2,96]

a0,1 [2,70] [2,63] [2,58] [2,53] [2,50]

σ [2,52] [2,41] [2,34] [2,30] [2,27]

TABLE II. Summary of maximum allowed time ranges for fitting in model averaging procedure

for the 963 × 192, β = 4.8, m = 0.00125 ensemble.

B. Model Averaging

As previously discussed, this analysis will use model averaging [25]. In Fig. 3, we show
how varying the fitting range t ∈ [tmin, tmax] affects the relative model probabilities p(M |D).
We focus on the p⃗ = 0 mesons since those states are most susceptible to the presence of
t-invariant constant contribution to the correlation function. This is true even in the case
of the a0,1 meson where the expected constant contribution should vanish in the infinite
statistics limit. The π5 meson is much less affected by any such constant as can be seen by
the preference for model A fits in the model averaging.

C. Dispersive Analysis

Once the model parameters and their errors have been computed for each correlation
function computed on a given volume, at a given fermion mass, and at a given spatial
momentum p⃗, the results from various momenta can be used to constrain the values of the
parameters in the rest frame using the dispersion relations outlined in Eqs. (15) through
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FIG. 4. Momentum dependence of the energy Êπ5 and decay constant F̂π5 . Fits to polynomials in

p̂2 up to quadratic order are shown.

FIG. 5. Momentum dependence of the energy Êσ and decay constant F̂S . Fits to polynomials in

p̂2 up to quadratic order are shown.

(17) for the rest mass MQ and Eqs. (18) through (21) for the decay constants F̂Q. Parameter
estimation is done using least-squared fitting with possible finite lattice spacing corrections
included in even powers of p̂2 or (ap)2, as appropriate. Since the number of lattice correction
terms needed is unknown a priori we use model averaging to average over the different model
choices.

This procedure is probably of marginal benefit for the π5 rest mass and decay constant
since those quantities are already very accurately determined directly in the p⃗ = 0 frame
and the other momentum frames do not add significant additional information, as shown in
Fig. 4. However, these fits also show how the momentum-dependence is consistent with the
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FIG. 6. Momentum dependence of the energy Êa0,1 and decay constant F̂a0,1 .

expected dispersion relations up to small lattice artifacts.
For the isosinglet scalar σ in Fig. 5 and isotriplet scalar a0,1 in Fig. 6, we see similar

consistency with the expected dispersion relations. Now, the information from the non-zero
momentum frames provides additional significant constraints on the rest mass and decay
constant resulting in overall smaller uncertainties than if only the p⃗ = 0 results alone were
used. This is particularly important for the σ channel where the correlation function in the
p⃗ = 0 frame has a difficult to subtract constant which is not present in non-zero momentum
frames.

V. INFINITE VOLUME EXTRAPOLATION

We repeat the steps described in detail for one ensemble in Sec. IV for all ensembles in
this study. We would like to compare the results of our calculations with various models but
those models usually only apply to the system in an infinite volume. We will extrapolate
our data to the infinite volume limit using the model described in Sec. II E. At each volume
and fermion mass we compute the quantity

ξ(mq, L) ≡
M2

π5

(4πF̂π5)
2

8∑
n=1

4 κ(n)√
n Mπ5L

K1(
√
n Mπ5L) (40)

where the mq dependence is implicit in the relevant infinite volume quantities Mπ5 , F̂π5 .
With this computed quantity, the analysis becomes a simple linear fit.

If we focus just on Mπ5 and F̂π5 , we know in chiral perturbation theory, the quantities απ5

and βπ5 defined in Eqs. (22) and (23) appear at a specific order in the chiral expansion and
have no implicit fermion mass dependence. We use the same finite volume model for other
masses and decay constants and we will similarly assume the parameters αQ, βQ are mass-
independent as a model choice. This means that αQ, βQ are determined by a simultaneous
fit to the data at all fermion masses and volumes.
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The choice of the expansion parameter ξ(mq, L) being defined in terms of infinite-volume
quantities might pose a chicken-and-egg problem when attempting to extrapolate π5 data
since the infinite volume values are not known a priori. In this case, we start by using the
values on the largest volume and then iterate a few times and the result converges quickly.

An earlier version of the finite volume extrapolation for Mπ5 and Fπ5 were published
previously [13] where it was observed to be a relatively minor correction on our volumes.
Our current results are consistent with them, so we focus here on σ channel. The fit of

Mσ(mq, L) is shown in Fig. 7 and the fit of F̂S(mq, L) is shown in Fig. 8. αQ, βQ for various
channels studied in this work are summarized in Table III. Both from the figures and from
the uncertainties on ασ and βσ in the table, it is clear that the uncertainties in our σ meson
observables are still too large to reliably extract the sign and magnitude of these finite
volume corrections. We hope to return to this issue in a future publication.

Studying the other parameters in Table III reveals relationships between parameters
which are generated by the strong dynamics and which are qualitatively similar to QCD.
First, sign(αQ) = −sign(βQ) is a well-known feature in QCD. Second, the fact that
sign(απ5) = −sign(αa0,1) is also observed in earlier studies [3] and was previously misin-
terpreted as an indication of “parity doubling” in near-conformal gauge theories because
finite volume effects would push the masses and decay constants of parity partners π5 and
a0,1 towards degeneracy. We also note that without a proper infinite-volume extrapolation,
if the mass of the a0,1 meson were observed to be stable but just below decay threshold,
one could wonder whether the state might become unstable in a larger volume. In our
calculations, the a0,1 meson remains stable even after infinite volume extrapolation as can
be seen in Tab. IV.

αQ χ2/dof βQ χ2/dof

π5 6.53(29) 3.12 -9.3(1.3) 0.65

σ 2(17) 2.05 -2(32) 0.15

a0,1 -27.4(4.6) 2.88 11(11) 0.29

TABLE III. Summary of finite volume corrections αQ, βQ. All fits have 4 dof. Multiply these

parameters by 3/(2
√
2π3) ≈ 0.19 to compare with [13].

mq 0.00125 0.00222 0.00500 0.00750 0.00889

Mπ5 0.081082(32) 0.10870(12) 0.165691(73) 0.205711(33) 0.22534(13)

F̂π5 0.021677(40) 0.02794(12) 0.03982(10) 0.048314(66) 0.05262(15)

Mσ 0.1174(44) 0.1545(79) 0.2408(77) 0.2744(71) 0.301(11)

F̂S 0.0254(17) 0.0361(37) 0.0536(32) 0.0711(36) 0.0787(59)

Ma0,1 0.1536(10) 0.2070(53) 0.3119(28) 0.3773(18) 0.4193(32)

F̂a0,1 0.00691(14) 0.00944(43) 0.1480(27) 0.01829(24) 0.02047(42)

Mρi [12] 0.1709(65) 0.2197(37) 0.3024(63) 0.36962(77) 0.4093(21)

TABLE IV. Final summary of infinite volume ground state rest masses and decay constants in lat-

tice units. Only statistical uncertainties are shown. Data for Mρi copied from [12] for convenience.

See Table IX for results with systematic uncertainties included. Supplementary results for all fit

parameters are available [44].
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FIG. 7. Infinite volume extrapolation of the rest massesMσ(mq). ασ = 1.9±16.7 and χ2/dof = 2.05

with 4 dof.

VI. SYSTEMATIC ERROR ANALYSIS

In our previous I = 2, ππ scattering paper [13], we made a crude estimate of the relative
systematic errors affecting our statistical determinations of the π5 meson mass Mπ5(mq) and
decay constant Fπ5(mq). Our current statistical-only estimate of uncertainties for quantities

like Mπ5(mq) and F̂π5(mq) as shown in Tab. IV are likely underestimates due to various
factors: a small number of independent samples; various modeling choices regarding disper-
sion relations and finite volume effects; data quality cuts and model probability cuts in the
model averaging procedure; plus the interplay between the amount of independent data and
choices made in the rest of the analysis through the reliability of the shrinkage estimator of
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FIG. 8. Infinite volume extrapolation of the decay constants F̂S(mq). βσ = −1.9 ± 32.0 and

χ2/dof = 0.15 with 4 dof.

covariance.
We would like to estimate how large these effects might be in terms of a single relative

systematic error parameter ρ across all the ensembles. We will estimate ρ using a number
of different observables and then combine those estimates to get an average value for ρ. For
example, if σM is the statistical-only estimate of the uncertainty of a given mass M , we
would like to estimate a relative systematic uncertainty ρM such that the total uncertainty
is

M(mq)±
√

σ2
M(mq)

+M(mq)2ρ2M (41)

We assume that the systematic effect is similar across all the different ensembles labeled by
different fermion masses mq so that the parameter ρM doesn’t depend on mq.
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To estimate ρM , we don’t want to assume any explicit functional dependence for M(mq),
in particular, that we would expect to be valid for small mq including as mq → 0. Instead,
we imagine that whatever the correct function, it is relatively smooth and slowly-varying
and can be approximated by a Taylor series expansion around the midpoint m0 = 0.00507
of our range of mq and |mq −m0| ≤ ∆m = 0.00382. We can fit the data to a polynomial

M(mq) ≈
nmax∑
n=0

an (mq −m0)
n (42)

Given that we have only five different mq values, we will compare the χ2 and AIC values for
nmax=2 and nmax=3 and use those comparisons to estimate ρM . We will also use the ratio
test to check for convergence of the series on m0 ±∆m

|an+1∆
n+1|

|an∆n|
< 1, ∀n (43)

Actually the ratio test only requires the ratio < 1 as n → ∞ for convergence, but we will
assume convergence if its true term-by-term up to the largest n we can fit. For this analysis,
we will use the data in Tab. IV.

A. Fits using statistical-only data

In this section, in Tab. V we show fits of Eq. (42) to the statistical-only data from Tab. IV
for nmax=2, 3. We then test for convergence by computing the ratios in Eq. (43) and collect
the results in Tab. VI.

obs. nmax χ2 log p(M |D) a0 a1 a2 a3

Mπ5 2 1052.0 -528.0 0.166768(60) 18.563(11) -1000.9(6.4)

3 159.5 -83.8 0.167345(63) 17.472(38) -950.4(6.6) 100500(3400)

F̂π5 2 76.0 -41.0 0.040144(82) 3.967(15) -222.3(8.4)

3 14.3 -11.2 0.040275(84) 3.581(51) -207.4(8.6) 33600(4200)

Mσ 2 1.6 -3.8 0.2382(64) 22.9(1.3) -2250(640)

3 0.8 -4.4 0.2384(64) 19.5(4.1) -2122(657) 29(33) ×104

F̂S 2 0.6 -3.3 0.0551(28) 6.93(62) -200(290)

3 0.4 -4.2 0.0550(28) 6.1(2.0) -160(300) 6(16) ×104

Ma0,1 2 14.7 -10.4 0.3097(22) 33.82(36) -1820(210)

3 0.0 -4.0 0.3136(25) 28.0(1.5) -1870(210) 46(12) ×104

F̂a0,1 2 1.9 -3.9 0.01483(23) 1.726(46) -89(23)

3 0.0 -4.0 0.01489(23) 1.50(17) -82(23) 19(14) ×103

TABLE V. Basic fits using statistical-only data from Tab. IV to model function in Eq. (42). Bolded

entries indicate observables where model probabilities are higher for nmax = 2 than nmax = 3.

If we first look at the model probabilities, we see when the fit is highly-constrained,
indicated by large χ2 values, then the fit with nmax = 3 is preferred relative to nmax = 2.
This is the expected behavior since adding extra fit parameters in a highly-constrained fit
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obs. nmax ∆m

∣∣∣a1a0 ∣∣∣ ∆m

∣∣∣a2a1 ∣∣∣ ∆m

∣∣∣a3a2 ∣∣∣
Mπ5 2 0.42521(36) 0.2060(14)

3 0.39884(95) 0.2078(15) 0.404(15)

F̂π5 2 0.3775(19) 0.2141(86)

3 0.3397(56) 0.2212(97) 0.618(88)

Mσ 2 0.368(24) 0.37(12)

3 0.312(68) 0.42(15) 0.52(66)

F̂S 2 0.481(54) 0.11(16)

3 0.43(14) 0.10(19) 1.6(5.9)

Ma0,1 2 0.4171(64) 0.206(26)

3 0.342(20) 0.254(35) 0.94(26)

F̂a0,1 2 0.445(15) 0.197(54)

3 0.358(46) 0.211(64) 0.86(72)

TABLE VI. Ratios for convergence testing of fits in Tab. V. The fit parameter covariance matrix

(not shown) was used to compute these uncertainties. Bolded entries indicate observables where

the convergence test may fail due to large values or uncertainties.

obs. nmax f ′(mq) = 0 f ′′(mq) = 0

Mπ5 2 0.013

3 0.0070± 0.0069i 0.0070

F̂π5 2 0.013

3 0.0059± 0.0056i 0.0059

Mσ 2 0.0089

3 0.0062± 0.0040i 0.0062

F̂S 2 0.021

3 0.0046± 0.0054i 0.0046

Ma0,1 2 0.0131

3 0.0052± 0.0043i 0.0052

F̂a0,1 2 0.0135

3 0.0053± 0.0050i 0.0053

TABLE VII. Zeroes of the derivatives of fits in Tab. V.

usually reduces the χ2 by a sufficient amount to increase the model probability. However,
if the fit is poorly-constrained, indicated by a small χ2, adding extra parameters may not
increase the model probability. Observables where this occurs are highlighted in Table V and
those observables are probably too noisy to help constrain the systematic error parameter
ρ.

Looking at the convergence test in Table VI, again we highlight examples where data
were too noisy to pass the test with confidence. Again, we will not use those observables to
help constrain ρ. Note also the strong overlap in the lists of rejected observables from both
tables. Finally, we don’t expect that the functions will have extremal points in the region
where it approximates the data. The zeroes of the derivatives are shown in Tab. VII.
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B. Estimating Relative Systematic Error

To estimate the relative systematic error parameter ρ, from Eq. (41) as ρ increases the
error bars will increase and the corresponding χ2 will decrease. What value of χ2 should we
choose to determine ρ? A priori, two interesting values come to mind: (I) the mean value
of the chi-squared distribution for k degrees of freedom, i.e. χ2

k(ρ
(I)) = k; (II) the value of

χ2
k such that one expects 68% of the time a random sample of the chi-squared distribution

should be less than or equal to that value, i.e. χ2
1(ρ) = 1, χ2

2(ρ
(II)) ≈ 2.3.

A posteriori, we noticed that from a model averaging perspective, the 4-parameter cubic
polynomial fit has the higher model probability at ρ=0 in cases where the statistical error
is small compared to the expected systematic error. In the ρ → ∞ limit, χ2 → 0 and the
most likely model is the one with the smallest nmax. As ρ increases, there is a point where
the quadratic and cubic polynomial fits have equal probability. We define

AIC(ρ, nmax) =
1

2
χ2
5−nmax

+ nmax + 1 (44)

and choose a third interesting value of ρ: (III) AIC(ρ(III), 2) = AIC(ρ(III), 3). Note this
does not always have a solution, particularly if the quadratic fit has a lower AIC at ρ = 0.
A posteriori we can rationalize this choice as the point where the quadratic and cubic
descriptions of the data are equally good (or bad) from an information-theoretic perspective.

obs. nmax ρ(I) ρ(II) ρ(III)

Mπ 2 0.0169 0.0158 0.0162

3 0.0068 0.0068 0.0162

Fπ 2 0.0210 0.0196 0.0197

3 0.0098 0.0098 0.0197

TABLE VIII. Various estimates of the systematic error parameter ρ as determined by methods

described in the text.

C. Summary of Systematic Error Analysis

From Tab. VIII we can see there are eight unique ρ values from approximately 0.007
to 0.021. Rather than pick just one, we consider a few summary statistics: the arithmetic
mean ρa = 0.0157, the median ρm = 0.0165, or the geometric mean ρg = 0.0148. All give
relatively similar values close to the central grouping. We make a conservative choice and
choose the largest of the three ρ = ρm = 0.0165. If we compare this estimate to the previous
rough guess of 0.01 quoted in [13], it is nice to see they are not too different and that 0.01
falls within the range of estimated values. A final summary of our results with the relative
systematic error included is given in Table IX.

In Fig. 9 we compare the previously computed results for Mσ with combined statistical
and systematic errors as described in [12] with the new results of Tab. IX for Mσ and Mπ5 .
The values for

√
8t0/a are taken from Tab. I of [12] and the plot style is similar to Fig. 10 of

[12]. The conclusion we draw from this comparison was that the previous analysis method for
computing Mσ led to systematically lower mass values and that the method used previously
to estimate systematic errors was sufficiently conservative as to cover the the downward shift
of the result.
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mq 0.00125 0.00222 0.00500 0.00750 0.00889

Mπ5 0.0811(13) 0.1087(18) 0.1657(27) 0.2057(34) 0.2253(37)

F̂π5 0.02168(36) 0.02794(47) 0.03982(66) 0.04831(80) 0.05262(88)

Mσ 0.1174(48) 0.1545(83) 0.2408(87) 0.2744(85) 0.301(12)

F̂S 0.0254(17) 0.0361(37) 0.0536(33) 0.0711(38) 0.0787(60)

Ma0,1 0.1536(27) 0.2070(63) 0.3119(58) 0.3773(65) 0.4193(76)

F̂a0,1 0.00691(17) 0.00944(45) 0.1480(36) 0.01829(39) 0.02047(54)

Mρi [12] 0.1709(71) 0.2197(52) 0.3024(80) 0.3696(61) 0.4093(71)

TABLE IX. Final summary of infinite volume ground state rest masses and decay constants with

relative systematic error of ρ = 0.0165 included following Eq. (41). Data for Mρi derived from [12]

for convenience. Results with only statistical errors in Table IV.

FIG. 9. A comparison of Mσ computed previously [12] with the results from Tab. IX.

VII. COMMENTS ON CHIRAL EXPANSIONS

While the SU(3) Nf = 8 theory with massive Dirac fermions is a potentially interesting
theory on its own, being a possible candidate for composite dark matter [66], the theory
closer to the chiral limit mq → 0 might also be relevant for composite Higgs phenomenology.
As stated in Sec. I, our results alone are not sufficient to establish with certainty whether
the massless Nf = 8 theory is inside or outside the conformal window. But, the low energy
content of the two scenarios is quite different: in one case a very strongly coupled conformal
field theory and in the other case massless Nambu-Goldstone bosons and possible light flavor-
singlet scalar resonance with a mass of order Fπ. Specific models will appear quite different
depending on the scenario, and when fitted to our data, those models will, in general, be
an expansion in some small parameter which vanishes in the chiral limit. We will discuss
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different specific extrapolations in detail in a companion paper [34].
Here we note that based on one’s a priori expectation for the nature of the low-energy

theory in the chiral limit, the choice of expansion parameter can lead to very different
presentations of the data. One could naively plot results vs. the fermion mass mq, or some

power of the fermion massm
1/(1+γ∗)
q , 0 ≤ γ∗ ≤ 2 motivated by assuming conformal symmetry

in the chiral limit, or χ ≡ M2
π5
/(4πF̂π5)

2 by assuming spontaneous chiral symmetry breaking
in the chiral limit. In theory like SU(3) Nf = 2 (QCD), these choices often don’t make any
appreciable difference in the presentation of the data. But in this theory, if the chiral limit
is conformal, the expansion parameter χ doesn’t vanish as mq → 0. Visually, we can see
the difference in Fig. 10. Since the value of γ∗ is a dynamical parameter that can only be
determined through a careful extrapolation, we plot three representative values that cover
weakly and strongly-coupled CFTs plus an intermediate value. Regardless of which value
of γ∗ is chosen, χ varies significantly over the range of mq with a fair degree of curvature
which makes it difficult to estimate how small mq must be before the constant term in
χ dominates the leading mq-dependent term. Of course, if χ vanishes in the chiral limit,
then the constant term will never dominate. This suggests it will be difficult to distinguish
with much certainty given our current results whether or not χ vanishes in the chiral limit.
Calculations at smaller fermion masses are needed.

FIG. 10. Chiral expansion parameter χ = M2
π5
/(4πF̂π5)

2 vs. other chiral expansion parameters

m
1/(1+γ∗)
q . If the theory is conformal χ should be non-zero in the chiral limit. If the theory is

spontaneously broken, χ should be zero in the chiral limit.

We can now present the results for the spectrum in two different ways. In Fig. 11, on the
left is a presentation appropriate when assuming the theory is conformal in the chiral limit
with a mass anomalous dimension γ∗ ≈ 1. In units of the lattice spacing a, the masses of
all the hadrons are expected to extrapolate to zero since any non-zero hadron mass would
break conformal symmetry. On the right is a presentation assuming the chiral symmetry is
spontaneously broken in the chiral limit and the relevant scale of chiral symmetry breaking

is set by 4πF̂π5 . All the hadron masses except the pion should be non-zero in the chiral

limit. Plotted this way, the pion is shown as a simple curve since Mπ5/4πF̂π5 =
√
χ. This
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also makes it easy to display the energy threshold as a dotted line for decay to two pions.
In the current data set, both the flavor-singlet and non-singlet scalar mesons appear to be
unable to decay to two pions.
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FIG. 11. Two different presentations of the spectrum from Tab. IX. On the left, in units of the

lattice spacing a vs. a chiral expansion parameter assuming conformal symmetry and γ∗ ≈ 1. On

the right, in units of the chiral breaking scale 4πF̂π5 vs. a chiral expansion parameter assuming

spontaneous chiral symmetry breaking. The dotted line on the right indicates the energy threshold

for decays to two pions.

Focusing solely on the data presented in this section, it is still far from clear whether
or not the chiral parameter χ vanishes in the chiral limit. On the other hand, χ varies
significantly with the fermion mass which also suggests we are far from the hyperscaling
limit where χ should be a non-zero constant. Recent numerical studies with improved gauge
action [10] suggest that the SU(3) Nf = 8 system could be at the opening of the conformal
window, or at least very close to it. There are indications of an infrared fixed point at much
stronger couplings than what is probed by our data in this paper. This is so even if Nf = 8
is below the conformal window. Therefore, corrections to scaling in the gauge coupling
could be significant. This can explain our inability to distinguish between the conformal
and chirally broken scenarios.

VIII. GELL-MANN OAKES RENNER (GMOR) RATIO RESULTS

As discussed in Sec. II F, numerical studies of the GMOR ratio can shed light on the
low-energy behavior of the Nf = 8 theory by measuring how much the ground-state pion
pole contributes the pseudoscalar two-point correlation function. A value close to unity
indicates pion pole-dominance. Tab. X shows the computed values for the chiral condensate
and the integrated pseudoscalar correlation function. Although computed by two different
techniques, the results agree extremely well with Eq. (25). Using the largest volume data at
each fermion mass for the condensate and the statistical-only data in Tab. IV, we compute
the GMOR ratio in Eq. (28) and propagate the statistical-only errors. We then apply
the relative systematic error correction estimated in Sec. VI. The results are shown in the
rightmost column of Tab. X. The lowest pole does not fully dominate the pion correlation
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function in our fermion mass range as the result is larger than one. If we assume a mass-
deformed CFT is the correct low energy description, then the lowest pion pole will never
dominate the pseudoscalar correlation function at any fermion mass as it is not a pseudo-
Nambu-Goldstone boson, as in Eq. (28).

In the case the Nf = 8 theory is outside the conformal window, one of the poles con-
tributing to the pion correlation function would have a pole position at Mπ5 + Mσ and a

residue proportional to g2ππσ which we will assume is O(F̂ 2
π5
). For the leading pion pole to

dominate, M2
π5
/(Mπ5 +Mσ)

2 ≪ 1. In this work, the ratio varies from 0.167(8) — 0.183(9),
which in this scenario is interpreted as not small enough to ensure pion pole dominance. A
direct calculation of the coupling gππσ and/or further calculations at lighter fermion masses
should shed light on this issue.

We did not perform an infinite volume extrapolation of the condensate data in Tab. X
similar to the ones described in Sec. II E. The systematic effect of this correction might be
significant on the scale of the uncertainties shown for the GMOR ratio. But, the effect is
unlikely to be significant relative to the deviation of the ratio from unity. In the future,
if a detailed model is to be fit to these data, the modeller should consider including these
neglected corrections.

mq L ⟨χχ⟩
∑

tCπ5 (⃗0, t) RG(mq)

0.00125 96 0.0121704(53) 9.732(28) 2.462(42)

64 0.0121220(70) 9.641(17)

0.00222 48 0.019918(14) 9.039(25) 2.397(45)

0.00500 48 0.040808(18) 8.164(41) 2.344(41)

32 0.040521(21) 8.103(12)

0.00750 48 0.058447(12) 7.808(20) 2.219(37)

32 0.058445(26) 7.786(16)

24 0.058063(73) 7.752(32)

0.00889 32 0.068086(28) 7.661(37) 2.152(38)

24 0.067814(46) 7.615(17)

TABLE X. Values for the staggered chiral condensate ⟨χχ⟩, computed using a noisy estimator, and

the integrated pseudoscalar correlation function, computed using a point source. The reader can

verify that the columns satisfy Eq. (25). Only statistical errors are shown. The rightmost column

shows the GMOR ratio defined in Eq. (28) with errors computed as described in the text.

IX. DISCUSSION

In this investigation, we have made many methodological improvements with respect to
our earlier lattice study of the Nf = 8 theory [12]. In particular, we have employed two
different methods for dealing with time-independent contributions to the flavor-singlet scalar
correlator, first by using the subtraction scheme developed in Sec. II A and then by working
with moving frames and applying the dispersion relation described in Sec. II C. We were
able to substantially reduce the systematic uncertainties of our fit results using the Bayesian
model averaging approach. Additionally, we used improved “linear” shrinkage estimators
for data covariance which we found were more reliable given the amount of statistics. There

29



was an open question in our previous paper whether finite volume effects could be significant
even when Mπ5L ≳ 5.3. Now, we can see that the finite volume effects are mild and don’t
play a significant role in the final result. We find that Mσ/Mπ5 ranges from 1.45 – 1.34 as
Mπ5/Mρi increases from 0.47 – 0.55.

We computed a new observable, the scalar decay constant F̂S, which, as we show in a
related paper [34], provides useful independent constraints on various low-energy effective
theories. We also computed the flavor-nonsiglet scalar meson mass Ma0,1 and decay con-

stant F̂a0,1 . The proximity of the a0,1 to the decay threshold suggests that a careful elastic
scattering analysis might be warranted in the future if more accurate results are desired.
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Appendix A: Ensembles

A summary of the ensembles used in this paper are shown in Tables XI and XII.

Appendix B: Normalization of model probabilities

When performing an aggressive model averaging analysis by considering a wide range of
models {M} and a wide range of data subset selections T1 for each model, the resulting set
of log p(M |D) can vary by several orders of magnitude, making it numerically challenging
to perform an accurate calculation of

∑
{M} p(M |D). In particular, exponentiating each

log p(M |D) and then performing the sum seems like a bad idea. So, we work directly with
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Volume Mass Try MDTU Period (MDTU) Block (MDTU) Nblk

243 × 48 0.00889 1 [250,25000] 10 100 247

323 × 64 1 [1040,7000] 40 80 75

2 [1040,7000] 40 80 75

3 [1040,7000] 40 80 75

4 [1040,7000] 40 80 75

C 80 300

243 × 48 0.0075 1 [350,10000] 10 90 107

323 × 64 1 [255,1395] 10 100

[1400,25160] 5 100 249

483 × 96 1 [250,9990] 10 70 139

2 [250,9990] 10 70 139

C 70 278

323 × 64 0.005 1 [251,29641] 5 100 293

2 [20011,22815] 2 100 28

3 [29001,31653] 2 100 26

4 [10001,13293] 2 100 32

C 100 379

483 × 96 1 [250,4200] 10 50 79

2 [250,3390] 10 50 63

C 50 142

TABLE XI. Ensembles, or Markov chains, used in this study with 0.005 ≤ mq ≤ 0.00889. “Try”

assigns a label to each Markov chain and the label “C” indicates the combined summary for all

chains at a given mass and volume. “Period” indicates how often the correlation functions were

computed.

log p(M |D) to compute the log of the sum. Let ℓn be a sorted list of the log p(M |D):
ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓN . We can construct the partial sums recursively

s1 = ℓ1, sn = sn−1 + log
(
1 + eℓn−sn−1

)
(n > 1) (B1)

The final sum over model probabilities is
∑

{M} p(M |D) = exp sN . The key observation is
that sorting the list ensures that two wildly different numbers are not combined at any step
with accompanying large loss of precision.

Appendix C: Unbiased Sample Estimator for the Variance of the Covariance

Using Mathematica’s MomentConvert[] functionality, it is a few lines of code to express

the unbiased sample estimator for V̂ar(Σij) in terms of raw moments

centMom11Est = MomentConvert[CentralMoment[{1, 1}], "SampleEstimator"];

bias = MomentConvert[centMom11Est, {Moment, n}];

MomentConvert[(centMom11Est - bias)^2, {Moment, n}]
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Volume Mass Try MDTU Period (MDTU) Block (MDTU) Nblk

483 × 96 0.00222 1 [250,11190] 2 120 91

2 [1000,9930] 2 120 74

3 [210,1450] 10 120 10

4 [210,1410] 10 120 10

5 [210,1360] 10 120 9

6 [210,1290] 10 120 9

7 [210,1350] 10 120 9

C 120 212

643 × 128 0.00125 r0 [200,2060] 10 120 15

r1 [200,1990] 10 120 15

r2 [200,2010] 10 120 15

r3 [200,2070] 10 120 15

s0 [8436,17088] 12 120 72

s1 [7644,17472] 12 120 82

s2 [7212,17412] 12 120 86

C 120 300

963 × 128 2 [500,3144] 2 80 34

3 [500,3282] 2 80 35

C 80 69

TABLE XII. Ensembles, or Markov chains, used in this study with 0.00125 ≤ mq ≤ 0.00222.

“Try” assigns a label to each Markov chain and the label “C” indicates the combined summary

for all chains at a given mass and volume. “Period” indicates how often the correlation functions

were computed.

The result is

n3

n− 1
V̂ar(Cov(x, y))

= (n− 1)µ2,2 − 2(n− 1) (µ2,1µ0,1 + µ1,0µ1,2) + µ2,0µ0,2 + (n− 2)
(
µ2,0µ

2
0,1 + µ2

1,0µ0,2

)
−(n− 2)µ2

1,1 + 2(3n− 4)µ1,1µ1,0µ0,1 − 2(2n− 3)µ2
1,0µ

2
0,1 (C1)

where we use Mathematica’s convention for raw moments

µi,j;S =
1

n

∑
(x,y)∈S

xiyj (C2)

Following Pébay [67], we would like to construct a one-pass, parallelizable computation. To
explain the notation, S is a set of n samples that can be partitioned into two subsets S1 and
S2 of n1 and n2 samples, respectively, so n1 + n2 = n. The computation can be parallelized
by performing computations on the subsets and combining the results. In the special case
where n1 = n− 1 and n2 = 1, the results simplify and can be used as a one-pass algorithm

µi,j;S =
n1

n
µi,j;S1 +

n2

n
µi,j;S2 = µi,j;S1 +

n2

n
(µi,j;S2 − µi,j;S1) (C3)
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where the first form is symmetric and more useful when S1 and S2 are of comparable size
and the second form is better suited when S2 is a single sample (x, y)

µi,j;S = µi,j;S1 +
1

n

(
xiyj − µi,j;S1

)
. (C4)
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