
Artificial Intelligence

Deep Learning Using Preoperative AS-OCT Predicts Graft
Detachment in DMEK
Alastair Patefield1,*, Yanda Meng1,*, Matteo Airaldi2, Giulia Coco3,4, Sabrina Vaccaro3,5,
Mohit Parekh6, Francesco Semeraro7, Kunal A. Gadhvi1,3, Stephen B. Kaye1,3,
Yalin Zheng1,3,8, and Vito Romano1,3,7

1 Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
2 Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
3 Department of Corneal Diseases, St. Paul’s Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
4 Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
5 Department of Ophthalmology, University of “Magna Graecia,”Catanzaro, Italy
6 Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
7 Ophthalmology Clinic, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia,
Brescia, Italy
8 Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK

Correspondence: Vito Romano,
Department of Medical and Surgical
Specialties, Radiological Sciences,
and Public Health, Ophthalmology
Clinic, University of Brescia, Viale
Europa 11, Brescia BS 25123, Italy.
e-mail: vito.romano@gmail.com

Received: December 4, 2022
Accepted: April 25, 2023
Published:May 15, 2023

Keywords: DMEK; artificial
intelligence; predictive factor;
rebubbling

Citation: Patefield A, Meng Y, Airaldi
M, Coco G, Vaccaro S, Parekh M,
Semeraro F, Gadhvi KA, Kaye SB,
Zheng Y, Romano V. Deep learning
using preoperative AS-OCT predicts
graft detachment in DMEK. Transl Vis
Sci Technol. 2023;12(5):14,
https://doi.org/10.1167/tvst.12.5.14

Purpose: To evaluate a novel deep learning algorithm to distinguish between eyes
that may or may not have a graft detachment based on pre–Descemet membrane
endothelial keratoplasty (DMEK) anterior segment optical coherence tomography
(AS-OCT) images.

Methods:Retrospective cohort study. Amultiple-instance learning artificial intelligence
(MIL-AI) model using a ResNet-101 backbone was designed. AS-OCT images were split
into training and testing sets. The MIL-AI model was trained and validated on the
training set. Model performance and heatmaps were calculated from the testing set.
Classification performance metrics included F1 score (harmonic mean of recall and
precision), specificity, sensitivity, and area under curve (AUC). Finally, MIL-AI perfor-
mance was compared to manual classification by an experienced ophthalmologist.

Results: In total, 9466 images of 74 eyes (128 images per eye) were included in
the study. Images from 50 eyes were used to train and validate the MIL-AI system, while
the remaining 24 eyeswere used as the test set to determine its performance andgener-
ate heatmaps for visualization. The performancemetrics on the test set (95% confidence
interval)were as follows: F1 score, 0.77 (0.57–0.91); precision, 0.67 (0.44–0.88); specificity,
0.45 (0.15–0.75); sensitivity, 0.92 (0.73–1.00); and AUC, 0.63 (0.52–0.86). MIL-AI perfor-
mancewasmore sensitive (92%vs. 31%)but less specific (45%vs. 64%) than theophthal-
mologist’s performance.

Conclusions: The MIL-AI predicts with high sensitivity the eyes that may have
post-DMEK graft detachment requiring rebubbling. Larger-scale clinical trials are
warranted to validate the model.

Translational Relevance:MIL-AI models represent an opportunity for implementation
in routine DMEK suitability screening.

Introduction

Descemet membrane endothelial keratoplasty
(DMEK) has gained vast success after its introduction
by Melles et al.1 in 2006. However, postoperative graft

detachment still remains one of the most important
and common challenges in this surgery.2,3 Present
efforts to predict graft detachments combine preop-
erative clinical factors and anterior segment imaging,
especially anterior segment optical coherence tomog-
raphy (AS-OCT), but they lack accuracy.4–12
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Artificial intelligence (AI) in the form of deep
learning is increasingly being used in the field of
ophthalmology to improve diagnostic accuracy and
predict pathology through pattern recognition with
image analysis. Elsawy et al.13 developed a multi-
pathology deep learning algorithm that identified dry
eye disease, Fuchs endothelial dystrophy (FED), and
keratoconus (KC) from AS-OCT images with very
high performance (area under the curve [AUC] of the
receiver operating characteristic [ROC] curve >0.99,
F1 score >0.90). Chen et al.14 developed a deep learn-
ing algorithm capable of detecting various stages of KC
from AS-OCT–generated maps (accuracy, 0.85–0.9).
Dhommati et al.15 have developed an automatedmodel
to identify graft detachments after Descemet stripping
automated endothelial keratoplasty (DSAEK), achiev-
ing an accuracy comparable to an expert’s opinion and
Dice coefficient of 81.3%. In these publications, AI
models achieved similar if not better accuracy than
expert identification, currently the gold standard.13–15

Multiple-instance learning (MIL)–based methods
have been widely adopted in the task of multi-instances
classification.16–18 Specifically, a patient level of label
and “bags” or “collections” of instances (i.e., images)
of the patient are available. In this type of learn-
ing, the labels are assigned to the bags, not to the
instances within the bags. Each bag contains one or
more instances, and at least one instance in each
positive bag has the desired label. On the other hand,
negative bags do not contain any instance with the
desired label. Overall, MIL is useful when the label
assignment is only known at the bag level, and the
instances within each bag may have varying degrees
of relevance to the label assignment. Such a scenario
aligns with this task, and we adopt the MIL as our
learning pipeline.

AI has already been used to investigateDMEKgraft
detachments using postoperative AS-OCT scans.19
However, the risk of postoperativeDMEKdetachment
could be mitigated with OCT preoperative screening
adjuvated byAI.2,20 To date, there is no publishedwork
on AI to investigate DMEK graft detachments using
preoperative AS-OCT scans. Therefore, this study
aimed to design a novel MIL-AI model to distinguish
between eyes that may or may not incur a graft detach-
ment based on pre-DMEK surgery AS-OCT images.

Methods

Design and Inclusion Criteria

A retrospective cohort study was performed at St.
Paul’s Eye Unit, Liverpool University Hospitals NHS

Foundation Trust. Ethical approval was gained from
the institutional review board (ID: 11392). Patient
data for the study were anonymized. Patient databases
were primarily screened on the local secure system to
identify eyes suitable for the study.We included patients
>18 years old who underwent DMEK surgery at St.
Paul’s Eye Unit, Liverpool University Hospitals NHS
Foundation Trust in the past 4 years for FED and/or
bullous keratopathy (BK). We included only patients
who had performed preoperative AS-OCT imaging
and whose image quality was deemed suitable for
analysis. Patients with unsatisfactory imaging due to
blurry images, artifacts, and incomplete visualization
of the corneal endothelium were excluded. Subjects
whose imaging satisfied the suitability criteria were
investigated for demographics and primary/secondary
outcomes.

Imaging Protocol

Images were obtained from the AS-OCT Casia SS-
1000 (Tomey, Nagoya, Japan). The proprietary high-
resolution anterior segment scan, which is a radial scan
covering the entire corneal surface, was employed. In
particular, this scan is composed of 128 radial B-scans
per eye, each with 512 A-scans (16-mm scan length).

Data Preparation

To prepare the data for the convolutional neuronal
network, each image was cropped to 1680 × 960
pixels using the auto-crop function on Microsoft
Office Picture Manager 2010 (version 14.0.7010.1000;
Microsoft, Redmond, WA, USA). The Office Picture
Manager can auto-crop the image based on the
specified pixel index (locations) and dimensions. For
example, for every original image, we crop them based
on the pixel index range from 32 to 996 and from 2
to 1682 along the width and height. Thus, every image
follows the same index range, and we can generate the
same region of interest for the cropped images. Such a
process can also be easily done by programming. This
allowed supplementary material captured beyond the
image to be removed.21 Images could not be cropped
any more than they were without risking losing some
anterior segment capture in several images. This was
due to variability in the sizes of different patients’
anterior segments.

Images were labeled into files according to if
the patient had experienced/not experienced a graft
detachment requiring rebubbling post-DMEK surgery.
Graft detachment requiring rebubbling was defined as
a detachment involving one-third of the axial extension
and/or involving the central 5 mm of the cornea (pupil-
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Figure 1. Overview of the pipeline of the MIL-AI model. Individual B-scan images of an eye are known as instances, and the whole set of
B-scan images of an eye is known as a bag. Bags contain multiple instances, which are labeled as having a graft detachment or not. A graft
detachment label will qualify if there was at least one instance with graft detachment in the bag. In training, bag labels are assigned to the
instance labels. With training, themodel recognizes patterns among instances within bags. The ResNet 101 is adopted as the backbone. The
maximum-instance probability will be used for back propagation during training and be used for model prediction during inference.

lary area). This information was provided by postoper-
ative OCT scans. No randomization was done as this
would make no difference to the network’s interpreta-
tion of the images.

The network needed data to be divided for training,
validation, and testing. Images of 50 of 74 eyes were
used in training and validation of the proposed model,
with 20 of 50 labeled as “no detachment” and 30 of
50 labeled as “detachment.” Training network perfor-
mance parameters were validated every five epochs of
training. Images of the remaining 24 of 74 eyes were
used for testing, with 11 of 24 labeled as “no detach-
ment” and 13 of 24 labeled as “detachment.”

Convolutional Neuronal Network in the MIL

Our AI model utilized MIL, and Figure 1 illus-
trates the proposed MIL-AI model. As shown in
Figure 1, individual B-scan images of an eye are known
as instances, and the whole set of B-scan images of an
eye is known as a bag. Bags contain multiple instances
that are labeled as having a graft detachment or not.
A graft detachment label will qualify if there was at
least one instance with graft detachment in the bag.
In training, bag labels are assigned to the instance
labels. With training, the model recognizes patterns
among instances within bags. After training, the model
should then be able to correctly label unseen bags.22
ResNet was used as the backbone classifier due to its
superior performance in many classification tasks.23
In brief, ResNet is a convolutional neuronal network

(CNN) that used residual connections for deeper neural
networks training. Such a design makes it easier to
learn and optimize deeper architecture of the CNN,
and it addresses the issue of gradient exploration or
vanishing at the same time.

In this work, different ResNet variants (ResNet-18,
-34, -50, -101) have been tried to find the best model for
the classification. The model selected the single image
with the highest probability of correct prediction, and
this was used to represent the eye. The model learned
the best way to represent each eye and learned the best
way to predict graft detachment.

Training involved the image being allocated a
random probability of graft/no graft detachment,
passing through the network, and reaching the prede-
termined graft/no graft detachment outcome.

Implementation Details

A normalization process was applied to all the
images so as to normalize each image with mean values
of 0.5 and standard deviations to 0.5. This normal-
ized the data pixel distribution and therefore quickened
the learning time. No gamma correction was used in
the normalization process. Input imageswere randomly
transformed by on-the-fly data augmentation during
training to increase sample size and reduce risks of
overfitting. Transformations were up to 30° rotation,
horizontal and vertical flip.

All the experiments were conducted on a local
workstation with Intel Xeon W-1024 CPU and Nvidia
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Figure 2. Panels show comparisons of randomly chosen pairs of original input OCT images (i) against the respective heat maps (ii).
A to D are the AI looking at the correct parts of the image: (A) successful graft detachment prediction; (B) successful no graft detachment
prediction; (C) unsuccessful graft detachment prediction; (D) unsuccessful no graft detachment prediction. E to F are the AI looking at the
debatable parts of the image: (E) successful graft detachment prediction; (F) unsuccessful no graft detachment prediction.

Geforce RTX 2080Ti GPU. All the scripts, including
pre- and postprocessing, were developed using PyTorch
(1.13.1). A pretrained model was used due to the small
size of the available data. With a small number of
<10,000 images, an untrainedmodel would often suffer
from overfitting. A pretrained backbone network on
ImageNet was used to prevent overfitting due to the
limited data size included in this work.24,25 Fifty epochs
were empirically chosen for the model training.

The initial weights were random probabilities
between 0 and 1. In the training pipeline of the
adopted instance-based multiple-instance learning, we
chose one most discriminative instance per bag to
represent the whole bag, which means one image per
patient was automatically chosen for training. The loss
function was cross-entropy loss, which is the summa-
tion of the true probability multiplied by the log-
predicted probability over all classes in the distri-
bution. The network is trained end to end by an
Adam optimizer.26 In order to find the optimal settings
of the MIL-AI model, a detailed ablation study of
backbone networks was conducted, and comparisons
were made between batch sizes of 2, 4, 6, and 8
and between learning rates of 0.01, 0.001, 0.0001,
and 0.00001, in addition to the number of ResNet
layers. Threefold cross-validation was used for tuning
the hyperparameters with train and validation data
sets.

Performance Evaluation

HeatMaps
Grad-CAM is an attribution method used

to express the gradients at the final convolu-
tional layer as a rough visualization, known as a
heat/activation/attribution map.27 Figure 2 shows the
pixels of the original image that affected decisions
the most and visualizes these in red. The Grad-CAM
in Figure 2 also uses the most discriminative gradi-
ents against the prediction and visualizes these in
blue. Grad-CAM was used in this context, producing
heatmaps for every test image.28–30

Performance Outcomes andMetrics
The primary outcome measure was the CNN’s

discrimination accuracy at predicting graft detach-
ment/no graft detachment post-DMEK surgery, based
on preoperative anterior segment OCT images. This
was gauged primarily by the F1 score. The F1 score
is the harmonic mean of recall (sensitivity) and preci-
sion (positive predictive value) of the model.29 Recall is
the ratio of the number of correctly classified positives
(e.g., detachment post-DMEK surgery) and the total
number of positives, while precision is the ratio of
correctly classified positives and the total number of
predicted positives. F1 was used because the classes
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were imbalanced (more graft detachments than no
graft detachments).

A senior cornea specialist (VR) undertook a yes/no
questionnaire for graft detachment using the OCT
scans and limited clinical information. Clinical factors
used by the ophthalmologist to make their graft/no
graft detachment predictions included age, gender,
eye laterality, pre-DMEK AS-OCT timing, anterior
chamber area, volume, circumference and thickness of
the cornea before surgery, phacoemulsification date,
graft preparation (eye bank versus surgeon stripped),
folding and size, donor age and gender, endothelial cell
density, and preoperative best-corrected visual acuity.
AI and ophthalmologist performances were compared
by prediction sensitivity, specificity, AUC, and the
McNemar statistical test.

Results

Sample Inclusion and Exclusion

Out of 178 eyes identified during the primary
screening for this study, 104 eyes were excluded
while 74 eyes (69 patients) who satisfied the inclu-
sion criteria were investigated for demographics and
the primary/secondary outcomes. In total, 128 OCT
images per eye should have been collected. However,
due to missing scans, 127 images were collected for 6 of
74 eyes. A total of 9466 images of 74 eyes were included
in this study. Forty-three of 74 eyes were labeled as
“detachment.”

Demographic Data Collection

Mean age of the patients was 68.5 ± 11.9 years.
Most subjects were females (62.2%) with only 32.4%
males and 5.4% with unreported gender. Of the eyes,
40.5% were right eyes. Timing of the OCT scans,
relative to the operation date, spanned across a wide
time range (8.6 ± 10.9 months). FED was the most

common indication for surgery (FED, 87.8%; BK,
12.2%).

Performance Evaluation

Primary Outcome andModel Metrics
The results of our ablation study are presented in

the Table. It can be seen that ResNet-101 with a batch
size of 6 and learning rate of 0.0001 yielded the best
performance; as such, the classification performance
of this model was analyzed hereafter unless other-
wise stated. The performance results on the testing set
were as follows (95% confidence interval): F1 score,
0.77 (0.57–0.91); sensitivity, 0.92 (0.73–1.00); speci-
ficity, 0.45 (0.15–0.75); precision, 0.67 (0.44–0.88); and
AUC, 0.63 (0.52–0.86).

Heat/Activation Maps
Figure 2 shows the heatmaps for the ResNet 101,

batch size 6, learning rate 10−4 MIL model. It shows
randomly chosen pairs of original input OCT images
compared against prediction heatmaps. Heatmaps
are shown for successful/unsuccessful predictions for
graft/no graft detachments. Most heatmaps focused
on the anterior chamber and the cornea, which
are expected from ophthalmologist’s intuitions. Some
heatmaps showed the MIL-AI focused on the part
outside of the cornea or below the cornea (Figs. 2Ei
and ii, 2Fi and ii). These may be debatable areas to
make graft detachment predictions.31

Ophthalmologist Prediction Metrics
The ophthalmologist predicted graft detachments

to an overall worse sensitivity, but better speci-
ficity, compared to the MIL-AI. Figure 3A shows
the ophthalmologist performance compared to the
AI performance in terms of sensitivity and speci-
ficity. Figure 3B shows the ophthalmologist’s ROC
curve and corresponding AUC compared to that of the
AI model during testing. The results of the McNemar
test showed a statistically significant superiority of the

Table. Performance Metrics of MIL Models in Comparison

Number of Layers

Characteristic 18 34 50 101

Batch size 6 6 6 2 4 6 6 6 6 8
Learning rate 10−4 10−4 10−4 10−4 10−4 10−2 10−3 10−4 10−5 10−4

F1 score 0.58 0.62 0.54 0.47 0.67 0.38 0.46 0.77 0.38 0.54
Sensitivity 0.63 0.63 0.63 0.58 0.67 0.54 0.50 0.92 0.54 0.63
Precision 0.67 0.62 0.78 0.76 0.67 0.29 0.54 0.67 0.29 0.78

Batch size, learning rate and performance metrics of the final model are highlighted in bold.
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Figure 3. Overall ophthalmologist performance metrics compared to the MIL-AI: (A) sensitivity and specificity for discrete comparison;
(B) ROC curves for continuous comparison.

MIL-AI model against the ophthalmologist’s predic-
tions (P < 0.05).

Discussion

In this article, we elaborated and validated a
deep learning convolutional neural network, MIL-AI,
capable of predicting the probability of post-DMEK
graft detachment from preoperative AS-OCT scans.
The model performed with very high sensitivity and
relatively low specificity, with overall better evaluation
performance metrics than those of a senior ophthal-
mologist provided with clinical and surgical data and
preoperative imaging.

DMEK is a relatively new, complex, but increas-
ingly popular surgical approach to endothelial failure.2
In order to identify ideal candidates for DMEK, an
algorithm capable of accurate prediction of immediate
postoperative complications such as detachment rate
would make for a useful screening tool.

Overall, a growing body of evidence supports the
use of AI-based pre- and postoperative screening as
a tool that could help with predicting and diagnos-
ing pathologic consequences of surgery.14,19,30,32,33
Deep learning models have been employed to identify
postoperative DMEK graft detachments,19 to predict
future need and suitability for keratoplasty,30 to
quantify DMEK graft detachment segmentation,32 to
identify the best predictors for graft detachment after
endothelial keratoplasty,33 and to predict the need

for rebubbling after DMEK surgery.34 Indeed, clini-
cal trials are currently starting to incorporate AI into
corneal pathology identification. The European Vision
Institute stated that graft detachment could be objec-
tively quantified with AI and that such standardized
data should be used to report outcomes for endothe-
lial keratoplasties.20,35

This study represents a novel approach to DMEK
detachment analysis as it focused solely on preopera-
tive AS-OCT imaging. A preoperative algorithm such
as the one we developed could provide the ophthal-
mologist with a valuable screening tool, because with
a high-sensitivity MIL-AI, subjects at high risk for
DMEK graft detachment could be confidently identi-
fied and monitored. Hayashi and colleagues34 have
employed machine learning on postoperative AS-OCT
images to predict whether a DMEK would need/not
need to be rebubbled due to a graft detachment.
Although the present study achieved lower accuracy,
our algorithm still performed better than an ophthal-
mologist provided with clinical and imaging data,
proving that it could be of help in correctly identify-
ing high-risk eyes. In addition, the proposed AI model
has only used images for the prediction, whereas the
ophthalmologist had full access to the data, which
may not be a fair comparison for the AI model. On
the other hand, this suggests that the MIL-AI model
may be further improved if it can take clinical and
demographic data into account in the future.

Larger-scale trials should be undertaken using this
MIL-AI model for external validation before it is
adopted into clinical practice. Successful trials will
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warrant planning to assess cost-effectiveness for an
economically viable implementation of this technol-
ogy into everyday clinical practice. Limitations of the
study are mostly inherent to the small sample size. A
drawback of automated models is the risk of error in
smaller samples. This is sometimesmitigated bymanual
image labeling. This study was restricted in this respect,
with a limited sample size mitigated by a supervised
learning model. In this study, we chose to utilize a
multiple-instance learning model. This kind of super-
vised learning is extensively used in themedical imaging
field, as it does not require extensive manual labeling of
single scans (instances) but rather of the entirety of the
radial AS-OCT volume (bag).22

The sensitivity of our model was higher than the
specificity. This means that the MIL-AI model tended
to generate more false-positive results rather than
false-negatives results. However, higher sensitivity is
warranted in screening tools rather than specificity, as
it ensures that as little cases likely to experience the
outcome as possible are missed. In this case, since the
model could be employed to screen patients scheduled
for DMEK, identifying subjects at risk for postoper-
ative graft detachment with sufficient sensitivity is a
priority.

In conclusion, we observed that a self-designed,
supervised MIL-AI could successfully use preopera-
tive AS-OCT scans to predict patients who would
have DMEK graft detachments with reasonable
accuracy. Although larger-scale clinical trials to exter-
nally validate this model are warranted, the MIL-AI
model represents an opportunity to improve preoper-
ative DMEK suitability screening.
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