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Abstract

This paper introduces the Cumulative School Bus Routing Problem (CSBRP),

which concerns the transport of students from a school using a fleet of identi-

cal buses. The objective of the problem is to select a drop-off point for each

student among potential locations within a certain walking distance and to gen-

erate routes such that the sum of arrival times of all students from their school

to their homes is minimised. The paper describes six polynomial-size Mixed In-

teger Linear Programming (MILP) formulations based on original and auxiliary

graphs, and the formulations are numerically compared on real instances. The

paper reports the results of computational experiments performed to evaluate

the performance of the proposed models.

Keywords: school bus routing, public transport, integer programming,

fairness, multimodal transport, minimum latency

1. Introduction

School buses are the most preferred and frequently used transport system of

commuting for students. There are several advantages to transporting students

by bus, including safety, maintaining punctuality, promoting student activity,

as well as environmental benefits associated with reducing traffic and pollution.
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Several operational decisions are associated with routing school buses, such as

travel routes, stop selections, and stop numbers, collectively referred to as school

bus routing problems. Following what appears to be the first study by [1] on

school bus routing, numerous studies have appeared to address various issues.

Of particular interest is the study by [2] which lists efficiency, effectiveness,

and equity as important criteria in school bus routing problems. Efficiency takes

into account service costs, while effectiveness measures a level of service for all

eligible students. Equity relates to fairness of the service among the students,

which is a crucial but often neglected issue in school bus routing problems [3].

In this paper, we describe a variant of the school bus routing problem, namely

the cumulative school bus routing problem (CSBRP), with a focus on service

times for students. The problem consists of using a fleet of identical school

buses to plan for the daily transport of students from one school to their homes.

The problem involves selecting a drop-off point for each student that is within a

certain walking distance from the student’s home, as well as generating routes

that start from the school and visit the selected drop-off points to deliver the

students to their homes. Selecting the stop points and generating the routes

should be such that the sum of arrival times for the students at their homes is

minimised. We consider a fixed time for the bus departure from school. The

objective of the problem is to minimise the total (i.e., the sum of) arrival times of

the students at their homes when travelling from their school. This is equivalent

to minimising the average arrival time. For a fixed departure time from school,

the arrival time for each student is determined by the time spent on a school

bus plus the walking time from a drop-off point to the student’s home. The

objective of the CSBRP differs from the classical sum of route lengths, which

is intended to minimise the operator’s costs. According to [4], minimising the

total route distance may not properly reflect the need for equity and fairness.

In order to illustrate the characteristics of the CSBRP, we find it useful

to provide a small numerical example. Figure 1 shows an example of CSBRP

characteristics and elements related to a single route in a solution.

In Figure 1, the solid arcs show a bus route which visits bus stop b1 followed
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Figure 1: CSBRP characteristics and details of a route visiting bus stop b1 and student homes

s3 and s4. Students s1 and s2 are dropped off at b1 and walk home from there. Similarly,

student s5 is dropped of at s4 and walks home from there.

by student homes s3 and s4. Each dashed arc represent walking from a drop-off

point to home. The number at each solid arc shows the travel time for the bus

along that arc, and the number at each dashed arc shows the walking time along

that arc. For each student, the number in parenthesis is the arrival time at the

home node, assuming that the route begins at time 0 at the school.

For students s3 and s4, each arrival time is given by the travel time for the

bus until the home node. For students s1, s2 and s5, each arrival time is given

by the bus travel time until the drop-off point plus the walking time from the

drop-off point to the home node.

The example illustrates the three possibilities for each student with respect

to drop-off point. Specifically, a student can be dropped off at a bus stop (as for

s1 and s2), at the home node (as for s3 and s4), or at another student’s home

(as for s5). Both students s1 and s2 get off the bus at b1, student s3 gets off the

bus and the home node, and both students s4 and s5 get off the bus at s4.

The sum of the five arrival times is 49, which is the value of our proposed

objective function.

We would like to emphasize that although this example shows only a single

route, the CSBRP generally involves determining multiple routes for different

vehicles, all beginning at time 0 at the school. The calculation of arrival times

is done for each route as shown, and the resulting objective function value is

obtained by summing the arrival times over all students.
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The goal of this paper is to provide mathematical formulations for the

CSBRP and solve the problem with a real-life data set. To this end, we propose

and computationally compare six polynomial-size mixed-integer linear program-

ming formulations for the CSBRP, based on different definitions of graphs and

decision variables.

The remainder of this paper is organised as follows. A review of the relevant

literature presented in Section 2. In Section 3, the six mathematical formula-

tions are provided. Computational analysis, which consists of data preparation,

results, and sensitivity analysis, is presented in Section 4. In Section 5, we

address and motivate our choice of unit-demand formulations and describe the

model changes if we had used general demands. Conclusions with suggestions

for future research are given in Section 6.

2. Literature review

A comprehensive literature review of the SBRP until 2009 is conducted by

[3], and the review with contemporary research is updated by [5], showing that

this problem still attracts the attention of many researchers from the first time

that it was studied by [1].

The SBRP is a special case of pickup and delivery problems, as the students

are picked up from different locations and delivered to one location. It should be

noted that pickup and delivery of people, referred to as Dial-A-Ride Problems

(DARP), is different from pickup and delivery of goods since passenger conve-

nience must be considered as well as operational costs. Literature reviews of

the various models and methodologies associated with the DARP can be found

in [6] and [7].

The SBRP is also similar to the m-Ring Star Problem (m-RSP), introduced

by [8], which has applications in telecommunication problems. The goal of the

m-RSP is to provide m tours by either visiting customers or transition nodes,

so that the total route cost, together with assignment cost for customers who

are not visited on any tours, can be minimised. However, in the m-RSP, the
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customers without an assigned node in the tour can be assigned to any nearest

node in the tours, while in the SBRP, students’ potential drop-off points are

restricted to the stops that are located within students’ allowed walking distance.

Moreover, our proposed objective is different from the m-RSP.

According to the study by [3], the main sub-problems of SBRPs are described

as follows: bus stop selection, bus route generation, bus route schedules, school

bell time adjustment, and strategic transport policy. This article focuses on a

combination of two sub-problems: selecting stops and planning efficient routes

for a fleet of vehicles. The combination of these two sub-problems is also cate-

gorised as location-routing problems in the literature (see, e.g., [9]).

In summary, according to [3], SBRPs are studied with different objectives

and constraints, and sometimes they are considered together or interchangeably.

The common objectives are to minimise the number of buses, the total travelled

distance by all vehicles, or the total walking distance of all students. Some of

the studied constraints are limitations on maximum allowed walking distance of

students, maximum pick-ups at each stop, or maximum operating time for each

vehicle. As an example, [10] proposed an Integer Linear Programming (ILP)

model to solve the real-world single school bus routing problem for transporting

students of an elementary school in central Ankara, Turkey. They considered a

capacity constraint for vehicles and a maximum travel distance constraint for

vehicles, with the objective of minimising the bus operating cost. Other studies

with the objective of minimising the total route costs are [11], [12] and [13].

There are some objectives and constraints in SBRPs that are in conflict. For

instance, reducing the total distances travelled by buses results in the students

walking longer distances. As such, some of the articles address these conflicting

terms in their objective like in the studies by [2], [14], [15] and [16].

Five mathematical models were provided by [17], which were the three-index

variables formulation, the set partitioning formulation based on the Dantzig-

Wolfe decomposition, and the next three models enriching the set partitioning

by adding additional inequalities and defining compact versions of the set par-

titioning formulation. The objective of their proposed model was to minimise
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the total route distance by vehicles and the total walking distance of students.

For effective load balance between routes, a given maximum number of stops

per vehicle and a given maximum distance and time that students spent in each

vehicle were considered as constraints.

In the study by [18], the objective is to minimise the maximum bus ride

length in order to increase equity between passengers. However, in relation

to school bus routing, it should be noted that minimising the maximum ride

length only minimises the maximum arrival time at a student, whereas the

cumulative school bus routing problem, which is the objective of our proposed

model, also considers the arrival times at all intermediate students, which can

vary considerably if many students are served early or late on their routes ([19]).

However, there is little research on minimising the total arrival time for all

students in SBRPs. The arrival time is considered separately for each student,

and it differs from the total travel times of the vehicles. The accumulated arrival

times include the time students spend on school buses from school to drop-off

points, as well as the walking time of the students from the drop-off points

to their homes. In other words, the accumulated arrival times is the sum of

the arrival times of all students from a school to their homes. This type of

consideration is also referred to as fairness among all students to get to their

home after school since it involves the arrival times of all students.

One of the first articles that bring the idea of cumulative travel distance

was introduced by [20] in the delivery man problem, where an objective was

to minimise the total arrival times to the customers. This type of problem

arises when priority is given to customer satisfaction. A new formulation for

the Cumulative Capacitated Vehicle Routing Problem (CCVRP) was defined by

[19], which is a generalisation of the travelling repairman problem by including

the capacity for a fleet of homogeneous vehicles, and in the literature, it is also

known as a minimum latency problem. In another study, [21] proposed the

set partitioning formulation for the CCVRP, and they solved the problem by a

branch-and-cut-and-price algorithm.

Minimising the cumulative arrival times is also critical in delivering human-
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itarian aid when disasters strike, in order to save lives and ensure that essential

supplies arrive fast ([4]).

In this paper, we describe and numerically compare six compact mathemat-

ical models for the CSBRP, which are different in graph definition and deci-

sion variables, in the same spirit as some similar studies in the literature that

compare compact models. For instance, the classification and comparison of

polynomial formulations for the Asymmetric Travelling Salesman Problem have

been studied by [22] and [23].

In the study by [24], the authors provided four compact formulations for the

Generalised Travelling Salesman Problem (GTSP) with time windows, which

has an application in last-mile delivery problems. In their study, a set of nodes

are partitioned into a number of clusters, which represent the possible delivery

locations associated with each customer, and the objective is to find the min-

imum travel cost by a single vehicle, such that each cluster is visited exactly

once. They compared four models based on results obtained by Linear Relax-

ation and the branch-and-bound scheme which was implemented in CPLEX.

Unlike their research, our proposed model examines another objective of SBRP.

Moreover, in our proposed model, the drop-off points for the students are not

totally separated, since some of the stops can be shared among several students

within a defined walking distance.

Finally, we compare our proposed CSBRP to the Capacitated Vehicle Rout-

ing Problem (CVRP), the Capacitated Open Vehicle Routing Problem (COVRP),

and the CCVRP. The COVRP is a variation of the CVRP in which a fleet of

vehicles is assigned to deliver goods or services to a set of passengers or loca-

tions. In the COVRP, unlike the traditional CVRP, each route starts at the

depot and ends at any passenger, rather than requiring each route to return

to the depot after servicing the last passenger on the route. In this case, the

cost of traversing an edge between a last visited passenger and the depot is not

included in the objective. The CSBRP, which is studied in this paper, may be

considered as a variant of the CVRP, as the beginning and ending points of the

routes are at schools. However, as the objective of the CSBRP is to minimise
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the sum of arrival times for all students, the time that a school bus will need

to return to a school after the last visited drop-off point is not included in the

objective, which is similar to the COVRP. Moreover, the cumulative nature of

the objective function makes the CSBRP different from both the CVRP and

the COVRP, whereas the Cumulative CVRP (CCVRP), on the other hand, also

has a cumulative measure in the objective function, as mentioned later in this

section. However, the multi-modality as given by both bus transport time and

walking time in the objective function of the CSBRP, as illustrated in Figure

1, is not considered in any of the problems CVRP, COVRP, or the CCVRP.

As such, the introduced CSBRP share some characteristics with the CVRP, the

COVRP, and the CCVRP, while still being different from all of them.

3. Mathematical modelling

This section defines and presents six polynomial-size mathematical models

for the CSBRP, with two based on the original and four on an auxiliary graph.

Those defined on the original graph use three-index variables, using, for sub-

tour elimination, either Miller-Tucker-Zemlin (MTZ) type constraints [25], or

those based on single-commodity flow in line with Gavish and Graves (GG)

[26]. The formulations based on the auxiliary graph use either two- or three-

index formulations, again using either MTZ or GG-type subtour elimination

constraints. The models on the original graph are explained in Subsection 3.1,

and the models on the auxiliary graph are explained in Subsection 3.2.

3.1. The CSBRP models on the original graph

The CSBRP is defined on a directed graph G = (N,A), where N is the set of

nodes, which contains a school node {0}, a set S of student nodes, and a set B of

bus stops, and A = {(i, j) : i, j ∈ N, i ̸= j} is the set of arcs. A fleet of identical

school buses, the index set of which is denoted by K, each of capacity of Q,

start from the school and drop off all students picked up from the school. The

travel time between any two nodes is denoted by Tij for any (i, j) ∈ A. For each
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student s ∈ S, the subset Us ⊂ N shows a set of potential stops reachable by

student s, and are the potential drop-off points (the student’s home location,

other students’ home locations, and bus stops) within an allowable walking

distance WMax from the student’s home. We denote Wsi as the walking time of

student s ∈ S between node i ∈ Us and the home address of student s.

When WMax = 0, students must be dropped off at their home addresses, and

when WMax is greater than zero, students may be dropped off at locations other

than their home addresses. In this case, some potential stop points will likely

be shared among a number of students. For instance, when stop k is located

within the walking distance of both students s and t, both subset Us and Ut will

contain stop k. If a drop-off stop is shared between a number of students, each

should have the same opportunity to be dropped off there at any time by school

buses. By this assumption, it is possible that one stop is visited by a number

of vehicles at different times, just as it is possible to deliver multiple students

by the same vehicle in one visit to a stop point. This possibility is also referred

to as multiple visits of one node.

In the following subsections, we are going to provide self-contained models

for the CSBRP. For each model, we first define the decision variables and then

the related formulation.

3.1.1. Model 1: Three-index formulation on the original graph based on MTZ

The following is the definition of decision variables that are used for the

three-index formulation on the original graph, and the subtour eliminations are

based on MTZ constraints.
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Decision variables

xk
ij is a binary variable, which is equal to 1, if arc (i, j) ∈ A is traversed by

vehicle k; otherwise, it is zero.

yki is a binary variable which is equal to 1 if vehicle k visits node i ∈ N ;

otherwise, it is zero.

zksj is a binary variable which is equal to 1 when student s ∈ S is dropped

off at stop j ∈ Us by vehicle k; otherwise, it is zero.

τki is a non-negative value that shows the arrival time at node i of vehicle

k, if vehicle k visits node i; otherwise, it is zero.

The objective of the model is:

min
∑
k∈K

∑
s∈S

∑
i∈Us

(τki +Wsi)z
k
si (1)

which calculates the arrival time of each student separately. As explained earlier,

it is also possible that several students are dropped off at one node by the same

vehicle or by different vehicles at different times. Therefore, we cannot uniquely

determine and use the time of visit for each node.

In order to make the objective function (1) linear, we define a new decision

variable ts which is a nonnegative value and shows the arrival time at the drop-

off point for student s.
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min
∑
s∈S

ts +
∑
k∈K

∑
s∈S

∑
i∈Us

Wsiz
k
si (2)

s.t.:
∑
k∈K

∑
i∈Us

zksi = 1 ∀s ∈ S, (3)

ts ≥ τki −M(1− zksi) ∀s ∈ S, ∀i ∈ Us,∀k ∈ K, (4)∑
k∈K

yk0 = |K|, (5)

∑
j∈N

xk
ij = yki ∀i ∈ N, ∀k ∈ K, (6)

∑
i ̸=j∈N

xk
ij =

∑
i̸=j∈N

xk
ji ∀i ∈ N, ∀k ∈ K, (7)

zksi ≤ yki ∀s ∈ S, ∀i ∈ Us,∀k ∈ K, (8)∑
s∈S

∑
i∈Us

zksi ≤ Q ∀k ∈ K, (9)

τki + Tij − (1− xk
ij)T ≤ τkj ∀i ∈ N, ∀j ∈ N \ {0, i},∀k ∈ K, (10)

xk
ij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K, (11)

zksi ∈ {0, 1} ∀s ∈ S, ∀i ∈ Us,∀k ∈ K, (12)

yki ∈ {0, 1} ∀i ∈ N, ∀k ∈ K, (13)

ts ≥ 0 ∀s ∈ S, (14)

τki ≥ 0 ∀i ∈ N, ∀k ∈ K. (15)

The objective function (2) is to minimise the sum of arrival times for all

students that contains the time that all students spend on the vehicle up to the

drop-off stops and the total time of walking from the drop-off stops to their home

addresses. Constraint (3) shows that each student is dropped off at only one of

the stops in the defined subset. Constraint (4) shows the arrival time of student

s to node i by vehicle k, where M is a sufficiently large value. Constraint (5)

shows the number of vehicles that depart from the school. Constraint (6) ensures

that if vehicle k visits a stop, it leaves the visited stop. Constraint (7) shows

the flow of each vehicle at each node i. Constraint (8) avoids the assignment

of students to a non-visited stop. Constraints (9) ensures that the maximum
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number of onboard students on each vehicle cannot exceed the vehicle capac-

ity. Constraint (10) shows the arrival time consistency and imposes the time

connectivity for each vehicle, and also eliminates subtours in the same way as

shown in [27]. Constraints (11–15) show the domains of the decision variables.

Constraint (10) can be strengthened as below, as shown in [27] for the

distance-constrained VRP:

τki +Tij − (1− xk
ij)T +(T −Tij −Tji)x

k
ji ≤ τkj ∀i ∈ N, ∀j ∈ N \ {0, i},∀k ∈ K

(16)

where T is a sufficiently large value, for which a bound is given below:

Proposition 1. In Constraint (16), it is valid to state that T ≥ R1 +
∑Q

i=1 Ri,

where Ri is the ith largest travel time between any pair of nodes in N .

Proof. We seek a small value for T such that it does not cut off any optimal

solutions. If both xk
ij and xk

ji are zero, then Constraint (16) reads τki +Tij−T ≤

τkj for any k ∈ K. Given that τkj ≥ 0, then T ≥ τki + Tij . As a result, we are

looking for the largest value for the arrival time, or more precisely a relatively

small value that is larger than any arrival times within the routes. The largest

arrival time within routes is also the same as the arrival time of the last student

who is dropped off by the school bus. Considering the school buses’ capacity,

the maximum number of students on the school buses is limited to Q. If there

are Q students on board, the arrival time of the last student on a route is less

than or equal to the sum of the Q largest travel times between any pair of arcs.

□
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3.1.2. Model 2: Three-index formulation on the original graph based on GG

In this formulation, we are going to show the three-index formulation on the

original graph based on GG inequalities.

Decision variables

xk
ij is a binary variable, which is equal to 1, if arc (i, j) ∈ A is traversed by

vehicle k; otherwise, it is zero.

yki is a binary variable, which is equal to 1 if node i ∈ N is visited by vehicle

k; otherwise, it is zero.

zksj is a binary variable, which is equal to 1 when student s ∈ S is dropped

off at stop j ∈ Us by vehicle k; otherwise, it is zero.

fk
ij is a non-negative value that represents the number of students who

traverse arc (i, j) ∈ A by vehicle k. If arc (i, j) is not traversed by vehicle k,

then the value is zero.
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min
∑
k∈K

(
∑

(i,j)∈A

Tijf
k
ij +

∑
s∈S

∑
i∈Us

Wsiz
k
si) (17)

s.t.:
∑
k∈K

∑
i∈Us

zksi = 1 ∀s ∈ S, (18)

∑
k∈K

∑
j∈N

xk
0j = |K|, (19)

∑
j∈N

xk
ij = yki ∀i ∈ N, ∀k ∈ K, (20)

∑
j∈N

xk
ji =

∑
j∈N

xk
ij ∀i ∈ N, ∀k ∈ K, (21)

zksi ≤ yki ∀s ∈ S, ∀i ∈ Us,∀k ∈ K, (22)∑
s∈S

zksi ≥ yki ∀i ∈ N, ∀k ∈ K, (23)

∑
j∈N

fk
ji −

∑
j∈N

fk
ij =

∑
s∈S

zksi ∀i ∈ N \ {0},∀k ∈ K, (24)

fk
ij ≥ xk

ij ∀(i, j) ∈ A, j ̸= 0,∀k ∈ K, (25)

fk
0j ≤ Qxk

0j ∀j ∈ N, ∀k ∈ K, (26)

fk
ij ≤ (Q− 1)xk

ij ∀(i, j) ∈ A, i ̸= 0,∀k ∈ K, (27)

xk
ij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K, (28)

zksi ∈ {0, 1} ∀s ∈ S, ∀i ∈ Us,∀k ∈ K, (29)

yki ∈ {0, 1} ∀i ∈ N, ∀k ∈ K, (30)

fk
ij ≥ 0 ∀(i, j) ∈ A,∀k ∈ K. (31)

The objective function (17) minimises the sum of arrival times for all stu-

dents; this contains the time that all students spend on the vehicle up to the

drop-off stops and the total time of walking from the drop-off stops to their

home addresses. Constraint (18) shows that the students are dropped off only

at one of the stops in their subset. Constraint (19) shows the number of vehicles

that depart from the school. Constraint (20) ensures that if vehicle k visits a

stop, then it leaves the stop. Constraint (21) shows the flow of each vehicle at

each node i. Constraint (22) avoids to assign students to a non-visited stop.
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Constraint (23) ensures that vehicle k must drop off a student in node i if the

vehicle visits node i. Constraint (24) ensures that at each visited stop, at least

one student is dropped off. Constraints (25–27) show the maximum number of

on board students on each vehicle. Constraints (28–31) show the domains of

the decision variables.

Note that the objectives of function (2) and function (17) are the same, but

they calculate the sum of the arrival times of the students in different ways.

The objective function (2) is keeping track of the arrival time of the students

separately, while the objective function (17) is calculating the total arrival time

of the students by multiplying the number of onboard students who are passing

the same arc by the travel time of the arc.

3.2. The CSBRP models on an auxiliary graph

As explained earlier, we assume that multi-visits of the nodes are allowed

in our models. One of the ways to model this condition is to decompose the

graph into clusters with a separate cluster for each student, and impose the

requirement that each node can be visited at most once in each cluster. To

decompose the graph, we first duplicate nodes to obtain a graph where any

node, except for the school node, can serve as a drop-off node for only one

specific student. We call this new graph the Auxiliary Graph, where the same

physical location may be represented by several nodes in different clusters. This

is the case whenever a node in N has been duplicated. We then partition the

nodes in the auxiliary graph into clusters, similar to the Generalised Vehicle

Routing Problem (GVRP) as introduced by [28], which is a generalisation of the

capacitated VRP. The GVRP is also a generalisation of the GTSP, for which

ILP formulations appear in [29] and [28].

The GVRP takes as input a graph partitioned into clusters, and determines

the routes that start and end at the school, visit exactly one node in each cluster,

and yield the minimum total travel cost [see, e.g. 30, 31].

The auxiliary graph GH = (NH , AH) is constructed as follows. For each

student j ∈ S, we create the cluster Cj as a copy of the node set Uj ⊆ N of
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potential stops for student j and define NH = ∪j∈S∪{0}Cj . Therefore, the node

set NH is partitioned into (nonempty and disjoint) |S| + 1 clusters, in which

cluster Cj consists of the home address of student j ∈ S and copies of other

nodes from N that are within the allowed walking distance (WMax ) from student

j’s home address. As such, a distinct node in NH is used for each combination

of student and drop-off location. For each student j ∈ S and each node i ∈ Cj ,

we let Wi denote the walking time between the home address of student j and

node i. In addition, we define W0 = 0. Note that Wi is the walking time,

and it differs from WMax , which is the maximum walking distance that the

students are allowed to walk, and WMax is used in finding the potential stops

for the students in the models. Since two nodes i and k in different clusters may

represent the same physical location but for two different students, Wi and Wk

for such a pair of nodes may very well take different values, representing the two

students’ individual walking times from the shared physical drop-off location to

their respective homes. Generally, the same location, i.e., node in N , will be

represented by a separate node in each cluster which represents a student that

can be dropped off at that location.

The arc set AH = {(i, j) : i ∈ Cu, j ∈ Cv,∀u, v ∈ S, u ̸= v} contains arcs

that only connect nodes between different clusters, with Tij denoting the travel

time on arc (i, j) ∈ AH and Tii′ = 0 for node i and its copy i′ in a different

cluster as they share the same physical location.

Figure 2 shows a schematic view of the potential stops for the students in

both the original graph and the auxiliary graph, where there are seven nodes,

i.e., the school (0) and three students (1, 2, and 3) displayed by circles and three

bus stops (4, 5 and 6) displayed by squares. Figure 2a shows that there are four

subsets Uj for j = {0, 1, 2, 3} in the original graph, one for the school and the

rest are the potential stops for the students. The dashed circle around each

student shows the maximum allowed walking distance, and the nodes within

each subset indicate the potential drop-off points for the corresponding student.

For instance, the drop-off points for student 1 are the home address of student

1 and bus stop 4. Both students 2 and 3 can be dropped off at bus stop 5, and
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Figure 2: Schematic view of the potential stops for three students on the original and auxiliary

graphs in the CSBRP. In (b), numbers in parentheses refer to nodes in the original graph.

at the home address of student 2 or 3. In addition, student 2 can be dropped

off at bus stop 6. Figure 2b depicts the resulting clusters of drop-off points in

the auxiliary graph, which has four clusters, one for the depot and one for each

student. Each node number is provided inside the circle or square, whereas the

number in parenthesis next to each node 1–9 indicates the node in Figure 2a

that this node is a copy of. So, for example, nodes 5 in C2 and 9 in C3 in the

auxiliary graph are copies of node 5 in the original graph, where students 2 and

3 can be dropped off. However, node 6 in the original graph is represented only

by node 6 in the auxiliary graph, where only student 2 can be dropped off.

3.2.1. Model 3: Two-index formulation on the auxiliary graph based on MTZ

The following model is the two-index formulation on the auxiliary graph and

the subtour eliminations are based on capacity MTZ inequalities.

Decision variables
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xij is a binary variable, which is equal to 1 if arc (i, j) ∈ AH is traversed;

otherwise, it is zero.

zi is a binary variable, which is equal to 1 if node i ∈ NH is visited;

otherwise, it is zero.

τi is a non-negative value that shows the arrival time to node i ∈ NH if

node i is visited; otherwise, it is zero.

ωi is a non-negative value that shows the number of students on a vehicle

immediately before visiting node i ∈ NH . If node i is not visited, then the

value is undefined.

min
∑
i∈NH

τi +
∑
i∈NH

Wizi (32)

s.t.:
∑
i∈Cs

zi = 1 ∀s ∈ S, (33)

∑
j∈NH

x0j = |K|, (34)

∑
j∈NH

xij = zi ∀i ∈ NH \ {0}, (35)

∑
j∈NH

xji =
∑

j∈NH

xij ∀i ∈ NH , (36)

ωj − ωi +Qxij + (Q− 2)xji ≤ Q− 1 ∀i, j ∈ NH \ {0}, i ̸= j, (37)

τi + Tij − (1− xij)T ≤ τj ∀i ∈ NH ,∀j ∈ NH \ {0, i}, (38)

xij ∈ {0, 1} ∀(i, j) ∈ AH , (39)

zi ∈ {0, 1} ∀i ∈ NH , (40)

τi ≥ 0 ∀i ∈ NH , (41)

1 ≤ ωi ≤ Q ∀i ∈ NH . (42)

The objective function (32) is to minimise the sum of arrival times, which

contains the time that all students spend on the vehicles up to the drop-off stops

and the total time of walking from the drop-off stops to their home addresses.
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Constraint (33) ensures that the students are dropped off at only one of the

stops in their cluster. Constraint (34) ensures that |K| vehicles start travelling

from the school. Constraint (35) ensures that a vehicle leaves stop i ∈ NH

after visiting stop i. Constraint (36) illustrates the flow of the vehicles at each

node i. Constraint (37) imposes the capacity control based on MTZ inequalities.

Constraint (38) shows the arrival time consistency and imposes the connectivity

for each vehicle. Constraints (39–42) show the domains of the decision variables.

Now, by formulating the model as a GVRP, we can use the cluster-based

MTZ constraints in our formulation that are defined first by [32], and then

the stronger and lifted version of the MTZ capacity constraints for cluster-

based formulations for the GVRP are introduced by [33]. Therefore, instead of

Constraint (37), we can take advantage of using the cluster-based formulations

in our model. To show the cluster-based capacity constraint based on MTZ

inequalities, let us first define ui as the number of students on the vehicle which

visits cluster i, where i ∈ S.

For simplicity in demonstration, we define the following variables:

T̂ij =
∑
g∈Ci

∑
e∈Cj

Tgexge ∀i, j ∈ S (43)

x̂ij =
∑
g∈Ci

∑
e∈Cj

xge ∀i, j ∈ S. (44)

Therefore, the lifted capacity constraints for the cluster-based formulations

are as follows:

uj − ui +Qx̂ij + (Q− 2)x̂ji ≤ Q− 1 ∀i, j ∈ S, i ̸= j, (45)

ui ≥ 1 + (Q− 1)x̂0i ∀i ∈ S, (46)

ui ≤ Q ∀i ∈ S. (47)

It is now possible to replace Constraints (37) and (42) with Constraints (45)-

(47) in Model 3. We note that Constraint (38) also eliminates subtours, except

for when Tij = 0. In this case, inequalities (37) would serve to prohibit any

subtours forming.
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It is also possible to derive an alternative version of Constraint (38) which

uses a variable ti as the arrival time to cluster i ∈ S instead of arrival time to

a single node.

Proposition 2. The constraint

ti + T̂ij − (1− x̂ij)T ≤ tj ∀i ∈ S ∪ {0},∀j ∈ S \ {i} (48)

is a valid inequality for cluster-based time connectivity in the CSBRP.

Proof. If x̂ij = 0, it means that there is not any connection between two

clusters, then T̂ij = 0. Therefore, we will have the following valid inequality for

any two clusters that are not connected.

ti − T ≤ tj , i ∈ S ∪ {0},∀j ∈ S \ {i} (49)

When x̂ij = 1, it means that there is a route connection between clusters i

and j. Any cluster i may be on the first, intermediate, or last visit of a vehicle

tour. If cluster i is the first visited cluster after the school, then the arrival time

to cluster i is T̂0i, which shows the travel time from the school to the visited

node inside cluster i. If cluster j is visited right after cluster i, then the arrival

time to cluster j is the arrival time to cluster i and the travel time between

the visited nodes of two clusters, which is equal to T̂ij . Therefore, ∀i, j ∈ S,

Constraint (48) is valid. □

Proposition 3. The constraint

ti − tj + T̂ij − T̂ji + T (x̂ij + x̂ji) ≤ T ∀i ∈ S ∪ {0},∀j ∈ S \ {i} (50)

is a valid lifted version of Constraint (48).

Proof. We seek the largest value of αji such that

ti + T̂ij − (1− x̂ij)T + αjix̂ji ≤ tj ∀i ∈ S ∪ {0},∀j ∈ S \ {i} (51)

is valid. If x̂ji = 0, this constraint is obviously satisfied for any value of αji. If

x̂ji = 1, then x̂ij = 0, and we obtain the following constraint:

ti − T + αji ≤ tj i ∈ S ∪ {0},∀j ∈ S \ {i}, (52)

which provides the desired result as tj ≤ ti − T̂ji. □
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Proposition 4. The constraint

ti ≥ T̂0i +
∑
g∈Ci

∑
j∈S\{i}

∑
e∈Cj

(Pe + Teg)xeg ∀i ∈ S (53)

is valid for the CSBRP.

Proof. Assume that Pk is the length (in time) of the shortest path from the

school up to node k ∈ NH . For any i ∈ S, the lower bound of ti is T̂0i, when a

node inside cluster i is the first visited stop right after the school. In the case,

when cluster i is not the first stop after the school, then ti is greater than or

equal to the shortest path (in time) from the school to any visited node before

cluster i and a travel time between the visited node and a node inside cluster i.

Therefore, Constraint (53) can be obtained. □

In model 3, we can substitute Constraint (38) with Constraints (50) and

(53). Besides, we can use the value of T as explained in Proposition 1.

3.2.2. Model 4: Two-index formulation on the auxiliary graph based on GG

The following is the two-index formulation on the auxiliary graph and the

subtour eliminations are based on GG inequalities. This formulation is inspired

by [20].

Decision variables

xij is a binary variable, which is equal to 1 if arc (i, j) ∈ AH is traversed;

otherwise, it is zero.

zi is a binary variable, which is equal to 1 when node i ∈ NH is visited;

otherwise, it is zero.

fij is a non-negative value, which shows the number of onboard students

on arc (i, j) ∈ AH . If arc (i, j) is not traversed, then the value is zero.
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min
∑

(i,j)∈AH

Tijfij +
∑
i∈NH

Wizi (54)

s.t.:
∑
i∈Cs

zi = 1 ∀s ∈ S, (55)

∑
j∈NH

x0j = |K|, (56)

∑
j∈NH

xij = zi ∀i ∈ NH \ {0}, (57)

∑
j∈NH

xji =
∑

j∈NH

xij ∀i ∈ NH , (58)

∑
j∈NH

fji −
∑

j∈NH\{0}

fij = zi ∀i ∈ NH \ {0}, (59)

fij ≥ xij ∀(i, j) ∈ AH , j ̸= {0}, (60)

f0j ≤ Qx0j ∀j ∈ NH , (61)

fij ≤ (Q− 1)xij ∀i, j ∈ NH \ {0}, (62)

xij ∈ {0, 1} ∀(i, j) ∈ AH , (63)

zi ∈ {0, 1} ∀i ∈ NH , (64)

fij ≥ 0 ∀(i, j) ∈ AH . (65)

The objective function (54) is to minimise the sum of arrival times of all

students that contains the time that the students spend on the vehicle up to the

drop-off stops and the total time of walking from the drop-off stops to their home

addresses. In this objective, the total arrival time of the students is obtained by

calculating the number of students on each arc. Constraint (55) shows that the

students are dropped off only at one of the stops in their cluster. Constraint (56)

shows |K| vehicles start travelling from the school. Constraint (57) ensures

that when a vehicle visits stop i ∈ NH , it will depart from it. Constraint (58)

shows a flow of vehicles at each node i. Constraints (59-62) impose the subtour

elimination based on Gavish and Graves. Constraints (63–65) show the domains

of the decision variables.
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3.2.3. Model 5: Three-index formulation on the auxiliary graph based on MTZ

In the following, we are going to introduce the three-index formulations on

the auxiliary graph with the lifted version of cluster-based MTZ inequalities.

Decision variables

xk
ij is a binary variable, which is equal to 1 if arc (i, j) ∈ AH is traversed

by vehicle k; otherwise, it is zero.

zki is a binary variable, which is equal to 1 when node i ∈ NH is visited by

vehicle k; otherwise, it is zero.

tki is a non-negative value, which shows the arrival time of vehicle k to

cluster i. If cluster i is not visited, then the value is zero.

uk
i is a non-negative value, which shows the number of students on vehicle

k before visiting cluster i. If cluster i is not visited by vehicle k, then the

value is zero.
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min
∑
k∈K

∑
s∈S

tks +
∑
k∈K

∑
i∈NH

Wiz
k
i (66)

s.t.:
∑
k∈K

∑
i∈Cs

zki = 1 ∀s ∈ S, (67)

∑
k∈K

zk0 = |K|, (68)

∑
j∈NH

xk
ij = zki ∀i ∈ NH ,∀k ∈ K, (69)

∑
j∈NH

xk
ij =

∑
j∈NH

xk
ji ∀i ∈ NH ,∀k ∈ K, (70)

∑
i∈NH

zki ≤ Q ∀k ∈ K, (71)

uk
j − uk

i +Qx̂k
ij + (Q− 2)x̂k

ji ≤ Q− 1 ∀i, j ∈ S, i ̸= j, (72)

uk
i ≥ 1 + (Q− 1)x̂k

0i ∀i ∈ S, (73)

tki − tkj + T̂ k
ij − T̂ k

ji + T (x̂k
ij + x̂k

ji) ≤ T ∀i, j ∈ S, i ̸= j, (74)

tki ≥ T̂ k
0i +

∑
g∈Ci

∑
j∈S\{i}

∑
e∈Cj

(Pe + Teg)x
k
eg ∀i ∈ S, (75)

xk
ij ∈ {0, 1} ∀(i, j) ∈ AH ,∀k ∈ K, (76)

zki ∈ {0, 1} ∀i ∈ NH ,∀k ∈ K, (77)

0 ≤ uk
i ≤ Q ∀i ∈ S,∀k ∈ K, (78)

tki ≥ 0 ∀i ∈ S ∪ {0},∀k ∈ K. (79)

The objective function (66) is to minimise the sum of arrival times for all

students that contains the time that the students spend on the vehicle up to

the drop-off stops and the total time of walking from the drop-off stops to their

home addresses. Constraint (67) shows that the students will drop off in only

one of the stops in their own cluster. Constraint (68) shows that |K| vehicles

will depart from the school. Constraint (69) illustrates that after vehicle k

visits node i, it will depart from the stop. Constraint (70) illustrates the flow

of each vehicle at each node i. Constraints (71–73) ensure that the maximum

number of onboard students on each vehicle cannot exceed the vehicle capacity.

24



Constraints (74) and (75) show the arrival time consistency and impose the

connectivity for each vehicle. Constraints (76–79) show the domains of the

decision variables.

3.2.4. Model 6: Three-index formulation on the auxiliary graph based on GG

The following is the three-index formulation on the auxiliary graph with GG

subtour elimination constraints.

Decision variables

xk
ij is a binary variable, which is equal to 1, if arc (i, j) ∈ AH is traversed

by vehicle k; otherwise, it is zero.

zki is a binary variable, which is equal to 1 if node i ∈ NH is visited by

vehicle k; otherwise, it is zero.

fk
ij is a non-negative value which indicates the number of onboard students,

if vehicle k travels arc (i, j); otherwise, the value is zero.
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min
∑
k∈K

∑
(i,j)∈AH

Tijf
k
ij +

∑
k∈K

∑
i∈NH

Wiz
k
i (80)

s.t.:
∑
k∈K

∑
i∈Cs

zki = 1 ∀s ∈ S, (81)

∑
k∈K

zk0 = |K|, (82)

∑
j∈NH

xk
ij = zki ∀i ∈ NH ,∀k ∈ K, (83)

∑
j∈NH

xk
ij =

∑
j∈NH

xk
ji ∀i ∈ NH ,∀k ∈ K, (84)

∑
i∈NH

zki ≤ Q ∀k ∈ K, (85)

∑
j∈NH

fk
ji −

∑
j∈NH\{0}

fk
ij = zki ∀i ∈ NH \ {0},∀k ∈ K, (86)

fk
ij ≥ xk

ij ∀(i, j) ∈ AH \ {0},∀k ∈ K, (87)

fk
0j ≤ Q ∀j ∈ NH , (88)

fk
ij ≤ (Q− 1)xk

ij ∀i, j ∈ NH \ {0},∀k ∈ K, (89)

xk
ij ∈ {0, 1} ∀(i, j) ∈ AH ,∀k ∈ K, (90)

zki ∈ {0, 1} ∀i ∈ NH ,∀k ∈ K, (91)

fk
ij ≥ 0 ∀(i, j) ∈ AH ,∀k ∈ K. (92)

The objective function (80) is to minimise the sum of arrival times for all

students that contains the arrival time that the students spend on the vehicle

up to the drop-off stops and the total time of walking from the drop-off stops to

their home addresses. Constraint (81) shows that the students are dropped off

in only one of the stops in their cluster. Constraint (82) shows |K| vehicles will

depart the school. Constraint (83) illustrates that after vehicle k visits node

i, it will depart from it. Constraint (84) illustrates the flow of each vehicle at

each node i. Constraints (85–89) show that the maximum number of on board

students on each vehicle cannot exceed the vehicle capacity. Constraints (90–92)

show the domains of the decision variables.
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In summary, an overview of the six proposed models is depicted in Figure 3.

Cumulative School Bus Routing Models

Original Graph Auxiliary Graph

2-index 3-index3-index

MTZ

Model 3

GG

Model 4

MTZ

Model 5

GG

Model 6

MTZ

Model 1

GG

Model 2

Figure 3: Overview of the models

4. Computational results

In this part, we are going to show the computational results of the six math-

ematical formulations for the CSBRP. In Subsection 4.1, the data preparation

is discussed, and the final results are provided in Subsection 4.2.

4.1. Data preparation

The proposed model was tested on real-life data from Innlandet in Norway.

The dataset contains the locations of different schools, the students’ home ad-

dresses, and the bus stops. To calculate the travel time between any pair of

nodes, we used the Haversine distance metric, which is the distance between

two points on the surface of a sphere measured along the surface of the sphere.

We assumed that school buses have a speed of 30 (km/h) and the walking speed

for the students is 5 (km/h).

All models are applied to certain small-sized instances, which are for the

schools where the number of students is in the set {7, 10, 13, 15, 16, 22}. By
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selecting five schools from the dataset that need to provide a service for the same

number of students, we can evaluate the average performance of our proposed

model across various school locations with equivalent student populations. We

made the assumption that there were two vehicles with a capacity of 20 students

available for all instances. The instances are accessible at https://github.

com/Far-naz/SchoolBusRouting.

Here, the computational experiments on the set of data are described. All

of the computational results were performed on a Windows platform running

an Intel(R) Core(TM) i7-1260P @ 2.10 GHz laptop PC with 16 GB RAM. All

the instances were solved by default settings of CPLEX (version 12.9), and the

maximum running time is one hour.

4.2. Computational results

In this section, we analyse the performance of the six mathematical formu-

lations. Table 1 shows aggregated results for five different sets of schools. In

Table 1, |S| is the number of students, WMax is the maximum allowed walking

distance, |N | is the average number of nodes in models which are defined by

the original graph, and |NH | is the average number of nodes for models defined

by the auxiliary graph. Note that the total number of nodes in each instance

refers to the number of potential stops, which primarily refers to students’ home

addresses and bus stops. An increase in the allowed walking distance causes a

rise in the number of nodes (both |N | and |NH |), especially |NH | is larger than

|N | when the allowed walking distance is greater than zero, because of copying

the shared stops.

The other columns of Table 1 describe the obtained results for each model.

#opt represents the number of instances (out of five schools) that reach opti-

mality within the given time, CPU represents the average computation time (in

seconds) for instances that reach optimality within one hour, and if the total

computation time for all five instances is over one hour, then that value is dis-

played by ‘—’. obj shows the average optimal or upper bound values (in hours).

GAP is the average percentage of optimality gaps only for those instances that
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do not reach optimality within one hour. Note that the optimality gap reflects

the difference between the best known bound and the objective value of the best

solution. For each instance, we indicate which model performs best, according

to the following rule: First we prioritise the average optimality gap, and as a

second priority for tie-breaking we use the average CPU time.

All of the reported results are based on the introduced lifted version of the

time connectivity and capacity constraints.

Based on the obtained results, the maximum number of students that the

models can solve to optimality is less than 22 students, and we stop running

the models for larger instances. In general, among all the instances, Models 2,

3, and 4 perform better than the other models.

Model 1 shows the worse performance even for very small-sized instances

like 7 students. As a result of the existence of big M in the formulation, this

model is weaker in computation. Consequently, we stop running Model 1 for

instances with larger than 10 students.

According to Table 1, it appears that the computation time of the models is

strongly dependent on both the number of students and the maximum walking

distance, such that by increasing these two criteria, the average computation

time for all the models also increases. Based on the average computation times,

Model 3 performs well only on very small instances like 7 and 10 students, while

Model 4’s performance is superior when there are more than 10 students. Model

3 and Model 4 are both based on a 2-index formulation.

On average, the number of instances that reach optimality is larger with

Model 4 than with the other models.

Table 2 shows a brief summary of the computations grouped by instance

size as given by the number of students. Column |S| is the number of students,

Num is the total number of instances with that number of students, #opt is the

total number of instances where optimality is reached, and CPU is the average

computation time in seconds for those instances where optimality is reached.

Table 3 shows details of the instances with 13 students. The columns of the

tables are Id which is the school index, N and NH are the number of nodes
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Table 2: Summary of computations grouped by instance size

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

|S| Num #opt CPU #opt CPU #opt CPU #opt CPU #opt CPU #opt CPU

7 25 23 148.9 25 4.7 25 0.7 25 6.2 25 2.25 25 8.6

10 30 25 301.6 29 62.5 30 22.4 30 43.9 29 157.3 29 45.7

13 25 11 292.9 23 64.6 19 289.1 24 151.7 12 234.2 22 245.4

15 25 20 427.5 17 558.7 23 307.9 8 457.8 19 360.1

16 10 10 299.2 4 1004.1 10 143.5 1 7.5 9 142.5

22 5 1 19.1 2 619.9 1 1.3 1 139.5 1 8.9

in the original and the auxiliary graph respectively, z∗ is the optimal or upper

bound value, CPU shows the computational time ( in seconds) if the solution

time is less than an hour and GAP is the optimality gap ( in percentage).

To test the computation time of the models, we started running the models

with WMax = 0, which means that all the students must be dropped off at their

home addresses. Then we increased the value of WMax to check the obtained

results and compare the performance of the models in obtaining the results with

their computation times and the optimality gaps. As depicted in Table 3, by

increasing the value of WMax, the computation time of the models is increased

as well. We stopped running the models when the models cannot solve the

problem within one hour.

Table 3 shows how increasing the number of nodes cause increased computa-

tion times and optimality gaps. Especially the computation times of Models 5

and 6 are sensitive to the number of nodes. In comparing Model 3 and Model 5,

which both are based on MTZ inequalities on the auxiliary graph, it is evident

that the optimality gaps in Model 5 are larger than in Model 3. For instance,

in school number 5 with WMax = 0.3, the reported gap for Model 3 is 16.39%

and for Model 5 is 20.70%. In comparing Model 4 and Model 6, both of which

are based on GG inequalities on the auxiliary graph, it is depicted that the

optimality gap and computation time in Model 4 is smaller than in Model 6.

When comparing Model 4 and Model 6 with Model 2, all of which are based on

GG inequalities but differ in decision variables and graph definitions, Model 4
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Table 3: The instance with 13 students

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Id WMax |N | CPU GAP z∗ CPU GAP z∗ |NH | CPU GAP z∗ CPU GAP z∗ CPU GAP z∗ CPU GAP z∗

1 0.0 14 80.74 3.76 5.69 3.76 14 3.40 3.76 0.30 3.76 96.73 3.76 6.00 3.76

2 0.0 14 1.17 1.62 1.60 1.62 14 0.20 1.62 0.90 1.62 0.71 1.62 5.70 1.62

3 0.0 14 29.29 1.54 2.43 1.54 14 1.80 1.54 0.50 1.54 17.02 1.54 1.80 1.54

4 0.0 14 48.65 4.97 1.35 4.97 14 1.20 4.97 1.90 4.97 6.23 4.97 9.20 4.97

5 0.0 14 2574.69 1.70 3.05 1.70 14 34.30 1.70 1.20 1.70 11.77% 1.70 7.70 1.70

1 0.1 24 4.97% 3.75 32.86 3.75 20 22.40 3.75 8.60 3.75 2538.77 3.75 25.50 3.75

2 0.1 32 3.80 1.62 8.75 1.62 18 1.00 1.62 9.40 1.62 5.52 1.62 16.40 1.62

3 0.1 28 10.88% 1.54 13.37 1.54 19 158.00 1.54 4.70 1.54 3.23% 1.54 43.60 1.54

4 0.1 35 87.08 4.97 1.85 4.97 15 1.80 4.97 2.30 4.97 7.47 4.97 10.40 4.97

5 0.1 25 13.19% 1.70 10.59 1.70 15 4.69% 1.70 11.20 1.70 13.19% 1.70 31.00 1.70

1 0.2 30 19.29% 3.75 216.40 3.75 24 422.50 3.75 80.20 3.75 13.19% 3.75 128.00 3.75

2 0.2 32 5.07 1.62 10.21 1.62 18 1.40 1.62 11.40 1.62 7.57 1.62 18.10 1.62

3 0.2 32 15.39% 1.54 21.61 1.54 22 378.10 1.54 13.70 1.54 7.80% 1.54 60.80 1.54

4 0.2 38 324.44 4.97 4.18 4.97 18 2.60 4.97 3.60 4.97 11.43 4.97 30.10 4.97

5 0.2 36 24.18% 1.70 14.57 1.70 16 10.83% 1.70 65.40 1.70 16.93% 1.70 223.90 1.70

1 0.3 38 21.96% 3.75 447.02 3.75 28 1473.20 3.75 238.30 3.75 20.15% 3.75 1526.80 3.75

2 0.3 44 22.35 1.62 6.66 1.62 18 1.20 1.62 5.50 1.62 9.79 1.62 36.60 1.62

3 0.3 52 20.15% 1.54 292.82 1.54 34 2908.50 1.54 124.60 1.54 11.25% 1.54 1143.80 1.54

4 0.3 41 11.7% 4.97 27.74 4.97 21 24.90 4.97 20.00 4.97 99.56 4.97 93.80 4.97

5 0.3 44 30.35% 1.70 54.11 1.70 19 16.39% 1.70 611.70 1.70 20.70% 1.70 1689.90 1.70

1 0.5 54 23.31% 3.75 2.78% 3.75 36 6.82% 3.75 3.35% 3.75 10.89% 3.75 5.11% 3.75

2 0.5 54 44.68 1.62 3.92 1.62 20 1.30 1.62 13.50 1.62 9.61 1.62 26.60 1.62

3 0.5 92 21.96% 1.52 7.68% 1.52 59 5.94% 1.52 1871.60 1.52 12.00% 1.52 8.89% 1.52

4 0.5 61 26.92% 4.97 62.81 4.97 33 55.40 4.97 70.30 4.97 7.61% 4.97 263.30 4.97

5 0.5 56 31.84% 1.70 242.96 1.70 27 16.72% 1.70 469.80 1.70 19.75% 1.70 5.41% 1.70

is superior to Model 2 both in terms of running time and optimality gaps.

4.3. Sensitivity analysis

For a sensitivity analysis, we run Model 4, as it performed better in com-

parison to other models. All of the instances in this section are based on the

instances with 15 students in five schools. Figures 4 and 5 report the effect of

the number of vehicles and the capacity of the vehicles on the computational

time and the obtained objectives.

Figure 4a shows the effect of the number of vehicles (|K|) and the allowed

walking distance (WMax) on the computation time of Model 4. When only one

vehicle is available, the average computation time is more than one hour, which

we did not report in the figure. However, it is evident from Figure 4a that

by increasing the number of vehicles, the computation time is decreased. As

a result, the model can provide a solution faster when there are more vehicles

than when there is only one. Figure 4a also depicts that the computation time

is also dependent on the value of WMax. The reason is that as the number of

potential stops increases, selecting stops and generating routes becomes more
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complicated for the model.
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Figure 4: Comparison between CPU time based on number of vehicles and capacity of vehicles

over different allowed walking distances
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Figure 5: Comparison between obtained objective based on number of vehicles and capacity

of vehicles over different allowed walking distances

According to Figure 4b, computation times tend to increase as WMax in-

creases. The figure also illustrates that when the vehicle capacity is limited,

the computation time is increased. For instance, when WMax = 0.4 with two

available vehicles, the computation time of the model to provide a solution
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with a vehicle’s capacity of 8 passengers is 2,500(s) while with a capacity of 10

passengers is 1,500(s).

Figure 5 illustrates how the objective value varies in relation to the number of

vehicles and their capacity and different walking distances. Based on Figure 5a,

a larger number of vehicles available for transporting students reduces the sum

of student arrival times. In Figure 5b, which is also based on two available

vehicles, a smaller capacity of the vehicles increases the total arrival time of

students. Due to the vehicles’ limited capacity, the vehicles must travel longer

route distances to deliver all the students to their drop-off points, resulting in

longer total arrival times.

4.3.1. Analysing the CSBRP against the conventional SBRP

In this subsection, we compare our proposed model with the conventional

school bus routing problem. While the objective of our proposed model is to

minimise the sum of arrival times of the students at their homes, the objective

of the conventional SBRP is to minimise the total time or distance travelled by

the buses.

In order to compare the results, we calculated the sum of arrival times of the

students from a solution obtained from the conventional SBRP problem, and

call it converted total arrival times. Additionally, we calculated the total travel

times by the school buses using a solution obtained from the cumulative school

bus routing problem, and call it converted total travel times.

Figure 6 compares the average CPU time of the conventional SBRP and the

CSBRP for 15 students in five different schools. It is depicted that the cumula-

tive SBRP takes longer to run than the conventional SBRP, even though both

models are based on two-index formulations with GG inequalities as subtour

elimination, and only their objective functions are different.

Figure 7a shows a comparison between the obtained results based on the

cumulative school bus routing problem, and the converted total arrival times of

the students from the SBRP. Based on Figure 7a, in general, the total arrival

times in the SBRP are higher than the CSBRP, and the total arrival times
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Figure 6: CPU time differences between the conventional SBRP and the CSBRP

increase with increasing allowed walking distances.

As shown in Figure 7b, the total walking time of the students is influenced

by the value of WMax. In addition, the total walking time is greater in the SBRP

in comparison to the CSBRP, as in the SBRP, the total travel time by the buses

is more important than student convenience.

Figures 7a and 7b show that, in this example, the total arrival and walking

times, respectively, for students remain constant in the CSBRP across varying

values of WMax. Indeed, the route which visits all home addresses for WMax = 0

results also for the larger values of WMax, as it is faster for the students to be

dropped off at the home addresses instead of having to walk home from another

drop off location. However, as shown in Figure 7b, the total walking times in

the SBRP increase as the allowable walking distance increases, revealing that

in the conventional SBRP, the total length of the school bus is prioritised over

the total arrival times of students to get to their homes.

Figures 8-9 show the obtained results from the CSBRP and the SBRP respec-

tively. The results include the drop-off points of ten students with a maximum

allowed walking distance of 0.4(km) and the generated routes for two school
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Figure 7: Comparison between the obtained results from the SBRP and the CSBRP

buses with a capacity of 10 passengers.

In Figure 8, the black square is the school and blue circles are the students’

home addresses. This figure shows that all of the students are dropped off at

their home addresses. There are two generated routes (in dashed blue and solid

orange lines) where the total walking time of the students is zero, and the sum

of arrival times for the students is 7.42(h).

In Figure 9, the school is displayed by a black square, the students’ home

addresses are blue circles and the drop-off bus stops are red triangles. Besides,

two routes from the model are displayed in Figure 9 by dashed blue and solid

orange lines, where in the dashed line route, only student 8 is dropped off, and

the other students are travelling on the solid line route. The number of bus stops

for these ten students with WMax = 0.4 is 25, but in the figure only the visited

drop-off stops are displayed. In this solution, not all students are dropped off at

their home addresses. Specifically, students number 2, 4, and 10 are dropped off

at their home addresses, while student number 1 is dropped off at student 2’s

home address and the other students are dropped off at bus stops. The students

who are dropped off at places other than their home addresses should walk to

their homes. In Figure 9, the converted total arrival times for the students is
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Figure 8: The obtained result from the CSBRP model for ten students

Figure 9: The obtained result from the SBRP model for ten students
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25.65(h), the total walking time of the students is 0.35(h), and the total travelled

time is 6.53(h).

In the SBRP, the two converted travel times are very different (6.422(h) and

0.113(h)), while the two converted travel times obtained from the CSBRP are

more similar (3.55(h) and 3.86(h)) and as such avoid a long travel time for any

individual student.

As explained earlier, the CSBRP involves a set of closed routes that start

and end at the school. However, the objective only involves the total arrival

times of the students, thereby excluding the traversal time of the edge that

connects the last drop off location to the school on each route. In Figure 8, the

edges linking student 9 and student 10 to the school are omitted as they are not

included in the model’s objective. In contrast, on the route displayed by solid

orange lines in Figure 9, the last edge back to the school is also shown as it is

considered in the objective of the conventional SBRP.

5. Unit demands versus general demands

Our formulations are based on graph structures in which each student node

represents just a single student. As such, in general vehicle routing terminology,

the models can be viewed as unit-demand models.

Nonetheless, in the practical situations that our models represent, it may be

the case that there are two or more students with the same home address. In our

unit-demand formulations, this would be dealt with by simply using a separate

student node for each student, with zero time between them for travelling and

walking.

Alternatively, we might have defined the original graph so that each student

node s ∈ S had been associated with a general demand qs, which would represent

the number of students having node s as the home location. We consider that

if this should be a significant advantage over our unit-demand models, demand

splitting should not be allowed. So, in case of general demands, for each student

node s ∈ S we would assume that all qs students should be transported together
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on a bus to the same drop-off location and all walk from there to the same home

node s.

In the following, we consider here the changes to our models that would have

been necessary in case of such general demands, followed by some comments on

why we have chosen unit-demand models in our work.

Generally, for general demands, constraints related to vehicle capacity should

be updated accordingly, and the objective function should be updated to take

into account that the combined travelling and walking to node s counts with a

weight of qs rather than with a weight of one.

In Model 1, the definition of z-variables should be changed so that zksj is

equal to 1 when all students with home node s are dropped off at stop j ∈ Us

by vehicle k, otherwise it is zero. In the objective function (2), each term should

be multiplied by qs so that it would become the following:

min
∑
s∈S

qsts +
∑
k∈K

∑
s∈S

∑
i∈Us

qsWsiz
k
si. (93)

In (93), the first summation would be equal to the total travel time on the

bus by all students, whereas the triple summation would be the total walking

time by all students.

Moreover, the capacity constraint (9) should be updated to the following:∑
s∈S

∑
i∈Us

qsz
k
si ≤ Q ∀k ∈ K. (94)

In Model 2, the z-variables should be redefined as in Model 1. Moreover,

in the objective function (17), Wsiz
k
si should be replaced by qsWsiz

k
si, and in

constraint (24), zksi should be replaced by qsz
k
si.

Models 3–6 are all based on the construction of an auxiliary graph GH =

(NH , AH). For general demands, GH would contain the same nodes and arcs as

for unit demands. However, the interpretation of certain graph elements would

be slightly different. Specifically, the cluster Cj would still represent the possible

drop-off points for node j ∈ S, but with general demands it is assumed that all
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qj students with node j ∈ S as home location are dropped off together at one

node in Cj . This leads to a few changes as described in the following.

In Model 3, in the objective function (32), τi should be replaced by qiτi,

and Wizi should be replaced by qiWizi. In addition, the bounds in (42) should

be replaced by qi ≤ ωi ≤ Q ∀i ∈ NH , and the capacity constraints (37) would

become the following:

ωj − ωi +Qxij + (Q− qi − qj)xji ≤ Q− qi ∀i, j ∈ NH \ {0}, i ̸= j. (95)

This follows from Proposition 2 in [34], but where the ω-variables above are

decreasing along a route, whereas the u-variables in [34] are increasing along a

route. Constraints (45) should be updated similarly.

In Model 4, the updates are very similar to those for Model 2. That is, qs

should be inserted as a factor in the second summation of the objective function

and on the right-hand side of (59).

In Model 5, the updates of objective function and capacity constraints should

be done as for Model 3. In addition, the factor qs should be inserted on the

left-hand side of (71).

In Model 6, the updates for Model 4 should be done similarly here. Moreover,

the factor qs should be inserted on the left-hand side of (85).

Finally, we explain our choice of unit-demand models, although an assump-

tion of general demands might reduce model sizes in some cases. There are ba-

sically two reasons for choosing unit-demand models. Firstly, the unit-demand

models that we have presented represent all possibilities for demand splitting,

which may lead to better solutions. Specifically, whenever two or more students

with the same home address would be serviced by different buses in an optimal

solution to a unit-demand formulation, this solution would not be identified

with general demands provided that demand splitting is not allowed. Moreover,

if demand splitting were actually allowed in models with general demands, we

consider that our unit-demand models are much more straightforward to im-

plement. Secondly, it may well be that the real-world problem characteristics

allow different walking times for different students with the same home address.
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This may generally be the case where rules related to the public transportation

service specify different allowed walking times for students at different ages. So

in this way, two or more students at different ages and with the same home

address may well have different allowed walking times, which we can model by

our unit-demand models but not by models with general demands.

6. Conclusion

In this paper, we introduced a new objective for the school bus routing

problem which has a focus on equity and fairness in the arrival time of students

at their home addresses, when being transported by school buses from the school.

We introduced six different mathematical formulations for the problem that

differ in network design and decision variables. We also introduced lifted time

constraints in the cluster-based formulations. Finally, the models’ performance

is compared on the set of real-life instances. We also compared our proposed

model with the conventional school bus routing problem which has a focus on

minimising the total time of travel. The results show that in the conventional

SBRP, students have to walk larger distances, and on average the students arrive

later at their homes, while the objective of the cumulative school bus routing

problem is to minimise the sum of arrival times of all students at their homes.

We can clearly observe that the MILP approach in this paper is only able to

solve the smallest instances to optimality within the given time limit. Therefore,

as further research, it can be investigated how to design exact and heuristic

algorithms to solve the cumulative school bus routing problem for large-size

instances.
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ing the multiple vehicle traveling purchaser problem: A branch-and-cut

approach, Computers & Operations Research 39 (2012) 391–404.

[15] J. Ren, W. Jin, W. Wu, A two-stage algorithm for school bus stop location

and routing problem with walking accessibility and mixed load, IEEE

Access 7 (2019) 119519–119540.
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[22] T. Öncan, I. K. Altınel, G. Laporte, A comparative analysis of several

asymmetric traveling salesman problem formulations, Computers & Oper-

ations Research 36 (2009) 637–654.

[23] R. Roberti, P. Toth, Models and algorithms for the asymmetric travel-

ing salesman problem: an experimental comparison, EURO Journal on

Transportation and Logistics 1 (2012) 113–133.

[24] Y. Yuan, D. Cattaruzza, M. Ogier, C. Rousselot, F. Semet, Mixed integer

programming formulations for the generalized traveling salesman problem

with time windows, 4OR 19 (2021) 571–592.

[25] C. E. Miller, A. W. Tucker, R. A. Zemlin, Integer programming formula-

tion of traveling salesman problems, Journal of Association for Computing

Machinery 7 (1960) 326–329.

[26] B. Gavish, S. C. Graves, The travelling salesman problem and related

problems, Working paper OR 078-78, Operations Research Center, Mas-

sachusetts Institute of Technology (1978).

[27] M. Desrochers, G. Laporte, Improvements and extensions to the Miller-

Tucker-Zemlin subtour elimination constraints, Operations Research Let-

ters 10 (1991) 27–36.
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