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Abstract

In this thesis we discuss challenges and opportunities arising from warping the extra dimensions

of string theory. After reviewing the required background (including the essentials of Type

IIB string theory; flux compactifications; conifolds, warping, and the Klebanov-Strassler and

GKP solutions; and the KKLT and LVS proposals) we will discuss de Sitter solutions in warped

flux compactifications. We revisit some strongly-warped solutions, present a new solution in

a weakly-warped regime and discuss the advantages of weak warping. We then consider the

robustness of the new solution in the presence of subleading corrections to the scalar potential.

We also explore the difficulties of realising alternative quintessence models as quasi-de Sitter

solutions, showing in particular that the generic behaviour of the (single field) scalar potential

arising for different types of string theory moduli does not allow for a slow-roll accelerated

expansion at the tail of a runaway.

We then take the first steps in understanding the effects of warping in gravitational wave signa-

tures of extra dimensions. By considering the tower of Kaluza-Klein spin-2 states arising from

a warped compactification of Type IIB string theory, we study the effects of warping on their

masses and wavefunction profiles, which we then use to compute corrections to the Newtonian

potential that one can compare with current constraints on fifth forces. This allows us to com-

bine theoretical consistency constraints on the parameter space with the range of parameters

experimentally excluded, thereby providing a direct connection between string theory quantities

and observations. Although a careful study of gravitational wave signals is left for future work,

we briefly outline how these results directly apply in that context and suggest which sources

might be more promising for future detection.
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1. Introduction

There is no direct experimental evidence for

string theory.

Joseph Conlon, Why String Theory?

And yet the birth of string theory could not have been more experimental in nature. What later

gave rise to a theory of strings, started as nothing more than a formula that nicely incorporated

both empirical evidence and mathematical properties expected of strongly interacting systems.

Nowhere in Veneziano’s dual resonance model [1] could a string be found, let alone a theory of

quantum gravity — or, at least, so it seemed. The development of string theory seems to be

tied to a series of “accidental discoveries” that would lead to its current form.1

Shortly after Veneziano’s proposal,2 it was understood that a possible origin of his formula was

a tower of harmonic oscillators [6, 7] whose properties strongly suggested an interpretation in

terms of strings [8–10]. The oscillator formalism (even without the string interpretation) revealed

many of the “accidents” that would become some of string theory’s most famous properties —

among them the need for extra dimensions [11–15]. Even the massless spin-2 state that inevitably

appeared in the dual resonance models might be seen as an accident, not immediately associated

with a graviton (it was then called pomeron) and considered a shortcoming more than a miracle.

(...) at some point in our deliberations [with Scherk] we said, “Just for the fun of it, let’s see

whether this massless spin-2 particle behaves in the right way to give the standard gravitational

force of the Einstein theory of general relativity.” (...) And it became clear to both of us,

immediately, that this was the way to make a consistent quantum theory for gravity.a

aSchwarz, John H. (2002), in Interview with John H. Schwarz, Caltech Oral Histories

It was the shift from a theory of hadrons to a theory of quantum gravity, and the jump in

energy scales that it entailed, that pulled string theory away from experimental reach — once it

became a theory of gravity its “natural” scale went from the scale of the strong interactions (at

1See [2, 3] for a broad and historical account of string theory’s development.
2And its generalisations such as [4, 5].

1



2 Chapter 1. Introduction

around 1 GeV) to that of the gravitational coupling, MPl ∼ 1019 GeV. The lack of experimental

evidence for string theory is therefore not a characteristic of strings but rather one of quantum

gravity theories and the large scales at which they are needed — it tells us more about the

questions we are asking than the answers we are getting.

Nevertheless, this makes the attempt to connect string theory’s rich and highly constrained

structure to current and future experimental observations one of the main challenges of current

research. Despite the highly theoretical and mathematical tools that boosted the progress in

string theory for decades, this goal was never abandoned — trying to reproduce a 4-dimensional

theory with gravity, a particle content that is consistent with the Standard Model and a cos-

mological history that agrees with experimental data, was the driving force behind many of

the theory’s breakthroughs. Among them, flux compactifications of Type IIB string theory3

gained a prominent role in the context of cosmology and high-energy physics, due to its range of

ingredients that allow us to construct realistic models and address some of the “inconveniences”

of string theory.

One such inconvenience is the presence of extra dimensions and arguably the first step towards

string phenomenology is addressing their fate. Usually this requires 6 of the 10 dimensions in

which the superstring propagates to be compactified in such a way as to hide their effects at low

energies. However, their shapes and sizes still play a role in the low-energy physics and the need

to reproduce current observations can be used as a guide for what geometries one should use to

describe them. In particular, the leftover supersymmetry of compactified Type IIB leads us to

consider Calabi-Yau manifolds as attractive candidates. While most of the extra-dimensional

physics can be pushed to extremely high-energies by making those dimensions small enough,

thereby effectively hiding them from our experiments, a residual clue to their existence is left

in the form of a number of massless scalar fields in the 4d theory. Explaining why these scalars

have never been seen is one of the challenges caused by the extra dimensions and constitutes the

problem of moduli stabilisation. A partial solution to this problem comes in the form of non-

trivial fluxes through the compact space that can generate a potential for some of the massless

scalars and give them a mass.

When one puts together one of the most generic features of Calabi-Yau manifolds — conifold

singularities — and the presence of these fluxes, a rather interesting structure arises which

became know as a warped throat. This warping turns out to be particularly useful in addressing

hierarchy problems, suppressing extremely high energies down to much lower scales. For that

very reason, warped throats have become a crucial ingredient in string constructions that attempt

to address a very phenomenological conundrum — the current accelerated expansion of the

Universe and the cosmological constant problem. While the simplest solution would be to find

a de Sitter vacuum in the theory with a very low vacuum energy, the status of de Sitter vacua

3Interestingly, it took some time for Type IIB to gain its current status. In its early stages, it was thought to
be a theory of gravity only, and it was the Heterotic string that was seen as the most promising avenue towards
realising the Standard Model of particle physics. This changed with the introduction of D-branes as a way to
realise the gauge groups required by the Standard Model.
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in string theory has been heavily debated for the past two decades and a consensus is yet to

be found. Not only does a deeper understanding of some of the best proposals require a better

understanding of the dynamics of warped throats and the nature of warping, this would also lead

to a better understanding of their phenomenology and potential signatures. These may include

gravitational signatures that one might be able to probe in the near future through gravitational

waves, using an increasing network of detectors that cover a wide range of frequencies.

The work presented in this thesis focuses on both the challenges and the opportunities arising

from warped extra dimensions in string theory constructions. We begin by discussing moduli

stabilisation in Type IIB supergravity and presenting different proposals for obtaining controlled

de Sitter vacua at low-energies, where different regimes of warping can be exploited in order

to face the challenges of flux compactifications. We also discuss briefly runaway quintessence

models as alternatives to de Sitter vacua. Then we explore the opportunities that might arise

from strong warping when taken together with the advent of gravitational wave astronomy, by

studying the effects of warping on the Kaluza-Klein tower of spin-2 states and its phenomenology.

Below we give a summary of the main points and results discussed in each chapter.

Warped throats have become major ingredients in string phenomenology about which there is

still a lot to learn. The usefulness of warping in addressing concrete problems, such as the

cosmological constant problem, together with its potential to connect string theory effects to

direct observations make warped throats worthy of attention and a well-motivated direction for

future research.

Summary of Chapter 2

In Chapter 2 we review the essentials of Type IIB string theory, starting with the structure of the

bosonic string, comparing it with the new features of the superstring and showing how it leads to

Type IIB strings. We focus on the crucial role played by symmetries and boundary conditions,

obtain the spectrum of closed and open strings, and introduce the GSO projection that results in

the Type IIB theory. We then explain how Type IIB supergravity gives a low-energy description

of this theory, discuss some of its features and introduce the low-energy actions of localised

objects — such as D-branes and O-planes — and their role in tadpole cancellation.

Summary of Chapter 3

In Chapter 3 we introduce the background on flux compactifications that will be crucial for

the following chapters. We start with a general discussion of compactification and how it leads

to discrete infinite (Kaluza-Klein) towers of states, how massless states in these towers are

determined by the topology of the compact space and how the compactified theory can be
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seen as a low-energy effective description of the higher-dimensional one. We then motivate the

use of Calabi-Yau manifolds, describe the dimensional reduction of Type IIB supergravity and

introduce moduli stabilisation with fluxes. Finally, we introduce conifold singularities, review

the warped deformed conifold and the Klebanov-Strassler solution, and finish with the GKP

solution whose use of fluxes can create large hierarchies in the low-energy theory.

Summary of Chapter 4

In Chapter 4 we discuss de Sitter solutions in the context of Type IIB flux compactifications.

After reviewing the cosmological constant problem and dark energy, we introduce the KKLT and

LVS proposals for Kähler moduli stabilisation and the uplift mechanism relying on D3-branes to

obtain de Sitter vacua. We then focus on the conifold modulus and how its stabilisation depends

on the warping regime we consider — we revisit the strongly-warped solutions and outline a new

weakly-warped solution that might help us avoid potential dangers related to the D3-tadpole

constraint. We also discuss the effect of subleading corrections on this weakly-warped solution.

We finish the chapter by considering the alternative to de Sitter vacua provided by slow-roll

quintessence models, focusing in particular on the difficulties to find accelerated expansion at

the tail of (single-field) runaway potentials, which seem ubiquitous in string theory.

Summary of Chapter 5

In Chapter 5 we turn our attention to the opportunities created by strong warping when put

together with the growing investment in gravitational wave astronomy. We start by studying

more carefully the spin-2 tower of Kaluza-Klein states that arises in warped compatifications,

paying careful attention to the interplay between the warping and the size of the compact space,

as well as the masses and wavefunction profiles of the tower of states. We then show how this

can be applied to the study of fifth forces arising from the spin-2 tower and how we can compare

the parameter space of warped string compactifications to the parameter space excluded by fifth

force constraints. We end the chapter with an outline of how the same ingredients can be used

to make predictions for gravitational wave signatures of warped extra dimensions.



2. Essentials of Type IIB

Beginnings are such delicate times.

Frank Herbert

2.1 String Theory

Our current view of string theory started with an interpretation of the dual-resonance model of

Veneziano [1], which originally had nothing to do with oscillating strings. It was a model whose

sole purpose was to explain the Regge trajectories observed in experimental data of hadronic

scattering and it did so by providing a formula for the amplitudes that had the right symmetries

and reproduced observations. One might say that string theory could not have started more

experimentally oriented than it did. Only later was the structure of this amplitude connected

with oscillators [6] and strings [8–10], and the properties of the dual-resonance models derived

from these structures. While nowadays one always starts with a string whose quantisation gives

an infinite tower of states, it is interesting to note that historically it was quite the opposite

— the Veneziano amplitude [1] described an infinite tower of states associated with an infinite

family of oscillators [6] that ultimately suggested it was arising from an oscillating string [8–10].

Just as the action for a relativistic particle is given by the length of its world-line, also the

action for a relativistic string is the area of its world-sheet Σ. The action one obtains in this

straightforward way is known as the Nambu-Goto action [10, 16] and does indeed allow us to

study the dynamics of a string as it propagates in spacetime. However, its form is rather difficult

to work with (especially when quantising the string) due to the square-root that inevitably

appears in the action. A much simpler (classically equivalent) action is obtained by introducing

an additional auxiliary metric field hαβ(σ, τ) with signature (−,+) on the world-sheet. The

resulting action, known as the Polyakov action1 [17–19], describes d massless scalars Xµ coupled

1This form of the action was originally found by L. Brink, P. Di Vecchia and P. Howe [17], and independently
by S. Deser and B. Zumino [18] (as a generalisation including local world-sheet supersymmetry), but it was named
after Polyakov after his application to the path integral quantisation fuelled the development of string theory — it
not only allowed field theoretic tools to be employed, but also revealed the connection between string perturbation

5
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to 2d gravity,

SP = − 1

4πα′

∫
Σ
d2σ
√
−h hαβ(∂αXµ)(∂βX

ν)ηµν , (2.1)

where h = dethαβ, (σ, τ) are the coordinates on the world-sheet and ηµν is the d-dimensional

spacetime metric. The world-sheet scalars Xµ tell us how the string is embedded in spacetime

— they are maps from the string world-sheet into the d-dimensional spacetime in which the

string propagates. The action (2.1) is written in terms of the pulled-back metric

Gαβ =
∂Xµ

∂σα
∂Xν

∂σβ
ηµν . (2.2)

The tension of the string is given by T = 1
2πα′ , so that α′ sets the scale associated with string

dynamics. It is important to distinguish the spacetime theory (whose metric is ηµν) and the

world-sheet theory (whose metric is hαβ) — from the spacetime viewpoint, we have a single

propagating string; from the world-sheet point of view, we have d free scalars2 propagating

in 2d coupled to a metric hαβ which is not dynamical. One should keep this in mind, for

example when discussing symmetries, as some will be spacetime symmetries, while others will

be world-sheet symmetries.

The dynamics of the string and, ultimately, its spectrum is mostly determined by two things:

symmetries ⊕ boundary conditions

The symmetries of the action will not only constrain the possible solutions, but also determine in

which situations one can consistently quantise the string (e.g. critical dimensions of the bosonic

and supersymmetric string); and the choice of boundary conditions will determine what states

will arise from this quantisation. The Polyakov action (2.1) is invariant under

→ Spacetime Poincaré transformations of Xµ — this is a global symmetry;

→ Reparametrisations of (σ, τ) — these are diffeomorphisms on the world-sheet;

→ Weyl rescallings of hαβ.

The fact that the action is invariant under Weyl rescallings is of crucial importance — it tells us

that (2.1) describes a conformal field theory (CFT), which is central for a plethora of methods

used to quantise the string and study its interactions. It is also, together with world-sheet

diffeomorphisms, what allows us to choose the convenient conformal gauge in which the world-

sheet metric is flat, hαβ = ηαβ. This gauge is unique to 2d and therefore gravity is completely

gauged away only in d ≤ 2. Although the metric hαβ is flat and not dynamical, its equation of

expansions and Riemann surfaces, and could be used to study string theory in curved spaces [2]. Ultimately, it
connects all the way back to Liouville, a point which is made very clear in Polyakov’s paper [19].

2This can be generalised by taking a metricGµν(X) rather than the flat metric ηµν , which results in a non-linear
sigma-model (an interacting theory).
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motion is still important, as it effectively implements a constraint on the scalar field theory,3

Tαβ =
4π√
−h

δSP
δhαβ

= − 1

α′

(
∂αX

µ∂βX
ν − 1

2
ηαβ∂γX

µ∂γXν

)
= 0 . (2.3)

Due to differomorphism invariance on the world-sheet we also have energy-momentum conserva-

tion, ∇αTαβ = 0. Together with Tαβ = 0, this implies the existence of infinitely many conserved

charges Lm corresponding to the generators of the Virasoro algebra, which is expressing the

conformal invariance of the theory. The generators are defined by Tαβ and therefore Xµ, and

we can think of Lm = 0 as imposing the constraint Tαβ = 0.

It is also very convenient to work with conformal (or light-cone) coordinates σ± = τ ± σ, in
terms of which the equations of motion for Xµ are simply

∂+∂−X
µ = 0 , (2.4)

which is nothing but a massless wave equation with general solution

Xµ(σ, τ) = Xµ
L(σ

+) +Xµ
R(σ

−) . (2.5)

Since these correspond, respectively, to left- and right-moving waves, we refer to Xµ
L and Xµ

R as

the left- and right-moving modes of the string. While these are totally independent for a closed

string, they are mixed for an open string — this is where the boundary conditions first come

into play. The set of allowed boundary conditions follows from the need to cancel the boundary

terms one would get from varying the action (2.1) with δXµ(τ0) = δXµ(τ1) = 0,

δSboundary
P = −T

∫ τ1

τ0

dτ
[
(∂σXµ) δX

µ
]σ=ℓ

σ=0
, (2.6)

for a string of length ℓ. We see that the boundary term vanishes if

Closed string Xµ(σ + ℓ) = Xµ(σ)

Open string
∂σX

µ
∣∣
σ=0,ℓ

= 0 (Neumann)

δXµ
∣∣
σ=0,ℓ

= 0 (Dirichlet)

for closed strings4 and open strings, respectively. For open strings, either Neumann or Dirichlet

boundary conditions must be imposed at each end of the string (σ = 0, ℓ) for each Xµ (µ =

0, ..., d − 1), for a total of 2d independent choices. Whereas a Dirichlet boundary condition

(D) fixes the end-point of the open string in the corresponding spacetime direction, a Neumann

3This constraint is what makes the Polyakov action classically equivalent to the Nambu-Goto action.
4These are the only periodic boundary conditions which are Poincaré invariant. However, if we consider

strings propagating on a background which is not Poincaré invariant (e.g. in string compactifications), more
general periodic conditions Xµ(σ + ℓ) = Mµ

νX
µ(σ), with constant M ∈ O(1, d − 1), are allowed for some Xµ.

Non-trivial M leads to the so-called twisted states [20].
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boundary condition (N) forbids the string from moving in the σ-direction at the end-point. Dif-

ferent boundary conditions can be chosen in different directions; for example, one can choose (N)

boundary conditions along (p+ 1) directions and (D) boundary conditions along the remaining

(d − p − 1) directions, so that the end point of the string is confined to a (p + 1)-dimensional

subspace.

This leads to a very satisfying connection between boundary conditions and symmetries. Since a

Dirichlet boundary condition fixes the end-point of a string, it spontaneously breaks translation

invariance, which implies that the momentum carried by the string is not conserved. However,

spacetime Poincaré invariance requires the total momentum to be conserved, which forces the

string to exchange momentum with the (p + 1)-dimensional subspace on which it ends. Hence

this subspace must be a dynamical object extending in p spatial directions — these objects

are known as D-branes and are important ingredients in modern string phenomenology.5 The

transverse fluctuations of such a D-brane correspond to massless scalar fields living on the world-

volume of the brane, which are the Goldstone bosons of the spontaneously broken symmetry

[20].

Let us see how all this structure leads to the spectrum of the string — the spacetime states arising

from its quantisation. Interesting and important as it is, it could hardly be justified including

an exhaustive discussion of all cases here.6 We will focus on the specific case of the open string

with (N) boundary conditions along (p + 1) directions xa and (D) boundary conditions along

(d− p− 1) directions xi on both ends, for which the general solution of the wave equation is7

(NN) Xa(σ, τ) = xa +
2πα′

ℓ
paτ + i

√
2α′

∑
n∈Z/{0}

1

n
αa
n e

−inπ
ℓ
τ cos

(nπσ
ℓ

)
, (2.7)

(DD) Xi(σ, τ) = xi0 +
1

ℓ
(xiℓ − xi0)σ +

√
2α′

∑
n∈Z/{0}

1

n
αi
n e

−inπ
ℓ
τ sin

(nπσ
ℓ

)
, (2.8)

when the end-points are fixed at xi0 and xiℓ; x
a and pa are the centre-of-mass position and

momentum of the string along the (N) directions. The αµ
n are the Fourier modes of oscillation

and encode eigenmodes of vibration of the string. Because Xµ is also a coordinate in spacetime,

it must be real, which implies the relation

αµ
−n = (αµ

n)
∗ , (2.9)

5D-branes were proposed as dynamical objects by Polchinski in 1995 [21] and were key ingredients in the
second string revolution that followed.

6For this we refer to [22, 23] for a short and approachable introduction to the bosonic string, including the
essentials of CFT and the occasional nod to the superstring. Although somewhat longer, [24] is also a good place
to start and covers more advanced topics as well. For a more in depth dive into the topic, where the bosonic and
supersymmetric case can be nicely followed in parallel, [20] is a good place to go; it is also a great resource for
the CFT methods so relevant to string theory and string interactions. Of course, the classic textbooks [25–29]
are also valuable references.

7The centre-of-mass momentum along the (d−p−1) directions is zero and the centre-of-mass position xµC.M. =
x
µ
0+x

µ
ℓ

2
is fixed.
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and so positive frequency oscillator modes (n < 0) are not independent of negative frequency

modes (n > 0). From the classical Poisson brackets {Xµ(σ, τ), Ẋµ(σ′, τ)}P.B. we can derive

{αµ
m, α

ν
n}P.B. = −imδm+nη

µν , (2.10)

which will become commutation relations upon quantisation. The Virasoro generators, can then

be defined as

Lm =
1

2

∑
n∈Z

αm−n · αn , (2.11)

as long as we define αa
0 =

√
2α′pµ and αi

0 = ∆xi
√
2α′π

, with ∆xi = xiℓ − xi0, so that the Poisson

bracket between two such generators becomes

{Lm, Ln}P.B. = −i(m− n)Lm+n . (2.12)

We include these to emphasise a point that will be relevant in a moment: although not everything

about the quantum string is present in its classical description, a lot of its consistency is tied to

it. So let us jump to the quantum world and see what exactly we mean by this — it is time to

quantise the string.

We will work in terms of operators.8 That means that the functions Xµ(σ, τ) are now quantum

mechanical operators and the Poisson brackets become commutators,

{ · , · }P.B. →
1

i
[ · , · ] . (2.13)

This imediately leads to

[αµ
m, α

ν
n] = m δm+nη

µν , (2.14)

while the reality condition becomes (αµ
n)† = αµ

−n. This leads us to the following conclusion:

the oscillator modes of the vibrating string, once quantised (and rescalled), behave as familiar

quantum harmonic oscillators with creation operators αµ
−n and annihilation operators αµ

n, for

n > 0. Its ground state is defined as the state for which αµ
n |0⟩, ∀n > 0, and we create states by

acting on |0⟩ with the operators αµ
−n.

It turns out that there is some residual freedom in our choice of conformal gauge. The specific

gauge fixing which allows us to work with physical degrees of freedom only is known as the light-

cone gauge9 and it is chosen such that X+ = 2πα′

ℓ τ , in terms of spacetime light-cone coordinates

8Polchinski would surely be the first to point out the usefulness of working with the path integral instead and
it is indeed a powerful approach. For our purposes though it will suffice to take the operator approach, which is
easier and more direct.

9The gauge fixing is performed through a specific world-sheet coordinate transformation. This gauge pro-
vides unique representatives for physical states and makes unitarity explicit at the expense of manifest Lorentz
covariance [23].
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(X+, X−, Xi), i = 2, ..., d− 1, with

X± =
1√
2
(X0 ±X1) . (2.15)

On the one hand this means that the only non-zero oscillator mode in X+ is α+
0 . On the other,

in the light-cone gauge, the constraints alone fix all α−
n in terms of the transverse oscillators αi

n,

which are therefore the only independent variables [23].

Great care must be taken in bringing the Virasoro generators Lm in (2.12) to the quantum

theory, due to its definition in terms of products of αµ
n that are now non-commuting operators.

These products are only well-defined once we specify their appropriate ordering, and the classical

theory does not necessarily tell us anything with regard to this. Let us define the Lm in terms

of normal-ordered products,

Lm =
1

2

∑
n∈Z

: αm−n · αn : . (2.16)

Since α+
n = 0 , ∀n ̸= 0, leaving out the n = 0 term in the sum (after all, α0 commutes with all

αµ
m), we can write ∑

n̸=0

αm−n · αn =
∑
n̸=0

[−α+
m−nα

−
n − α−

m−n�
�α+
n + δijα

i
m−nα

j
n]

= −α+
0 α

−
m + δij

∑
n̸=0

αi
m−nα

j
n , (2.17)

and working out the last term in terms of normal-ordered products using the commutation

relations (2.14),∑
n̸=0

αi
m−nα

j
n =

∑
n<0

αi
m−nα

j
n +

∑
n>0

αi
m−nα

j
n

=
∑
n<0

(αi
nα

j
m−n + [αi

m−n, α
j
n]) +

∑
n>0

: αi
m−nα

j
n :

=
∑
n<0

: αi
nα

j
m−n : +

∑
n>0

: αi
m−nα

j
n : +

∑
n<0

(m− n)δm,0 δ
ij

=
∑
n̸=0

: αi
nα

j
m−n : +δij

∞∑
n=1

(m+ n)δm,0 , (2.18)

we see that the normal ordered definition matches the classical definition for all Lm apart from

L0 =
1

2

∑
n∈Z

: αn · α−n : +
d− 2

2

∞∑
n=1

n . (2.19)

This looks like trouble — the last term is a divergent series! At face value, having a divergent

series to which no value can be assigned would mean that our classical definition of L0 simply

does not define its quantum version. However, this divergent series can in fact be regularised
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and uniquely assigned the value
∞∑
n=1

n = − 1

12
, (2.20)

whose appearance in string theory has by now become famous, so that L0 is uniquely defined as

L0 =
1

2

∑
n∈Z

: αn · α−n : −d− 2

24

= α′ papa + α′
(
∆xi

2πα′

)2

− d− 2

24
+Ntr , (2.21)

where the first two terms correspond to αµ
0 for the (NN) xa and the (D) xi directions, respectively,

and Ntr is the transverse number operator

Ntr = δij

∞∑
n=1

αi
−nα

j
n , (2.22)

counting the total number of transverse oscillators in a state. Having properly defined the

generators Lm in terms of the oscillators, one can use the commutations relations (2.14) to find

[Lm, Ln] = (m− n)Lm+n +
d

12
m(m2 − 1)δm+n . (2.23)

We immediately see that there is an extra term compared to (2.12), which followed from the

conformal invariance of the classical theory. The extra term seems to break this conformal

invariance and is therefore known as the conformal anomaly. The constraints are imposed on

physical states as

Lm |phys⟩ = 0, m ≥ 0 , (2.24)

which for L0 implies that a physical open string state will have a mass (m2 = −papa)

α′m2 = Ntr + α′
(
∆xi

2πα′

)2

− d− 2

24
, (2.25)

determined by the number of transverse oscillators Ntr, the separation between the Dp-branes

along which the ends of the string can propagate ∆xi and the number of spacetime dimensions

d. It shows that a string that oscillates more (i.e. containing more modes of vibration) results

in more massive states and that stretching a string a distance ∆xi costs energy, which can be

seen as potential energy trying to pull the D-branes together.

We can now determine the spectrum of the open bosonic string. Let us specify to the simpler

case in which both ends of the string end on the same Dp-brane, i.e. ∆xi = 0. The mass relation
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(2.25) tells us that the ground state with no oscillators has a mass

α′m2 |0⟩ =
(
Ntr −

d− 2

24

)
|0⟩ = −d− 2

24
|0⟩ , (2.26)

determined by the number of spacetime dimensions d — for any d > 2 the ground state is a

tachyon with m2 < 0. The first excited states with Ntr = 1 are αa
−1 |0⟩ , a = 2, ..., p (NN) and

αi
−1 |0⟩ , i = p+ 1, d− 1 (DD), with

α′m2 |0⟩ =
(
Ntr −

d− 2

24

)
|0⟩ = 26− d

24
|0⟩ . (2.27)

But here is the key point: the (D) boundary conditions along (d − p − 1)-directions broke

the theory’s d-dimensional Poincaré invariance down to a (p+ 1)-dimensional one — any state

will only carry momentum along the (p + 1)-directions parallel to the brane and can never be

translated along the transverse directions. Since we can make Lorentz boosts along the (p+1)-

directions preserving the symmetry, we can always choose a frame in which

(massive) pµ = (m, 0, ..., 0, 0︸ ︷︷ ︸
p

, 0, ..., 0) , (2.28)

(massless) pµ = (E, 0, ..., 0︸ ︷︷ ︸
p−1

, E, 0, ..., 0) , (2.29)

whose invariance subgroups (or little groups) are SO(p) and SO(p−1), respectively, correspond-

ing to the allowed rotations that leave the momentum unchanged. The upshot is that any state

preserving covariance must fall into representations of one of these groups, depending on its

mass.

Since the state αa
−1 |0⟩ transforms as a vector of SO(p − 1) (while the αi

−1 |0⟩ transform as

scalars), it must be massless, which requires

d = 26 . (2.30)

Any other spacetime dimension would not be compatible with a covariant theory. The bosonic

string must therefore propagate in 26 dimensions.10

At this point, we can create more states by acting on the vacuum with different combinations

of oscillators. All other states will have Ntr > 1 and therefore α′m2 = Ntr− 1 > 0. In particular

all those states will have masses proportional to the scale 1/
√
α′ and will fall into irreducible

representations of SO(p).11 We show the first 2 levels in Table 2.1.

10This critical dimension can be found in a number of different ways, for example by requiring that the commu-
tation relations for the Lorentz generators are preserved or, using the path integral approach, by requiring that
the conformal anomaly in (2.23) is cancelled by the ghost system (which is ultimately determined by the local
symmetries of the theory, nicely tying the critical dimension with the symmetries on the world-sheet).

11Combinations of oscillators αi1
−m...α

j
−n |0⟩ will form representations of the transverse group SO(p− 1) which

will combine into representations of SO(p).
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α′m2 States Little group rep.

−1 |0⟩ (1)

0
αa
−1 |0⟩

αi
−1 |0⟩

(p+ 1)

{d− p− 1}× (1)

1

αa
−2 |0⟩ αi

−2 |0⟩

αa
−1α

j
−1 |0⟩ αi

−1α
a
−1 |0⟩

αa
−1α

b
−1 |0⟩ αi

−1α
j
−1 |0⟩

(
(p−1)(p−2)

2

)
2× {d− p− 1}× (p+ 1)

⊕ {d− p− 1} × {d− p− 2}× (1)

Table 2.1: Spectrum of the open bosonic string up to level 2, with (NN) boundary conditions along
(p+ 1) directions Xa and (DD) boundary condition along the remaining (d− p− 1) directions Xi.

Now it is fairly simple to get the closed string spectrum. Since for a closed string the left-

and right-moving modes are independent, we now have two sets of oscillators, which we can

call αµ
−m and αµ

−m. Because the closed string is free to move in all directions, these states will

simply correspond to tensor products of the states of an open string with only (NN) boundary

conditions. The only extra constraint we have is known as level-matching, Ntr = N tr. This

condition is rooted in a translation invariance along the string, following from the periodic

boundary conditions.12 Acting with the creation operators and respecting level matching, we

find for the first levels the states in Table 2.2.

α′m2 States Little group rep.

−4 |0⟩ (1)

0 αi
−1α

j
−1 |0⟩ (299)⊕ (276)⊕ (1)

4
αi
−2α

j
−2 |0⟩ αi

−1α
j
−1α

k
−1α

l
−1 |0⟩

αi
−2α

j
−1α

k
−1 |0⟩ αi

−1α
j
−1α

k
−2 |0⟩

(20150)⊕ (32175)⊕ (52026)

⊕(324)⊕ (300)⊕ (1)

Table 2.2: Spectrum of the close bosonic string up to level 2 — it can be obtain from tensor products
of open string states at the same mass level (due to level matching, i.e. Ntr = N tr).

The ground state of the closed string is still a tachyon. The massless states are a symmetric

traceless rank-2 tensor (graviton), an anti-symmetric rank-2 tensor (Kalb-Ramond 2-form) and

a scalar (dilaton). Just by including these first few levels we see that the number of states and

the size of their representations grow quickly with Ntr.

The presence of the tachyon seems discouraging. In practice, it tells us that the ground state is

not stable, which usually means that we are expanding the theory around the wrong vacuum.

Although the bosonic string already includes several of the important features for string phe-

nomenology — such as the graviton, vector fields and gauge groups that can arise from different

brane configurations — it does not contain any fermions. This together with the presence of the

12See however [30] for a study of closed string field without level-matching.
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tachyon leads us to consider a generalisation of string theory which not only includes fermionic

states as part of its spectrum, but that we can also hope will cure our tachyonic problem.

2.2 Superstrings

2.2.1 Strings with fermions and supersymmetry

The upgrade of the bosonic string that includes spacetime fermions and will ultimately give us

a way to get rid of the tachyon (resulting in more than one consistent theory and allowing us

to study phenomenology) is a descendent of the fermionic dual resonance models proposed by

Ramond [12], Neveu and Schwarz [14]. Already in [14] it was noted that some new supergauge

operator would be the “nicest” way to get a “reasonable” spectrum of states. In the authors’

own words, the proposal that certain states in the spectrum obtained without these supergauge

operators should be absent was called “a conjecture because we have not yet fully proved it, but we

have no doubt about its truth” [14]. It was only in later work [31, 32] that these supergauges were

better understood, with invariance under supergauge transformations being closely connected

to the absence of ghost states in the two dimensional field theory that described the fermionic

models [32], and included in what would become the superstring action [17, 18].

This new symmetry, which became known as supersymmetry,13 is also strong enough to guar-

antee the absence of the worrisome tachyon when imposed as a spacetime symmetry (i.e. as a

symmetry of the spacetime spectrum of the string). To find this spectrum, let us introduce the

generalisation of the Polyakov action that includes bosons and fermions related by supersym-

metry,

S = − 1

8π

∫
d2σ
√
−h

(
2

α′h
αβ(∂αX

µ)(∂βX
ν)ηµν + 2i(ψ

µ
ρα∂αψ

ν)ηµν

− iχαρ
βραψµ

(√ 2

α′ (∂βX
ν)− i

4
χβψ

ν
))

. (2.31)

Just as for the bosonic string, a great deal of the properties of the superstring spectrum and

the ability to quantise the string follow from the symmetries of this action. Compared to the

bosonic version, the action (2.31) is invariant under a greater number of symmetries,

→ Spacetime Poincaré transformations — global symmetry;

→ Local supersymmetry transformations of (Xµ, hαβ, ψµ, χα);

→ World-sheet Lorentz transformations;

13Supersymmetry was also introduced in [33] as an extension of the algebra of generators of the Poincaré group
before its appearance in the fermionic dual models.
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→ Reparametrisations of (σ, τ) — diffeomorphisms on the world-sheet;

→ Weyl rescallings of (hαβ, ψ
µ, χα);

→ Super-Weyl rescallings of χa.

The action (2.31) describes a super-conformal field theory (SCFT) in 2d, due to the Weyl and

super-Weyl rescalings, which we can again use together with the remaining symmetries to choose

a superconformal gauge that fixes both hαβ = ηαβ and χα = 0 [20]. These fields are therefore not

dynamical, just as hαβ was non-dynamical for the bosonic string. Yet, as before, their equations

of motion are still implementing powerful constraints on the remaining degrees of freedom,14

Tαβ =
4π√
−h

δS

δhαβ
= − 1

α′

(
∂αX

µ∂βXµ −
1

2
ηαβ∂

γXµ∂γXµ

)
− i

2

(
ψ
µ
ρ(α∂β)ψµ

)
= 0 , (2.32)

TF
α = −i 2π√

−h
δS

δχα = −1

4

√
2

α′ ρ
βραψ

µ∂βXµ = 0 . (2.33)

It is worth taking a step back at this point and recall what the bosonic string has taught us. We

saw the crucial role the constraint Tαβ = 0 played after giving rise to the Virasoro generators

Lm, with L0 being ultimately responsible for determining the spectrum of the string and its

critical dimension. We now have two key differences — on the one hand Tαβ no longer depends

only on the bosonic oscillators αµ
m through the fields Xµ, but also on the fermionic degrees of

freedom ψµ; on the other hand we now have a new constraint altogether involving both bosons

and fermions, TF
α = 0 (known as the supercurrent). We shall soon see how these come into play

to determine our new spectrum of states.

In terms of light-cone coordinates σ±, the equations of motion for Xµ and ψµ become15

∂+∂−X
µ = 0 , (2.34)

∂+ψ
µ
− = ∂−ψ

µ
+ = 0 , (2.35)

and thusXµ again splits into left- and right-movers (2.5), while ψµ
+ = ψµ

+(σ
+) and ψµ

− = ψµ
−(σ

−).

What about the boundary conditions? For the bosonic fields, we find the same options as for

(2.6) — periodic, Neumann or Dirichlet. On the other hand, the boundary term of the fermionic

fields, after varying the action (2.31) with δψµ(τ0) = δψµ(τ1) = 0, is

δSboundary = − 1

2π

∫ τ1

τ0

dτ
[
ηµν(ψ

µ
+δψ

ν
+ − ψ

µ
−δψ

ν
−)
]σ=ℓ

σ=0
. (2.36)

This boundary term vanishes if

Closed string ψµ
±(σ + ℓ) = ±ψµ

±(σ)

Open string ψµ
+

∣∣
σ=0,ℓ

= ±ψµ
−
∣∣
σ=0,ℓ

14More precisely, for theories with fermions one must work with the zweibein eaα in terms of which hαβ = eaαe
b
βηab.

15The ± in ψµ
± denote spinor components, which we have left out until now for convenience.
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We now have two choices for closed string boundary conditions for each component of the

fermions — the periodic one (+) is known as Ramond (R) boundary condition, while the anti-

periodic (−) is called Neuveu-Schwarz (NS) boundary condition. Because of Poincaré invariance

the choice must be the same for all directions µ, but can be different for the two components

ψµ
+ and ψµ

−, resulting in a total of 4 different possibilities: (R,R), (R,NS), (NS,R) and (NS,NS).

For open strings, preserving Poincaré invariance in (p+ 1) directions requires us to impose the

same boundary conditions in all those directions, although as before we are allowed to choose

the sign independently on each end of the string — choosing the same sign on both ends defines

a Ramond (R) boundary condition, while choosing different signs defines a Neveu-Schwarz (NS)

boundary condition.

Since we will be mostly working with states arising from the closed string, let us focus on that

case. The general solution to the equations of motion for a closed string is

Xµ
R(τ − σ) =

1

2
xµ +

πα′

ℓ
pµ(τ − σ) + i

√
α′

2

∑
n̸=0

1

n
αµ
n e

2π
ℓ
in(τ−σ) , (2.37)

Xµ
L(τ + σ) =

1

2
xµ +

πα′

ℓ
pµ(τ + σ) + i

√
α′

2

∑
n̸=0

1

n
ᾱµ
n e

2π
ℓ
in(τ+σ) , (2.38)

ψµ
−(σ, τ) =

√
2π

ℓ

∑
r∈Z+ϕ

bµr e
− 2π

ℓ
ir(τ−σ) , (2.39)

ψµ
+(σ, τ) =

√
2π

ℓ

∑
r∈Z+ϕ

b̄µr e
− 2π

ℓ
ir(τ+σ) , (2.40)

where ϕ = 0, 12 for (R) and (NS) boundary conditions, respectively, which can be chosen in-

dependently for ψµ
− and ψµ

+. As before, the αµ
n, ᾱ

µ
n, b

µ
r , b̄

µ
r are the Fourier modes of oscillation

encoding the different eigenmodes of vibration of the string, except that we now have both

bosonic and fermionic modes of vibration. Since the Xµ and ψµ are real, these modes must

satisfy

αµ
−n = (αµ

n)
∗ , ᾱµ

−n = (ᾱµ
n)

∗ ,

bµ−r = (bµr )
∗ , b̄µ−r = (b̄µr )

∗ ,

so that positive frequency modes (n, r < 0) are related to negative frequency modes (n, r > 0).

While the bosonic modes satisfy the same algebra as in (2.10) in terms of Poisson brackets,

for the fermionic modes Poisson brackets must be replaced by Dirac brackets.16 The algebra

16This can be understood in terms of different kinds of constraints in a system. While for the bosonic modes
we are dealing with first class constraints, for the fermionic modes we have second class constraints, which force
us to replace the Poisson brackets by Dirac brackets [20].
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satisfied by the modes is then

{αµ
m, α

ν
n}P.B. = −im ηµνδm+n {bµr , bνs}D.B. = −iηµνδr+s ,

{ᾱµ
m, ᾱ

ν
n}P.B. = −im ηµνδm+n , {b̄µr , b̄νs}D.B. = −iηµνδr+s , (2.41)

{αµ
m, ᾱ

ν
n}P.B. = 0 , {bµr , b̄νs}D.B. = 0 .

The bosonic Poisson brackets will become commutation relations in the quantum theory, but

the Dirac brackets involving fermionic modes will give anti-commutation relations instead. The

Virasoro operators Lm and the new generators Gr of the superconformal algebra (following from

TF
α ) can be decomposed in terms of the oscillator modes as

Lm =
1

2

∑
n∈Z

α−n · αm+n +
1

2

∑
r∈Z+ϕ

(
r +

m

2

)
b−r · bm+r , (2.42)

Gr =
∑
n

α−n · br+n , (2.43)

so that classically the generators of the conformal and superconformal symmetries satisfy the

algebra

{Lm, Ln}D.B. = −i(m− n)Lm+n , (2.44)

{Lm, Gr}D.B. = −i
(m
2
− r
)
Gm+r , (2.45)

{Gr, Gs}D.B. = −2iLr+s , (2.46)

with an exact copy for the barred operators.

We are now ready to quantise the superstring. As we did for the bosonic string, we work

with operators and replace the Poisson bracket and the Dirac bracket with commutators and

anti-commutators respectively,

{ · , · }P.B. →
1

i
[ · , · ] , { · , · }D.B. →

1

i
{ · , · } , (2.47)

which results in the algebra17

[αµ
m, α

ν
n] = m ηµνδm+n {bµr , bνs} = ηµνδr+s ,

[ᾱµ
m, ᾱ

ν
n] = m ηµνδm+n , {b̄µr , b̄νs} = ηµνδr+s , (2.48)

[αµ
m, ᾱ

ν
n] = 0 , {bµr , b̄νs} = 0 .

17It is interesting to keep in mind that, historically, the theory that would later become superstring theory
started with this algebra and only later was it interpreted in terms of oscillation modes of a vibrating string,
analogously to what happened with the bosonic string before it.



18 Chapter 2. Essentials of Type IIB

We are still allowed to choose the light-cone gauge for the superstring, with spacetime light-cone

coordinates (X+, X−, Xi), i = 2, ..., d− 1,

X± =
1√
2
(X0 ±X1) , ψ± =

1√
2
(ψ0 ± ψ1) . (2.49)

This again fixes α+
n = 0 ,∀n ̸= 0, and α−

n in terms of the transverse oscillator αi
n, but we now

also find ψ+ = 0 (which can be eliminated by residual supersymmetry transformations) so that

b+r = 0 ,∀r, and b−r is also fixed by the transverse oscillators.

We now need to revisit the discussion surrounding the quantum definition of the Virasoro gen-

erators and again prescribe an ordering. As before, we define the Lm operators in the quantum

theory in terms of normal ordered products,

Lm =
1

2

∑
n∈Z

: α−n · αm+n : +
1

2

∑
r∈Z+ϕ

(
r +

m

2

)
: b−r · bm+r : , (2.50)

and note that the Gr operators have no ambiguity since the αµ
m and bµr commute. We know from

our computation in the bosonic string case that the bosonic modes will only have a subtlety for

the L0 operator (2.19), which we saw was the root of the critical dimension d = 26. However the

operators Lm have now a contribution from the fermionic operators bµr as well that can affect

the bosonic result for the critical dimension. From the fermionic modes we get∑
r ̸=0

(
r +

m

2

)
b−r · bm+r =

∑
r ̸=0

(
r +

m

2

)
[−

�
�b+−r b

−
m+r − b−−r���b+m+r + δijb

i
−rb

j
m+r]

= δij
∑
r ̸=0

(
r +

m

2

)
bi−rb

j
m+r , (2.51)

which we rewrite in terms of normal ordered products using the commutation relations (2.48),∑
r ̸=0

(
r +

m

2

)
bi−rb

j
m+r =

∑
r<0

(
r +

m

2

)
bi−rb

j
m+r +

∑
r>0

(
r +

m

2

)
bi−rb

j
m+r

=
∑
r<0

(
r +

m

2

)
[−bim+rb

j
−r + {bi−r, b

j
m+r}] +

∑
r>0

(
r +

m

2

)
: bi−rb

j
m+r :

= −
∑
r<0

(
r +

m

2

)
: bim+rb

j
−r : +

∑
r>0

(
r +

m

2

)
: bi−rb

j
m+r :

+
∑
r<0

(
r +

m

2

)
δijδm,0

=
∑
r ̸=0

(
r +

m

2

)
: bi−rb

j
m+r : − δm,0δ

ij
∑
r>0

r . (2.52)

We can therefore make two immediate remarks. Firstly, we still find that only the definition of

L0 is affected, with all other operators being unambiguously defined by their classical expressions

and L0 differing by a näıvely divergent series. However, in contrast with the bosonic contribution,
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the fermionic modes contribute with a negative term. Recalling that the range of r depends on

the choice of boundary condition, i.e. r ∈ Z for (R) boundary conditions and r ∈ Z+ 1
2 for (NS)

boundary conditions, this contribution will be different for the two sectors,

(R)

∞∑
r=1

r = − 1

12
, (2.53)

(NS)

∞∑
r= 1

2

r =
∞∑
r̃=1

r̃

2
= − 1

24
, (2.54)

where we again use the regularised value of the series (2.20). The definition of L0 for the

superstring is therefore

L0 =
1

2

∑
n∈Z

: αn · α−n : +
1

2

∑
r∈Z+ϕ

r : b−r · br : −
d− 2

8
ϕ . (2.55)

We see that for (R) boundary conditions (ϕ = 0) the bosonic and fermionic contributions

completely cancel, while for (NS) boundary conditions (ϕ = 1
2) our previous result −

d−2
24 (2.21)

changes to −d−2
16 due to the fermionic modes — this will affect the critical dimension of the

string, which will no longer be d = 26. We can rewrite L0 as

L0 = α′pµpµ −
d− 2

8
ϕ+N

(α)
tr +N

(b)
tr , (2.56)

in terms of the transverse number operators

N
(α)
tr = δij

∞∑
n=1

αi
−nα

j
n , N

(b)
tr = δij

∑
r∈Z++ϕ

r bi−rb
j
r , (2.57)

whose eigenvalues count the number of each type of oscillators in a generic state. Similarly to the

bosonic case, these definitions allow us to determine the algebra satisfied by the operators Lm

and Gr, and we again find conformal anomalies signalling the (potential) breaking of conformal

and super-conformal symmetries. Imposing all constraints on physical states,

Lm |phys⟩ = L̄m |phys⟩ = 0 , ∀ m > 0 , Gr |phys⟩ = Ḡr |phys⟩ = 0 , ∀ r > 0 , (2.58)

and in particular focusing on the L0 and L̄0 constraints, we find that a physical state in the

closed superstring spectrum must satisfy

α′m2 = N
(α)
tr +N

(b)
tr + N̄

(α)
tr + N̄

(b)
tr −

d− 2

8
ϕ− d− 2

8
ϕ̄ , (2.59)

where we must take into account both left- and right-moving modes. The ground states are

again defined as the states annihilated by all annihilation operators,

αµ
m |0⟩ = bµr |0⟩ = 0 . (2.60)
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However, unlike a ground state of the bosonic operators only, the fermionic operator bµ0 makes

this ground state more subtle. The reason for this is that

bµr (b
ν
0 |0⟩) = (−bν0bµr + {bµr , bν0}) |0⟩ = −bν0���bµr |0⟩ + ηµνδr,0 = 0 , (2.61)

for all annihilation operators bµr , r > 0, all of which annihilate the state bµ0 |0⟩ — this makes

bµ0 |0⟩ a ground state itself. Note that bµ0 is an oscillator associated with (R) boundary conditions,

for which r ∈ Z, and hence this defines the (R) sector ground state. Moreover, N
(b)
tr b

µ
0 |0⟩ = 0

due to the definition of the number operator (2.57) and therefore α′m2(bµ0 |0⟩) = 0, so that

bµ0 |0⟩ indeed gives degenerate (in mass) states that we identify as the ground state. Since the

operators bµ0 satisfy the Clifford algebra {bµ0 , bν0} = ηµν , these degenerate ground states form

a spinor representation of SO(d − 1,1) [20]. The result is a single (NS) ground state |0⟩NS (a

spacetime scalar) and a (R) ground state which is a spacetime spinor |s⟩R. The fact that all

oscillators are spacetime vectors means that whether a state built out of the ground state (by

acting with a given combination of creation operators on it) is a boson or a fermion is completely

determined by the ground state itself — states built from |s⟩R will all be fermions and states

built from |0⟩NS will all be bosons.18

We are finally ready to build the superstring spectrum. Recalling that for the closed string

we must impose level matching, any state will have the same number of left- and right-moving

oscillators. Since we can choose to start with |s⟩R or |0⟩NS for the left- and right-moving

excitations, we now have 4 different sectors (R–R), (NS–R), (R–NS) and (NS–NS). From now

on, we drop the labels (R) and (NS) in the ground states, so that we can label them as left (L)

and right (R) instead.

In the (NS–NS) sector, the ground state is the oscillator vacuum |0⟩L × |0⟩R. Having no oscil-

lators, N
(α)
tr = N

(b)
tr = N̄

(α)
tr = N̄

(b)
tr = 0, it has a mass

α′m2 |0⟩L × |0⟩R = −d− 2

16
|0⟩L × |0⟩R , (2.62)

resulting in a tachyon for d > 2. At this level it seems like the superstring is not helping us deal

with the tachyon problem we found in the bosonic case. The first excited state in this sector

is b
i
−1/2 |0⟩L × b

j
−1/2 |0⟩R, since the half-integer oscillators of the (NS) sector give a lower mass

contribution than any integer oscillators. This can be decomposed into irreducible representa-

tions of SO(d−2), resulting in a symmetric traceless tensor (graviton), an antisymmetric tensor

(2-form) and a scalar (dilaton). The same reasoning that led us to conclude that the first excited

state for the bosonic string was massless, once again requires these states to be massless, so that

α′m2 |0⟩L × |0⟩R = 2

(
1

2
− d− 2

16

)
|0⟩L × |0⟩R

!
= 0 , (2.63)

18This is true for the closed string, but only in part for the open string — open strings with mixed (ND) or
(DN) boundary conditions actually interchange the (R) and (NS) sectors, with a single (R) ground state and a
degenerate (NS) ground state [20].
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fixing the critical dimension of the superstring to be

d = 10 . (2.64)

Any other spacetime dimension would be inconsistent with covariance and hence the superstring

must propagate in 10 dimensions. Note how crucial the contribution from the fermions was in

changing the critical dimension of the string, which we can track back to the new definition of L0

(2.55) and even further back to the appearance of the fermionic fields in the energy-momentum

tensor Tαβ (2.32). Although less obvious, supersymmetry on the worldsheet was also crucial,

allowing us to decouple ghost states and guaranteeing the consistency of the theory — in our

approach, this is reflected in the possibility to use supersymmetry transformations to fix ψ+

when going to light-cone gauge.19

There is one final subtlety regarding the (R) ground state. Although it can be described by 16

states, we can split it into two possible definite chiralities |+⟩ and |−⟩, each of which describing

half of the states, and build our states from each of these chirality-definite (R) ground states.

These states all have

α′m2 |±⟩L × |±⟩R = 0 , (2.65)

since in the (R) sector ϕ = ϕ̄ = 0 in (2.59). The massless states in the remaining (R–

NS) and (NS–R) sectors are then built from the (R) ground states |±⟩L,R and the states

b
i
−1/2 |0⟩L , bi−1/2 |0⟩R. We summarise all states up to the massless level in Table 2.3.

There are a couple of things to note in the closed superstring spectrum. First, we still have a

tachyonic state that appears to signal some sort of instability. On the other hand, the spectrum

with all states included is not spacetime supersymmetric. It turns out that the spectrum of the

superstring including all the states in all the sectors is inconsistent and it must be truncated to

a subset of states in order to be compatible with worldsheet modular invariance. Using partition

functions to study string scattering amplitudes, one can show that this modular invariance indeed

truncates the spectrum in terms of the so-called GSO projection [37, 38], resulting in a spacetime

supersymmetric spectrum. The GSO projection makes use of the operator (−1)F , where F is

the worldsheet fermion number, effectively counting the number of fermionic oscillators in a

given state minus 1 (this is so that (−1)F |0⟩NS = − |0⟩NS). We then require all physical

states in the (NS) sector to have (−1)F = +1, projecting out all other states. For the (R)

sector, we include in the definition of (−1)F the chirality operator, so that the definite-chirality

ground states have opposite eigenvalues, (−1)F |+⟩R = + |+⟩R and (−1)F |−⟩R = − |−⟩R, with
the GSO projection keeping only states with eigenvalue (−1)F = +1 or states with eigenvalue

(−1)F = −1 and projecting out all others.20 Note that this truncation is only consistent provided

19The critical dimension d = 10 and its relation to the absence of ghosts was first discussed in [34–36].
20When presented at this level, the GSO projection seems extremely ad-hoc and unnatural. Going slightly

deeper into string amplitude computations with partition functions, however, one can actually see it pop out
from consistency considerations. In summary, when writing down the one-loop partition function, preserving the
modular invariance of the torus (which is the Riemann surface formed by the string worldsheet associated with
one-loop amplitudes) requires us to sum over different spin structures. This is because modular transformations
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α′m2 States (−1)F̄ (−1)F Reps.

(NS–NS) sector

−2 |0⟩L × |0⟩R −1 −1 (1)

0 b
i
−1/2 |0⟩L × b

j
−1/2 |0⟩R +1 +1 (1) + (28) + (35)v

(R–R) sector

0

|+⟩L × |+⟩R +1 +1 (1) + (28) + (35)s

|−⟩L × |−⟩R −1 −1 (1) + (28) + (35)c

|−⟩L × |+⟩R −1 +1 (8)v + (56)v

|+⟩L × |−⟩R +1 −1 (8)v + (56)v

(R–NS) sector

0
|+⟩L × bi−1/2 |0⟩R +1 +1 (8)c + (56)c

|−⟩L × bi−1/2 |0⟩R −1 +1 (8)s + (56)s

(NS–R) sector

0
b
i
−1/2 |0⟩L × |+⟩R +1 +1 (8)c + (56)c

b
i
−1/2 |0⟩L × |−⟩R +1 −1 (8)s + (56)s

Table 2.3: Spectrum of the closed superstring up to level α′m2 = 0, for all sectors. We highlight the
states surviving the choice of GSO projection that results in the Type IIB string theory.

string interactions between the surviving states do not produce any of the states that have been

projected out, which can be shown to follow from locality of the algebra of vertex operators [20].

We include in Table 2.3 the eigenvalues of these operators for each row of states.

We immediately find that the tachyon gets projected out and we no longer have a state signalling

an instability of the theory. The massless level of the (NS–NS) sector survives, providing us

with the graviton, 2-form and dilaton states. Since we can choose to keep either (−1)F = +1

or (−1)F = −1 states in the (R) sector, there are two inequivalent but consistent truncations of

the spectrum, (−1)F̄ = (−1)F or (−1)F̄ = −(−1)F . In practice, these correspond to left- and

right-moving ground states having the same or opposite chirality, respectively. If we choose to

keep ground states with the same chirality, the (R–R) sector after the GSO projection contains

a scalar, a 2-form and a self-dual 4-form. The (R–NS) and (NS–R) sectors are left with one

gravitino and one spinor (dilatino) each sharing the same chirality. This is the massless spectrum

of Type IIB string theory, a chiral theory with N = 2 supersymmetry. It is the theory whose

phenomenology we are going to explore and we therefore highlight its spectrum in Table 2.3.

It is worth mentioning that choosing the left- and right-moving ground states to have opposite

can change the spin structure required by the fermion fields and the partition function can only be modular
invariant if it is written in terms of the right combination of spin structures. This singles out the GSO projection
appearing in the partition function as 1

2
(1− (−1)F ) for the (NS) sector and 1

2
(1± (−1)F ) for the (R) sector.
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chirality gives us Type IIA string theory, which also has N = 2 supersymmetry. Contrary to

Type IIB, this theory is not chiral as it contains a gravitino of each chirality. The (R–R) sector

is also different, containing a 1-form and a 3-form. Although we will not explore Type IIA much

further, this theory is also widely studied not only in the context of moduli stabilisation and

phenomenology, but also in relation to the string theory duality web.

2.2.2 Worldsheet parity, Type I string theory and Orientifolds

Let us consider the following operation on the string worldsheet

Ω : σ → ℓ− σ . (2.66)

This is known as a parity operation and it effectively reverses the string. Focusing on the bosonic

fields Xµ for a closed string, Xµ(σ+ ℓ, τ) = Xµ(σ, τ), the solution (2.5) is such that acting with

Ω gives

ΩXµ(σ, τ) = Xµ(ℓ− σ, τ) = Xµ(−σ, τ) = Xµ
L(τ − σ) +Xµ

R(τ + σ) , (2.67)

which has the effect of making the left-movers Xµ
L right-movers (τ −σ) and the right-movers Xµ

R

left-movers (τ +σ). Worldsheet parity therefore exchanges left-moving waves with right-moving

waves and consequently it will exchange left- and right-moving oscillators21 ᾱµ
m ↔ αµ

m , b
µ
−r ↔

bµ−r. This is not entirely surprising as our parity operation is precisely to swap what one would

call the “left” and the “right” ends of a string. From the worldsheet perspective (i.e. from

the solution for Xµ) this is a global symmetry, since swapping left- and right-movers does not

change the solution. However, that is not the case from the spacetime perspective (i.e. from the

states build out of the individual oscillators), since not all of them are invariant under this parity

transformation. For example, the anti-symmetric 2-form that corresponds to the anti-symmetric

combination b
[i
−1/2b

j]
−1/2 (see Table 2.3) is not invariant under the exchange b

i
−1/2 ↔ bj−1/2, since

it picks up a minus sign.

One may however require that the string spectrum itself respects this symmetry, which leads to

the construction of the unoriented string. In order to do that, one considers the projector PΩ =
1
2(1+Ω) that selects the parity invariant states (e.g. while the NS–NS 2-form is projected out of

the spectrum, the graviton and the dilaton survive the projection). As with many other steps in

the construction of string theories, we must take into account any consistency constraints that

would forbid us from performing this projection. An important example of this is the different

GSO projections that lead to Type IIA and Type IIB strings — while the Type IIB projection is

left-right symmetric (in the sense that the left- and right-movers are treated identically), that is

not the case for Type IIA where (−1)F̄ ̸= (−1)F . Hence it seems we can only define a theory of

21We restrict our discussion to the bosonic coordinates, but the same applies to the fermionic oscillators. One
should keep in mind however that some extra care is required when defining the action of Ω on worldsheet fermionic
fields.
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unoriented strings starting from Type IIB, which is the Type I theory. Importantly, the Type I

theory only has half of the supersymmetry, i.e. it is an N = 1 theory (indeed, only an invariant

combination of the 2 gravitinos in Type IIB survives the projection).

There is however one powerful property of Type II string theories — they are related by a

duality known as T-duality. This is a duality between two apparently different theories defined

on backgrounds with a direction compactified on a circle, M10 = M9 × S1. T-duality relates a

theory on such a background with a circle of radius R to a theory on a similar background but

with a circle of radius
√
α′/R. This is one of the surprising dualities that lead to the realisation

that all (supersymmetric) string theories are connected to each other. For our current purposes,

the crucial observation is that T-duality flips the sign of the right-moving circle coordinate Xi
R in

such a way that along this direction in the T-dual theory (here the Type IIA theory) worldsheet

parity acts as

Xi
IIA(t, σ)→ −Xi

IIA(t, ℓ− σ) . (2.68)

This combines our worldsheet parity with a spacetime reflection R along the ith direction. Only

when this combined action leaves the states invariant do we have a truly unoriented theory —

since this happens at the fixed point of (2.68), there is an 8-dimensional surface where the theory

is unoriented. This surface is known as an orientifold plane, which we call O8-plane. Away from

the O-plane, the theory is not unoriented but instead related to its mirror image with respect

to this plane.22 Under this new perspective, we can think of the Type I theory as having an

O9-plane which fills the whole of spacetime.

In fact, this is not just a matter of interpretation. Just as D-branes are physical objects which

must be accounted for in the theory (as they couple to fields in the spectrum), also O-planes

are physical objects and need to be included in a consistent description. By studying string

scattering amplitudes, one finds the contribution of both D-branes and O-planes, determining

their effective tensions and charges, and how they couple to the different states in the spectrum.

Unlike D-branes though, O-planes are not dynamical objects in the sense that there are no

modes associated to fluctuations of these surfaces. Taking this into account, one finds that the

Type I theory is only consistent with its O9-plane if there are also 32 D9-branes present (this

guarantees the cancellation of a tadpole23 generated by the O9-plane) [20]. The presence of the

D-branes means that Type I superstring theory necessarily contains open strings and the fact

that the D9-branes are necessarily coincident results in an SO(32) gauge group which is crucial

for anomaly cancelation and the consistency of the theory.

Repeatedly applying T-duality along different directions, one can hop between Type IIB and

Type IIA, and find lower-dimensional O-planes. We find that Type IIB has Op-planes with p odd

22In a truly unoriented theory, projection removes half the states locally; in this case, it relates the amplitude
to find a string at some point to the amplitude to find it at the image point with respect to the orientifold plane
[39].

23We will later apply this logic in reverse: we will use O-planes to cancel tadpole contributions due to fluxes
and D-branes once 6 of the 10 dimensions are compactified. We therefore postpone any more detail about tadpole
cancellation to that discussion.
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and Type IIA has Op-planes with p even. Just as the Type I theory with its O9-plane had half

the supersymmetry of Type IIB, any O-plane will break half the supersymmetry of the original

theory, with different O-planes breaking different combinations of the original supersymmetry.

These different types of O-planes will also couple to different states and are important ingredients

in IIA and IIB phenomenology. We will find in particular that O-planes are extremely useful for

cancelling tadpole charges in a way which preserves N = 1 supersymmetry in the compactified

theory.

2.2.3 Multiple string theories united by duality

While introducing orientifold planes, we briefly mentioned the T-duality between Type IIA

and Type IIB as part of a larger web of dualities relating all consistent supersymmetric string

theories. Let us here say a few more words regarding this powerful structure.

In order to do that, we need to mention two more consistent string theories, apart from the

ones we already encountered. These are the Heterotic theories, which divide into two types

depending on their gauges groups — for consistency, these can only be SO(32) and E8×E8 [40].

The Heterotic theories are a consistent combination of the bosonic string and the superstring24

that exploits the independence between left-movers and right-movers. It gives fermionic partners

to the right-movers making them supersymmetric, but not to the left-movers, so that one can

think of them as belonging to a bosonic string. The result is that the critical dimension is

d = 10 for the left-movers but d = 26 for the left-movers, and a consistent 10d theory therefore

requires us to compactify these 16 extra dimensions. Requiring the absence of anomalies fixes

the compact space in such a way that generates either an SO(32) or E8 × E8 gauge group.25

The construction of the Heterotic string was actually motivated by two important observations.

The first was the anomaly cancellation result that selected SO(32) and E8 × E8 as the unique

gauge groups that would lead to supersymmetric Yang-Mills theory coupled to N = 1, d = 10

supergravity without gauge and gravitational anomalies [41]. The other was the connection

between the low-energy limit of string theories and anomaly-free d = 10 supergravity theories.

Although the Type I theory had an SO(32) gauge group, there was no known string theory with

an E8 × E8 gauge group.

These five supersymmetric string theories were shown to all be connected by dualities, changing

their status as independent fundamental theories into a new picture where they are all different

24The name heterotic was chosen precisely because of this hybrid combination. Although the greek word
“heterosis” only means alteration (following from “heteros”, meaning different), the word was actually chosen
because of its use in genetics/biology, where it describes the “increased vigour displayed by crossbred animals or
plants” [40].

25The compact space must be a torus of common radius R =
√
α′, corresponding to a lattice which must

be integer, even and self-dual. Since there are only two such lattices, the one corresponding to the weigths of
Spin(32)/Z2 and the direct product of two lattices corresponding to the weights of E8, this leads to the unique
identification of SO(32) ∼= Spin(32)/Z2 and E8 × E8 as the gauge groups of the 10d theory.
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Type IIB

Type IIA 11d SUGRA

Heterotic E8 × E8

Heterotic SO(32)Type I

M-theory

Figure 2.1: All consistent supersymmetric string theories were shown to be connected by a web of
dualities — this was a catalyst to the second superstring revolution that happened in the 90’s. Not
only do the dualities relate theories at different couplings and energies, they also relate theories defined
in different dimensions. They are all now seen as different limits of a more fundamental theory which
became known as M-theory.

limits of a common more fundamental one (Fig. 2.1), which became know as M-theory and

is, as of yet, not fully known or understood. The duality web also includes 11-dimensional

supergravity, which suggested that this fundamental theory was actually an 11-dimensional

theory whose low-energy description was 11d supergravity26 [42]. Although we will not explore

these dualities further, they have been widely explored in the string theory literature and are

seen as an important step towards a non-perturbative and more fundamental theory.

2.3 Type IIB supergravity

2.3.1 Type IIB at low energies

The spectrum of Type IIB string theory includes an infinite tower of massive states — in fact,

the higher one goes in mass, the more states each level possesses. The mass scale of this tower

is

Ms =
1√
α′
, (2.69)

defining what we call the string scale. The theory itself does not tell us what this scale should

be and only observations could give its actual value. It therefore depends on what physics

string theory is actually describing — in its original form, it was a theory of hadrons and so

this scale was thought to be around the nuclear scale (Ms ∼ 1 GeV) [43]; once it became

a theory of (quantum) gravity the “natural” scale became that of the gravitational coupling

(MPl ∼ 1019 GeV). We will see that we can indeed relate the string scale of the fundamental

string theory to the Planck mass of a low-energy 4-dimensional description through the coupling

26For this reason, M-theory and 11d supergravity are commonly interchanged, although one is the fundamental
theory of which the other is simply a low-energy description.
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of string interactions and the volume of the extra dimensions.

A string scale which is near the Planck scale is many orders of magnitude above any energy

we can currently (and most likely for a very long time) probe with experiments. Although

cosmological observations may help bridge the gap between our detectors and these extremely

high energies, it is still reasonable to assume that most of the physics we are interested in

describing happens at energies E ≪Ms. One would therefore expect the high-energy states not

to contribute significantly — from the effective field theory point of view, we could integrate

out the high-energy modes and work with a theory describing the physics at low energies. In

the low-energy effective theory only the massless states of the spectrum are propagating degrees

of freedom (since these are the only ones which do not require E ≳ Ms) and interactions with

the massive tower will appear as low-energy interactions between massless states suppressed by

powers of E/Ms (these can be thought of as corrections to the theory of massless states and are

suppressed by this small ratio). The massless states of Type IIB string theory correspond to the

field content of a 10-dimensional chiral N = 2 supergravity theory, which was named Type IIB

supergravity [44–48].

One way of constructing the low-energy action of Type IIB string theory is to take the massless

states and build the most general Lagrangian compatible with the symmetries of the theory

(e.g. diffeomorphisms, gauge invariance and supersymmetry) up to some order in a derivative

expansion. The derivative expansion should be controlled by the scale at which new degrees

of freedom would appear, i.e. by the small ratio ∂2/M2
s so that higher-derivative operators

will be less important at low energies.27 We can then compute different scattering amplitudes

within this EFT involving the generic couplings in terms of which we wrote the interactions.

By comparing these amplitudes with the scattering amplitudes of the same states in the full

theory (which are computed as correlation functions of physical state vertex operators [20]),

we can match the EFT couplings with the string theory result at the same order in the E/Ms

expansion. On the string theory side, the amplitudes are computed in terms of a loop-expansion

that turns out to be controlled by the string coupling gs, which is determined by the vacuum

expectation value of the dilaton state — the strings are weakly-coupled when this value is small,

and only then is this loop-expansion consistent. In this way, the EFT is constructed such that

the low-energy limit of the string theory amplitudes at a given order in the loop-expansion is

reproduced.

Once all this matching is done and the couplings determined, the action describing the massless

bosonic states of Type IIB supergravity at leading order in gs and α′ becomes28

27Recall that derivatives in the action are associated with momenta in the scattering amplitudes, so that ∂2

really represents p2 ∼ E ≪Ms.
28See [49] for the dilaton dependence of the RR sector.



28 Chapter 2. Essentials of Type IIB

Integrate out

M

Ms

2 Ms

3 Ms

4 Ms

5 Ms

M

Ms

Gµν , B2, Φ, C0, C2, C4

λ1, λ2, ψµ
1 , ψ

µ
2

Figure 2.2: At energies much E ≪Ms, the physics of Type IIB string theory can be described by an ef-
fective field theory including only its massless states Gµν , B2, Φ, C0, C2, C4 (bosonic) and λ

1, λ2, ψµ
1 , ψ

µ
2

(fermionic). The massive string states whose masses are well above the energies we want to describe are
integrated out and only contribute the low-energy theory through effective interactions between the mass-
less states which are suppressed by the small ratio E/Ms ≪ 1.

SS
IIB =

1

2κ210

∫
d10x

√
−GS

{
e−2Φ

(
R+ 4(∂µΦ)(∂

µΦ)− 1

2
|H3|2

)
−
(
1

2
|F1|2 +

1

2
|F̃3|2 +

1

4
|F̃5|2

)}
− 1

4κ210

∫
C4 ∧H3 ∧ F3 , (2.70)

where R is the Ricci scalar for the metric GS
MN , Φ is the dilaton, H3 is the field-strength of the

NS–NS 2-form B2 and Fp is the field-strength of the RR (p− 1)-form Cp−1,

H3 = dB2 , Fp = dCp−1 , p = 1, 3, 5 .

The RR field strengths F3 and F5 appear in the action through the gauge invariant combinations

F̃3 = F3 − C0H3 , F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 ,

and we define the contractions as

|Fp|2 =
1

p!
Fµ1...µpF

µ1...µp .

Note that these definitions lead to the non-standard Bianchi identities

dF̃3 = H3 ∧ F1 (2.71)

dF̃5 = H3 ∧ F3 (2.72)

which follow from dH3 = dF1 = dF3 = dF5 = 0. Moreover, the type IIB action must be
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supplemented with the self-duality condition29

F̃5 = ⋆F̃5 . (2.73)

Apart from the bosonic fields in (2.70) there are also two gravitinos (ψ1
M , ψ

2
M ) and two dilatinos

(λ1, λ2), whose action is rarely shown. The reason is that for most purposes the work can be

done by dealing with the bosonic action only and occasionally referring to the supersymmetry

transformations for the fermions. This work is no exception.

Having matched the amplitudes computed using the low-energy EFT with the same amplitudes

computed using the UV (string) theory, we know precisely how the couplings in Type IIB

supergravity are related to the couplings (and therefore fundamental scales) of the underlying

Type IIB string theory. The relation between the string scale α′ and the 10d string frame

gravitational coupling κ10 is

2κ210 = (2π)7α′4 . (2.74)

A common convention for the string length30 ls, which we use below, is

(2π)2α′ = l2s , (2.75)

although sometimes α′ = l2s is used instead.

The Einstein frame

Here is an important observation — the low-energy supergravity action (2.70) shows that the

way the graviton and the dilaton states interact is such that, from the field theory point of

view, 10d gravity is not in the canonical Einstein-Hilbert form, but rather more akin to a

scalar-tensor modified theory of gravity. Physically this means that the graviton does not have

canonical kinetic terms and the string-frame metric GS
MN does not directly correspond to the

(field theory) propagating graviton. Only once we write the action in canonical form can we

read off the gravitational interactions of all fields in the way we are used to in GR. The frame

in which the action takes the canonical Einstein-Hilbert form — i.e. the Ricci scalar does not

couple to anything other than
√
−GE — is known as the Einstein frame, which we can choose

by performing a conformal transformation of the 10d metric GS → GE = e2ΥGS (see Appendix

29Notice the factor of 1
4
rather than 1

2
in the kinetic term, which accounts for the fact that only half the degrees

of freedom should be present.
30Note that the string scale (which we defined as the mass of the tower of string states) is Ms = 1√

α′ = 2π
ls

for this choice of conventions. The notation ms = 1
ls

is commonly used with this convention, with the relation
Ms = 2πms.
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A.1). The action in Einstein frame becomes

SE
IIB =

1

2κ2

{∫
d10x
√
−G

(
R− 1

2
(∂MΦ)(∂MΦ)− gs

2
e−Φ|H3|2

)

−
∫
d10x
√
−G

(
e2Φ

2
|F1|2 +

gs
2
eΦ|F̃3|2 +

g2s
4
|F̃5|2

)
− g2s

2

∫
C4 ∧H3 ∧ F3

}
, (2.76)

after fixing our conventions such that the metric in the string frame and the metric in the Einstein

frame are the same at the vacuum,31 allowing us to discuss quantities in a frame-independent

way at the vacuum. For that choice, the Einstein frame gravitational coupling is related to the

string scale as

2κ2 = 2κ210g
2
s = (2π)7g2sα

′4 or 2κ2 =
g2s l

8
s

2π
. (2.77)

The constant gs that now appears in the action and physical quantities is defined by the vacuum

expectation value of the dilaton field, gs ≡ e⟨Φ⟩. Let us emphasise that this does not mean that

the vev of Φ is determined by some constant gs which relates the physical scales; it means that

the constant gs that relates these physical scales and couplings is only fixed by the vev of the

dilaton. In particular, it implies that these couplings are not constants in the theory, but instead

must be dynamically fixed by giving the dilaton an expectation value.

This reflects the fact that the UV theory which completes this low-energy description is a theory

of strings whose only scale is the string scale Ms, meaning that everything else in the theory

is dynamically determined through strings interacting with each other — this unique scale is

simply giving us a ruler with which we can measure different quantities. Hence, string theory

comes with no free parameters and all phenomena will, deep down, be entirely determined by

its internal structure and dynamics. On the other hand, this also means that the dilaton is

not allowed to remain a flat direction. In some way or another, it must develop a potential

which will fix its vev and make it massive.32 In order for the perturbative expansion used in the

computation of string amplitudes to remain valid, this should happen at small values of gs.

It is convenient to write the equations of motion for the scalars and form fields in differential

form language (see Appendix B),

d ⋆ dΦ = e2Φ|F1|2 +
gs
2

(
eΦ|F̃3|2 − e−Φ|H3|2

)
(2.78a)

d(e2Φ ⋆ F1) = −gseΦF̃3 ∧ ⋆H3 (2.78b)

d(e−Φ ⋆ H3 − eΦC0 ⋆ F̃3) = gsF3 ∧ F̃5 (2.78c)

d(eΦ ⋆ F̃3) = −gsH3 ∧ F̃5 (2.78d)

31This can be seen by setting the dilaton Φ to its constant vev in the string frame action (2.70), which leaves
a canonical Einstein-Hilbert term with a new gravitational coupling involving this vev (2.77).

32We will see later how this is related to observational constraints on fifth forces.
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d ⋆ F̃5 = H3 ∧ F3 (2.78e)

and the Einstein equations in component form,

RMN =
1

2
(∂MΦ)(∂NΦ) +

e2Φ

2
(∂MC0)(∂NC0) +

g2s
4× 4!

(F̃5)MPQRS(F̃5)
PQRS

N

+
gs
4

(
eΦ(F̃3)MPQ(F̃3)

PQ
N + e−Φ(H3)MPQ(H3)

PQ
N

)
− gs

8
GMN

(
eΦ|F̃3|2 + e−Φ|H3|2

)
. (2.79)

These must be supplemented by the self-duality condition (2.73), which is compatible with the

equation of motion and Bianchi identity for F̃5, but is not implied by them.

The way the 3-forms H3 and F3 appear in the action (2.76) and equations of motion appears to

have some underlying structure — it almost seems as if there is a symmetry between them. In

fact, there is indeed a symmetry relating the two fields B2 and C2 (which as one might guess

from the equations of motion will necessarily also involve the scalars Φ and C0), which we now

briefly discuss.

The SL(2,Z) invariance

There is no shortage of examples in physics where symmetries opened the door to a deeper under-

standing of theories, phenomena and apparently accidental connections. From understanding the

deeply symmetric structure of Maxwell’s equations as a consequence of their underlying gauge

symmetry, to formulating the Higgs mechanism by which massless particles acquire a mass due

to the breaking of a gauge symmetry, there is a lot to be gained from making symmetries as

manifest as possible.33

It turns out that the Type IIB supergravity action in Einstein frame (2.76) does have a symmetry

which is not obvious from the way it is currently written. While choosing the right field redef-

initions that makes this symmetry manifest requires some hindsight, once these are performed

the symmetry becomes easier to spot. Here is the clever field redefinition [50–53]

τ = C0 + ie−Φ , (2.80a)

G3 = F̃3 − ie−ΦH3 = F3 − τH3 , (2.80b)

33This is not necessarily true when performing explicit computations, as it is possible that keeping symmetries
manifest throughout the computation might make it more technically involved and cumbersome. A nice example
is the derivation of the string spectrum, which is most easily obtained by working in a non-manifestly Lorentz
invariant way and then imposing this invariance on the resulting spectrum. However, when studying string
interactions, a covariant approach is the best way of making progress.
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with which we can write (2.76) as

SE
IIB =

1

2κ2

∫
d10x
√
−G

(
R− (∂µτ)(∂

µτ̄)

2(Im τ)2
− gs

2(Im τ)
|G3|2 −

g2s
4
|F̃5|2

)
− ig2s

8(Im τ)κ2

∫
C4 ∧G3 ∧G3 . (2.81)

Both τ and G3 are complex fields: τ is known as the axio-dilaton (since it encodes both the

dilaton and the RR scalar C0 which appears in the action (2.76) with an axion shift symme-

try) and G3 is often simply called the 3-form field strength (since it encodes both 3-form field

strengths in (2.76)). Written in this form, a symmetry associated with SL(2,R) transformations

becomes manifest in the Type IIB action.34 Such a transformation leaves the metric and 4-form

(C4) invariant and acts on the remaining fields as(
C2

B2

)
→

(
a b

c d

)(
C2

B2

)
, τ → aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,R) , (2.82)

that is, ad− bc = 1. This symmetry allows us to mix the two forms, B2 and C2, as long as we

transform the axio-dilaton τ accordingly and choose an SL(2,R) transformation — and because

this is a symmetry, any such choice of 2-forms is equivalent to any other. An interesting special

case is the choice(
C2

B2

)
→

(
0 1

−1 0

)(
C2

B2

)
=

(
B2

−C2

)
, τ → −1

τ
. (2.83)

To see why this is interesting, let us set C0 = 0 in order to make the following relation explicit

1

gs
≡ ⟨Im τ⟩ → 1

⟨Im τ⟩
≡ gs . (2.84)

This means that the SL(2,R) transformation which exchanges C2 ↔ B2 also inverts the string

coupling gs, turning a weakly-coupled theory into a strongly-coupled one or vice-versa. This

type of weak-strong mapping between theories is called S-duality [54, 55] and it was one of the

crucial tools to understand the web of dualities between 10d superstring theories.

It turns out that this SL(2,R) symmetry does not fully survive in the Type IIB string theory,

because the 2-forms B2 and C2 couple to fundamental strings (F1) and D-strings (D1) respec-

tively. These strings are therefore charged under their respective 2-forms and this charge must

be quantised such that ∫
γ
H3 ∈ Z ,

∫
γ
F3 ∈ Z . (2.85)

34Indeed, once the action is written in terms of τ and G3, it is possible to start from a generic linear trans-
formation for (C2 B2) and determine, not only which subgroup – SL(2,R) – leaves the action invariant, but also
how τ must transform in a non-linear way.
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If, for example, the RR 2-form transforms as C2 → aC2+bB2 the quantisation condition becomes∫
γ
F3 → a

∫
γ
F3 + b

∫
γ
H3 = a · Z+ b · Z

!
∈ Z , (2.86)

so that maintaining charge quantisation requires the transformation group to be restricted to

the discrete subgroup SL(2,Z). Note that the S-duality transformation above belongs to this

subgroup and is therefore preserved in string theory (the S-duality group is itself a Z2 subgroup

of SL(2,Z)).35 Since S-duality exchanges B2 and C2, it also exchanges the fundamental string

and the D-string which are charged under these fields — therefore, in Type IIB, the F1 is S-dual

to the D1. This also makes their magnetic duals, the NS5 and D5 branes respectively, S-dual

to each other, while the D3-brane is self-dual (which follows from the fact that C4 does not

transform under S-duality).

The equations of motion for the scalars and form fields are now

d ⋆ dτ =
dτ ∧ ⋆dτ
i(Im τ)

− igs
2
G3 ∧ ⋆G3 , (2.87a)

d ⋆ G3 =
dτ̄ ∧ ReG3

i(Im τ)
− igsG3 ∧ F̃5 (2.87b)

d ⋆ F̃5 =
i

2(Im τ)
G3 ∧G3 , (2.87c)

and the Einstein equations

RMN =
1

2

(∂Mτ)(∂N τ̄)

(Im τ)2
+

g2s
4× 4!

(F̃5)MPQRS(F̃5)
PQRS

N

+
gs
4

(G3)MPQ(G3)
PQ

N

(Im τ)
−GMN

gs
8

|G3|2

(Im τ)
, (2.88)

and as before these must be supplemented by the self-duality condition (2.73). The Bianchi

identity for G3 becomes

dG3 = −dτ ∧H3 . (2.89)

Although we have a low-energy description of the closed string sector of Type IIB, there is more

to string theory than just its closed strings — in fact, localised objects such as D-branes and

O-planes play crucial roles in modern string phenomenology, and we will therefore close this

chapter by briefly introducing them.

35In fact, the statement that SL(2,Z) is a symmetry of Type IIB string theory is a conjecture and has not
been proven (see chapter 18.6 of [20] for a discussion of S-duality and other non-perturbative dualities). If true,
it implies the existence of (p, q)-strings carrying p units of B2 charge and q units of C2 charge, which would be
stable against decay into two strings when p, q are relatively prime — restricting to transformations in SL(2,Z)
guarantees that a, b are relatively prime and therefore there is always a stable (p, q)-string associated with the
transformation (2.86), which is described at weak coupling as a bound state of p fundamental strings and q
D-strings [26].
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2.3.2 Localised objects: D-branes, O-planes and tadpole cancellation

The action (2.81) gives an effective description of the massless closed string states of Type IIB

string theory. However one should also include in this description the localised objects that

we encountered in the previous sections — Dp-branes and Op-planes. These objects have both

tensions and charges, and are therefore crucial for the study of string theory vacua. Both D-

branes and O-planes couple to fields in the (NS-NS) and (R-R) sectors, whose couplings at

leading order in the string coupling are contained in the so-called Dirac-Born-Infled (DBI) and

Chern-Simons (CS) or Wess-Zumino (WZ) actions respectively [39]. These effective actions can

be obtained in a similar way as (2.81) by computing string scattering amplitudes in a loop

expansion and matching the couplings that appear in the EFT.

For a Dp-brane, we find in the string frame36 [26, 39]

SDp
DBI = −TDp

∫
W
dp+1ξ e−Φ

√
−det

(
P [G+B2]− 2πα′F̂2

)
(2.90)

SDp
CS/WZ = ±TDp

∫
W

{∑
n

P [Cne
−B2 ]e2πα

′F̂2

}
, (2.91)

where W is the world-volume of the brane, with coordinates ξa , a ∈ {0, ..., p}, TDp = 2π

lp+1
s

the

brane tension, F̂2 is the field-strength of the gauge field Aa which is part of the open string

spectrum, and P [G+B2] denotes the pull-back of the graviton and (NS-NS) 2-form onto W,

P [G+B2] = gab +Bab =
∂XM

∂ξa
∂XN

∂ξb
(GMN +BMN ) . (2.92)

As for the Polyakov action for the string, XM (ξa) gives the embedding of W into spacetime.

We can choose the so-called static gauge to align p + 1 of the XM coordinates with the p + 1

directions on W, so that Xa = ξa and Xi , i ∈ {p + 1, ..., 9}, are the coordinates transverse to

the brane. As we discussed in Section 2.1, Dp-branes are dynamical objects — their positions

along Xi can fluctuate,

Xi = Xi
0 + 2πα′ϕi(ξa) + ... , (2.93)

and these fluctuations are encoded by (9 − p) scalar fields ϕi that are precisely the remaining

scalars in the massless spectrum of the open string.

On the other hand, the CS/WZ part of the action describes the coupling of the Dp-brane to the

(R-R) fields and is written as a formal sum where one should only pick out the forms with the

36We omit a factor

√
Â
(
(2π)2α′RT

)
Â
(
(2π)2α′RN

) (where Â denotes the A-roof genus and RT /RN is the tangent/normal

curvature) in the CS/WZ action whose leading term is 1 [20, 56]; it would be important if one wanted to take
into account curvature corrections to this action.
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correct dimension under the integral,

SDp
CS/WZ = ±TDp

∫
W
[Cp+1 − Cp−1 ∧ (B2 − 2πα′F̂2) + ... ] , (2.94)

with Cp and B2 properly pulled-back onto W. The ± in front of the action corresponds to

Dp/Dp-branes, respectively, whose charges have opposite signs but are always the same as the

tension in magnitude. The CS/WZ action identifies Dp-branes as the objects charged under

Cp+1 so that they act as sources to these fields. After compactification, a Dp-brane with the

right configuration of world-volume flux can also look like an object charged under other Cp′

fields — in (2.94) we see the term that can give rise to an effective charge under Cp−1.

The action for O-planes is very similar to the one for D-branes, but importantly it does not

include any world-volume fields. That is because O-planes are non-dynamical and have no

degrees of freedom associated with them (their positions cannot fluctuate away from the fixed

points that define them). The DBI and CS/WZ actions for an Op-plane are given by37

SOp
DBI = −TOp

∫
W
dp+1ξ e−Φ√−g , (2.95)

SOp
CS/WZ = TOp

∫
W
Cp+1 , (2.96)

where TOp = −2p−5 TDp is the orientifold tension, from which we can see that an Op-plane has

negative tension and couples to Cp+1 with a charge opposite to the one of a Dp-brane. These

properties, together with the way orientifolds break supersymmetry, make O-planes extremely

important in string compactifications involving fluxes and D-branes. We shall further expand

on this point when we discuss flux compactifications in Chapter 3.

If we expand the determinant in the DBI action of D-branes and O-planes, we find a vacuum

energy

S
Dp/Op
DBI, vac = −Tp

∫
dp+1ξ

√
−g e−Φ , (2.97)

with Tp being the tension of a Dp-brane/Op-plane, that will contribute to the Einstein equations

with an energy-momentum tensor

T loc
MN = − ∂ξa

∂XM

∂ξb

∂XN
gab Tp e

−Φ δ9−p(Xi) . (2.98)

D-branes and O-planes are therefore acting as sources of vacuum energy with different signs.

We will see that the negative tension of the O-planes in particular will be important for flux

compactifications.

We can now go back to a point that we mentioned in the discussion of the Type I theory —

37Once again we omit a term

√
L
(
π2α′RT

)
L
(
π2α′RN

) (where L is the Hirzebruch polynomial) depending on the curvature.

As before, its contribution is 1 at leading order and all other terms involve α′-suppressed curvature corrections.
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the notion of tadpole cancellation and the contribution of D-branes and O-planes. From their

coupling to Cp+1 in the CS/WZ action, we find that these localised objects contribute to the

equations of motion of the (R-R) form field. In order to see their contribution, it helps rewriting

the action in terms of the Poincaré form dual to W (see Appendix B) for a generic object with

charge Qp,

S
Dp/Op
CS/WZ = Qp

∫
W
Cp+1 = Qp

∫
spacetime

Cp+1 ∧ δW , (2.99)

with δW = δ9−p(Xi) dXp+1∧ ...∧dX9 in the static gauge where Xi correspond to the transverse

coordinates. Hence there is a contribution to the equation of motion38

d ⋆ dCp+1 = non-localised + 2κ2
∑
i

Q(i)
p δW , (2.100)

with the non-localised term referring to any contribution coming from the closed-string effective

action and Q
(i)
p being the charge of each localised object. If we integrate this equation over the

transverse space W⊥ we find∫
δW⊥

⋆dCp+1
Stokes
=

∫
W⊥

d ⋆ dCp+1 =

∫
W⊥

non-localised + 2κ2
∑
i

Q(i)
p . (2.101)

This is the origin of the tadpole cancellation condition. When W⊥ is a compact space without

a boundary (δW⊥ = 0), this must be zero. Tadpole cancellation is simply the requirement that

the equations of motion for the (R-R) fields are satisfied once all contributions are taken into

account — it is called tadpole cancellation because a non-zero value leads to non-zero one-point

correlation functions whose Feynman diagrams are known as tadpoles. If any tadpoles are left

uncancelled the low-energy EFT becomes anomalous and therefore inconsistent. As we will see

in Section 3.4, all charges (including fluxes) must be quantised, which means that the tadpole

constraint is an integer condition. It implies that when we consider compactified solutions, there

are consistency constraints relating the flux numbers and the number of D-branes and O-planes,

and we are not allowed to have an arbitrary combination of these ingredients.39

With Type IIB supergravity and the effective actions of D-branes and O-planes, we have a field

theory description of the low-energy dynamics of Type IIB string theory. Not only does this

make it easier to explore the phenomenology of Type IIB, in the sense that one can use the

vast set of tools and intuition developed over the years, but it also makes it easier to connect

with known (and observationally tested) results which are mostly formulated in terms of field

theories. Nevertheless, if our goal is to connect string theory to phenomenological observations,

38We assume here that all localised objects share the same world-volume, i.e. that they are on top of each
other. In general, there may be other localised objects oriented along different directions. The space over which
we integrate the equation will determine which of these contribute to the tadpole constraint.

39Note that the story is slightly different in the Type I construction where we first encountered O-planes. There
the O9-plane couples to a C10 form whose field-strength tensor must vanish in 10d, dC10 = 0, so that the integral
leading to the tadpole cancellation condition vanishes without need for a compact space with no boundary. Note
also that there are no non-localised terms in that case, so that we simply find (ND9 − 24)TD9 = 0. This gives 16
D9-branes plus their images under the orientifold, recovering the 32 D9-branes required for consistency.
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we still have to deal with an important aspect of Type IIB: the fact that it is a 10-dimensional

theory, in contrast to the 4 dimensions that we observe. In the next chapter we will explore

the process of compactification, understand how phenomenological requirements can restrict the

set of possible compact spaces and encounter a number of scalar fields in the 4d theory which

näıvely appear as flat directions and thus are not only completely arbitrary but also massless.

We will find that some of these scalars can get a potential from non-trivial background fluxes,

while the others remain as flat directions, whose stabilisation will be addressed in Chapter 4.



3. String compactifications

(...) a realm where everything is very hopeful,

very beautiful, exceedingly promising, (...)

free of parameters—but with no obvious

connection with experiment!

Murray Gell-Mann

3.1 Extra dimensions as UV physics

As we have seen, Type IIB string theory is a theory of supersymmetric strings propagating

in 10 spacetime dimensions. At low enough energies (E ≪ MS) their inherent “stringyness”

is too detailed to resolve, a statement which becomes more precise from an EFT perspective

— not having enough energy to excite higher vibrational modes of the strings, physics at low

energies is well described by a field theory which encodes only the massless degrees of freedom

and their interactions. For Type IIB string theory, this low-energy EFT is precisely the Type

IIB supergravity we briefly discussed in the previous chapter.

Despite seeming well-equipped to address our phenomenological needs, with its graviton, fermions,

gauge fields and symmetries, this 10-dimensional supergravity still comes with a slight incon-

venience — the fact that it is, after all, a 10-dimensional theory. All our observations so far

point to the conclusion that we live in a 4-dimensional spacetime and thus, if Type IIB string

theory really underlies our reality, our 4-dimensional physics must arise from this 10-dimensional

description.

Before the rise of D-branes and their world-volume theories, the only viable route appeared

to be a compactification of the extra dimensions. Although we will shortly dive deeper on

what it actually means, in practice a compactification of a higher-dimensional theory is a lower-

dimensional description of its low-energy physics. With the possibility of confining open string

states on lower-dimensional subspaces (D-branes), an alternative becomes possible in which our

experience would be confined to these branes, effectively forbidding us to explore the extra

38
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dimensions — this is the braneworld approach [57, 58].

Nowadays, Type IIB phenomenology commonly incorporates aspects of both approaches, rather

than choosing one and only one strategy. Yet, it is the compactification concepts and machinery

that will be key to the phenomenology we will explore and thus we will turn to them and

highlight their main features.

3.1.1 Compact dimensions

As the name suggests, the first step towards compactifying a theory is to consider compact

dimensions. Generically, all 9 spatial directions of spacetime in Type IIB can be infinite in

extent, just as our observed 3 spatial directions seem to be,

−∞ < xM <∞ , ∀M ∈ {1, 9} . (3.1)

Näıvely, such an infinite extra dimension would have easily observable effects and should have

been detected already.1 Although it does not become immediately clear how big the extra

dimensions can be while still remaining hidden, they should at least be finite,

−L < xM < L , ∀M ∈ {4, 9} . (3.2)

To see what this implies, let us take the simplest case of the dilaton of Type IIB (in Einstein

frame and ignoring its couplings to other fields),

SIIB ⊃
1

4κ2

∫
d10x
√
−G GMN (∂MΦ)(∂NΦ)

=
1

4κ2

∫
d10x
√
−G ∆10Φ · Φ+

9∑
N=0

[√
−G GMN (∂MΦ) · Φ

]xN
max

xN
min

, (3.3)

where we can define the 10d Laplacian operator as

∆10Φ =
1√
−G

∂N

(√
−G GMN∂MΦ

)
. (3.4)

Equation (3.3) highlights the role of boundary terms in deriving the equation of motion for the

(free) dilaton, ∆10Φ = 0. After reviewing the construction of string theories, we are now very

used to having boundary conditions determine a lot of the physical properties of the theory.

There are 3 possibilities,

(periodic) GMN (∂MΦ) · Φ
∣∣
xN=L

= GMN (∂MΦ) · Φ
∣∣
xN=−L

(vanishing) Φ
∣∣
xN=±L

= 0

1The caveat is that certain properties of both the theory and the solutions may in fact hide an extra dimension
even if it is infinite, as in the case of certain braneworld scenarios [58].
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(static) (∂MΦ)
∣∣
xN=±L

= 0

analogous to the periodic, Dirichlet and Neumann boundary conditions for the string. While

for infinite dimensions (L → ∞) one will typically discard the boundary term by saying that

“the field goes to zero at infinity” (i.e. by choosing vanishing boundary conditions infinitely far

away), compact dimensions require us to dispose of the boundary terms by choosing boundary

conditions at some finite values of xN . The most common choice for compact dimensions is

to make them periodic, but it is worth highlighting the alternatives which still arise in many

instances.

For this choice of boundary conditions for non-compact {xµ} and compact {ym} directions, the
dynamics of the dilaton is determined by

∆10Φ = 0

Φ(xµ, ym)→ 0 as xµ → ±∞

GMn(∂MΦ) · Φ
∣∣
yn=L

= GMn(∂MΦ) · Φ
∣∣
yn=−L

(3.5)

Crucially, the dilaton is still a 10-dimensional field. Simply compactifying the extra dimensions

did not make the problem 4-dimensional. It is now time for symmetry to be taken into account,

in particular maximal symmetry in 4d, which requires the spacetime metric to factorise as

ds210 = f−1(y)gµν(x)dx
µdxν + f(y)gmn(y)dy

mdyn , (3.6)

splitting the Laplacian and hence the equation of motion as

∆10Φ = f ·∆4Φ+ f−1 ·∆6Φ = 0 =⇒ ∆4Φ = −f−2 ·∆6Φ , (3.7)

where ∆4 and ∆6 only depend on non-compact {xµ} and compact {ym} coordinates, respectively.
This is extremely useful, as it makes the equation of motion separable and we can therefore focus

on solutions of the form

Φ(xµ, ym) = Φx(x
µ) · Φy(y

m) , (3.8)

for which the equation reduces to2

∆4Φx

Φx
= −f−2∆6Φy

Φy
= const . (3.9)

Solving the equation of motion for the 10d dilaton is thus equivalent to solving∆4Φx = −k2 · Φx

∆6Φy = k2 · f2Φy

. (3.10)

2This is because the left-hand side only depends on xµ while the right-hand side only depends on ym, so that
the equation is only satisfied if these are both constants.
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The first thing we notice is that the 4d equation resembles the equation of motion of a 4d scalar

field of mass k. We also find that the 6d equation is an eigenvalue problem with eigenvalue k —

to solve it we need the metric on the 6d extra dimensions, which represents local information,

and the boundary conditions, which encode global information about the compact space. For

a solution Φ
(k)
y depending on k, the boundary conditions will determine which values of k are

allowed, not only constraining the set of solutions Φ
(k)
y but also determining which equation its

pair Φ
(k)
x will satisfy. Since the Laplace operator is linear, the most general solution is a sum

over all allowed solutions,

Φ(xµ, ym) =
∑∫
k

Φ(k)
x (xµ) · Φ(k)

y (ym) , (3.11)

where we emphasise the fact that it is a priori unclear whether we have a discrete sum or a

continuous range for k, until the boundary conditions are imposed.

Example: T 6 compactification

Let us consider a flat gmn metric and take f(y) = 1 for simplicity,

ds26 = δmndy
mdyn . (3.12)

The 6d torus T 6 is obtained by identifying the coordinates as ym ∼ ym + 2πR, which makes

them periodic with period 2πR. This fixes periodic boundary conditions along {ym}, which
become compact directions with L = πR. However, before imposing any boundary conditions,

the equation for Φy becomes

δmn∂m∂nΦy = −k2 · Φy , (3.13)

whose general solution is given by

Φy(y
m) =

9∏
m=4

c1 + c2y
m , k = 0

c3e
ikmym + c4e

−ikmym , k > 0
(3.14)

where the index m is not summed. This is a solution of (3.13) for any values of km such that

k2 = δmnk
mkn, i.e. we do not yet have a discrete set of solutions. It is the boundary conditions

(periodic, ym ∼ ym + 2πR, for the T 6) that impose the constraints

c2 = 0 , km =
n

R
, n ∈ N , (3.15)

finally discretising the set of solutions. Since writing Φy(y
m) in momentum space would identify

the km with the momentum pm along the ym direction, this is equivalent to the statement that

the momentum gets quantised by these boundary conditions. A general solution for Φ is then



42 Chapter 3. String compactifications

of the form

Φ(xµ, ym) =
∑
n⃗

Φ(n⃗)
x (xµ) · ei

n⃗·y⃗
R . (3.16)

The reason why we reviewed this standard procedure in detail is to emphasise the following: it is

not the periodicity that discretises the set of solutions, but instead the compactness of the {ym}
directions. Indeed, had we chosen for example to put Φ in a 6-dimensional box with boundary

conditions Φ(xµ, ym = ±L) = 0, the solution (3.14) would be constrained by

c1 = c2 = 0 , km =
nπ

2L
, n ∈ N , (3.17)

again restricting km to integer values. In fact, one can see the discreteness disappear without

compactness by sending R →∞ in (3.15) and noting that in this limit km is allowed to take a

continuum of values.

3.1.2 The 4d EFT: Integrating out high-momentum modes

Let us simplify our notation by defining Φ
(k)
x (xµ) = φk(x

µ), Φ
(k)
y (ym) = uk(y

m). From our

discussion above, if the extra dimensions {ym} are compact, the solution for the 10d dilaton

field Φ(xµ, ym) takes the general form

Φ(xµ, ym) =
∑
k

φk(x
µ) · uk(ym) , (3.18)

where uk(y
m) are eigenfunctions of the operator ∆6 associated with an eigenvalue k which can

only take a discrete set of values. One way to read (3.18) is that Φ is a superposition of modes

labelled by k, each one of which forced to satisfy the equation

(∆4 + k2) φk = 0 . (3.19)

We could interpret it from two different perspectives. From the 10d point-of-view, the discretisa-

tion of the momentum along the compact directions gives a clear separation between momentum

modes, since the momentum along {ym} can only take a discrete set of values. On the other

hand, we could interpret (3.19) as giving an equation of motion for each of an infinite number of

4d scalar fields φk(x
µ) of increasing mass k, which gives rise to a tower of massive states usually

called the Kaluza-Klein tower. In both scenarios, if we were only able to probe energies much

lower than the smallest momentum/mass scale (E ≪ kmin), we could integrate out all modes

with k > 0. We could then write the action as

SIIB ⊃
1

4κ2

∫
d10x
√
−G ∆10Φ · Φ

=
1

4κ2

∫
d4x
√
−g4

∫
d6y
√
g6 f

2
∑
k,ℓ

[∆4φk + k2φk] · uk φℓ · uℓ
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=
1

4κ2

∫
d4x
√
−g4

∑
k,ℓ

[∆4φk + k2φk] φℓ

∫
d6y
√
g6 f

2 uk · uℓ

=
1

4κ2

∫
d4x
√
−g4

∑
k,ℓ

[∆4φk + k2φk] φℓ δkℓ

=
1

4κ2

∫
d4x
√
−g4

∑
k

[∆4φk + k2φk] φk , (3.20)

where we used the orthogonality3 of the eigenfunctions uk(y),∫
d6y
√
g6 f

2 uk · uℓ = δkℓ , ∀ k, ℓ ∈ Z . (3.21)

Therefore our 10d theory of a single free and massless dilaton Φ is equivalent to a 4d theory

describing an infinite tower of free scalar fields φk(x
µ) of mass k. At energies much smaller than

the minimum scale (E ≪ kmin), we can integrate out the infinite tower of states with k > 0 and

accurately describe the physics with the massless state alone,

SEFT =
1

4κ2

∫
d4x
√
−g4 ∆4φ0 · φ0 +O

( E

kmin

)
, (3.22)

assuming k = 0 is allowed (this is the case for the T 6 example, but not for the 6-dimensional

box). We conclude that the low-energy description of a 10d theory for which 6 dimensions are

compact is a 4d theory describing the solutions for which

∆6u0 = 0 , (3.23)

i.e. modes associated with harmonic functions on the compact space. Although for a function

(0-form) there is a unique solution to this equation (which is in fact a constant), this is not always

the case, as for example when we look at the form fields in Type IIB. It therefore becomes useful

to generalise the discussion to any differential form.

3.1.3 Connection with cohomology

In Appendix B we include a summary of the relevant concepts and theorems that allow us to

relate the set of solutions to (3.23) to the topology of the compact space M. The upshot is

that the space of harmonic p-forms, Harmp(M), is isomorphic to the homology group Hp(M)

of cycles ofM defined up to boundaries, and so the number of solutions to ∆6up,0 = 0 (where

we generalise to harmonic p-forms up,0) is given by the Betti numbers bp.

3Here we assume that the eigenfunctions uk(y) are already properly normalised. Later on we will see that it
is important to keep track of this normalisation.
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Integrate out

M

Ms

MKK

M

MKK

Massless modes

Figure 3.1: Compactifying Type IIB supergravity (which was itself an effective description of Type IIB
string theory only valid at energies E ≪ Ms) gives a discrete set of internal-momentum modes whose
scale is given by multiples of MKK. At energies E ≪MKK, we can integrate out all modes with non-zero
internal momentum and be left with a theory describing only the modes with zero momentum — this
is effectively a 4d supergravity theory. Since the 10d theory only included massless fields, these zero-
momentum modes are massless in the 4d effective theory. We will soon see that adding non-trivial fluxes
to the compactifications generates a potential for some of these fields, giving them a mass (cf. section
3.4 and Fig. 4.1).

Let us bring back the T 6 example. Since dim(T 6) = 6, there are 7 homology groups on T 6, with

bp =

(
6

p

)
. (3.24)

In particular, the number of harmonic 0-forms (functions) on T 6 is 1 and therefore dimensionally

reducing the action for a free dilaton on T 6 would result in a single massless 4d scalar field ϕ0.

If instead we were trying to dimensionally reduce the 2-form B2 we would face 3 distinct cases,

∆6Bµν (0-form in 6d) ,

∆6Bmν (1-form in 6d) ,

∆6Bmn (2-form in 6d) ,

depending on the number of components along {ym}. Since b1 = 6 and b2 = 15, B2 can be

decomposed as

B2(x
µ, ym) = B2(xµ) + Bi1(xµ) · ωi

1(y
m) + Bj0(x

µ) · ωj
2(y

m) , (3.25)

with i ∈ {1, ..., 6} , j ∈ {1, ..., 15}. Hence, the low-energy description of a free 10-dimensional

2-form on a T 6 is given in terms of a 4-dimensional 2-form B2 (independently of the compact

space position), 6 1-form (vector) fields B1 and 15 scalar fields B0 (both weighed by a so-called

wavefunction that depends on the compact space position ym).
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We conclude that the topology of the compact space determines how many and which (massless)

fields remain after we integrate out the high-momentum modes of the tower. The properties of

the low-energy description, i.e. the 4d theory whose phenomenology we want to explore, are

therefore tightly connected to the choice of compact space. As we shall see in the next section,

preserving N = 1 supersymmetry will pick a specific type of spaces called Calabi-Yau manifolds.

3.1.4 A comment on strings and winding

Our discussion above was purely field theoretical and did not take into account the stringy nature

of Type IIB. However, the fact that the fundamental degrees of freedom are strings rather than

particles has important consequences when some spacetime directions are periodic. Recall that

a closed string is such that

Xµ(σ + ℓ) = Xµ(σ) , (3.26)

where ℓ is the length of the string. When a certain direction is periodic, i.e. Xi ∼ Xi + 2πR,

the string can wind around it a certain number of times before closing,

Xµ(σ + ℓ) = Xµ(σ) + 2πR · w ∼ Xµ(σ) , w ∈ Z . (3.27)

Since the string has tension, winding it around the periodic direction will cost some energy,

which is reflected in a contribution to the mass of the string proportional to the winding number

w and the size of the periodic dimension,

∆m ∝ wR
α′ ∝

wR

ls
Ms . (3.28)

This gives a discrete tower of modes labelled by w ∈ Z and whose mass grows with w. It is in fact

through the connection between Kaluza-Klein modes and these winding modes, that T-duality

reveals itself [59].

3.2 Why Calabi-Yau manifolds?

In Appendix C we briefly describe the necessary concepts and tools related to Calabi-Yau man-

ifolds. In this section we will explain why these spaces are so useful in string phenomenology

and how their topology determines several properties of the low-energy description of Type IIB

supergravity.

As we saw in the previous section, the choice of compact space is tightly connected to the 4d

phenomenology one obtains upon compactifying the 10-dimensional theory — not only does it

determine the number of massless fields that are left, but it also constrains the symmetries that

survive. Rather than blindly studying different solutions of the 10d theory on different compact
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spaces and asking which physics will arise in 4d, one may turn the logic around and specify the

4d physics one is looking for in the first place, asking instead which (if any) compact spaces give

solutions of the 10d theory with these properties.

We are typically interested in solutions for which the 10d spacetime factorises into a 4d spacetime

and a 6d internal space,

M10 =M4 ×M6 . (3.29)

We could then require M4 to be homogeneous and isotropic, which is equivalent to saying

it should be maximally symmetric — either Minkowski (M), de Sitter (dS) or anti-de Sitter

(AdS). A direct consequence of this choice is that, not only must any form field either have

a spacetime filling background or only internal components, but also any vacuum expectation

value (vev) must be constant. The most general 10-dimensional metric compatible with 4d

maximal symmetry is

ds2 = e2A(y)gµν(x)dx
µdxν + gmn(y)dy

mdyn , (3.30)

with gµν being the metric on one of the maximally symmetric spacetimes, gmn any 6d metric

on the internal space and e2A(y) a function known as the warp factor that only depends on the

internal space coordinates.

What about supersymmetry? Our 10d theory, Type IIB supergravity, has N = 2 local super-

symmetry, meaning that at every point there are two operators Qα that can act on bosons and

fermions, and exchange them in such a way that the action remains invariant. This is a symmetry

of the action, but is not necessarily a symmetry of an arbitrary vacuum solution. Having the vac-

uum break some or all of this symmetry is analogous to how the Higgs potential gives a vacuum

which breaks electroweak symmetry down to electromagnetism, SU(2)L × U(1)Y → U(1)em. In

the Higgs case, U(1)em is the residual group of transformations which do not change the vacuum

configuration of the Higgs field (which is the only scalar in the Standard Model and therefore

the only field which can have a non-vanishing vev).

When the symmetry in question is supersymmetry, the logic is the same — the residual set of

supercharges which do not change the vacuum configuration will tell us how much supersym-

metry remains in our 4d theory. Since a supersymmetry transformation of a bosonic field is

proportional to fermionic fields — whose expectation value vanishes in a maximally symmetric

solution — bosonic field vevs are automatically invariant. On the other hand, the 4 fermions

transform under supersymmetry as

δϵψ
a
M = ∇M ϵ

a − 1

4
( /H3)M (σ3ϵ)a +

1

8
eΦ /̃F 3ΓM (σ1ϵ)2 +

1

8
eΦ(/∂C0 + /̃F 5)ΓM (iσ2ϵ)a , (3.31)

δϵλ
a = /∂Φ ϵa − eΦ/∂C0(iσ

2ϵ)a − 1

2
/H3(σ

3ϵ)a − 1

2
eΦ /F 3(σ

1ϵ)a , (3.32)

where a = 1, 2 labels each gravitino ψa
M and dilatino λa, as well as supersymmetry parameters
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ϵa. The supersymmetry transformations ϵa that leave the vacuum invariant are then given by

non-trivial solutions of ⟨δϵψa
M ⟩ = ⟨δϵλa⟩ = 0. The fully general equations are hard to solve and

a proper treatment requires the tools of generalised geometry, which we will not go into here

(see [60, 61] for an introduction). We will instead consider the simpler case where the vev of the

internal components of form fields — associated with the presence of non-trivial fluxes — are

set to zero, in which case the transformations simplify to

δϵψ
a
M = ∇M ϵ

a +
1

8
eΦ/∂C0ΓM (iσ2ϵ)a , (3.33)

δϵλ
a = /∂Φ ϵa − eΦ/∂C0(iσ

2ϵ)a . (3.34)

Using also the equations of motion for the scalars (2.78a–2.78b) and the fact that their vevs must

be constant in 4d, ⟨δϵλa⟩ = 0 is automatically satisfied and the remaining condition becomes

∇M ϵ
a = 0 . (3.35)

We conclude that without fluxes the supersymmetry transformations that leave the vacuum

invariant are the ones parametrised by a covariantly constant spinor ϵa. From the 4d components

(M = µ) of this equation [60],

∇µϵ
a +

1

2
(γµγ5 ⊗ /∇A)ϵa = 0 , (3.36)

and the relation

[∇µ,∇ν ]ϵ
a =

1

4
Rµνρσγ

ρσϵa =
R

2
γµνϵ

a , (3.37)

we find the condition4 (
R+ (∇A)2

)
γµνϵ

a = 0 . (3.38)

This implies that (∇A)2 is constant, which for a compact space means that the function A(y)

must be constant and (∇A)2 vanishes. Hence, we also have R = 0, so that a supersymmetric

solution with maximal symmetry and no fluxes can only be unwarped Minkowski spacetime.

On the other hand, the supersymmetry spinors ϵa will decompose into 4d and 6d spinors,

ϵa(xµ, ym) = ζa(xµ)⊗ ηa(ym) . (3.39)

The condition (3.36) with constant A(y) implies that ζa is actually constant over M4 and

parametrises global supersymmetry transformations in 4d. In turn, the internal components

4This follows from the relation Rµνρσ = R
2
(gµρgνσ−gµσgνρ) valid for maximally symmetric spacetimes together

with properties of the γρσ matrices.
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(M = m) of (3.35) require the internal space to be Ricci flat,5

∇mϵ
a = 0 =⇒ [∇m,∇n]η

a =
1

4
Rmnpqγ

pqηa = 0 =⇒ Rmn = 0 . (3.40)

So the upshot is that without fluxes we can only preserve supersymmetry on a flat unwarped

4d background with a Ricci-flat compact 6d space.

However, requiring the existence6 of a covariantly constant spinor on M6 is a stronger condition

than just asking M6 to be Ricci-flat. The condition ∇mη
a = 0 tells us that the manifold must

be such that it is possible to define a spinor which never changes when it is parallel transported,

in particular when it is transported around a closed loop. Generically, on a 6d manifold a spinor

can be transported around a loop and end up rotated by a Spin(6) ∼= SU(4) transformation,

which defines the generic holonomy group. However, manifolds with more structure can have

smaller holonomy groups (subgroups of SU(4)) — for example, the T 6 we considered before

has trivial holonomy group, since its flatness means that a spinor will never be rotated. As a

consequence, compactifying the 10d theory on T 6 actually preserves all the supersymmetry.

How much supersymmetry is that? A supercharge is a definite chirality Weyl spinor. In 10d

such a spinor has 16 components (supercharges) and Type IIB has 2 independent such spinors,

which determines its 10d N = 2 supersymmetry. In 4d a Weyl spinor of definite chirality has

only 4 components, which means that the 16 supercharges must redistribute between 4 different

spinors. Thus we end up with a total of 8 different spinors with 4 supercharges each. Type IIB

compactified on a T 6 has 4d N = 8 supersymmetry — this is definitely not what we are looking

for.

In order to get the minimum amount of supersymmetry, M6 must allow for no more than 1

covariantly constant spinor. Since this spinor belongs to the fundamental representation of

SU(4), we can write it as [28]

ηa =


ηa0
ηa1
ηa2
ηa3

 SU(4)−→


ηa0
0

0

0

 , (3.41)

after performing an SU(4) rotation. The subgroup of SU(4) which leaves ηa invariant is SU(3)

— if the holonomy group of M6 is precisely SU(3), one and only one covariantly constant spinor

can be defined on it. Manifolds with SU(3) holonomy — know as Calabi-Yau manifolds — will

take central stage in our discussion of Type IIB compactifications.

One can show this more rigorously by examining how the spin representations of positive and

5A proof can be found in Exercises 9.6 and 9.7 of [29].
6The fact that there must exist a nowhere vanishing spinor is in itself a topological constraint on M6. It

reduces the structure group of the manifold from Spin(6) ∼= SU(4) to SU(3), in order to allow for a spinor which
does not transform under the transition functions [61].
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negative chirality in 10d decompose into 4d and 6d representations, and by looking for the

largest subgroup of SU(4) for which a spinor of definite chirality can be invariant, leading us to

a singlet of SU(3). Since neither the group theoretic tools nor the argument itself will play a

crucial role in the work presented here, we simply refer to [20, 29, 61] for more details.

One thing worth emphasising is that Type IIB on a Calabi-Yau manifold still has N = 2

supersymmetry in 4d, since each of its original supersymmetries ϵa will give an independent ζa.

Hence this is still not suitable for phenomenological applications.7 Yet the structure of Calabi-

Yau manifolds and the amount of supersymmetry are so powerful that it is still extremely useful

to work with them — fortunately there is a way to take the N = 2 theory and project out one

of the supersymmetries.

3.3 Counting moduli

3.3.1 Decomposing 10d fields

Putting together the previous two subsections, we learn two important lessons.

1. Preserving the least amount of supersymmetry in 4d requires us to compactify the 10d

theory on Calabi-Yau manifolds;

2. The topological information about the chosen Calabi-Yau tells us how to decompose the

10d fields in a basis of harmonic forms — this gives us the number of massless fields of

each type in the low-energy description of the theory.

The bosonic form fields of Type IIB supergravity are then decomposed as8 (see Appendix C for

details on the basis elements)

Φ(xµ, ym) = Φ(xµ) · 1 ,

B2(x
µ, ym) = B2(x

µ) · 1+ ba(xµ) · ωa(y
m) ,

C0(x
µ, ym) = C0(x

µ) · 1 ,

C2(x
µ, ym) = C2(x) · 1+ ca(xµ) · ωa(y

m) ,

7As an interesting remark, Calabi-Yau manifolds were originally identified as promising internal spaces in the
context of the heterotic string [62] — a crucial difference with respect to Type IIB is that heterotic theories have
N = 1 supersymmetry, so that choosing M6 to be Calabi-Yau does indeed provide an N = 1 4d theory that is
suitable for phenomenological applications.

8A 4-form would in general be expanded as

C4(x
µ, ym) = Da

2 (x
µ) · ωa + V K

1 (xµ) · αK(ym)− Ṽ1,K(xµ) · βK(ym) + ρa(x
µ) · ω̃a(ym) .

However, the self-duality of C4 relates the terms expanded in αK to the ones expanded in βK , as well as the
terms expanded in ω̃a to the ones expanded in ωa, such that only half of them are true degrees of freedom. We
can therefore choose to keep the V K

1 vectors and the ρa scalars.
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C4(x
µ, ym) = V K

1 (xµ) · αK(ym) + ρa(x
µ) · ω̃a(ym) , (3.42)

where a = 1, ..., h1,1 and K = 0, ..., h2,1. There is, however, one last bosonic field which is not

a differential form: the metric GMN . In terms of its tensorial structure, we can decompose the

metric as

GMN (xµ, ym) = gµν(x
µ) ·ϖ(ym) +Aj

µ(x
µ) ·ϖj

q(y
m) + ξi(xµ) ·ϖi

pq(y
m) . (3.43)

Since ϖ(ym) is just a function, it is by definition a 0-form — h0,0 = 1 therefore tells us that there

is only one 4d massless graviton gµν(x
µ). On the other hand, any ϖq(y

m) defines a 1-form and

hence h1,0 = h0,1 = 0 tells us that there are no massless vector fields arising from GMN . The

only tricky case is ϖpq(y
m), since this is a symmetric tensor rather than a 2-form. By analysing

the graviton equation of motion a bit more carefully, we will not only understand how to count

the number of scalars ξi(ym) in terms of the Calabi-Yau Hodge numbers (h1,1, h2,1), but also set

the stage for our discussion of gravitational waves in chapter 5.

3.3.2 The graviton equation of motion

The whole reason we were looking for harmonic forms in the first place was to find a basis of

solutions to the equations of motion along the internal directions in terms of which the 10d

fields could be decomposed (3.18). The equation of motion for the metric GMN is the Einstein

equation

RMN = TMN −
1

8
TP

P GMN , (3.44)

where TMN is the energy-momentum tensor including all other fields (cf. (2.76)). Unlike the

equations for the remaining fields, however, the kinetic term for the propapating graviton does

not appear explicitly in (3.44) — in order to find it, one must perturb the metric GMN →
GMN + hMN and expand (3.44) to first order in perturbations. In particular,

RMN = R̄MN +R
(1)
MN +O(h2) , (3.45)

TMN = T̄MN + T
(1)
MN +O(h2) , (3.46)

TP
P = T̄P

P − hMN T̄MN + T (1)P

P +O(h2) , (3.47)

where background quantities are denoted with a bar (e.g. R̄MN ) and terms linear in hMN with

a superscript (1) (e.g. R
(1)
MN ). Let us focus on the Ricci tensor, which at linear order takes the

form

R
(1)
MN = −1

2

(
210hMN − 2ḡPQ∇P∇(MhN)Q +∇M∇Nh10

)
, (3.48)
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where the covariant derivatives ∇M are with respect to the background metric ḠMN , 210 =

ḠPQ∇P∇Q and h10 = ḠPQhPQ. Commuting the covariant derivatives using

∇P∇MhNQ = ∇M∇PhNQ + R̄PMNAh
A

Q + R̄PMQAh
A

N (3.49)

and contracting the PQ indices with ḠPQ,

ḠPQ∇P∇MhNQ = ḠPQ∇M∇PhNQ + R̄P
MNAh

A
P + R̄MAh

A
N , (3.50)

we can write R
(1)
MN as

R
(1)
MN = −1

2
210hMN + R̄P (Mh

P
N) + R̄P

MNQh
Q

P +∇(M∇P

(
hN)P −

1

2
ḠN)Ph10

)
. (3.51)

Now there are two ways in which this expression can be simplified. Firstly, we notice that the

background equations (i.e. the equations at zeroth order in hMN ) can be used to write

R̄P (Mh
P

N) = T̄P (Mh
P

N) −
1

8
T̄Q

QḠP (Mh
P

N) , (3.52)

in terms of the background energy-momentum tensor. Secondly, due to differomorphism invari-

ance not all fluctuations hMN are actually physical — some can be undone by a coordinate

transformation. We can thus choose a gauge, known as the harmonic gauge, in which

∇P

(
hNP −

1

2
ḠNPh10

)
= 0 . (3.53)

The equation of motion for the fluctuations hMN then becomes

−1

2
210hMN + R̄ P Q

M N hPQ = T̄MN −
1

8
T̄P

P ḠMN

+ T
(1)
MN −

1

8

(
hPQT̄PQ + ḠPQT

(1)
PQ

)
ḠMN −

1

8
T̄P

PhMN

−
(
T̄P (M −

1

8
T̄Q

QḠP (M

)
h

P
N) . (3.54)

This is the equation of motion for the propagating graviton (at linear order) — it is also the

equation for 10d gravitational waves. Note that every term on the right-hand side contains

the energy-momentum tensor, including all other Type IIB fields. Although this may seem

unnecessarily complicated,9 not only does it highlight the fact that the right expansion follows

from the graviton’s equation of motion, just as it did for every other field, but it also sets up

the stage for our later discussion of gravitational waves.

Focusing on the internal components, in the absence of fluxes and for the product spacetime we

9Indeed, most textbooks introduce it as a discussion of deformations of the internal metric which preserve its
Ricci-flatness, i.e. for which the manifold stays a Calabi-Yau. The equation one ends up analysing is, of course,
the same, but the picture one gets is slightly different.
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are considering, the equation greatly simplifies to

24hmn +∇p∇phmn + 2R̄ p q
m n hpq = 0 . (3.55)

Hence, the internal tensors ϖi
mn in which we want to expand the metric (3.43) must satisfy the

equation

∇p∇pϖmn + 2R̄ p q
m n ϖpq = 0 . (3.56)

It is important to remember that the background metric is Kähler (see Appendix C) because

this means that the only non-vanishing components of the Riemann tensor are the ones with

index structure Riȷ̄kl̄. This implies that the ϖiȷ̄ and ϖı̄ȷ̄ components completely decouple and

can be discussed (and counted) separately,

∇p∇pϖiȷ̄ + 2R̄ k l̄
i ȷ̄ ϖkl̄ = 0

(B.8)
=⇒ ∆6 ωij̄ = 0 , (3.57)

∇p∇pϖı̄ȷ̄ + 2R̄ k̄ l̄
ı̄ ȷ̄ ϖk̄l̄ = 0 =⇒ ∆6 χijl̄ = 0 . (3.58)

Although ϖmn is not a form, the equation for the components ϖiȷ̄ is the same as the component

form of the equation ∆6ωiȷ̄ = 0 for an actual (1, 1)-form ω (B.8). Therefore, solutions to

the equations of motion for ϖiȷ̄ define harmonic (1, 1)-forms and we know that there are h1,1

independent such forms, ωa.

The story is similar for the ϖı̄ȷ̄ components. We can use the unique holomorphic 3-form on the

Calabi-Yau to define (2, 1)-forms as

χ =
1

2!
· 1
2
Ω ȷ̄
ij ϖȷ̄l̄ dz

i ∧ dzj ∧ dz̄ l̄ , (3.59)

which are harmonic precisely when the equation of motion for ϖı̄ȷ̄ is satisfied. Hence, there are

h2,1 independent solutions defining the harmonic (2, 1)-forms χk.

Due to the way the metric is connected to the Kähler form J on the Calabi-Yau (C.4), fluctua-

tions of the form hiȷ̄ correspond to fluctuations of the Kähler structure itself — for this reason,

these are known as Kähler deformations and the associated scalars will be called Kähler moduli.

On the other hand, a change of the form hı̄ȷ̄ is not holomorphic, which means that the result

can only remain a Calabi-Yau with respect to a different complex structure — these are there-

fore known as complex structure deformations and the associated scalars will be called complex

structure moduli.
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We can finally decompose the metric as10

GMN (xµ, ym) = gµν(x
µ) · 1+ va(xµ) · (ωa)

a
iȷ̄(y

m) + zk(xµ) · 1

||Ω||2
Ω

ab
ı̄ (χk)abȷ̄(y

m) . (3.61)

An important point to make is that harmonic (1, 1)-forms are real, which in turn means that

the h1,1 scalars va are also real. In the low-energy description they actually combine with the

h1,1 real scalars ba arising from the B2 field to form h1,1 complex scalars, ta = ba + iva — these

are known as complexified Kähler moduli. On the other hand, the h2,1 scalars zk are complex

and have 2 real degrees of freedom.

Now that we know how all the bosonic fields of Type IIB supergravity decompose in terms of

harmonic functions on a Calabi-Yau, we can plug this back into the action (2.76), integrate over

the compact space M6 and integrate out the massive towers only keeping the massless modes of

every field. This process results in an N = 2 theory in 4d, in which the massless fields fill several

supergravity multiplets. More precisely, the compactification gives rise to 1 gravity multiplet,

h2,1 vector multiplets, h1,1 hypermultiplets and 1 tensor multiplet. This precise structure will

not be crucial for us, so we do not go into the details regarding the action and the multiplets

(see [60, 61] for more details).

3.4 Moduli stabilisation with fluxes

So far we have seen how to find a 4-dimensional low-energy description of Type IIB supergravity,

which itself was already a low-energy description of Type IIB string theory. We found that

breaking most (but not all) of the supersymmetry selected a very special type of compact

manifolds known as Calabi-Yau. On these backgrounds, the 4d theory is an N = 2 supergravity

theory describing a number of massless fields determined by the topology of the Calabi-Yau.

Nevertheless, these results followed from the assumption that the solution of interest had no

fluxes, i.e. that the background values of the form fields actually vanished. Even if curiosity

alone were not enough11 to explore the case where the solution does have fluxes, there are at

least two phenomenologically motivated reasons that push us in that very direction.

1. A theory with N = 2 supersymmetry cannot contain chiral matter, which is essential to

describe the known particles and forces of the Standard Model — an N = 2 theory simply

does not fit the data. The only acceptable amount of supersymmetry for a theory which

could include the Standard Model is N = 1.
10Note that we had to invert the definition of the (2, 1)-forms,

χabȷ̄ =
1

2!
· 1
2
Ω ȷ̄

ij ϖı̄ȷ̄ =⇒ ϖı̄ȷ̄ =
1

||Ω||2Ω
ab
ı̄ χabȷ̄ , (3.60)

where ||Ω||2 = 1
3!
ΩabcΩ

abc
and it is useful to use the relation Ω

a1a2bΩa1a2c = 2! · ||Ω||2δbc [20].
11Observations suggest that curiosity alone is typically enough among physicists.
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2. The massless spectrum we found includes several massless moduli. On the one hand, since

4d masses and couplings depend on the vacuum expectation value of these fields, they

are completely arbitrary unless these moduli have a potential that determines their vev,

which is not the case when the moduli are massless. On the other hand, massless fields

with gravitational-strength couplings violate the equivalence principle and mediate fifth

forces that have so far never been observed [63].

A very particular example of how moduli vevs determine couplings comes from the dilaton,

whose expectation value controls the string perturbative expansion itself. As we shall see, it

also appears in the relation between the 4d Planck scale (i.e. the interaction strength of 4d

gravity in our low-energy description) and the fundamental string scale 1/α′. Yet, while it

might be unsatisfying to leave this degree of arbitrariness in the 4d theory, the strongest reason

to fix these moduli is observational: we simply do not see them.

Crucial for us is the fact that fluxes will allow us to have warping and consider warped com-

pactifications, which are the central focus of our work.

3.4.1 N = 1 solutions from fluxes

So what happens when we include non-vanishing fluxes? First, everything becomes extremely

more complicated. For one, the supersymmetry variation (3.31) no longer gives simple condi-

tions on spinors and as a direct consequence the solution with fluxes is likely not to have a

covariantly constant spinor. This effectively removes the immediate constraint on the holonomy

of the compact space. However, the mere existence of a globally defined spinor on this space

such that we could have a globally defined solution to the more general equation restricts the

structure group of the manifold (the group of transformations required to glue together different

patches of the manifold) to be contained in SU(3).12 The right framework to discuss these flux

backgrounds is generalised complex geometry,13 which gives a unified description of complex and

symplectic geometries [61]. Since the formalism itself is rather complicated, let us simply state

the conclusion: with these tools, flux backgrounds can be found (configurations which solve the

supersymmetry conditions and consequently the equations of motion) in which supersymmetry is

broken down to N = 1. These correspond to generalised Calabi-Yau manifolds and the breaking

of supersymmetry can be understood as an obstruction to finding a second independent spinor

arising from the fluxes.

12Note that this is not the SU(3) holonomy group we found before, but an SU(3) structure group — it therefore
does not define a Calabi-Yau in general. The globally defined spinor can be used to construct a real 2-form J
and a complex 3-form Ω, which for a Calabi-Yau manifold are both closed due to the fact that the spinor is
covariantly constant. In the more general case, however, none of them needs to be closed and the manifold will
not necessarily be a Calabi-Yau [61].

13Generalised geometry gives a manifestly SO(d, d) covariant description, making the symmetries of string
theory (most easily found in the context of torus compactifications) a symmetry of a tangent space at each point
of a generic manifold (in a way analogous to general relativity) [61].
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In particular, reducing the supersymmetry from N = 2 to N = 1 means that the two 4d spinors

ζa in (3.39) must be related to each other. Because of the 4d maximal symmetry this relation

can only be of proportionality and therefore the 10d spinor can be decomposed as

ηa(xµ, ym) = ζ(xµ)⊗ caη(ym) , (3.62)

for complex functions ca, a = 1, 2, which must be linked in order to give N = 1 supersymmetry.

This is done by the fluxes, whose specific configuration results in only one specific combination

of the 2 supersymmetries being preserved.

Moreover, the SU(3) structure on its own is already a powerful constraint — in fact, on such a

manifold one can always find a connection, possibly with torsion14, such that ∇′
mη

a = 0. With

respect to this connection, the manifold does have SU(3) holonomy. In the absence of fluxes,

the connection is torsionless and the result is a Calabi-Yau; but once we do have non-vanishing

fluxes, torsion is generated by the flux configuration. One can decompose a generic torsion into

5 different classes, Wi, i = 1, ..., 5, and classify the resulting manifold according to the set of

non-vanishing components — Calabi-Yau manifolds are the special case for which all torsion

classes vanish [60].

When one puts all this together, a classification of possible N = 1 vacua arising in Type IIB

supergravity with fluxes is obtained. Although the full set of possible configurations is much

richer [64], we will focus on a specific type of solutions which dominate a large portion of the

Type IIB phenomenology literature, belonging to the set of solutions known as type B. Their

spinors are related as c1 = ±ic2 and they have both H3 and Fn non-zero fluxes, related in such a

way that the complex 3-form flux G3 (2.80b) is imaginary self-dual and has no (0, 3) component,

⋆G3 = iG3 and G(0,3) = 0 . (3.63)

Out of these type B solutions, our focus is the set with W1,2,3 = 0 and 2W5 = 3W4 = −6∂A,
where A is precisely the warp factor in our warped metric ansatz (3.30) and is determined by

the F̃5 flux. These correspond to a conformal Calabi-Yau metric, whose conformal factor is the

inverse of the warp factor,

gmn = e−2A(y)(gCY)mn . (3.64)

One advantage of this class of solutions is that we can use our knowledge of the properties of

Calabi-Yau manifolds to study them.

It is important to note that these solutions preserve a specific combination of supersymmetries

and therefore we can only add objects that preserve the same supersymmetry combination.

For type B solutions, the allowed objects are D3/D7-branes and O3/O7-planes,15 as well as

14A connection ∇′
m with torsion T q

mn generates an extra term in the relation [∇′
m,∇′

n]Vp = R q
mn pVq −

2T q
mn ∇′

qVp.
15We have seen before that orientifold planes break half of the supersymmetry, since one (combination) of the

supercharges gets projected out. In order to preserve the N = 1 supersymmetry left over by the fluxes, the
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Figure 3.2: The low energy theory arising from compactifying Type IIB supergravity on a Calabi-Yau
3-fold includes a set of scalar fields without a potential, which are therefore massless — these are the
moduli of the compactification. Adding non-trivial fluxes generates a potential for some of these moduli
(in particular h2,1 complex structure moduli and the dilaton) that may stabilise them at a specific value
with a given mass. For each scalar (or more precisely, each direction in the moduli space), the flux-
generated potential may locally have a (metastable) minimum, (unstable) maximum, or even have no
critical point and develop a runaway towards some limit in the moduli space.

D5-branes wrapped on collapsed 2-cycles (which look effectively like D3-branes) [60]. Adding

O-planes has another consequence on the resulting EFT — since an orientifold projects out some

of the states in the theory, in the presence of O3/O7-planes only a subset of the moduli survives

the projection. The cohomology groups Hp,q and hence the set of harmonic forms on a given

Calabi-Yau (see Appendix C) will split between those that are even Hp,q
+ and those that are

odd Hp,q
− under the orientifold involution (i.e. the spacetime reflection defining the orientifold),

such that hp,q = hp,q+ + hp,q− , and depending on how each field transforms under a world-sheet

parity transformation only one of these sets remains in the decomposition into harmonic forms

(see [60, 61, 65] for details).

3.4.2 Moduli stabilisation

In the presence of fluxes, a potential is generated for some of the moduli and those will no longer

be arbitrary and massless. Generically, this potential may or may not have stable minima and

the scalars could either be fixed at a finite value or be sent to either zero or infinity (Fig. 3.2) —

in any case, this process is dynamical (it follows from the fluxes that are present in the solution)

and some of the previously flat directions are lifted. These moduli are then said to be stabilised

and get a mass, through which one can hope to avoid the undetected long-range forces.

In order to discuss the flux generated potential, one should be clear regarding what exactly

is meant by fluxes. So far we have referred to fluxes as the vacuum expectation values of the

(internal) field-strengths H3 and Fn — in fact, this is not totally accurate. What we call flux

is a non-trivial configuration of the field strengths, where non-trivial refers to the integrals of

O-planes must project out the right supercharges and leave the surviving one untouched. Conversely, we could
think of breaking supersymmetry with orientifolds and then restrict to flux configurations that preserve the same
supercharge.
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these field-strength configurations over certain cycles being non-zero,16

(Fluxes)

∫
Σ3

H3 ̸= 0 ,

∫
Σn

Fn ̸= 0 . (3.65)

Since a cycle is a manifold with no boundary, Stokes theorem tells us that the fluxes will vanish

whenever the field-strengths are globally exact forms,∫
Σ3

H3 =

∫
Σ3

dB2
Stokes
=

∫
δΣ3

B2
cycle
= 0 , (3.66)

which is what one would expect from the definitions of the field-strengths as H3 = dB2 , Fn =

dCn−1. If however there are sources that obstruct the “exactness” of the field-strengths (i.e.

it becomes impossible to globally define form potentials B2 and Cn−1 in terms of which the

field-strengths can be expressed as exact forms), the fluxes might no longer vanish. Although

in supergravity these non-zero fluxes could take any real value, in string theory fluxes must be

quantised (analogously to how electric and magnetic charges must be quantised in electromag-

netism),

(Fluxes in string theory)
1

(2π)2α′

∫
Σ3

H3 ∈ Z ,
1

(2π
√
α′)n−1

∫
Σn

Fn ∈ Z . (3.67)

In the context of Calabi-Yau manifolds, we know how to count the number of cycles and how to

define a basis of forms which are dual to these cycles (see Appendix C). We can therefore define

electric and magnetic fluxes as

1

(2π)2α′

∫
AK

H3 = mK ,
1

(2π)2α′

∫
BK

H3 = eK , (3.68)

1

(2π)2α′

∫
AK

F3 = mK
RR ,

1

(2π)2α′

∫
BK

F3 = (eRR)K , (3.69)

where K = 1, ..., h2,1 + 1 and (AK , B
K) are pairs of 3-cycles on a Calabi-Yau, related by Hodge

duality. There are no F1 and F5 fluxes because there are no non-trivial 1-and 5-cycles (or, in

other words, no closed 1-and 5-forms which are not exact). By considering the basis of Poincaré

dual forms (αK , β
K) defined as∫

AL

αK =

∫
CY

αK ∧ βL = δLK ,

∫
BK

βL =

∫
CY

βL ∧ αK = −δLK , (3.70)

we can expand the field-strengths as

H3 = dB2 + (2π)2α′(mKαK − eKβK
)
, (3.71)

F3 = dC2 + (2π)2α′((mRR)
KαK − (eRR)Kβ

K
)
. (3.72)

16It is always useful to have in mind the example of electromagnetism, where one could compute the flux of the
field-strength Fe.m. for example through a sphere (and indeed the sphere S2 is a cycle, as it has no boundary —
see Appendix B).
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Since αK and βK are related to each other through Hodge duality, the electric and magnetic

fluxes are swapped in ⋆H3 and ⋆F3 compared to H3 and F3, motivating this identification.17

We can also use the basis of 3-cycles AK to define the complex structure moduli zk through the

periods of the holomorphic form Ω,18

zk =
ZK

Z0
, where ZK =

∫
AK

Ω . (3.73)

It is also useful to define the periods of Ω through the dual BK cycles as

FK =

∫
BK

Ω , (3.74)

which can be expressed as functions of zk, FK = FK(zJ).

Dimensionally reducing the Type IIB action (2.76) with non-zero fluxes (3.71) and (3.72), one

gets extra terms in the 4d supergravity action that generate a potential for the complex structure

moduli zk and the dilaton [60]. This can be understood as follows. As we have discussed, the

fluxes change the equations of motion in such a way that a Calabi-Yau manifold is no longer a

solution. However, it turns out that it is consistent to assume that the resulting spectrum is

the same as the one without fluxes, except that some of the massless modes become massive, as

long as the scale of the fluxes is much smaller than the compactification scale — one could think

of the fluxes as giving corrections to the solution in which they vanish.19 This truncation of the

spectrum was shown to give a consistent gauged supergravity action, in which some of the axionic

symmetries become gauged and a potential is generated for a subset of the moduli. In Type

IIB compactifications this subset includes the complex structure moduli and the axio-dilaton,

but not the Kähler moduli — since there is always at least one Kähler modulus (h1,1 ≥ 1),

this means that fluxes are never sufficient to fully stabilise all moduli in Type IIB and extra

contributions need to be included.20

For the solutions of interest withN = 1 supersymmetry, this scalar potential can be conveniently

encoded in terms of a holomorphic superpotential W and the Kähler potential that determines

17In other words, a magnetic flux through BK ,
∫
BK H3, is equivalent to an electric flux through AK ,

∫
AK

⋆H3.
18Note that there are h2,1 complex structure moduli but a total of (h2,1 + 1) 3-cycles AK . The periods

themselves define a set of projective coordinates ZK , in terms of which one can define the actual moduli as the
special coordinates zk = ZK/Z0 [60]. The coordinates ZK are projective because complex rescalings of Ω do not
change the complex structure and should therefore not count as an actual degree of freedom in the moduli space
of complex structures [66].

19Another way of thinking about it is that, since the KK scale is much bigger than the flux contribution, at
this scale the fluxes appear to be essentially zero. It is only at the massless level that the effect of the fluxes is
felt, so that the net effect is the same spectrum as in the zero-flux solution plus a potential encoding the flux
contribution to the action.

20In Type IIA compactifications, the subset of moduli fixed by the fluxes includes instead the Kähler moduli,
but not the complex structure moduli. However, there are manifolds with h2,1 = 0 (known as rigid manifolds)
and it could be that fluxes are the only necessary ingredient for full moduli stabilisation in Type IIA (e.g. [67]).
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the metric on the moduli (field) space,21 which is given in terms of J and Ω asK = Kcs+KKähler,

Kcs = − log
(
i

∫
Ω ∧ Ω

)
= − log

(
Z̄KFK − ZKF̄K

)
(3.75)

KKähler = − log
(4
3

∫
J ∧ J ∧ J

)
= − log

( i
6
Kabc(t− t̄)a(t− t̄)b(t− t̄)c

)
, (3.76)

where the triple intersection numbers Kabc are defined as

Kabc =

∫
ωa ∧ ωb ∧ ωc . (3.77)

Using the properties of Calabi-Yau manifolds, one can also write KKähler = −2 logV. These

definitions follow from the dimensional reduction of the Type IIB action (2.76), but do not take

warping into account — we will see in particular that the warp factor appears in the Kähler

potential, but not the superpotential. In terms of W and K, the scalar potential for the moduli

takes the form

V = eK
(
KIJ̄(DIW )(DJ̄W )− 3|W |2

)
, (3.78)

where the covariant (or Kähler) derivative is defined as

DIW = ∂IW + (∂IK)W . (3.79)

The superpotential that reproduces the scalar potential generated by the fluxes and found by

dimensional reduction of the action (2.76) was shown to take the Gukov-Vafa-Witten form [71]

W/M3
Pl =

g
3/2
s√
4π · l5s

∫
G3 ∧ Ω , (3.80)

in terms of which the dependence on the complex structure moduli (through Ω) and the axio-

dilaton (through G3) becomes clear. A derivation of this superpotential from the scalar potential

generated by the fluxes, including the overall factor, is shown in Appendix D.2. One can also

write it explicitly in terms of the fluxes and (ZK , FK) as

W/M3
Pl =

g
3/2
s√
4π · l5s

{(
(eRR)K − eKτ

)
ZK −

(
(mRR)

K −mKτ
)
FK

}
. (3.81)

In this N = 1 supergravity framework, a solution is supersymmetric if [72–74]

DIW = 0 (3.82)

21The moduli field space itself has a rich geometric structure — while the complex structure moduli span a
special Kähler manifold of complex dimension h2,1 [68], the remaining scalars (complexified Kähler moduli, the
scalars arising from C0, C2, C4 and the dilaton, and the scalars dual to the 2-forms arising from B2 and C2) span a
quaternionic Kähler manifold of quaternionic dimension h1,1+1 [69]. The latter has a special Kähler base spanned
by the complexified Kähler moduli for which we can write the Kähler potential KKähler. This rich structure is
interesting for example in the study of dualities and the signature of spacetime [70].
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for all fields, in which case the scalar potential VSUSY = −3eK |W |2 can only be negative (AdS)

or zero (Minkowski). Moreover, at this level (without additional corrections to the potential),

there is no superpotential generated for the Kähler moduli and therefore DaW = (∂aK)W ,

a ∈ Kähler. As a consequence, a solution can only be supersymmetric if W = 0. On the other

hand, KKähler (3.76) satisfies a so-called no-scale structure giving Kab̄(∂aK)(∂bK) = −3, so that

the Kähler moduli contribution to the first term in the scalar potential (3.78) perfectly cancels

the second term,

Vno-scale = eK K ı̄ȷ(DiW )(Dȷ̄W ) , i, j ∈ complex structure . (3.83)

While a supersymmetric solution for the complex structure moduli will then leave all Kähler

moduli as flat directions, a non-supersymmetric solution will leave a runaway for the volume

modulus (since eK ∼ 1/V2). A big part of Type IIB phenomenology involves tweaking these

properties in such a way as to change some or all of these conclusions. In particular, we need extra

contributions arising from quantum corrections to the leading scalar potential in order to stabilise

the Kähler moduli that include at the very least the volume modulus of the compactification.

Taking into account different contributions leads us to different proposals such as the KKLT

[75] and LVS [76, 77] constructions that we will discuss in Chapter 4.

Before moving on, we should also emphasise that the tadpole cancellation condition (2.101)

associated with the F̃5 equation of motion (2.78e) (which is the one involving H3 and F3 fluxes)

should also be satisfied in a consistent solution. In terms of their expansion in the basis of

3-cycles, the constraint reads

g2s
2κ2
· (2π)4α′2{−mK(eRR)K + (mRR)

KeK}+
∑
i

Q
(i)
3 . (3.84)

Replacing Q
(i)
3 = q

(i)
3 TD3, with q

(i)
3 = ±1 for D3/D3-branes and q

(i)
3 = −1

4 for O3-planes, and

using TD3 =
2π
l4s

= 2π
(2π)4α′4 together with (2.77), we can write it as

(mRR)
KeK −mK(eRR)K +ND3 −ND3 −

NO3

4
= 0 , (3.85)

in terms of the number of D3/D3-branes and O3-planes. Note that negative contributions to

the tadpole can come from both D3-branes and O3-planes, but there is an important difference

between them — while O3-planes preserve the same supersymmetry as the fluxes in the Type

B solutions, the D3 will break it. Therefore, if one wants to cancel positive contributions to the

D3-charge tadpole using localised objects, while preserving N = 1 supersymmetry, one must

use O3-planes.
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3.5 The warped deformed conifold

3.5.1 Conifold singularities

We have seen that the topology and geometry of the compact space determine many of the

properties of the low-energy theory, not only telling us the number of fields, but also defining

the field space metrics and couplings for these fields. Before moduli stabilisation, the massless

scalars in our 4d theory are unfixed and their background values are completely arbitrary. Since

some of these fields parametrise the geometry of the compact space (controlling the sizes of

cycles and the complex structure of the manifold), moving around in moduli space corresponds

to exploring different geometries for the compact manifold. An interesting question to ask is

whether moving in moduli space would also allow us to explore different topologies: this would

be much more surprising, as we are no longer thinking of cycles of different sizes, but instead

of different cycles altogether. This would have to correspond not to moving within one moduli

space, but to moving between moduli spaces that could in particular have different dimensions.

The result would resemble a connected web of Calabi-Yau moduli spaces and is exactly what

was found in multiple works [78–80]. The boundaries separating these connecting spaces were

shown to correspond to conifolds, spaces that are smooth apart from a number of isolated conical

singularities22 [80]. The key point is that these conifolds can be seen as the singular limit of

non-singular Calabi-Yau manifolds of different topologies, with each node being either the result

of an S3 or an S2 that collapses to zero size (see Fig. 3.3). One can also go in the opposite

direction — from the singular conifold with nodes to a non-singular manifold where each node

was either replaced by an S3 (deformation) or by an S2 (small resolution) [80, 81].

The study of conifold singularities was motivated in part by efforts to find generic features of

string theory compactifications that could give model-independent predictions and allow us to

test the fundamental principles and their consequences in terms of low-energy observables. The

fact that these singularities arise in most Calabi-Yau compactifications made them a natural

candidate as one of these generic features. In the low-energy EFT, these conifold singularities

manifest themselves in the form of singularities of the moduli space metric, signalling a break-

down of the effective description. To see this, recall the definition of the coordinates zK in terms

of the periods over the cycles AK (3.73). If the 3-cycle A1 shrinks to zero size (in which case it

is called a vanishing cycle), the corresponding coordinate z1 will go to zero,

z1 =
1

Z0

∫
A1

Ω −→ 0 . (3.86)

Hence we can think of the point z1 = 0 in moduli space as the conifold point where a 3-cycle

degenerates to zero size and the manifold becomes singular — this is the boundary of moduli

22Conifolds are nodal varieties, spaces which have only isolated double points (nodes) where the constraint
defining the space as C(x) = 0 also has a vanishing gradient dC(x) = 0, but a regular hessian matrix [80].
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Figure 3.3: Conifolds can be seen as the singular limit of non-singular Calabi-Yau manifolds of different
topologies, with each node being either the result of an S3 or an S2 in the non-singular spaces collapsing
to zero size.

space represented in Fig. 3.3. While the cycle A1 is well-defined as the 3-cycle that vanishes at

z1 = 0, the dual cycle B1 can now go around the singularity and is no longer uniquely defined.

Generically, going once around the singular point can shift the B1 cycle by A1 (notice that this

still satisfies the orthogonality conditions defining the BK as dual to AK),

B1 −→ B1 +A1 , (3.87)

=⇒ F1(z
k) =

∫
B1

Ω −→
∫
B1

Ω+

∫
A1

Ω = F1(z
k) + z1 . (3.88)

This is a strong constraint on the form of F1 and in fact restricts it to

F1(z
k) =

1

2πi
z1 log z1 +Π0 +O(z1) , (3.89)

such that the first term guarantees (3.88) and the remaining terms are single valued when going

around the singularity. Since the Kähler potential on the complex structure moduli space is

given by (3.75) and determines the metric as23 GIJ̄ = ∂I∂J̄Kcs, we find

G11̄ = −
1

2πi Π0
log z1z̄1 + const. +O(z1)2 , (3.90)

which becomes singular at z1 = 0. This singularity in the complex structure moduli space

is telling us that the corresponding manifold also becomes singular at z1 = 0 and is now a

conifold, but it also means that the effective theory is breaking down at this point (i.e. the

effective description stops being valid when the compact space becomes a singular conifold).

23Here the derivatives ∂I ≡ ∂
∂zI

are taken with respect to the moduli space coordinates zK .
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3.5.2 Why is there a singularity?

Typically an effective theory breaks down when the physics we are trying to describe requires

states that are not taken into account by our description. For example, if we are using our

4d EFT obtained from integrating out the massive towers of KK modes, we can only work

at energies below MKK — that is because at higher energies, the tower of states will start

contributing to the physics in important ways and an effective theory without it will no longer

be a good approximation (Fig. 3.1). Could the breakdown of our EFT near the conifold point

also be associated with a state that we have unknowingly integrated out? In other words, is

there a state not taken into account in the EFT which becomes important near the conifold

point? In [82], it was argued that this is indeed the case and that the missing states are actually

black holes, so that making sense of (and removing) conifold singularities24 in the low-energy

effective theory required that black holes were treated as fundamental particles, in the sense

that they can appear in virtual loops in a way that depends on their mass and charges.

In contrast with our KK tower example, these black hole states do not become important because

we are exploring higher energies, but rather because the states themselves become lighter as we

approach the conifold point, eventually becoming massless at z1 = 0 (Fig. 3.4). The 10-

dimensional theory has 3-brane solutions25[83] that wrap a 3-cycle in the compact space, which

in the 4d compactified theory look like charged black holes whose mass depends on the charges26

(mK , nK) and periods,

MBH ∝ |mKFK − nKZK | . (3.91)

In the simplest case27 when the black brane wraps a single cycle A1, the only non-zero charge

is n1 and the mass is proportional to the complex structure modulus z1,

MBH ∝ |z1| . (3.92)

Therefore when A1 is a vanishing cycle, these black hole states become massless as we approach

the conifold point at z1 = 0. Once that happens, the effective theory breaks down because we

are no longer allowed to integrate them out. When the black hole state of mass MBH ∝ |z1| is

24We should keep in mind that there are two types of singularity involved. On the one hand, we have the
singular points of a conifold, which are singularities on the 6d space describing the internal geometry of spacetime
at these special points in moduli space. On the other, there is the singularity in moduli space itself at the
conifold point z1 = 0, which we can see in (3.90). They are of course related to each other, but many discussions
surrounding the conifold become much clearer when one remembers the distinction (cf. Fig. 3.3). Here we mean
the singularity in the moduli space.

25These extended black hole solutions were originally not associated with D-branes. Only after D-branes were
understood as dynamical objects in their own right [21], were these solutions interpreted as D3-brane solutions
and the conifold singularity resolution rephrased in terms of D3-branes wrapping vanishing cycles.

26Note that the h2,1 complex structure moduli belong to N = 2 vector multiplets containing also a vector field
each. These charges are the black hole electric and magnetic charges under these h2,1 vector fields.

27The discussion can be generalised to include P degenerating 3-cycles related to each other through R homology
relations. Such a conifold point connects a Calabi-Yau with Hodge numbers (h1,1, h2,1) to a Calabi-Yau with Hodge
numbers (h1,1 + R, h2,1 + R − P ) [84]. Note that the simple case with only one vanishing cycle simply changes
h2,1 → h2,1 − 1.



64 Chapter 3. String compactifications

M

MBH

M ′
BH

z
1
→

0

z1 = 0

3-brane

Figure 3.4: A 3-brane wrapping a 3-cycle in the compact space gives rise to a black hole state in the
low-energy theory whose mass is proportional to the charges and periods (3.91). When the 3-brane is
wrapping a vanishing cycle whose corresponding period goes to zero at the conifold point, the black hole
state in the EFT becomes massless and our theory with this state integrated out is no longer consistent.

integrated out, the gauge coupling g11̄ associated with the vector in the same vector multiplet as

z1 receives a one-loop correction depending on the mass as g11̄ ∼ g
(0)

11̄
+log (MBH) (which is why

these states must be allowed to run in loops in order to resolve conifold singularities). Since the

gauge coupling in the supersymmetric theory is related to the periods as g11̄ ∼ ∂1̄F1, the result

is the log-term in (3.88) that diverges as z1 → 0 [82, 84]. If instead we do not integrate out

the black hole states and the one-loop correction to the coupling is absent, so is the divergent

behaviour of F1 and G11̄ — the effective theory that includes these states is well-behaved even

at the conifold point.

There are (at least) two key points to take from this discussion. The first is that string theory

compactifications can be well-defined even when the compact space is a conifold with isolated

singularities as long as we include all relevant states in the effective theory. The second is

simply the converse statement — if we want an effective theory that is well-defined without

these D-brane massless states, we cannot reach the conifold point.

3.5.3 Deforming the conifold

Let us now describe the geometry near a conifold singularity. Generically, a conifold as originally

defined [80] may have a number of isolated singularities, for each of which we can give a local

description of the geometry, although for the phenomenological applications we are interested

in only one such singularity is relevant. Locally they can be defined by the equation

4∑
i=1

w2
i = 0 , (3.93)

where wi ∈ C4. That this describes a cone can be seen from the fact that when wi satisfies this

condition, so does λwi for any λ ∈ C (we could think of wi as coordinates in CP4). To determine
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the base of the cone, we intersect it with a sphere in C4 of radius r,

4∑
i=1

|wi|2 = x⃗ · x⃗+ y⃗ · y⃗ = r2 , (3.94)

with w⃗ = x⃗+ iy⃗ = (w1, w2, w3, w4). In terms of x⃗ and y⃗, the two conditions intersect at

x⃗ · x⃗ =
r2

2
, y⃗ · y⃗ =

r2

2
, x⃗ · y⃗ = 0 , (3.95)

which describes an S3 (first equation) with an S2 fibered over it (remaining two equations).

The base of the cone is therefore topologically S3×S2, which nicely connects with our previous

discussion of how one can get a singular conifold either by collapsing an S3 or an S2 to zero

size. Indeed, as r → 0 the radius of the S3 and S2 in the base vanishes. More precisely, the

base corresponds to the T 1,1 = SU(2)×SU(2)
U(1) manifold for which we can write the Einstein metric

[80, 81]

ds2T 1,1 =
1

9
(dψ2 + cos θ1dϕ1 + cos θ2dϕ2)

2

+
1

6
(dθ21 + sin2 θ1dψ

2
1) +

1

6
(dθ22 + sin2 θ2dψ

2
2) , (3.96)

with 0 ≤ θi < π, 0 ≤ ϕi < 2π and 0 ≤ ψ < 4π. The metric on the conifold is therefore

ds2con = dr2 + r2ds2T 1,1 , (3.97)

which is Ricci-flat and becomes singular at r = 0. The metric on T 1,1 can be made diagonal

ds2T 1,1 =
1

9
(g5)2 +

1

6

4∑
i=1

(gi)2 , (3.98)

in terms of the 1-forms [85]

g1 =
e1 − e3√

2
, g2 =

e2 − e4√
2

, g3 =
e1 + e3√

2
, g4 =

e2 + e4√
2

, g5 = e5 , (3.99)

where

e1 = − sin θ1dϕ1 ,

e2 = dθ1 ,

e3 = cosψ sin θ2dϕ2 − sinψdθ2 , (3.100)

e4 = sinψ sin θ2dϕ2 + cosψdθ2 ,

e5 = dψ + cos θ1dϕ1 + cos θ2dϕ2 .
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This basis is particularly useful to discuss the metric on the deformed conifold. Deforming the

conifold corresponds to changing the defining equation (3.93) in such a way that the S3 in the

corresponding base always has a finite radius. This is achieved by including a parameter ϵ as

4∑
i=1

w2
i = ϵ2 , (3.101)

in which case the equations defining the base of the cone become

x⃗ · x⃗ =
r2 + ϵ2

2
, y⃗ · y⃗ =

r2 − ϵ2

2
, x⃗ · y⃗ = 0 , (3.102)

so that y⃗ ·y⃗ ≥ 0 requires r ≥ ϵ and the minimum radius of the S3 is now rmin = ϵ. This effectively

removes the conifold singularity by replacing it by an S3 of finite size, which is exactly how we

introduced the notion of deformation. It means in particular that the manifold defined through

(3.101) is not technically a conifold, but instead a smooth manifold associated with a point in

the moduli space on the right in Fig. 3.3. Since sending ϵ → 0 recovers the definition of a

conifold, this parameter must be related to the complex structure modulus z1 → 0. The metric

on the deformed conifold takes the form [81, 85, 86]

ds2def con =
ϵ4/3

2
K(τ)

(
1

3K3(τ)

(
dτ2 + (g5)2

)
+ sinh2(τ/2)

(
(g1)2 + (g2)2

)
+ cosh2(τ/2)

(
(g3)2 + (g4)2

))
, (3.103)

where the function K only depends on the radial coordinate τ and is defined as

K(τ) = (sinh(2τ)− 2τ)1/3

21/3 sinh τ
. (3.104)

The fact that the metric only depends on τ is reflecting the symmetries of the deformed conifold

whose base is still topologically S3×S2. For large τ , the metric (3.103) approaches the conifold

metric (3.97), with r2 = 3
25/3

ϵ4/3e2τ/3. On the other hand, for small τ the metric approaches

ds2def con = dr2≪ +
r2≪
8

[
(g1)2 + (g2)2︸ ︷︷ ︸

S2

]
+R2

ϵ

[
(g3)2 + (g4)2 +

1

2
(g5)2︸ ︷︷ ︸

S3

]
, (3.105)

where r2≪ = ϵ4/3

4

(
2
3

)1/3
τ2 and the radius of the S3 is fixed by ϵ as R2

ϵ = ϵ4/3

2

(
2
3

)1/3
. In principle,

the metric (3.103) describes a non-compact Calabi-Yau manifold and one could ask whether it

may arise as a background of Type IIB — this would require the deformed conifold metric to

solve the equations of motion for all Type IIB fields for a given configuration of sources and/or

fluxes. Such a solution was indeed found in [86], but what lead to its discovery was not the web

of Calabi-Yau moduli spaces that originally motivated the study of conifolds.
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Despite their origin in the context of topology change and boundaries in moduli space [66, 80, 81],

what made conifolds explode in the string theory literature was the proposal of AdS/CFT [87],

which originally described the duality between Type IIB string theory on AdS5 × S5 and the

N = 4 SU(N) theory which was the low-energy limit of the world-volume theory on a stack of

N D3-branes. This gave an explicit realisation of earlier holographic proposals [88, 89] and kick-

started a massive exploration of string theory backgrounds and their possible dual field theories.

A natural generalisation was to replace S5 by a 5d Einstein manifold X5, which was argued to

also be related to 4d conformal field theories. Requiring that this new background broke some

(but not all) of the supersymmetries, a dual field theory was first identified precisely for the

case where X5 = T 1,1, by noting that this theory was the low-energy limit of the world-volume

theory on a stack of D3-branes placed at the conifold singularity [90]. Further exploration of this

duality, both on the supergravity side and from the field theory perspective, and in particular of

the way the two were mapped onto each other, lead to the introduction of fractional D3-branes

into the original background of N D3-branes at the singularity [91–93]. A fractional D3-brane

is actually a D5-brane which wraps a collapsed 2-cycle in the internal space — on a conifold

background, the D5-brane can wrap the S2 which collapses to zero size at the singularity. In

the field theory, adding these fractional branes breaks the conformal symmetry and the gauge

couplings start to flow logarithmically with energy scale; this is related to the supergravity side

through a logarithmic warping of the conifold, which would eventually reach a metric singularity.

However, it was conjectured that this singularity could be resolved by the strong dynamics of

the gauge theory. What happens, then, in the supergravity background? In [86], the conjecture

was proven and in the supergravity side this was shown to correspond to the deformation of the

conifold.

3.5.4 Klebanov-Strassler solution

The background found in [86] is the warped deformed conifold that will form the basis of our

phenomenological explorations. It has a non-singular metric, whose warp factor is well behaved

everywhere and leads to an exponential suppression of scales in the 4d theory. The setup consists

of M D5-branes wrapping the S2 of T 1,1 at the tip of the cone, which act as sources of F3 flux,

1

(2π)2α′

∫
S3
tip

F3 =M . (3.106)

The flux through the 3-sphere created by the M D5-branes is what prevents it from collapsing.

From the supergravity point of view, one may replace the D5-branes brane byM units of F3 flux

through the S3. A solution can then be found for a metric that takes the conformal Calabi-Yau

form

ds210 = H−1/2(y)gµνdx
µdxν +H1/2(y)ds2def con , (3.107)
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Figure 3.5: Plot of the function I(τ) in (3.108) controlling the behaviour of H(τ) for fixed values of ϵ
and gsM — the warping will be stronger for larger values of M and smaller values of ϵ. In particular, we
will rely on exponentially small values of ϵ later on in order to get exponentially large warping near the
tip of the deformed conifold. Note that the warp factor is biggest at τ = 0 (tip), where it is regular, and
decays exponentially for large τ .

with a warp factor given by

H(τ) = 22/3
(α′gsM)2

ϵ8/3
I(τ) , I(τ) ≡

∫ ∞

τ
dx
x coth(x)− 1

sinh2 x
(sinh(2x)− 2x)1/3 . (3.108)

This warp factor depends on the F3 flux and the deformation parameter ϵ, but for fixed non-

zero values of these parameters it is regular at τ = 0 (Fig. 3.5). The dilaton is assumed to be

constant, eϕ = gs, and H3 is related to F3 as

H3 = −gs ⋆6 F3 , (3.109)

in a way which is compatible with a self-dual (2, 1) G3 flux (3.63) of an N = 1 theory with a

conformal Calabi-Yau background.

Note that the physical size of the S3 at the tip of the throat is R2
S3 = H1/2R2

ϵ , which for this

solution does not depend on the deformation parameter ϵ,

R2
S3

(
22/3

31/3
I1/2(τ = 0)

)
(gsM)α′ ≈ (gsM)α′ , (3.110)

from which it follows that a well under control supergravity approximation (i.e. such that the

α′-expansion with which the Type IIB low-energy supergravity was derived is under control)

requires gsM ≫ 1. This consistency condition will have an important role in both chapter 4 on

de Sitter constructions and chapter 5 on gravitational signatures of warped compactifications.

The warped deformed conifold in the Klebanov-Strassler (KS) solution [86] is non-compact.



3.6. Hierarchies from fluxes 69

From the theoretical point of view, this would be perfectly acceptable and correspond to a 10d

solution of Type IIB. For this 10d solution, ϵ is just the parameter fixing the complex structure

of the deformed conifold. However, for phenomenology we typically require the 6d space to be

compact28 and therefore this geometry is assumed to give a local description of a small region of

a compact space. This region is usually referred to as a warped throat within the compact space,

whose warping creates a hierarchy of scales between the tip and the far away unwarped region

typically called the bulk. A solution of this type was proposed in [94] where it was shown that

the modulus associated with the complex structure deformation ϵ gets stabilised at exponentially

small values, providing exponentially large hierarchies.

3.6 Hierarchies from fluxes

3.6.1 GKP solution

We can finally describe the warped solution on which later chapters are based. It became known

as the GKP solution after Giddings, Kachru and Polchinski, who first proposed it [94], and

consists of a flux compactification of Type IIB string theory, whose compact space contains a

warped throat — a region which is well described by the warped deformed conifold and therefore

the KS solution. Moreover the solution stabilises the complex structure modulus associated with

the deformation of the conifold at exponentially small values with F3 and H3 fluxes through the

S3 at the tip.

The GKP solution was motivated by the hierarchy problem and was therefore attempting to

provide a construction in which the Planck scale MPl was connected to the much lower elec-

troweak scale MEW in a dynamical way. It partly drew inspiration from earlier proposals where

warping was responsible for this connection [57, 58] and where warped metrics would arise in

the context of string compactifications [95], while going further in explaining how the moduli

involved in warped solutions could be stabilised in such a way as to actually provide the large

hierarchy they tried to achieve. Although some work on the stabilisation of these moduli existed

[96, 97], GKP provided the first string compactification realisation of an exponential hierarchy

with a stabilised modulus.

The starting point for the GKP solution is the Type IIB supergravity action (2.81) supplemented

with the action for localised sources such as D-branes and O-planes that we introduced at the end

of Section 2.3, together with a warped ansatz for the metric respecting 4d Poincaré invariance,29

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)g̃mndy

mdyn . (3.111)

28As mentioned before, braneworld theories could potentially lift the requirement that the 6d space is compact
and small.

29For this discussion we will use the notation of [94] with the warp factor denoted as H(y) = e−4A(y) so as to
facilitate comparison. We can then easily change notation back to H(y).
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Importantly, Poincaré invariance only allows the background G3 flux to have internal compo-

nents, while the most general form the F̃5 background is allowed to take is

F̃5 = (1 + ⋆) dα ∧ vol4 , (3.112)

with α = α(y) a function of the compact space coordinates ym only and vol4 the volume form

on the (unwarped) 4d spacetime. The axio-dilaton τ = τ(y) will only be allowed to vary in

the compact directions. Using these in the Einstein equations (2.88) supplemented with the

contribution from the localised sources (2.98),30 the 4d components become31

Rµν = −gµν
(
gs
8

|G3|2

(Im τ)
+
g2s
4
e−8A(∂mα)(∂

mα)

)
+ κ2

(
T loc
µν −

1

8
gµνT

loc
)

!
= −1

4
ηµν

(
∇̃2e4A − e−4A(∂m̃e

4A)(∂m̃e4A)
)
, (3.113)

where the second line is Rµν computed for the metric ansatz (3.111). Tracing the equation, this

implies

∇̃2e4A = e2A
gs
2

|G3|2

(Im τ)
+ e−6A

[
g2s(∂mα)

2 + (∂me
4A)2

]
+
κ2

2
e2A(Tm

m − Tµ
µ)

loc . (3.114)

Since our internal space is compact, integrating the left-hand side over it gives zero. This

simple fact happens to have important consequences for the allowed configurations of fluxes and

localised sources that would give a warped Minkowski solution with a compact 6d space. In

particular, since the flux and warping terms on the right-hand side are positive definite, they

can only be non-zero if the localised source contribution is negative and able to cancel them.

Therefore, in the absence of localised sources, fluxes must vanish and the warping is constant

— this constitutes the no-go theorem of [98]. If we want to find a warped solution we need to

include in the construction the right kind of localised object.

In order to preserve Poincaré invariance, these objects must extend along the 4d spacetime.

Hence a Dp-brane or Op-plane will extend along these 4 directions and wrap p− 3 directions in

the compact space. Using (2.98) we find

(Tm
m − Tµ

µ)
loc = (7− p)Tp e−Φδ9−p(Xi) , (3.115)

which tells us that a negative contribution can only come from objects with p > 7 or negative

tension. Having a negative tension is precisely one of the interesting properties of O-planes. Due

to the existence of orientifolds, string theory does have a way of evading the no-go theorem of

[98]. From our discussion of supersymmetry in Section 3.4, we can start to see the similarities

between the GKP solution and the type B N = 1 solutions. The objects that preserve the same

30Note that the Einstein equations (2.88) are in trace reversed form, so that this energy-momentum tensor will
contribute with a term κ2

(
TMN − 1

8
GMNT

P
P

)
.

31The extra factors of gs follow from our choice of conventions for the Einstein frame metric with Φ0 = ⟨Φ⟩,
which differs from the one in [94], where Φ0 = 0 (see Appendix A.1).
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supersymmetry as the flux configuration in these solutions are D3/D7-branes, O3/O7-planes and

fractional D5-branes. We should therefore consider O3-planes as the objects providing negative

tension. Note also that D7-branes do not contribute to this constraint, at least at leading order

in α′ [94].

Importantly, while (3.114) can be satisfied with the inclusion of O-planes and guarantee that

the Einstein equations are solved, we must also solve the equations of motion for all other fields.

In particular, we must solve the equation of motion for F̃5 which receives contributions from

D3-branes and O3-planes (2.100),

d ⋆ F̃5 =
i

2

G3 ∧G3

(Im τ)
+

2κ2

g2s

∑
i

Q
(i)
3 δW . (3.116)

It will thus give rise to a tadpole cancellation condition (2.101),

ig2s
4κ2

∫
M6

G3 ∧G3

(Im τ)
+
∑
i

Q
(i)
3 = 0 , (3.117)

known as the D3-charge tadpole cancellation and often conveniently expressed in terms of H3

and F3 fluxes instead,
g2s
2κ2

∫
M6

H3 ∧ F3 +
∑
i

Q
(i)
3 = 0 . (3.118)

Actually, D7-branes wrapping 4-cycles in the compact space can also contribute with an effective

charge which in F-theory [99] is given by Qeff
3 = −χ(CY4)

24 , in terms of the Euler-characteristic of

the corresponding Calabi-Yau 4-fold [94]. Although these contributions can be invoked in order

to cancel the tadpole, they come with constraints of their own related to the growing number

of moduli one will need to stabilise (presumably using fluxes) when one tries to increase Qeff
3

[100–106].

The equation of motion itself is an equation for the function α in F̃5, in terms of which it can

be written as

∇̃2α = e2A
i

2

Gmnp ⋆6 G
mnp

6(Im τ)
+ 2e−6A(∂mα)(∂

me4A) +
2κ2

g2s
e2A

∑
i

Q
(i)
3 δW , (3.119)

which can be subtracted from the Einstein equation constraint (3.114) to give32

∇̃2
(
e4A − gsα

)
=

gs
6(Im τ)

e2A|iG3 − ⋆6G3|2 + e−6A|e4A − gsα|2

+
2κ2

g2s
e2A

[gs
4
(Tm

m − Tµ
µ)

loc − T3ρloc3

]
, (3.120)

where we introduce T3ρ
loc
3 =

∑
iQ

(i)
3 δW in the notation of [94]. It was argued in [94] that

32Notice once again the factors of gs differing from [94], which follow from the Einstein frame convention.
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many localised objects satisfy the inequality gs
4 (T

m
m − T

µ
µ)loc ≥ T3ρ

loc
3 , so that the last term

is always non-negative, just as the first two terms. This is true in particular for D3/D7-branes

and O3-planes, which are the localised objects we are interested in. As a consequence, running

the same argument as before and integrating (3.120) over the compact space, we find that

⋆6G3 = iG3 e4A = gsα . (3.121)

The G3 flux must be imaginary-self-dual and the warp factor is determined by the F̃5 background

— these are (some of) the same conditions satisfied by the type B solutions we discussed in

Section 3.4. If the localised source inequality holds, a solution actually requires it to be saturated,

which happens for D3/D7-branes and O3-planes. Note also that an imaginary-self-dual G3 flux

has important consequences, as it implies that the flux contribution to the D3-charge tadpole

(3.117) is always positive. Hence we must use O3-planes to cancel it, since the alternative

D3-branes would break supersymmetry.

The discussion so far was all about global properties of the flux compactification. To achieve

large hierarchies, one can “zoom in” on a region of the compact space that can be described

by the KS solution, with its deformed conifold and M units of F3 flux. In contrast with the

non-compact KS solution however, in GKP the deformed conifold in “glued” to a compact

Calabi-Yau orientifold and therefore the cycle dual to the S3 at the tip is now finite. The

presence of the (unspecified) compact Calabi-Yau means that also the H3 flux through this

cycle can be generically given by K, such that overall we have

1

(2π)2α′

∫
A
F3 =M and

1

(2π)2α′

∫
B
H3 = K . (3.122)

We already know that the A cycle (the S3) is associated with a complex structure modulus33

z =
1

Z0

∫
A
Ω ∝ ϵ , (3.123)

and we can use Z0 to fix |z| = ϵ. This makes explicit the fact that the deformation parameter

ϵ is really a deformation modulus in the 4d theory and is therefore left undetermined unless

a potential is generated by the fluxes. This is precisely what the non-trivial fluxes M and K

through the A and B cycles will do. Applying our previous results (3.81) and (3.89) to this

setup, we find

W =
g
3/2
s√
4π · l5s

· (2π)2α′
(
− M

2πi
z log z −Kτz + holomorphic

)
. (3.124)

Since we are not adding any corrections to the flux superpotential, the Kähler moduli remain

as flat directions and satisfy the no-scale structure. Since the potential (3.83) is then positive-

33See Appendix B of [107] for the relation between ϵ and Ω that leads to this identification.
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definite, the minimum occurs at DiW = 0, which includes in particular

DzW ∝ −
M

2πi
(1 + log z)−Kτ + holomorphic + (∂zK)W

≈ i
{
M

2π
log z − K

gs

}
+O(1) !

= 0 , (3.125)

if we assume that ϵ = |z| ≪ 1, which we want in order to get a large warp factor (3.108), and

that ⟨τ⟩ = ig−1
s with gs ≪ 1. The potential is then minimised at

z ≈ e−
2πK
gsM ≪ 1 , (3.126)

as long as the ratio of fluxes is large enough. This will indeed provide an exponentially large

warp factor and therefore exponentially large hierarchies between different points in the compact

space, and is at the basis of many attempts to obtain a de Sitter solution in Type IIB flux

compactifications. These typically start as AdS solutions where only the complex structure

moduli and the dilaton are stabilised, while the Kähler moduli are flat directions, and add certain

corrections to the scalar potential in order to stabilise them. A de Sitter vacuum is then achieved

by introducing an D3-brane at the tip of the warped throat, which breaks supersymmetry and

contributes with a warped down vacuum energy. A large hierarchy is usually required in order

to preserve the minimum for the Kähler moduli once the brane is introduced.

3.6.2 The warped background metric

Before moving on, let us be more explicit with regard to the background metric and, in particular,

the sense in which the deformed conifold is “glued” onto the compact Calabi-Yau. We will

consider vacuum solutions whose background is a warped product spacetimeM10 = R1,3×wX6,

where R1,3 is a 4d Lorentzian spacetime and X6 is a 6d compact space. We write the Einstein

frame metric as34

ds210 = H−1/2(y) e2ω(x)gµνdx
µdxν +H1/2(y) V1/3gmndy

mdyn , (3.127)

where xµ (µ = 0, ..., 3) are 4d spacetime coordinates and ym (m = 4, ..., 9) are 6d coordinates on

the compact space X6, which we will take to be a Calabi-Yau orientifold (CY3). The 6d metric

gmn = (g6)mn is then Ricci-flat and normalised such that∫
d6y
√
g6 ≡ l6s ,

34Since we start with Einstein frame metric (A.15) and action (A.17), the volumes V and Vw are Einstein frame
volumes.
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with V = VE(x) keeping track of the physical size of the compact space. We define the warp

factor H as

H(y) ≡ 1 +
e−4A0(y)

V2/3
, (3.128)

which is motivated as follows.

First, the background warp factor in (3.111) that solves the 10d Einstein equations in the

presence of fluxes (3.114) is only fixed up to a constant shift,

e−4A(y) = e−4A0(y) + c .

This can be seen as an integration constant depending on the boundary conditions — when we

say that the warped deformed conifold is glued onto the compact (unwarped) CY3, we mean

that far away from the tip (τ →∞), the warping should vanish or, in other words, the function

e−4A(y) → const. In this limit, it becomes an overall rescalling of the compact CY3 and must

therefore be related to the overall volume modulus V [108]. Moreover, the fact that gmn → λgmn

together with e2A → λe2A is a gauge redundancy of the metric (3.111) [94, 109, 110] allows us

to choose λ = c1/2 and rewrite e−4A(y) = 1 + e−4A0(y)

c , which naturally recovers the unwarped

case in the c→∞ limit and indeed relates c = V2/3 with the unwarped volume of the CY3.

The factor e2ω(x) is introduced to Weyl rescale to the 4d Einstein frame, with metric gµν . In

Appendix A.2, we explicitly go through this change of frames and discuss how the dimensional

reduction relates the string scale to the Planck scale as

ms ≈
gs√
4πV

MPl . (3.129)

We also introduce other important scales (e.g. MKK and M tip
KK) and highlight the convention

independence of physical mass ratios.

The background metric (3.127) will form the basis of the main two chapters of this thesis.

In chapter 4 we will discuss Type IIB de Sitter solutions relying on uplifts, introducing the

KKLT [75] and LVS [76, 77] proposals, and presenting new work in the context of LVS where

a weakly-warped solution can be found that seems to help us circumvent the Tadpole Problem

[100–106]. We will explore this solution and discuss whether potentially dangerous corrections

might prevent us from trusting it. Then, in chapter 5 we will explore the phenomenology of these

warped backgrounds in the context of gravitational interactions. We will discuss their effects

on fifth forces arising from KK towers of spin-2 states and begin an exploration of gravitational

waves in the presence of strong warping.
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Large numbers may intimidate, but they

should not scare. What they should provoke is

not flight, but instead reflection on what is the

right question to ask.

Joseph Conlon, Why String Theory?

4.1 Dark Energy: What is it made of?

Towards the end of the 20th century, as astronomical observations brought more and better data

regarding the evolution of the Universe, it was becoming increasingly clear that a cosmological

constant capable of accelerating its expansion — if there was one — had to be rather small.

So small, in fact, that it disagreed with estimates one could make within particle physics by

many orders of magnitude. This discrepancy came to be known as the cosmological constant

problem [111]. At the heart of this problem was the vacuum energy of quantum fields, which can

contribute to the Einstein equations as a cosmological constant. At one loop, this contribution

depends on the masses of the particles running in the loops and it gives a much larger contribution

from the Standard Model particles alone than what would be allowed by observations — it would

therefore require an extremely fine-tuned cancellation between this vacuum energy and a genuine

cosmological constant Λ. Yet, it is not the fine-tuning per se that constitutes the cosmological

constant problem, but rather its extreme sensitivity to UV physics reflected by a radiative

instability — trying to improve the computation by including higher loops will bring important

corrections and more extreme fine-tuning would be required at every order [111–113].

What if the vacuum energy of quantum fields could precisely cancel and the cosmological con-

stant was exactly zero? Supersymmetry, for example, provides a mechanism to cancel the vac-

uum energy of bosons with that of their fermionic partners, resulting in a vanishing contribution.

If the cosmological constant had to be so small, zero might have been the most practical and

perhaps even natural value for Λ. Tempting as it may seem, nature had other ideas — shortly

75
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before the century came to an end, measurements of Type IA Supernovae (SNIa) showed that the

expansion of the Universe is accelerating [114, 115]. Rather than zero, a cosmological constant

(or something behaving very much like one) was required at a scale 10−120M4
Pl ∼ (10−3 eV)4.

Within the Standard Model of Cosmology (ΛCDM), such a cosmological constant — or, more

generally, what one calls Dark Energy — should account for ∼ 70% of the current energy budget

of the Universe [116].

Its extreme sensitivity to the UV suggests that an explanation of Dark Energy might require a

UV complete theory of gravity, such as string theory. Although not a cure to the cosmological

constant problem on its own, supersymmetry which is an important part of string theory could

prove useful in addressing the problem. The extremely small scale of Dark Energy compared to

scales like MPl, Ms or even the TeV scale that we can currently probe, makes this a problem of

hierarchies where warped compactifications could be key. There are two questions one should

answer with regard to the cosmological constant:

1. How does it get its measured (and extremely small) positive value, Λ ∼ +10−120M4
Pl?

2. How is it protected from large corrections?

Although specific approaches to the problem may link the two questions together, they are often

addressed individually. In the work we shall present in this chapter, we will only touch on the

first (and within it restrict our attention to the + sign) — we will explore the possibility of

getting a de Sitter vacuum in string theory. At the level of a classical field theory description,

this corresponds to a vacuum solution with a scalar potential which is positive at the minimum

and can therefore contribute as a positive cosmological constant

S ∼ −
∫
d4x
√
−g V (φi)

∣∣
min
∼ −

∫
d4x
√
−g Λ . (4.1)

Such an understanding of Dark Energy in string theory therefore requires an understanding of

moduli stabilisation. We have already encountered hints of no-go theorems [87] forbidding de

Sitter supergravity solutions in the absence of negative tension objects and we have seen that

in an N = 1 supergravity framework, a de Sitter vacuum must necessarily spontaneously break

supersymmetry. This connects the problem of moduli stabilisation with the one of supersymme-

try breaking, which is anyway necessary to reproduce observations up to the TeV scale. On its

own, moduli stabilisation in string theory is already quite tricky — we have seen, for example,

how fluxes can stabilise the complex structure moduli and the axio-dilaton in Type IIB com-

pactifications, but leave all Kähler moduli unfixed and massless. Moreover, it was shown early

on by Dine and Seiberg [117] that, in regimes where both the string-loop expansion (controlled

by gs) and the α′ expansion (controlled by the volume of the compact space) are well under

control, finding a local minimum for the dilaton and the volume modulus requires fine-tuning

between terms appearing at different orders in these expansions.

On the other hand, the role of fluxes in string compactifications actually led to the picture of a
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landscape of vacua [118], so vast that one might hope would contain our own Universe within it

— if one is allowed to explore this string Landscape, the odd fine-tuning of Λ might be explained

through an anthropic reasoning, in terms of which we as observers (rather than the fine-tuned

solution) are the oddity. These flux compactifications also provided ways to produce hierarchies

[86, 94], which are crucial ingredients in some of the best proposals for de Sitter vacua in string

theory [75–77].

Nevertheless, the proposed constructions are usually so close to the boundaries of control that

consensus over their status within string phenomenology has yet to be obtained (see e.g. [119–

121] for reviews). This lead to the proposal that de Sitter vacua might be in the so-called

Swampland of effective theories1 [125, 126], which despite looking healthy at low-energies do not

admit a UV completion into a theory of quantum gravity [127]. These difficulties might tempt

us to consider alternatives to exact de Sitter vacua — among them are quasi-de Sitter solutions

described by scalars fields slowly-rolling in a positive region of the scalar potential. These so-

called quintessence models would provide an effective cosmological constant slowly varying in

time [128]. However, over the years more evidence was gathered suggesting that quintessence

models are also extremely hard to realise in string theory [120, 129–132]. We shall have more

to say about quintessence at the end of this chapter.

4.2 Kähler moduli stabilisation: KKLT and LVS

In order to look for de Sitter solutions, we will focus on Type IIB compactifications with fluxes

and in particular the GKP type of solutions [94] with a region described by a deformed conifold

[93]. As we have summarised in the previous chapter, the low-energy effective theory is N =

1 supergravity and contains a large number of massless scalar fields, out of which only the

complex structure moduli and the axio-dilaton can be stabilised by the fluxes through the GVW

superpotential (3.124). Even if the stabilised moduli do not break supersymmetry, the Kähler

moduli that are flat directions at this level will do so unless the superpotential vanishes and the

solution is Minkowski.

Our task, if we want a vacuum with full moduli stabilisation, is to find a potential for these flat

directions. Since the potential so far considered was just the leading term in different expansions,

one may look for corrections at sub-leading order in these expansions which would automatically

provide the dominant terms for Kähler moduli. There are indeed perturbative corrections to the

Kähler potential that can break the no-scale structure and give a non-trivial contribution.2 It can

also in general receive non-perturbative corrections. In contrast, the holomorphic superpotential

is protected from perturbative corrections and is therefore independent of the Kähler moduli to

1See [122–124] for reviews of the Swampland programme.
2Note that the Kähler potential for the moduli fields arises from dimensional reduction of the Type IIB

supergravity action (2.76) which was itself obtained at leading order in gs (string loop expansion) and in α′

(curvature corrections).
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all orders in perturbation theory [72–74]. However, it can receive non-perturbative corrections

from effects such as gaugino condensation on D7-branes wrapping 4-cycles in the compact space

or Euclidean D3-brane instantons [133] which depend on Kähler moduli. The full Kähler and

super potentials including these corrections are given by

K = Kc.s. +KKähler +Kτ +Kp , (4.2)

W =Wflux +Wnp , (4.3)

where the Kähler potential for the axio-dilaton is

Kτ = − log(τ − τ̄) . (4.4)

The Kähler potential KKähler can also be written in terms of the volume of the compactification

V = V · l6s as

KKähler = −2 logV , (4.5)

with the V being a function of the Kähler moduli. We are now in a position to introduce

the KKLT [75] and LVS [76, 77] proposals. Although they rely on different combinations of

ingredients, both achieve stabilisation in two steps, first fixing the complex structure moduli and

axio-dilaton using fluxes, and integrating them out, and then taking into account corrections to

the flux potential in order to stabilise the Kähler moduli at subleading order. This logic relies on

the fact that often the masses generated by fluxes for the former are much larger than the scale

at which the latter are stabilised, since this is done at subleading order in the scalar potential

(Fig. 4.1). The difference in the two proposals is in the subleading corrections that generate a

potential for the Kähler moduli.

4.2.1 KKLT

The KKLT construction3 adds non-perturbative contributions to the superpotential and requires

the vacuum expectation value of the flux term to be small enough so that it can compete (as a

constant) with the non-perturbative correction, which requires a fine-tuning of W0 ≡ ⟨Wflux⟩ ≪
1.4 In [75] the simple example of a single Kähler modulus T is given, for which a superpotential

is generated by either gaugino condensation on D7-branes5 (a = 2π
N , with N the rank of the

gauge group on the D7-branes) or Euclidean D3-brane instantons (a = 2π),

WKKLT =W0 +Ae−aT , (4.6)

3Named after S. Kachru, R. Kallosh, A. Linde and S. Trivedi, who first proposed it.
4See [134] for a proposal of a de Sitter construction that does not require supersymmetry-breaking fluxes W0

other than those generated by the addition of D3-branes at the tip of the KS throat.
5The supersymmetry-breaking fluxes generated by the addition of D3-branes at the tip of the throat can also

affect gaugino condensation, by giving rise to mass terms for the fermions on the D7-branes. A new bound relating
various parameters of compactifications with strongly-warped throats was derived in [135] and it must be satisfied
in order for Kähler moduli to be stabilised by gaugino condensation.
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Integrate out

M

MKK

Mflux

M

Mflux

Kähler moduli, z?

Figure 4.1: Adding fluxes to the compactification generates a scalar potential for the complex structure
moduli and the axio-dilaton through the superpotential (3.80), but leaves the Kähler moduli as flat
directions. Therefore, the former can be stabilised and get a mass of order Mflux ≪MKK which is often
much larger than the scale of the subleading effects that eventually stabilise the Kähler moduli. When
that happens, one can integrate out the flux-stabilised fields and leave only the ones untouched by the
fluxes. Once warping is introduced in the picture, the warped-down masses of some complex structure
moduli (e.g. the conifold modulus z) might be to small to be integrated out and should therefore be
included in the low-energy theory for the Kähler moduli.

where A = ⟨A(zi, τ)⟩ generically depends on the stabilised values of the fields that were in-

tegrated out.6 In terms of the modulus T we have V = (T + T̄ )3/2, so that K(T, T̄ ) =

−3 log
(
T + T̄

)
, and hence the supersymmetry condition that also gives a minimum for the

potential is

DTW = 0 =⇒ W0 = −Ae−aReT

{
1 +

2a

3
ReT

}
≪ 1 . (4.7)

The minimum is supersymmetric and AdS with

VAdS ∝ −
a2A2e−2ReT

6ReT
. (4.8)

The KKLT solution as been widely studied over the years and whether it provides a construction

which can be realised explicitly and fully under control seems to still be up for debate [136–146].

Several of these discussions also include the final ingredient of this de Sitter proposal — the

addition of an D3-brane whose positive potential is warped down so as to preserve the minimum

for T while bringing it to positive values. This step is usually based on the GKP solution [94]

and the warped deformed conifold [86]. Since it is common to both proposals and will be key

to the work presented in this chapter, we shall come back to this point in further detail.

6Note that here we are sticking to the conventions used in [75], in which the 10d change of frames is performed
with ⟨Φ0⟩ = 0 (see Appendix A.1).
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4.2.2 LVS

In the Large Volume Scenario [76, 77], rather than balancing ⟨Wflux⟩ against quantum correc-

tions, we balance different quantum corrections against each other. It requires more than one

Kähler modulus and works with a Calabi-Yau manifold of “Swiss cheese” form, corresponding

to an overall large volume with other (blow-up) moduli being associated with geometric “holes”.

The case explicitly analysed in [76, 77] is that of a Calabi-Yau 3-fold (CY3) with h
1,1 = 2 and

a volume

V = κbτ
3/2
b − κsτ3/2s , (4.9)

where τi is the volume of an internal four-cycle and becomes the real part of Ti = τi + iθi (the

axion θi corresponds to deformations of the RR-form C4). Through a suitable redefinition of

τb, one can set κb ≡ 1. The LVS construction relies on both perturbative α′ corrections to the

Kähler potential and non-perturbative corrections to the superpotential,

KKähler = −2 log
[
V +

ξ

2

]
, (4.10)

W =Wflux +
∑
i

Aie
− ai

gs
Ti , (4.11)

where ξ = −χ(CY3)ζ(3)
2(2π)3

, χ(CY3) being the Euler characteristic of the CY3 and ζ(3) ≈ 1.202

[147]. The simplest case is typically studied in which only the leading non-perturbative effect is

considered [76, 77, 148]

WLVS =Wflux +Ae
− a

gs
Ts . (4.12)

The scalar potential arising from these ingredients will have central stage in this chapter and

we shall discuss it in much greater detail later on. At this level of the discussion, the result is

that the Kähler moduli are stabilised at

V ≈ τ3/2b ≈
3W0gsκs

√
τse

a
gs

τs

4aA
, τs ≈

(
ξ

2κs

)2/3

, (4.13)

where again W0 = ⟨Wflux⟩, so that the volume of the compact space V is stabilised at exponen-

tially large values. At the minimum, the potential is negative and breaks supersymmetry, and

thus the LVS vacuum is non-supersymmetric AdS.

Note that, although the superpotential for LVS (4.12) is formally the same as the one for KKLT

(4.6) (with Ts replacing T ), we have chosen to write it in a slightly different way. Firstly, we

kept Wflux rather than W0 — the reason for this is that, as we shall see in what follows, once

the warped deformed conifold and its modulus z are taken into account, one might not be able

to integrate out z with the rest of the flux stabilised moduli and should therefore include it in

the analysis of the Kähler moduli. In practice, this means that Wflux = W0 +W (z) with W0
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not including z. A second difference is in the factor of gs appearing in the non-perturbative

term — this follows from our choice of conventions for the change of frames in 10d (Φ0 = ⟨Φ⟩,
see Appendix A.1), which is also reflected in the non-perturbative correction in KKähler (4.10).

In Appendix A.3, we give a brief overview of these corrections, highlighting the convention

dependence.7

4.3 The Uplift

The two steps of the KKLT and LVS proposals provide a moduli stabilisation mechanism that

results in an AdS vacuum. In order to get a de Sitter solution, both require a third step that

takes this negative minimum and adds a positive contribution that turns it positive — this is

the so-called uplift. There are several different proposals for the origin of this uplift term — e.g.

Dp-branes [75], magnetised branes [149], T-branes [150], dilaton dependent non-perturbative

effects [151], to mention a few (for more on this, see [121]).8

In what follows, we take an D3-brane as the source of the uplift as is customary in both KKLT

and LVS. The vacuum energy contribution is obtained from the brane action9 (2.90), which at

leading order reads10

S
D3

= −TD3

∫
W
d4ξ g−1

s

√
−gD3 − TD3

∫
W
C4 , (4.14)

with gD3 being the pull-back of the 10d metric onto the world-volume W of the brane, which

must extend along all non-compact directions (leaving the brane localised at a point in the

6d compact space). Aligning the world-volume coordinates ξa with the 4d coordinates xµ of

(3.127), we have that gD3 = H−1/2(yD3) · e2ω · g4. On the other hand, the background solution

for F̃5 (3.112) together with the fact that the H3 and F3 backgrounds can only have internal

components means that the background solution for C4 along the non-compact directions (recall

that we must pull-back C4 onto W in the CS/WZ term) is

C4 = α vol4 = g−1
s H−1(yD3) vol4 . (4.15)

7Both reasons would also apply to KKLT, so we could have just adapted the KKLT discussion in the same
way. However, since we will not work with KKLT in what follows, we chose to present it in the original notation
for easier comparison.

8There are also proposals that incorporate other effects directly in the Kähler moduli stabilisation, rather than
adding an uplifting contribution at a later stage (see [121] for a review). See also [152] for an extended version of
the KKLT scenario without a supersymmetric AdS vacuum.

9The D3-brane can equivalently be described in a supersymmetric way within the low energy effective super-
gravity theory using constrained superfields [153–164], though this is not necessary in what follows.

10Notice that we have set e−Φ = g−1
s , since the dilaton has already been stabilised.
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Putting everything together, the action for the D3-brane is (cf. Appendix A.2 for Weyl-rescaling)

S
D3

= −2TD3g
−1
s

∫
d4x
√
−det gµν

(
V0w
Vw

)2

H−1(yD3) , (4.16)

and using TD3 =
2π
l4s
, the ratio ms/Mp (3.129) and Vw ≈ V, this leads to the potential

VD3 =

(
g3s
8π

)
2

V2
H−1(yD3) M

4
Pl . (4.17)

This is where the hierarchy in the GKP solution arising from the warp factor on the deformed

conifold comes into play.11 The natural scale of the D3 contribution is of order Ms (this is most

easily seen from (4.16) and TD3 ∼ M4
s ) and its volume dependence is such that whenever it

dominates over all other terms it results in a runaway for V — if we leave it unsuppressed, the

brane potential will destroy the minimum we started with and push us towards the decompact-

ification limit (V → ∞). However, when there is a strongly warped region where H(y)≫ 1 the

brane potential may be suppressed enough and uplift the solution without destroying it.

Recall that the position of the brane along the transverse directions (in the compact space),

is associated with world-volume scalars ϕm(xµ) that make it dynamical — it is given by the

vacuum expectation value (yD3)
m ∼ ⟨ϕm⟩. A term like (4.16), which depends on the scalars

through the warp factor, generates a potential for them whose minimum corresponds to the

region of maximum warping. Hence, at least in the absence of competing effects, the brane is

pulled towards the tip of the deformed conifold (τ = 0). Since most discussions involve strong

warping, at the tip H(ytip) ≈ e−4A
tip
0

V2/3 and so VD3 becomes (cf. (3.108))

VD3 =

(
g3s
8π

)
(2π)4

V4/3
c′′
|z|4/3

(gsM)2
M4

Pl . (4.18)

where c′′ = 21/3

I(0) ≈ 1.75.

We will, however, be interested in solutions with weak warping where H ∼ 1 throughout the

whole compact space and will therefore use the exact expression (4.17). In this weakly-warped

case, there is no large hierarchy suppressing the brane potential and one would expect it to keep

its natural Ms scale. Yet, we will see that there are solutions in this regime that appear to be

stable and positive — how can the D3-brane not destroy the minimum for V? Although we

will analyse this in detail in what follows, the key is that the weakly-warped solution is found

when the vev of the flux superpotential W0 and the scale of the non-perturbative effects A are

large enough to compete with VD3 and avoid destabilisation. Working with LVS, one can use

the exponentially large volume to suppress the overall scale of the potential and guarantee that

11Interestingly, recent work as suggested that taking into account (α′)2 curvature corrections to the brane
action might be enough to lower the tension, providing an uplifting mechanism where the smallness of the uplift
is achieved by tuning these corrections [165]. If confirmed, this would remove the need for strong warping and
consequently large tadpole contributions.
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it remains within the validity of the EFT.

In order to understand what motivates us to look for a weakly-warped de Sitter solution, we

need to discuss the fate of the complex structure modulus z controlling the deformation of the

conifold. Not only can the presence of warping in the background exponentially suppress the

flux generated mass of z and make it comparable to the scale at which the Kähler moduli are

stabilised (hence forbidding us from safely integrating it out), it also adds important corrections

to its Kähler potential [166, 167]. These corrections and the fact that the brane potential (4.17)

depends on z through the warp factor will make the brane contribution potentially dangerous,

not only to V, but to z itself — unless certain conditions are met, the D3-brane uplift in the

strongly-warped regime may push z → 0 towards the singular conifold and destroy the solution

[168]. Moreover, a large warping generated a la GKP requires a large flux contribution to

the D3-charge tadpole (3.118) whenever the supergravity approximation near the tip is under

control [86] (it may also be necessary to prevent the D3-brane from annihilating with fluxes

into a number of D3-branes [169]). Such a contribution can be extremely hard to cancel, which

lead to further study of the usual ingredients that can help with the cancellation (in particular

D7-branes in the context of F-theory) and eventually to the proposal of the Tadpole Conjecture

[100–106].

4.4 Conifold modulus

Not long after the GKP proposal [94], the dimensional reduction of Type IIB was revisited in

[170] with warping effects taking centre stage. By rederiving the scalar potential for the moduli

on a warped background, one concludes that while the GVW superpotential (3.80) does not get

corrected by the warping, the Kähler potential does,

K/M2
Pl = −2 logVw − log(−i(τ − τ̄))− log

(
i

l6s

∫
H Ω ∧ Ω

)
. (4.19)

A more detailed reduction taking into account subtleties related to KK modes, compensator

fields and warping contributions was given in [109], including a deeper understanding of how

one should define the Kähler moduli in the presence of warping (this was revisited in [108]

focusing on the universal Kähler modulus).

For us, the key point is already present in the corrected Kähler potential (4.19). Since the

metric on moduli space is derived from the Kähler potential as GIJ̄ = ∂I∂JK, warping cor-

rections to K correspond to warping corrections to the moduli space metrics themselves. This

includes, in particular, the metric associated with the complex structure modulus z, controlling

the deformation of the conifold, which gets the following correction (cf. (3.90))

Kzz̄ =
1

π||Ω||2

(
log

Λ3
0

|z|
+

c′

(2π)4
1

V2/3
(gsM)2

|z|4/3

)
. (4.20)
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Figure 4.2: The stabilisation mechanism proposed in [94] for the deformation modulus z together with

the metric (3.90) gives a scalar potential that only has the minimum at z ∼ e−
2πK
gsM (3.126) (GKP). Once

warping effects are taken into account [166], the Kähler potential receives corrections (4.21) that bring
the potential down to zero as z → 0 (DST). Although the corrected potential still has a minimum at
(3.126), not only does it become susceptible to destabilisation by the D3 uplift, but it also corresponds
to a much smaller mass for the z modulus.

In Appendix D.3, we review the computation of Kzz̄ performed in [166], making explicit the

appearance of the volume modulus in the warping correction term. The final result is valid when

|z| ≪ Λ3
0, where we define the dimensionless Λ0 = ΛUV/ls encoding the radial distance from the

tip at which the deformed conifold is glued to the CY3 and the constant c′ = 1.18. This metric

corresponds to a contribution to the Kähler potential of the form

K(z, z̄) = 1

π||Ω||2

[
|z|2

(
log

Λ3
0

|z|
+ 1

)
+

9c′(gsM)2

(2π)4V2/3
|z|2/3

]
. (4.21)

Notice that the warping contribution to the Kähler potential mixes the deformation modulus z

and the volume modulus V, in such a way that large volumes suppress the effect of the warping.

We can combine the Kähler potentials for the two moduli such that (see e.g. [171])

K = −3 log
(
V2/3 − 1

(2π)4
3c′(gsM)2

π||Ω||2
|z|2/3

)
+ . . . (4.22)

It is interesting to note that despite the mixing between z and V, this correction preserves the

no-scale structure of the Kähler potential [109, 142].

Notice that the correction term in (4.20) does indeed vanish when M = 0, in which case there

is no warping, and becomes more relevant as z → 0 — for small enough |z|, this term will start

to dominate and bring the scalar potential for z down to zero12 (Fig. 4.2)

12Recall that it is the inverse metric that appears in the scalar potential (3.78).
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Let us now turn to the superpotential, which keeps its GVW form (3.80). We use the periods

over 3-cycles (3.123) and (3.74), in particular

z/l3s =

∫
A
Ω , F(z) = Π0 +

z · l3s
2πi

(
log

Λ0

z
+ 1

)
, (4.23)

and the 3-form fluxes on the 3-cycles (3.122) responsible for the deformation of the conifold.

While the A-cycle is unambiguisly defined as the S3 even when the conifold is glued to a compact

Calabi-Yau, the B-cycle could in principle extend into the bulk and the H3 flux K through this

cycle could receive contributions from outside the conifold. However, let us assume that all flux

comes from the conifold region,

1

(2π)2α′

∫
B
H3 =

1

(2π)2α′

∫
τ≤τΛ

∫
S2

H3 = K , (4.24)

with τΛ corresponding to the radial coordinate where we glue the deformed conifold to the

compact Calabi-Yau. The integral in (4.24) can be computed for the conifold, using the ap-

proximation of the metric (3.103) in the limit τ → ∞ (3.97), with r2 = 3
25/3

ϵ4/3e2τ/3 and the

functions (D.41) (see Appendix D.3 for details on τΛ and Λ0),

K =
1

(2π)2α′

∫
τ≤τΛ

∫
S2

H3 ≈
gsM

2π
τΛ =

gsM

2π

(
log

Λ3
0

|z|
+

3

2
log

25/3

3

)
. (4.25)

Neglecting contributions from the bulk, this relates the parameters gs,M,K,Λ0 and the value

of the deformation modulus z — in a solution where the bulk does not contribute to the flux,

this topological relation must be satisfied. In the context of the deformed conifold solution of

[86], this would indeed be the case, with the flux number M being the only free flux, since

it is a solution for constant dilaton and therefore satisfies the relation g2s |F3|2 = |H3|2 (3.109).

Interestingly, this relation between K and the cutoff scale Λ0 takes the form of the GKP solution

for the deformation modulus [94, 166]

|z| ≈ Λ3
0 exp

{
−2πK

gsM

}
, (4.26)

which is therefore consistent with an H3 flux through the B-cycle dominated by the conifold

contribution.

The superpotential (3.80) takes the form

W/M3
p =

g
3/2
s√
4π

[
W0e

iσ − M

2πi
z

(
log

Λ3
0

z
+ 1

)
− iK

gs
z

]
. (4.27)

with a constant superpotential W0e
iσ containing all z-independent terms, in particular the con-

tribution from the integrated-out complex structure moduli and the dilaton which are stabilised

by the remaining fluxes, with ⟨τ⟩ = ig−1
s — this is nothing but their flux superpotential evaluated

at the vev, ⟨Wflux⟩.
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Combining the Kähler potential (4.21) and superpotential (4.27), the resulting scalar potential

(3.78) is

VKS =

(
g3s
8π

)
πgs
V2

(
log

Λ3
0

|z|
+

1

(2π)4
c′(gsM)2

V2/3|z|4/3

)−1 ∣∣∣∣M2π log
Λ3
0

z
− K

gs

∣∣∣∣2M4
Pl . (4.28)

In addition to this scalar potential originating from the fluxes, we include the contribution from

the D3-brane (4.17) at the tip of the deformed conifold,

VD3 = cD3

(
g3s
8π

)
2

V2

{
1 +

1

(2π)4
2

c′′
(gsM)2

V2/3|z|4/3

}−1

M4
p , (4.29)

where cD3 = 1 in the presence of the D3-brane and zero otherwise.13 The deformation modulus

appears in the brane potential through the warp factor of the metric, and we see that the

suppression is provided by the vev of this modulus, through |z|4/3. As we saw, this energy

suppression ensures that the positive energy density from the probe D3-brane uplifts an otherwise

AdS minimum for the volume modulus to a near Minkowki minimum, instead of dominating the

potential and causing a runaway. How much suppression is required, and hence how large the

hierarchy (3.128) needs to be, depends on the stabilisation mechanism of the volume modulus

and, in particular, on the depth of the AdS minimum prior to the uplift.

It is useful to introduce the following constants [172]

ε =
gsM

2πK
, δ1 =

g3s
8
× K2

gs
, δ2 =

g3s
8π
× c′′ c

′

δ1
=

1

π
× c′′c′ gs

K2
, δ3 =

(2π)4

2

c′′

(gsM)2
, (4.30)

as well as the parameter

β ≡
V2/3 log Λ3

0
ζ

c′

(2π)4
(gsM)2

ζ4/3

= C V2/3Λ4
0 xe

− 4
3
x, (4.31)

where we defined z = ζeiθ, with ζ de saxion and θ the axion of the deformation modulus z. We

also introduced the constant C = (2π)4

c′(gsM)2
and the variable x ≡ log

Λ3
0
ζ , which is useful when

studying different regimes for this scalar potential. Using these parameters and constants, the

potentials (4.28) and (4.29) become (in Planck units, MPl = 1)

V = VKS + VD3

=
δ1C

V4/3
Λ4
0e

− 4
3
x

[
(1 + β)−1(1− ϵx)2 + cD3δ2

(
1 + δ3V2/3Λ4

0e
− 4

3
x
)−1

]
, (4.32)

where we assumed that the axion is stabilised at zero, ⟨θ⟩ = 0 (this will be confirmed below).

The parameter β plays a crucial role in our analysis — it measures the suppression of the warping

13More generally, we can also think of cD3 as the number of D3-branes at the tip of the deformed conifold.
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contribution to the potential. Indeed, it is clear that the warping (3.128) is suppressed by large

volumes, so that larger compact spaces will be less affected by warping effects than smaller ones.

Our definition is such that when β is large the warping correction to Kzz̄ in (4.28) becomes

subdominant. Previous works have assumed the regime β ≪ 1, where the warping completely

dominates (this is even true in the LVS case studied in [148], where the large volume of the bulk

is still not relevant for the stabilisation of the deformation modulus) — in [172] we explore the

opposite regime β ≫ 1 for which the warping is subdominant. From the definition (4.31),

β ≈ V2/3

e−4Atip
0

log
Λ3
0

ζ
= (H − 1)−1 log

Λ3
0

ζ
, (4.33)

and we see that leaving the β ≪ 1 regime seems to require us to have weak warping and/or long

conifolds. In fact, due to the solution for ζ, smaller values of ε = gsM
2πK (and hence larger values

of z, compatible with smaller warping) rather than long conifolds will be helpful.

Before introducing the new weakly-warped solution of [172], let us review the strongly-warped

case, which will give us the motivation to look for solutions at weak warping.

4.4.1 Strongly-warped solutions

In previous studies, it has been assumed that the warping term dominates over the volume term

in (4.21) and (4.28), that is β ≪ 1, in which case the potential becomes14

V ≈ δ1C

V4/3
Λ4
0 e

− 4
3
x
[
(1− εx)2 + cD3δ2

]
, (4.35)

and hence

V ′ =
δ1

V4/3
CΛ4

0

4

3
e−

4
3
x

[(
1 + cD3δ2 +

3

2
ε

)
−
(
2 +

3

2
ε

)
εx+ (εx)2

]
, (4.36)

which shows a minimum at ζ = 0 (x → ∞) and may or may not have critical points for ζ > 0

(x finite). Notice that, in the absence of the brane (cD3 = 0) one immediately obtains the GKP

solution (which corresponds to εx = 1). Once the brane is introduced (cD3 = 1), the condition

that guarantees the existence of a non-trivial minimum is

δ2
ε2

=
4πc′c′′

gsM2
≤ 9

16
, (4.37)

14Note that

δ3V2/3Λ4
0e

− 4
3
x =

c′c′′

2

β

x
. (4.34)

Therefore, for β ≪ 1 and as along as x ≳ 1, this term is subdominant compared to 1.
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and when this is satisfied we obtain the solutions

ζ = Λ3
0 exp

{
−2πK

gsM
−

(
3

4
±

√
9

16
− 4πc′c′′

gsM2

)}
. (4.38)

The bound (4.37) was first found in [168] and requires the F3 flux M to be large enough in

order for a solution to exist,
√
gsM ≳ 6.8 (see also [173] for a 5d analysis of this bound). When

this bound is violated, the potential for the deformation modulus ζ turns into a runaway that

drives it towards ζ = 0 where the singular conifold is recovered (Fig. 4.3). Together with the

requirement that the suppression to the brane potential, through the deformation modulus

|z|4/3 ∼ exp

{
− 8πK

3gsM

}
= exp

{
−8π(MK)

3gsM2

}
, (4.39)

be large enough,15 this translates into a lower bound on MK which contributes to the D3-

tadpole cancellation condition (3.85) and makes it difficult to satisfy [168]. Although there is no

demonstrated upper bound for the number of orientifold planes one can have on a given CY3,

all known examples on moduli stabilisation by fluxes have at most 64 O3-planes [168], which

limits their negative contribution to the tadpole. In more generic F-theory constructions, D7-

branes can be taken into account and näıvely bring a much larger negative contribution — this

motivated further exploration of these ingredients in flux compactifications and eventually to

the proposal of the Tadpole Conjecture [100–106]. The key point is that even in these F-theory

setups, the tadpole can be extremely hard to cancel and a large contribution from MK might

be problematic.

Note that one can trace this back to the warping correction to the deformation modulus metric

(4.20) (or equivalently the Kähler potential (4.21)), which brings its scalar potential down to

zero as ζ → 0. Therefore, the validity of the bound (4.37) is tied to the validity of this correction

all the way down to ζ = 0. Although the result [166] claims this to be the case, recent work as

suggested that a more careful derivation of the Kähler potential gives a qualitatively different

result, with a potential which no longer goes to zero at small z [107]. It was also argued that

other consistency conditions such as the bound of [169] and the validity of the supergravity

approximation used in [86] already put stronger constraints on M than (4.37). In any case,

the large tadpole danger motivates us to look for weakly-warped solutions which might help

avoid this problem — on the one hand, allowing for weak warping will immediately loosen the

bound on MK that arises from imposing large hierarchies (4.39); on the other, in the absence

of warping one expects the mass of z to take its natural flux value and this modulus to be much

less sensitive to the low-energy ingredients, so that adding the D3-brane would no longer cause

the runaway towards the singular conifold. Of course, this requires a controlled solution to exist

at weak warping for which also the volume modulus stabilisation is safe from a weakly-warped

brane contribution — we will see how this can be achieved in later sections.

15As we mentioned before, in this argument, “large enough” can only be made precise when one includes the
stabilisation of the volume modulus explicitly.
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Figure 4.3: Comparison between two different choices of M (M = 5,M = 25 with K = M in both
cases) for the potential (4.32) for an example with β ≪ 1, with the choice of parameters Λ0 = 0.1, gs =
0.1, V = 103 and given ||Ω||2 = 8, c′ = 1.18, c′′ = 1.75.

As a final remark, it is important that the solution is consistent with the approximation we

started with, i.e. the non-trivial solution ζmin that follows from this analysis must be such that

β ≪ 1 given the vev for the volume once it is stabilised (which is verified for the parameters

used in Fig. 4.3).

4.4.2 Weakly-warped solutions

Let us then consider the new regime, where the warping term in (4.21) is subdominant,16 that

is β ≫ 1, so that the potential becomes

V ≈ δ1
V2

1

x

[(
1− 1

β

)(
1− εx

)2
+ βcD3δ2

(
1 + δ3V2/3Λ4

0e
− 4

3
x
)−1

]

=
δ1
V2

[
1

x

(
1− e

4
3
x

C V2/3Λ4
0x

)(
1− εx

)2
+ cD3δ2

C V2/3Λ4
0

e
4
3
x + δ3V2/3Λ4

0

]
(4.40)

and thus

V ′ =

(
1− (ϵx)2

)
x2

δ1
ζV2
−2(1− ϵx)(3− 2x(1− ϵx))

3x3
δ1

ζ7/3C V8/3
+

4cD3δ1δ2C ζ1/3

3V4/3
(
1 + δ3V2/3ζ4/3

)2 . (4.41)
16To be precise, we are considering a “weakly-but-still-warped scenario”, in which the warping-induced term in

the deformation modulus metric [166] provides an important subleading correction to the scalar potential (4.40),
even though the interplay of all the ingredients is such that the warping is small. Indeed the fluxes needed to
stabilise the deformation modulus will still source some warping near the tip of the deformed conifold and it is
only due to the balance between this effect and the overall volume of the compact space that the resulting warping
is small.
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Without further assumptions, it is difficult to solve V ′ = 0 analytically. Since we are interested

in the regime where β ≫ 1, we can instead solve the equation perturbatively in powers of 1/β.

Reintroducing β in V ′ and expanding for large β, we find

V ′ =
δ1
ζV2

(1− (ϵx)2)

x2
+

2δ1(2cD3δ2C
2x3 + δ 2

3 (2x3ϵ2 − 4x2ϵ+ x(2 + 3ϵ)− 3))

3δ 3
3 ζV2x2

1

β
+O

( 1

β2

)
.

(4.42)

We see that at leading order in 1/β we obtain the usual GKP solution with ϵx = 1, as one would

expect in the absence of warping. The next-to-leading order correction to this solution can be

determined by writing

xmin = x0 +
x1
β

+O
( 1

β2

)
, (4.43)

plugging xmin into V ′ and solving at each order in 1/β, which gives

xmin =
1

ϵ
+ cD3

2δ2C
2

3δ 2
3 ϵ

4

1

β

∣∣∣∣∣
x=1/ϵ

+O
( 1

β2

)
, (4.44)

or in terms of ζ,

ζmin ≈ Λ3
0 exp

{
−2πK

gsM
− 4Ke

8πK
3gsM cD3

3π2c′MΛ4
0V2/3

}
, (4.45)

corresponding to a small shift of the GKP solution ζGKP ≈ Λ3
0 exp

{
−2πK

gsM

}
towards smaller

values of ζ. The correction depends on cD3, showing that it is coming from the brane contribution

to the potential and is suppressed by 1/β, so that if there was no warping whatsoever (β →∞)

the correction would be absent. Importantly, we always find a solution provided β is large

enough so that the expansion in (4.42) is valid — therefore in the weakly-warped limit there is

no uplifting runaways bound on the fluxes (cf. 4.37) and the anti-brane does not destabilise the

conifold modulus.

Since V → 0 as ζ → 0 and we have a minimum, there must be a maximum at some 0 < ζmax <

ζmin. If ζmax is sufficiently smaller than ζmin, we will have ϵxmax ≫ 1. Taking this limit in

(4.41), we have

V ′ =
δ1

V4/3
4C

3ζ7/3

{
cD3δ2ζ

8/3(
1 + δ3V2/3ζ4/3

)2 − 3ϵ2

4CV2/3
ζ4/3 +

ϵ2

C2 V4/3

}
. (4.46)

In terms of the variable y ≡ Htip − 1 = 2
(2π)4

(gsM)2

c′′V2/3ζ4/3
and since y ̸= 0, one can show that V ′ is

proportional to

V ′ ∝ −y3 +
(

3

2c′c′′
− 2

)
y2 +

(
3

c′c′′
− 16πcD3

c′c′′(gsM2)
− 1

)
y +

3

2c′c′′
. (4.47)

The sign of the discriminant of this cubic equation is only a function of gsM
2 and always negative

— there can only be one real solution. On the other hand, the variable y = H − 1 < 1 and
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Figure 4.4: Potential (4.32) in the regime β ≪ 1, with the choice of parameters Λ0 = 1, gs = 0.15,M =
20,K = 2, V = 104 and given ||Ω||2 = 8, c′ = 1.18, c′′ = 1.75. Note that (4.45) and (4.48) give
respectively ζmin ≈ 1.51× 10−2 and ζmax ≈ 2.81× 10−4.

the coefficients are all O(1) or more. Hence, neglecting the cubic term, we find the approximate

solution17

ymax ≈
(3− c′c′′)(gsM2)− 16πcD3

(gsM2)(4c′c′′ − 3)

+

√
c′c′′(c′c′′ + 6)(gsM2)2 − 32πcD3(gsM2)(3− c′c′′) + 64(2π)2c2D3

(gsM2)(4c′c′′ − 3)
. (4.48)

In Fig. 4.4 we plot the potential (4.32) in the regime β ≫ 1 for a specific set of parameters,

which shows both the minimum near the GKP solution and a maximum at ζmax ≪ ζmin in

contrast with the β ≪ 1 regime in which these appear near each other (4.38). Note also that

the value of ζmin in the weakly-warped case should not be too small in order for β (4.31) to be

large.

We can understand this result in terms of the subdominance of the warping-induced term in

(4.20) — by suppressing this term, one is delaying the onset of its effect on the scalar potential

pushing the maximum towards smaller values of ζ; this allows the potential to grow significantly

before turning around towards zero at ζ = 0, which is reflected in a larger mass for ζ that can

now survive the introduction of the brane uplift.

One should still keep in mind that our weakly-warped solution can only be a true solution if we

are also able to stabilise the Kähler moduli (including in particular the volume modulus). Since

large volumes favour a regime of large β (4.31), we will embed our setup into the Large Volume

17The second solution of the quadratic equation is never positive and hence we discard it.
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Scenario [76, 77], thereby treating the volume modulus stabilisation explicitly. For comparison,

we will use a similar construction to the one in [148] and take the same “Swiss cheese” Calabi-Yau

manifold for the bulk geometry as the one in the example therein.

4.5 de Sitter solutions in LVS

We now study the full moduli stabilisation problem including the coupled system of Kähler and

complex structure moduli, by embedding the above system into the Large Volume Scenario. We

therefore extend our bulk Kähler moduli field content to include the two moduli of a “Swiss

cheese” Calabi-Yau. After working out the full scalar potential for this six real field system, we

proceed to find metastable de Sitter vacua in the two regimes explored above, where the warping

dominates or is suppressed in the deformation modulus dynamics. The strongly-warped regime

(β ≪ 1) was studied in [148], and we reproduce their results giving some further consistency

checks, while the weakly-warped regime (β ≫ 1) was first introduced in [172].

4.5.1 The scalar potential

Putting together our discussion of LVS and the setup outlined in the previous section, we consider

the following Kähler and super potentials

K/M2
p =− 2 log

[
V +

ξ

2

]
− log (−i(τ − τ̄))− log

(
||Ω||2

)
+

1

π||Ω||2

(
|z|2

(
log

Λ3
0

|z|
+ 1

)
+

1

(2π)4
9c′(gsM)2

V2/3
|z|2/3

)
, (4.49)

W/M3
p =

g
3/2
s√
4π

(
W0e

iσ +

[
− M

2πi
z

(
log

Λ3
0

z
+ 1

)
− iK

gs
z

]
+Ae

− a
gs

Ts

)
, (4.50)

where z = ζeiθ. Below we will use the expression for the gravitino mass that follows from these

definitions18

m3/2 = eK/2|W | ≈ 1√
8π||Ω||

· g
2
sW0

V
Mp . (4.51)

Using these, we can compute the scalar potential V in the limit V ≫ 1 (i.e. we use the

18Note that the exact factors of gs in the gravitino mass are convention dependent when expressed in terms of
the Einstein frame volume V (see Appendix D.2) [174].
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supergravity formula for the scalar potential (3.78) and expand it around 1/V = 0) and ζ ≪ 1,19

V =
g4s

8π||Ω||2

(
8a2A2√τse−2 a

gs
τs

3κsg2sV
+

4aAτse
− a

gs
τs

gsV2
W0 cos

(
a

gs
θs + σ

)
+

3W 2
0 ξ

4V3
(4.52)

+
π||Ω||2

V2
(
log

Λ3
0

ζ
+

1

(2π)4
c′(gsM)2

V2/3ζ4/3
)−1

[
M2

(2π)2
θ2 +

(
M

2π
log

Λ3
0

ζ
− K

gs

)2
])

.

Notice that the Tb axion, θb, remains a flat direction at leading order and would be stabilised

by subleading non-perturbative effects. Looking at ∂θV = ∂θsV = 0, we find the solutions for

the remaining axions

⟨θ⟩ = 0 , ⟨θs⟩ =
nπ − σ
a

gs, n ∈ Z , (4.53)

and choose n = 1, such that cos
(

a
gs
θs + σ

)
= −1. By inspecting the Hessian matrix in the axion

directions, ∂i∂θV and ∂i∂θsV , where i runs through all fields, we conclude that these completely

decouple from the other moduli and therefore we can fix the axions to their minima and then

analyse the 3-field system (V, τs, ζ). In particular, the axion masses are always positive, making

these stable directions. The potential then becomes

V =
g4s

8π||Ω||2

(
8a2A2√τse−2 a

gs
τs

3κsg2sV
− 4aAW0τse

− a
gs

τs

gsV2
+

3W 2
0 ξ

4V3

+
π||Ω||2

c′
(2π)4

V4/3
ζ4/3

(gsM)2

(
1 + β

)−1(M
2π

log
Λ3
0

ζ
− K

gs

)2)

+

(
g3s
8π

)
2

V2

{
1 +

1

(2π)4
2

c′′
(gsM)2

V2/3ζ4/3

}−1

, (4.54)

where we introduced our variable β, defined in (4.31), and the brane potential (4.17).

The formal solution for τb does not depend on the choice of β regime, giving always

V ≈ τ3/2b =
3W0gsκs

√
τse

a
gs

τs

aA

aτs − gs
4aτs − gs

. (4.55)

However, because it is implicitly given in terms of τs, there is a dependence on the choice of β

hiding in the solution for τs. In turn, both ζ and τs will have different solutions depending on

the regime of β that we look at. We now proceed to study the two regimes of strong warping,

β ≪ 1, and weak warping, β ≫ 1.

19Notice that there is a competition between these two limits precisely in Kzz̄ and therefore in the term
Kzz̄(DzW )(Dz̄W̄ ), whose result depends on the β-regime one considers. Usually, it is assumed that the warp factor
completely dominates in Kzz̄ (β ≪ 1), which is equivalent to taking the limit with the constraint ζ4/3V2/3 ≪ 1.
In practice, Kzz̄ can be written in terms of β and the limit taken without choosing the regime of interest.
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4.5.2 Strongly-warped solutions

Let us start by reviewing the usual limit considered in the literature, β ≪ 1. In this limit, the

potential is20

V =
g4s

8π||Ω||2

(
8a2A2√τse−2 a

gs
τs

3κsg2sV
− 4aAW0τse

− a
gs

τs

gsV2
+

3W 2
0 ξ

4V3

+
π||Ω||2

c′
(2π)4

V4/3
ζ4/3

(gsM)2

[
c′c′′

πgs
+

(
M

2π
log

Λ3
0

ζ
− K

gs

)2
])

, (4.57)

and therefore the solution is [148]

τ3/2s

16aτs(aτs − gs)
(4aτs − gs)2

=
ξ

2κs
+ (2π)4(π||Ω||2)

8q0ζ
4/3τ

5/2
b

27g2sκsW
2
0

, (4.58)

ζ = Λ3
0 e

− 2π
gs

K
M

−
(

3
4
±
√

9
16

− 4πc′c′′
gsM2

)
, (4.59)

with the constant q0 =
3

8π2c′

(
3
4 −

√
9
16 −

4πc′c′′

gsM2

)
.

The value of the potential at the critical points is given by

Vcrit ≈
g4s

8π||Ω||2
·
3gsW

2
0 κs
√
τs

4aV3
(−1 + α+O(gs)) , (4.60)

with the uplift parameter α defined as

α ≡ (π||Ω||2)(2π)4

gs
· 20aq0ζ

4/3V5/3

27g2sW
2
0 κs
√
τs
. (4.61)

In order to have a dS solution, we must necessarily have α > 1. Whether this corresponds to a

local minimum (rather than a maximum or a saddle point) is related to the masses of the three

fields and is analysed in [148]. Two of the mass-eigenvalues are always positive, but a second

20Notice that our potential differs from the one in [148], apart from the overall factor g4s/(8π||Ω||2), in several
ways: (i) our warp factor (3.108) is e−4A0 ∼ (gsM)2 instead of e−4A0 ∼ gsM

2 and (ii) the moduli τb and τs differ
by a factor of gs; both (i) and (ii) are due to our convention for the Einstein metric with the gs = e⟨ϕ⟩ = eΦ0

(see Appendix A.1); (iii) we have the factor π||Ω||2, which is coming from the metric Gzz̄ and is therefore not
an overall factor, which comes from the contribution of the remaining complex structure moduli stabilised in the
bulk; (iv) a factor of (2π)4 multiplying ζ4/3 which comes from defining ζ in units of ls; and (v) Λ0 is explicit as
opposed to the potential used in [148]. There is, however, a simple way to map the two potentials. We simply
remove the overall factor in (4.57) (which does not affect the stabilisation of the moduli in any case) and perform
the following combined transformation

V → g3/2s V , τs → gsτs , ζ4/3 → ζ4/3

(π||Ω||2)(2π)4 , Λ0 →
(

1

(π||Ω||2)(2π)4

)1/4

Λ0 . (4.56)
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bound is derived from requiring

m2
3 ≈

g4s
8π||Ω||2

·
3gsW

2
0 κs
√
τs

4aV3

(
9

4
− α+O(gs)

)
> 0 . (4.62)

Satisfying the two conditions Vcrit > 0 and m2
3 > 0 constrains α to be in the range21 α ∈]1, 94 [.

The hierarchy in this regime becomes (3.128)

HIR

HUV
∼ 1 +

e
8πK
3gsM

Λ4
0 V2/3

, (4.63)

which depends not only on the flux numbers and string coupling, but also on the volume V
(which is now exponentially large) and the length of the conifold Λ0, larger values of which will

decrease the hierarchy between the UV and the IR.

It is worth mentioning that recent works have been tightening the constraints on a fully under-

control warped LVS construction and even questioning whether these solutions can be trusted

at all [176–179]. Although we will not address all these potential dangers in detail, we will

comment on some of them in the explicit example below and provide an analysis similar to [176]

for the new weakly-warped solutions in section 4.6.

Example

Let us give an example to illustrate this solution. Using a set of parameters which corresponds to

the example given in [148], we find the expected minimum and saddle point with one unstable

direction. This is summarised in Table 4.1, together with the relevant physical scales22, and

Figs. 4.5 and 4.6.

W0 σ gs M K Λ0 κs χ a A

23 0 0.23 22 4 0.071
√
2
9 −260 π

3 1

Solution τs τb ζ m2
1 ∼ m2

ζ m2
2 ∼ m2

τs m2
3 ∼ m2

τb

Minimum 1.73 151 2.1× 10−6 1.19× 10−4 1.66× 10−7 1.75× 10−13

Saddle 1.90 263 2.1× 10−6 6.82× 10−5 4.82× 10−8 −1.82× 10−14

V Ms mKK m3/2 Mw
s mtip

KK mw
3/2

1850 9.48× 10−3 2.71× 10−3 4.64× 10−5 2.04× 10−6 9.08× 10−7 9.99× 10−9

4271 6.24× 10−3 1.55× 10−3 2.01× 10−5 2.35× 10−6 1.04× 10−6 7.56× 10−9

Table 4.1: Solution and masses for the fields (τs, τb, ζ), and physical scales associated with the solution,
for a set of parameters with β ≪ 1. The mass scales are expressed in units of MPl.

21Note that this agrees with [175], which corrects the result reported in [148], and [176].
22The physical scales are Ms = 2πms (3.129), mKK (D.15), m3/2 (D.29), Mw

s = 2πmw
s (A.30), mtip

KK (D.16) and

mw
3/2 = H−1/4(0)m3/2.
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Figure 4.5: Plots of the potential (4.54) along the conifold modulus ζ direction near the minimum (left)
and the saddle point (right), for the choice of parameters in Table 4.1.

Figure 4.6: Plot of the potential (4.54) in the (τ1, τ2) plane (which is just a rotation of the (τb, τs) plane
aligned with the eigenvectors of the Hessian matrix around the saddle point), for the choice of parameters
in Table 4.1, where we can see both the minimum and saddle point solutions.

This solution gives the hierarchy of scales mw
3/2 < mtip

KK < Mw
s < m3/2 < mKK < Ms, consistent

with a 4d supergravity EFT description with cutoff mtip
KK (see also [180])23. We indeed find

volumes which are exponentially large V ∼ 103 (note that, due to our choice of conventions,

these are both Einstein frame and string frame volumes) and the volume modulus turns out to

be the lightest, in particular much lighter than the deformation modulus.

Let us briefly address some possible control issues that have been raised in the recent literature.

Two of them — namely the danger that the throat does not ‘fit’ into the bulk [140], and

that singularities are induced in the bulk with no physical interpretation [144] — were both

introduced in the context of KKLT, with LVS appearing to be safe due to its large volume. If

the warped throat is to be glued to a compact CY3, i.e. it describes a sub-region of the compact

space (which is in particular well separated from the effects responsible for the non-perturbative

23If the masses of the other complex structure moduli and the dilaton are significantly lighter than this scale,
then they should be integrated in.
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contributions), then the (unwarped) radius of the throat should be smaller than the radius of

the CY3. In terms of the radial coordinate r, this means24

rUV = ΛUV < RCY = ls , (4.64)

which is equivalent to Λ0 < 1. In [140], this inequality is expressed in terms of the flux numbers

MK by choosing rUV to be the point where the warping becomes negligible — this is indeed the

minimum possible value of rUV. Since far away from the tip the warp factor (3.108) becomes

[181]

e−4A0 ≈ L4

r4

[
1 +

3gsM

8πK
+

3gsM

2πK
log

r

rUV

]
, (4.65)

where

L4 ≡ 27π

4

gsMK

(2π)4
l4s , (4.66)

the warping becomes O(1) when e−4A0 ∼ V2/3 =⇒ r ∼ L/V1/6. Therefore, we must have25

L

ls · V1/6
< Λ0 < 1 =⇒ gsMK <

4

27π
(2π)4V2/3 . (4.67)

One can check using the parameters in Table 4.1 that this is indeed satisfied in our example,

although it is worth emphasising that we are not cutting the deformed conifold at the point

where the warping becomes negligible, but rather at a point farther away from the tip — it

is important to check that the actual choice of Λ0 (and not just L) satisfies this consistency

condition. This presents a bigger danger for KKLT, where the volumes are much smaller than

in LVS.

On the other hand, the singular-bulk problem [144] arises in KKLT because it is the volume

modulus itself that fixes the size VΣ of the 4-cycle Σ on which the non-perturbative effects that

stabilise it are generated. In order for the D3-brane energy (fixed by the warp factor and thus

the flux numbers at the tip) to uplift the KKLT AdS vacuum to almost Minkowski, we must

have VAdS ∼ Vuplift which translates into a relation between the 4-cycle volume and the flux

numbers that source the warping. A second relation comes from the need to cancel the positive

D3-brane charge sourced by the fluxes within the throat. Together, these relations imply that

the warp factor on Σ satisfies
|∂H|
H

∣∣∣∣
Σ

≳ (gsM
2)
VΣ
V2/3

, (4.68)

which becomes large when VΣ ∼ V2/3 as in KKLT, due to the requirement gsM ≫ 1 for a

well under control supergravity approximation. This leads to a singularity that appears to be

far from any sources that might resolve it. The LVS solution (and thus our current example)

24Note that in our background metric (3.127) V is factored out of the metric gmn, which either describes the
deformed conifold of size rUV or the CY3 whose coordinates were normalised such that VCY = l6s . One might
want to include a factor of π from approximating the bulk with a torus, as pointed out in Appendix A of [144]
and as consistent with the estimate of mKK made in (D.15) — in that case the size of a circle in the torus
2πRCY > 2rUV =⇒ rUV < πRCY.

25Note the factor of gs, which is related to our choice of conventions for the change of frames (Appendix A.1).
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circumvents this problem due to the hierarchy VΣ = τs ≪ τb ∼ V2/3.

There were however also some results specific to LVS. The analysis in [176] shows that several

different corrections to the LVS potential can become relevant in different regions of parameter

space, so that they cannot all be made sufficiently small at the same time. This was used to

argue that the concrete example given in [148] and therefore our current example cannot be

trusted on the basis of parametric suppression of these corrections alone, and one must instead

check the specific coefficients of these corrections in order to judge whether or not they invalidate

this solution. We will have more to say about this in section 4.6, where we perform a similar

analysis for our weakly-warped solution.

Let us here focus on the concrete constraint on the tadpole contribution MK proposed in [178]

based on two of these potentially dangerous corrections. It is shown that taking into account

a warping correction arising from 10d R4 terms and higher F-term corrections to the scalar

potential, the negative D3-charge required to cancel the tadpole is bounded from below,

|Q3| > MK = N∗

(
1

3
logN∗ +

5

3
log cN + log a− 2

3
log κs + 8.2 +O(log(log))

)
, (4.69)

where N∗ = 9gsM2

16π and cN ≫ 1 for the corrections to be parametrically suppressed. For the

parameters used in our example and staying at the limit of control cN = 1, one gets |Q3| ≳ 209

(cf. |Q3| = 149 for the explicit construction in [148] that we are using for this example). Note

that for our choice of parameters MK = 88, which seems to be in contradiction with the above

bound — this is because the corrections that are assumed to be under control when deriving

(4.69) are actually not suppressed in this example [176]. Although this bound already puts some

pressure on specific LVS constructions regarding the topological structure of the CY3, it was

argued in [179] that taking into account all potentially dangerous corrections greatly strengthens

the bound and may require tadpole charges of up to O(106). This is, of course, problematic in

the context of the Tadpole Conjecture [100].

4.5.3 Weakly-warped solutions

We now consider the new limit where the warping is subdominant in the Kähler metric for the

conifold modulus (4.20), β ≫ 1. In this case, the potential becomes26

V ≈ g4s
8π||Ω||2

{
8a2A2√τse−2 a

gs
τs

3κsg2sV
− 4aAW0τse

− a
gs

τs

gsV2
+

3ξW 2
0

4V3

26Note that the warp factor in VD3 can be written as

H = 1 +
2

c′c′′

log
Λ3
0
ζ

β
. (4.70)

Here we assume that β ≫ log
Λ3
0
ζ

and expand H accordingly.
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+
π||Ω||2

gs

1

V2 log2 Λ3
0
ζ

(
log

Λ3
0

ζ
− 1

(2π)4
c′(gsM)2

V2/3ζ4/3

)(
M

2π
log

Λ3
0

ζ
− k

gs

)2

+
||Ω||2

gs

2

V2

(
1− 2

c′c′′
1

(2π)4
c′(gsM)2

V2/3ζ4/3

)}
, (4.71)

which has a minimum at

τ3/2s

16aτs(aτs − gs)
(4aτs − gs)2

≈ ξ

2κs
+

8||Ω||2τ3/2b

9gsκsW 2
0

+O
( 1
β

)
, (4.72)

ζ ≈ Λ3
0 exp

{
−2πK

gsM

}(
1− 4Ke

8πK
3gsM cD3

3π2c′MΛ4
0 τb

)
, (4.73)

together with the solution for τb (4.55). Notice that the solution for τs is implicit, since there is

a dependence on τs in the second term through τb. If (4.72) is a solution, the function

F (τs) = −τ3/2s +
ξ

2κs
+

2||Ω||2

3aAW0

√
τs e

a
gs

τs , (4.74)

where we have substituted τb (4.55) in the limit aτs ≫ gs, must have a root. In particular, the

exponential term cannot be too large, since it has to balance against the τ
3/2
s , which suggests

that the combination AW0 must be exponentially large. We can make a better estimate by

noting that F (τs) has a minimum, which must be non-positive for a root to exist. Again in the

limit aτs ≫ gs, this leads to the condition

AW0 >
4||Ω||2

9gs
exp

{
a

gs

( ξ

2κs

)2/3}
, (4.75)

which indeed corresponds to having AW0 exponentially large. In terms of the volume modulus

V vev this condition becomes

8||Ω||2V
9gsκsW 2

0

<
3gs
2

(
ξ

2κs

)1/3

, (4.76)

so that the second term in (4.72) can be treated as a correction to the leading order solution

τ
(0)
s ≈

(
ξ

2κs

)2/3
.

At this solution the vacuum energy is given by

Vcrit =
g4s

8π||Ω||2
·
3gsκsW

2
0

√
τs

4aV3
(
− 1 + α̃+O(gs) +O(1/β)

)
, (4.77)

where we define the uplift parameter α̃ as

α̃ = cD3
π||Ω||2

gs
· 8a

9πκs
√
τs

V
gsW 2

0

. (4.78)
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W0=2000 A=870

W0=1800 A=870
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Figure 4.7: The plot shows (4.74) for different choices of the parameters W0 and A, with all other
parameters fixed. Critical points for the scalar potential (4.71) exist when F (τs) = 0. We see that the
product AW0 needs to be large enough for a solution to exist (4.75).

Once again, a dS vacuum requires α̃ > 1. Although the definition of α̃ differs from the one

of α in the strongly-warped case (4.61), it still encodes the brane uplift and its back-reaction

on the solution — this is clear from its dependence on cD3. It is here simply adapted to the

weakly-warped regime, making explicit the need for large W0 and/or A (through the solution

for V, cf. 4.55) in order to suppress the effects of the brane. Keeping the solution consistent

with the regime of validity of our 4d EFT requires m3/2 < mKK, so that the gravitino mass

remains below the cutoff and is not integrated out. Using the scales (D.15) and (4.51), together

with the solution (4.55) and (4.72), and the condition (4.75) required for a solution to exist, we

can write the ratio (m3/2

mKK

)3
=

g3sW
3
0√

8(2π)3||Ω||3V
≳

4gsW0

27(2π)3ξ1/3
a

22/3κ
2/3
s

, (4.79)

which, together with large W0, makes it difficult to find a region in parameter space for which

the supergravity description remains valid. However, we show a working example below.

In order to determine whether this critical point is a minimum, we compute the eigenvalues of

the matrix27

M = hab
∂2V

∂φa∂φb

∣∣∣
crit

(4.80)

where φa = {τb, τs, ζ} and hab is the field space metric defined via Kij̄∂Φ
i∂Φ̄j̄ = 1

2hab∂φ
a∂φb.

Although the procedure is straightforward, we were not able to simplify the result enough to

make the analytical expression useful — we will therefore confirm numerically that for the

example provided below, all eigenvalues are stable and we do indeed have a minimum of the

potential.

27Note that this is not the mass matrix, but rather a matrix with the same eigenvalues, i.e. whose eigenvalues
correspond to the masses of the canonically normalised scalars (see e.g. Appendix C of [175]).
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Example

We choose a set of parameters which guarantees both Vcrit > 0 and that all eigenvalues of the

mass matrix are positive, and thus a dS minimum. We have parameters associated with the fluxes

for the remaining complex structure moduli and the axio-dilaton (W0, gs), with the conifold

(M,K,Λ0) and with the CY3 and Kähler moduli (κs, ξ, a, A), where we recall ξ = −χ(CY3)ζ(3)
2(2π)3

.

The fixed parameters in the potential are c′ = 1.18, c′′ = 1.75, ||Ω||2 = 8.

W0 σ gs M K Λ0 κs χ a A

2000 0 0.17 16 2 0.43
√
2
9 −280 π

3 870

Table 4.2: Choice of parameters for the potential (4.54), with β ≫ 1.

For the parameter set in Table 4.2, the critical points of the full potential (4.54) are summarised

in Table 4.3. While one critical point is a minimum, the second is a saddle point with one

unstable direction. Note that for both cases we indeed find β > 1 (βmin ≈ 7 and βsaddle ≈ 15).

τs τb ζ Vcrit m2
1 ∼ m2

ζ m2
2 ∼ m2

τs m2
3

1.80 239 4.17× 10−4 1.70× 10−13 9.23× 10−5 4.87× 10−4 4.32× 10−11

1.92 388 5.19× 10−4 1.13× 10−12 1.94× 10−5 1.59× 10−4 −5.01× 10−12

Table 4.3: Solutions and masses (in units of MPl) for the fields (τs, τb, ζ) for the parameter set in Table
4.2. Since all mass-squareds are positive, the first solution is metastable, whereas the second corresponds
to a saddle point.

V Ms mbulk
KK m3/2 Mw

s mtip
KK mw

3/2

3684 4.96× 10−3 1.26× 10−3 1.11× 10−3 2.87× 10−3 1.74× 10−3 6.40× 10−4

7655 3.44× 10−3 7.76× 10−3 5.33× 10−4 2.58× 10−3 1.56× 10−3 3.99× 10−4

Table 4.4: Physical scales associated with the solutions in Table 4.3, for the parameter set in Table 4.2.
The mass scales are expressed in units of MPl

From Table 4.4 we see that the cutoff for the EFT is now mKK ∼ mtip
KK, which reflects the fact

that this solution has weak warping. Note that
m3/2

mKK
≈ 0.88, which is marginally consistent with

the 4d supergravity description (see also [180]). We can check that the conifold fits the bulk

as in the strongly warped case, although it is longer in this example (Λ0 = 0.41) [140, 144].

As expected from the fact that we have weak warping and the hierarchy τs ≪ τb ∼ V2/3, this
solution avoids the singular-bulk problem [144, 145]. In section 4.6, we will analyse how robust

this weakly-warped solution is when different corrections are taken into account, similarly to

what was done in [176] for the strongly-warped case. Applying the LVS parametric tadpole

constraint [178] to this example, again staying at the limit of control cN = 1, we find |Q3| > 79,

which again is bigger than our MK = 32 — we will see in 4.6 that the correction arising
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from higher F-terms is in fact not suppressed in this weakly-warped regime, explaining the

discrepancy.

In Fig. 4.8 we plot the potential along the ζ direction with (τs, τb) fixed at the minimum and

the saddle point, while in Fig. 4.9 we plot the potential along the (τs, τb) directions with ζ fixed

at the minimum, where we can clearly see both the minimum and the saddle point. We also

see that the minimum for ζ does not change significantly between the minimum and the saddle

point, although it becomes slightly lighter.
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Figure 4.8: Plots of the potential (4.54) in each of the 3 directions (τs, τb, ζ), for the parameter set in
Table 4.2, around the minimum (left) and the saddle (right).

4.6 Dangerous corrections?

Although there seem to exist explicit constructions of dS vacua with an D3-brane uplift in the

context of LVS, both in the weakly [172] and strongly-warped regimes [148], these implicitly rely

on the assumption that all supposedly subleading corrections to the scalar potential are actually

subleading and will not destabilise the solutions. The question of whether this assumption

is justified was analysed in [176] in the strongly-warped regime studied in [148], by taking

into account various types of corrections to the LVS potential (including two Kähler moduli, a

deformation modulus and a nilpotent superfield describing the brane uplift). The conclusion for

the strongly-warped regime was that some corrections do not have any parametric suppression,

and moreover those that do are never suppressed simultaneously for any choice of parameters

— they can therefore never be all self-consistently neglected.

It is worth fleshing out the main point in the argument of [176]. If a correction to the LVS

potential can arise from some string theory effect (e.g. one-loop corrections), one of two things

must happen — either this correction is parametrically suppressed for all quantities in the

solution of interest (e.g. moduli vevs, masses, vacuum energy) and can therefore be neglected

in the appropriate limit (e.g. large volume or weak coupling) within the EFT, or else one must

not only compute this correction explicitly and include it in the analysis, but also worry about

next-to-leading order corrections. While the result of [176] does not show that finding a stable
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Figure 4.9: Plot of the potential (4.54) in the (τ1, τ2) plane (which is just a rotation of the (τb, τs) plane
aligned with the eigenvectors of the Hessian matrix), for the parameters in Table 4.2 (in Planck units).

strongly-warped dS solution in LVS is impossible, it means that one must take at least some of

these corrections into account, compute their coefficients explicitly and keep them in the EFT.

This constitutes a challenge because, not only are these coefficients typically hard to compute

explicitly, but also the known solutions in the LVS may be absent or at least get corrected in

significant ways by these contributions.

It therefore becomes relevant to ask whether this is also the case in the weakly-warped regime

[172]. In order to address this question, we will briefly outline the possible corrections (for

more details see [176]) together with the corresponding terms correcting the scalar potential

computed in the weakly-warped case and revisit the weakly-warped solution outlined in the

previous section.

Curvature/loop corrections to the Kähler potential

String-loop corrections at order α′2 from the exchange of KK modes between D7/D3 branes or

O7/O3 planes [182–186] enter the Kähler potential (4.50) as [187–190]

δK = CKK
s

g2s
√
τs
V

+ CKK
b

g2s
√
τb
V

, (4.81)

and thus the scalar potential is corrected as

δV = CKK
s · g2s

6κsτs
·
8a2A2√τse−2aτs

gs

3g2sκsV
+ CKK

s · g2s
3κsτs

· 4aAW0τse
−aτs

gs

gsV2
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+

{
(CKK

s )2 · 2g4s
9κs
√
τs

+ CKK
b · 8c

′g2s(gsM)2ζ2/3

V1/3

}
· 3W

2
0

4V3
. (4.82)

Note that in principle the coefficients {CKK
s , CKK

b } depend on the complex structure moduli;

however, as this dependence is unkown, we will simply assume that CKK
s , CKK

b ∼ O(1) and

neglect the derivative contributions.

We write each correction term such that its relation to the terms in the uncorrected LVS po-

tential is manifest, isolating clearly each suppression factor. For example, all the terms above

are suppressed by a factor of g2s compared to their LVS counterparts. The CKK
b term is also

suppressed by the ratio ζ2/3/V1/3 but enhanced by (gsM)2.

On the other hand, threshold corrections to gauge couplings lead to the one-loop field redefinition

of the Kähler modulus τnews = τolds +C log
s logV, which implies a correction to the Kähler potential

once the physical volume is expressed in terms of the corrected modulus, V = τ
3/2
b − κs(τs −

C log
s logV)3/2 [191]. It contributes to the scalar potential as28

δV = C log
s · gs logV

2τs
·
8a2A2√τse−2aτs

gs

3g2sκsV
+ C log

s · gs logV
τs

· 4aAW0τse
−aτs

gs

gsV2

− C log
s · 6gsκs

√
τs ·

3W 2
0

4V3
(4.83)

Recalling the LVS solution logV ∼ aτs
gs

, there seems to be no parametric suppression in the

correction terms in the first line.

There are also corrections at order α′3 from different sources [183–185, 192, 193], which contribute

at leading order as a redefinition of ξ → ξ −∆ξ + Cξ
1gs logV + Cξ

2gs in K (4.50),

δV = (−∆ξ + Cξ
1gs logV + Cξ

2gs) ·
3W 2

0

4V3
. (4.84)

Notice again that there seems to be no suppression for the ∆ξ and the Cξ
1 corrections.

Curvature corrections to the gauge-kinetic function

The non-perturbative superpotential which is a key ingredient in the stabilisation of the Kähler

moduli arises from gaugino condensation on a stack of D7-branes [194–196]. Therefore curvature

corrections to the D7-brane action [197–201], which correct the gauge-kinetic function of the

D7-branes will affect this non-perturbative contribution. The gauge-kinetic function becomes

28This field redefinition leads to a non-linear relation between the volume V and the Kähler moduli (τb, τs).

Treating this redefinition as a small correction, one can solve it perturbatively for V = τ
3/2
b − κsτ

3/2
s + O(C log

s )

and use this leading order solution in the correction. Hence the volume becomes at leading order V ≈ τ
3/2
b −

κs

(
τs − C log

s log
(
τ
3/2
b − κ

3/2
s

))3/2

.
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fs = Ts − χs

24 τ , so that the generated superpotential gets corrected as

Wnp = A · e−
a
gs

(
τs− χs

24gs

)
, (4.85)

which is equivalent to a redefinition of A→ A·e
aχs
24g2s . It is worth recalling that our weakly-warped

solution required somewhat large values of the parameter A (4.75) and one might therefore

expect that this correction in particular will benefit, rather than obstruct, these weakly-warped

solutions.

Higher F-terms

There are also corrections arising from higher F-terms associated with 4 superspace derivatives in

the 4d EFT [180, 202, 203]. These could come for example from integrating out KK modes [180]

or from 10d 8-derivative terms with powers of G3 [203], which would lead to such a contribution

in the potential. The scalar potential gets corrected as

δV = CF · 8g
2
sW

2
0

3V2/3
· 3W

2
0

4V3
. (4.86)

This correction is suppressed relative to the LVS potential by the factor

m2
3/2

m2
KK

∼ g2sW
2
0

V2/3
, (4.87)

which one would generically want to be small in order to keep the gravitino in the EFT valid at

energies E ≪ mKK (and therefore preserve N = 1 supersymmetry).

Notice that so far only one of the corrections is warping-related, the correction linear in CKK
b

which depends on the warping due to its dependence on ζ. It does indeed arise from the warping

correction to the deformation modulus metric, which mixes this modulus with the volume V and

was crucial in the discussion of our weakly-warped solutions. One would therefore not expect

the effect of the other corrections discussed so far to be dependent on which warping regime we

consider and, for those corrections, the only effect of having weak warping rather than strong

warping is on the region of interest in parameter space. However, we will see that in order to

find a solution in the weakly-warped regime, we are driven towards a region of parameter space

where some of these corrections cannot be suppressed.

On the other hand, the two remaining corrections are intrinsically warping-related and one would

therefore expect them to play a more important role in the distinction between the two regimes.
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Curvature/warping corrections from conifold-flux backreaction

The charges responsible for the warping (such as branes, O-planes and fluxes) can have large

contributions to the 10d curvature even at large volumes and result in large curvature corrections

[140, 144]. The charge responsible for the warped KS throat is the flux contribution KM , which

is large in the strongly-warped regime. This leads to corrections to the scalar potential, e.g.

from dimensionally reducing the 10d R4 terms of Type IIB, that take the form [176]

δV = Cflux · 5gsKM
V2/3

· 3W
2
0

4V3
. (4.88)

Since in the weakly-warped regime, one does not require very large charges KM , this correction

is expected to be less dangerous than in the strongly-warped case.29

Curvature corrections in the conifold region

Since the radius of the S3 at the tip of the conifold is R2
S3 ∼ (gsM)α′, one expects α′ curvature

corrections that are suppressed by (gsM)−1. E.g. the R2 corrections to the DBI action of the

D3-brane in the warped deformed conifold background correct the brane tension with a term

suppressed by (gsM)−2 [176].30 In practice, this corresponds to the redefinition

cD3 → cD3

(
1 +

Ccon

(gsM)2

)
, (4.89)

which is easily incorporated in both the potential and the solutions. Although the weakly-

warped solutions do not require large KM , they still require the supergravity approximation

to be under control near the tip of the conifold, which is controlled by the radius of the S3 at

the tip R2
S3 ≫ 1 — this means that even though the flux number M is in general lower in the

weakly-warped case, it must still be large enough to make gsM ≫ 1 and keep this correction

term suppressed in the brane action.

Let us now look at the solutions for the corrected weakly-warped LVS potential, as well as at

the vacuum energy associated with these vevs, and examine the suppression of each correction

on these quantities.

29In [178] it is argued that one should expect this warping correction to scale with the Euler number χ(CY3),
as long as one assumes a slowly varying warp factor such that cancellation between contributions from different
regions of the compact space is not expected. The form of the correction used in [178] for the LVS parametric
tadpole constraint therefore differs by a factor of ξ.

30These correspond to the (α′)2 curvature corrections to the brane action studied in [165] that lower the tension
of the brane and provide an alternative for warped throats.
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4.6.1 Conifold modulus stabilisation

The only corrections involving the conifold modulus and therefore affecting its stabilisation

are the ones associated with {CKK
b , Ccon}. While Ccon is simply a shift of cD3 and so it can be

trivially included in the solution (4.73), the correction CKK
b can be taken into account by solving

perturbatively in a similar way to how the 1/β corrections were obtained. We find that the vev

of ζ gets corrected as

ζ ≈ ζGKP

(
1− cD3

(
1 +

Ccon

(gsM)2

) 4K

3π2c′′M ζ
4/3
GKPV2/3

− CKK
b · 2c

′(2π)2

π||Ω||2
2πK

gsM

g4sζ
2/3
GKPW

2
0

V4/3

)
,

(4.90)

where ζGKP = Λ3
0 e

− 2πK
gsM . Notice that the Ccon correction is not only suppressed by its own

control parameter (gsM)−1, but also by 1/β since it arises from the D3-brane backreaction

which itself contributes at O(1/β). As for CKK
b , it appears to be heavily suppressed by the

factor
ζ
2/3
GKP

V2/3 ·
g4sW

2
0

V2/3 .

In the strongly-warped regime [176], the corrections change the bound on gsM
2 required to

prevent the brane uplift from causing a runaway for the deformation modulus (4.37) and thus

have a direct effect on the allowed values ofM . Since at weak warping the D3-brane backreaction

does not lead to a tadpole bound on the fluxes and this remains true once the corrections are

taken into account, they have no effect on the range of the flux M .

4.6.2 Kähler moduli

Since the formal solution for V follows directly from ∂τsV = 0, one can also infer that only

a few of the corrections will appear — in particular, it will receive explicit corrections from

{CKK
s , C log

s , χs} only. Of course, due to its dependence on τs, which will receive corrections from

all terms, V also receives implicit corrections from every term. This is true for ζ as well, since

the subleading terms in its vev (4.90) depend on V.

Solving perturbatively to leading order in all corrections, we find

V ≈

(
3(aτs − gs)
4aτs − gs

+ CKK
s · g2s

8κsτs
− C log

s · 9a
8

)
gsW0κs

√
τs

aA
· e

a
gs

(
τs− χs

24gs

)
(4.91)

τs ≈
ξ̂2/3

(2κs)2/3
+

(1 + 2α̃)gs
3a

+O
( 1
β

)
+O(g2s) (4.92)

− CKK
s · g

2
s

3κs
+ C log

s · 5a
3

( ξ̂

2κs

)2/3
+ Cξ

1 ·
a

3κs

( ξ̂

2κs

)1/3
+ Cξ

2 ·
gs
3κs

( ξ̂

2κs

)−1/3

+ Cflux · 55

27κs

gsKM

V2/3
( ξ̂

2κs

)−1/3
+ CF · 88

81κs

g2sW
2
0

V2/3
( ξ̂

2κs

)−1/3
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− Ccon · 2gsα̃

3a(gsM)2
+ CKK

b · 80c
′(gsM)2

27κs
· g

2
sζ

2/3

V1/3
( ξ̂

2κs

)−1/3

with α̃ given by (4.78) and ξ̂ = ξ − ∆ξ. The solution for V (4.91) matches31 the one found

in [176] up to factors of gs — this agrees with our expectation that the explicit form of the

{CKK
s , C log

s , χs} corrections is independent of the warping regime. One can immediately see that,

although the CKK
s correction is suppressed by g2s , neither the C log

s nor the χs corrections are

suppressed — following the logic presented above, one must therefore include these corrections in

the EFT analysis. Although the χs correction is not only not suppressed but actually enhanced

by a factor of 1/gs, the fact that we know its explicit form means that it can be taken into

account when looking for a solution and, as we saw in (4.85), it can be seen as a rescalling of

the parameter A in the non-perturbative contribution to the superpotential. In fact, given the

need for exponentially large AW0 (4.75), this seems to help rather than hurt weakly-warped

solutions.32 The C log
s correction, on the other hand, is not generically known explicitly and

therefore one cannot follow the same procedure — this coefficient would have to be computed

for the compact geometry of interest in order to be included in the EFT analysis.

The different gs factors in the solution with respect to [176] arise from our choice of frame

conventions, with τb and τs differing from the ones in [176] by a factor of gs, i.e. τ
(ours)
i = gsτ

[176]
i

and V(ours) = g
3/2
s V [176] (see Appendix A.1). Recall that in these conventions, the Einstein-frame

volumes and the string-frame volumes are the same at the vev, so that deciding e.g. whether

α′-corrections are under control for a given solution can be done directly in terms of the Einstein-

frame volumes.33 It also makes explicit the 1/gs factor in the non-perturbative superpotential,

rather than it appearing in the solution for τs — both pictures are ultimately consistent since

this factor of 1/gs will appear in the potential one way or another. Because of this, however,

our solution for τs (4.92) differs from the one in [176] by an overall factor of gs, as can be most

easily seen by looking at the terms that behave similarly in both warping regimes. One should

therefore not think of this extra factor of gs as extra suppression of any of the corrections, since

it is really their relative size compared to the leading other terms that is relevant for control.

The first line of (4.92) shows the expected O(gs) correction, with the D3-brane backreaction

on τs encoded by the uplift parameter α̃. The corrections on the second and third lines are

suppressed in the same way as in the strongly-warped regime,34 as expected from the fact that

they do not involve the interplay between ζ and V. While the {CKK
s , Cflux, CF } terms are

suppressed by powers of gs and/or V, the {C log
s , Cξ

1 , C
ξ
2} are dangerous since they either have

31Apart from a factor of 3 in the C log
s term.

32Indeed, for the CY3 of [148], we have χs = 3 and hence the correction represents a rescalling of A by a factor
of 12, which would näıvely allow us to choose the much lower value A ∼ 70.

33Note that checking whether the α′-corrections are under control, i.e. whether a given solution is consistent
with the supergravity description being used, should be done using string-frame volumes, which are parametrically
(in gs) smaller than the Einstein-frame volumes when the convention τ

(S)
i = gsτ

(E)
i is used for the 10d change of

frames, rather the one we use for which these volumes are the same at the vev. Therefore, one may naively think
that the volumes are large “enough” in Einstein-frame, while the string-frame volumes are actually inconsistent
with the α′-expansion.

34The C log
s corrections again differs by a factor of 5/3.
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no suppression whatsoever, {C log
s , Cξ

1}; or are only suppressed by one power of gs, {Cξ
2} — this

is still dangerous because of the way the vev of the volume V depends on τs, i.e.

V ∝ e
a
gs

τs ≈ e
a
gs

τ
(0)
s

1 + Cξ
2

a

3κs

(
ξ̂

2κs

)−1/3

+ ...

 . (4.93)

It also follows that the {C log
s , Cξ

1} terms will both appear with a 1/gs power and therefore grow

at small couplings.

Finally, the {Ccon, CKK
b } terms explicitly depend on the strength of the warping. While the Ccon

correction is suppressed by gs and (gsM)−2, in the CKK
b term one should pay closer attention

to the gsM ≫ 1 factor possibly enhancing it.

It is worth noting that in this weakly-warped regime one never finds the tadpole bounds identified

in [168], which were required in order to avoid a runaway towards the singular conifold at ζ = 0

caused by the brane backreaction. The reason why we do not have it in the weakly-warped

regime is that if the warping is subdominant, the potential for ζ grows more and more towards

ζ = 0 before ultimately dropping to zero (cf. Fig. 4.2) — in practice, at least around the

minimum, it is as if the potential simply grows for small ζ. It is interesting to compare this

with the potential found in [107], where it was argued that the ζ potential does indeed grow

towards smaller ζ even in the strongly-warped case, in contrast with the behaviour proposed

in [166]. Although this would invalidate the tadpole bound of [168] and change the exact form

of the {Ccon} correction in [176], one expects it to still be parametrically suppressed by α
(gsM)2

[176] in the strongly-warped case.

4.6.3 Vacuum Energy

With the vevs of the moduli in (4.90–4.92), we can compute the vacuum energy given by the

potential V at the minimum and look at the effect of each correction,

Vmin =
g4s

8π||Ω||2
·
3gsκsW

2
0
√
τs

4aV3
ρ (4.94)

with ρ defined as

ρ = α̃− 1 +O(gs) +O(1/β) (4.95)

− CKK
s · g

2
s

6κs

( ξ̂

2κs

)−2/3
+ C log

s · a
6
(11 + 12 log ν) + Cξ

1 ·
a log ν

κs

( ξ̂

2κs

)−1/3
− Cξ

2 ·
gs

3ξ̂

− Cflux · 10a
9κs

KM

V2/3
( ξ̂

2κs

)−1/3
− CF · 16a

27κs

gsW
2
0

V2/3
( ξ̂

2κs

)−1/3
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− Ccon · 5α̃

(gsM)2
− CKK

b · 8c
′a(gsM)2

9κs

gsζ
2/3

V1/3
( ξ̂

2κs

)−1/3
.

where

ν =
3gsκsW0

8aA

(
ξ̂

2κs

)1/3

. (4.96)

The first line reproduces the leading order result (4.77) and requires α̃ > 1 provided all cor-

rections can be safely neglected. The corrections appears in the vacuum energy with the same

parametric suppression as in the strongly-warped case. In particular, the terms {C log
s , Cξ

1} ap-
pear unsuppressed and are thus the most dangerous.

Note that the non-perturbative no-scale behaviour [176] is manifesting itself in the way the

factors {Cflux, CF } are suppressed relative to the leading LVS solution in ρ compared to their

suppression in the off-shell potential, (4.86) and (4.88) respectively, having acquired a 1/gs

enhancement in the vacuum energy suppression factors (see discussion below).

It is worth pointing out that the unsuppressed corrections {C log
s , Cξ

1 , C
ξ
2} are independent of the

presence of the conifold modulus and the D3-brane — these appear to be dangerous corrections

for pure LVS, even before the uplift is considered. Supposing it is possible to choose a specific

model (i.e. a compact space geometry) for which these unsuppressed corrections to the vevs

and vacuum energy are not present, one can check whether the remaining corrections are all

consistently suppressed and the solution is parametrically under control. Note that both CKK
s

and Ccon are automatically suppressed as long as the string loop expansion (gs ≪ 1) and the

supergravity approximation (gsM ≫ 1) are under control, which we must require for consistency

of our analysis. In order to suppress the remaining corrections {CKK
b , Cflux, CF } we require

(gsM)2 · gsζ
2/3

V1/3
,
KM

V2/3
,
gsW

2
0

V2/3
≪ 1 , (4.97)

simultaneously. While the first two corrections are less dangerous for weakly-warped solutions

that do not require large flux contributions, recall that a solution in the weakly-warped regime

must also satisfy (4.76)

V
g2sW

2
0

< O(1) . (4.98)

This condition, together with the one following from CF , implies

V1/3 ≪ gs , (4.99)

which is never consistent. One can check explicitly using the parameter set of Table 4.2 that

taking into account all numerical coefficients {a, κs, ξ̂, ||Ω||2} does not change the conclusion.

Therefore the CF corrections is unsuppressed unless CF ≪ 1.
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It is worth noting that already in the strongly-warped case, the CF correction seemed to be the

main obstruction to smaller values of gs, which may not be obvious from the suppression factor

∝ gsW
2
0 /V2/3. One would naively expect that since V ∝ gs · e1/gs , smaller values of gs would

suppress this correction the strongest. However, it is important to note that one is not free to

choose W0 independently — in particular, in the strongly-warped case [176] (adapted to our

conventions)

W 2
0 ∝

ζ2/3V5/3

α g3s
=⇒ W

1/3
0 ∝ ζ2/3

αg
4/3
s

· e
5
3

a
gs

τs , (4.100)

with α ∼ O(1). Plugging this into the CF suppression factor,

gsW
2
0

V2/3
∼ ζ8/3

α4g5s
e
6· a

gs
τs , (4.101)

shows that indeed it grows for small gs contrary to our initial expectation.

In summary, although the warping corrections are alleviated in the weakly-warped solutions,

as one would expect, both the pure LVS corrections {C log
s , Cξ

1 , C
ξ
2} and the F-term corrections

present a danger (see Table 4.5). While the former behave in the same way in both warping

regimes, the F-term corrections cannot be suppressed in the weakly-warped regime due to the

requirement of large values of W0. This is consistent with the discrepancy between the flux

contribution MK following from the parameter set in our example and the LVS parametric

tadpole bound that we found in the previous section, since the bound assumes higher F-term

corrections to be parametrically suppressed.

4.6.4 Non-perturbative no-scale structure

In [176], a property of the LVS potential called the non-perturbative no-scale (NPNS) structure

is emphasised due to its effect on the balance between leading and subleading (correction) terms

for a given solution. The danger is that corrections to the off-shell scalar potential suppressed

by what might be a small factor ϵ relative to the LVS terms, but which do not themselves satisfy

the NPNS structure will appear in quantities such as Vmin only suppressed by a factor ϵ/gs.

The root of the NPNS is the fact that, due to the structure of the LVS potential, the minimum

only appears at subleading order in gs. Consider the change of variables V = ν · gs · et/gs and

τs = t/a, in terms of which the LVS potential can be written as

V = gs · e−
3
gs

t
f(t, ν) , (4.102)
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Correction
Parametric
suppression

Origin Dangerous? c.f. strong warping

C log
s gs logV

threshold corrections to
gauge couplings

yes similar

Cξ
1 gs logV backreaction of 7-branes

and exchange of KK
modes with D7/O7

planes

yes similar

Cξ
2 gs yes similar

CF g2
sW

2
0

V2/3

integrating out KK
modes yielding 4

superspace derivatives
in EFT

yes similar

CKK
b

g2
s(gsM)2ζ2/3

V1/3

exchange of KK modes
between D7/D3 branes

or O7/O3 planes
can be similar

Cflux gsKM
V2/3

backreaction from
fluxes, branes and

O-planes that source
warping

can be better

CKK
s g2s

exchange of KK modes
between D7/D3 branes

or O7/O3 planes
no similar

Ccon 1
(gsM)2

curvature correction in
conifold region

no better

χs Ae−
a
gs

(τs− χs
24gs

)
curvature corrections to

D7 gauge kinetic
function

no – it helps! better

Table 4.5: Summary of subleading corrections considered, their origin and their parametric suppression
(or not) in the off-shell scalar potential for the weakly-warped de Sitter vacuum. Note that the LVS
volume stabilisation satisfies logV ∼ 1/gs.

where f(t, ν) does not depend on gs.
35 A minimum of this potential therefore requires

∂tV = − 3

gs
· gs · e−

3
gs

t
f(t, ν) + gs · e−

3
gs

t
(∂tf) (4.105)

= − 3

gs
V + gs · e−

3
gs

t
(∂tf)

!
= 0 , (4.106)

35Explicitly, we have

f(t, ν) =
8a3/2A2

√
t

3κsν
− 4AW0t

ν2
+

3W 2
0

4ν3
ξ . (4.103)

One might wonder whether W0 and A in particular can be important for the argument we outline below. Note
however that rescalling ν → W0

A
· ν, the function becomes

f(t, ν) =
A3

W0

{
8a3/2

√
t

3κsν
− 4t

ν2
+

3ξ

4ν3

}
. (4.104)

Since the ratio A3/W0 only appears as an overall factor, these parameters will not affect the argument for the
NPNS.
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which implies that the scalar potential at the minimum is suppressed by a factor of gs compared

to the off-shell potential (4.102),

Vmin =
gs
3
· gs · e−

3
gs

t
(∂tf) . (4.107)

In other words, if one solves equation (4.105) perturbatively in gs, i.e. t = t0 + t1gs, the leading

order solution t0 would result in a vanishing potential (which would leave ν a flat direction).

Now consider adding a correction suppressed by ϵ · e−
λ
gs

t
,

V = gs · e−
3
gs

t
f(t, ν) + gs · ϵ · e−

λ
gs

t
g(t, ν) , (4.108)

where g(t, ν) does not contain gs or any other small parameters, so that

∂tV =− 3

gs
· gs · e−

3
gs

t
f(t, ν) + gs · e−

3
gs

t
(∂tf) (4.109)

− λ

gs
· gs · ϵ · e−

λ
gs

t
g(t, ν) + gs · ϵ · e−

λ
gs

t
(∂tg)

=− 3

gs
·
{
gs · e−

3
gs

t
f(t, ν) + gs · ϵ · e−

λ
gs

t
g(t, ν)

}
(4.110)

+ gs · e−
3
gs

t
(∂tf) + gs · ϵ · e−

λ
gs

t
(∂tg) + (3− λ) · ϵ · e−

λ
gs

t · g(t, ν)

=− 3

gs
V + gs · e−

3
gs

t
(∂tf) + gs · ϵ · e−

λ
gs

t
(∂tg)

+ (3− λ) · ϵ · e−
λ
gs

t · g(t, ν) !
= 0 , (4.111)

which now implies for the vacuum energy

Vmin =
gs
3
· gs · e−

3
gs

t
(∂tf) +

gs
3
· gs · ϵ · e−

λ
gs

t
(∂tg) +

3− λ
3
· gs · ϵ · e−

λ
gs

t · g(t, ν) . (4.112)

Note that, unless λ = 3 (i.e. the correction satisfies the NPNS structure), the last term is the

leading correction contribution and it is not suppressed by the extra factor of gs that appears

in the first two terms — the gs suppression characteristic of LVS (4.102). Therefore, to safely

neglect this contribution from the correction one should have36

gs · ϵ · e−
λ
gs

t ≪ g2s · e
− 3

gs
t ⇒ ϵ

gs
· e−

(λ−3)
gs

t ≪ 1 , (4.113)

rather than the näıvely expected ϵ · e−
(λ−3)
gs

t ≪ 1. To compare with (4.95) one should look at ρ,

by taking out the suppression factors g2s · e
− 3

gs
t
as in (4.77),

ρ ∝ −1

3
(∂tf)−

1

3
· ϵ · e−

(λ−3)
gs

t
(∂tg) +

(3− λ)
3

· ϵ
gs
· e−

(λ−3)
gs

t · g(t, ν) , (4.114)

36Note that we must include the exponential e
−λ−3

gs
t
, which corresponds to the volume suppression (whose

power is given by λ− 3). In practice, ϵ counts all factors apart from powers of the volume.
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where we can explicitly see the factor of (4.113).

This is why terms like {CF , Cflux}, which do not satisfy the NPNS structure (λ ̸= 3), appear

to be enhanced by 1/gs in (4.95) compared to their suppression factors in the off-shell potential

(4.86) and (4.88), while terms like {C log
s , Cξ

1 , C
ξ
2}, which do satisfy the NPNS (λ = 3), show the

same suppression in Vmin as they did in the off-shell potential (4.83) and (4.84). As an explicit

example, for Cflux we have

λ = 3 +
2

3
, ϵ · e−

λ−3
gs

t
= Cflux 5gsKM

V2/3
, g(t, ν) =

3W 2
0

4ν
, (4.115)

breaking the NPNS, while for Cξ
2

λ = 3 , ϵ · e−
λ−3
gs

t
= Cξ

2gs , g(t, ν) =
3W 2

0

4ν
. (4.116)

As a final remark, note that whether a correction breaks the NPNS structure or not, does not

determine how dangerous it will be — indeed {CKK
s , C log

s } both have an NPNS structure, but

only C log
s turns out to be dangerous; conversely, {Cflux, CF } both break the NPNS structure,

but only CF appears to be dangerous. While the NPNS has interesting implications for the

string loop expansion, one ultimately needs to check the way each correction is suppressed.

4.7 Runaway Quintessence

Given the challenges in constructing metastable de Sitter solutions in string theory, and the

number of scalar fields whose potentials often develop runaway directions in moduli space [117],

it is very natural to suppose that Dark Energy might be due to a slowly rolling or frozen runaway

quintessence field. In quintessence models, one or more scalar fields have a scalar potential that

is flat enough to allow them to either be frozen in place away from a minimum or to slowly-roll

in such a way that their potential energy closely mimics a cosmological constant (Fig. 4.10).

The equation of motion for a single scalar field ϕ in an expanding Universe described by the flat

FLRW metric,

ds2FLRW = −dt2 + a2(t)dx⃗2 , (4.117)

with scale factor a(t) encoding the time evolution of the spacetime, is given by

ϕ̈+ 3Hϕ̇+ gϕϕV ′(ϕ) = 0 . (4.118)

The Hubble parameter H ≡ ȧ/a provides a friction term (proportional to ϕ̇) that can slow down

the field in its trajectory along the potential V (ϕ). The energy density of such a scalar is the
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sum of its kinetic and potential energies,

ρϕ =
1

2
ϕ̇2 + V (ϕ) , (4.119)

with ϕ̇2 ≡ gϕϕϕ̇ϕ̇ depending on the normalisation of the kinetic term for ϕ (i.e. it will generically

depend on the metric in moduli space). In the slow-roll approximation, ϕ̇2 ≪ 2V (ϕ) and

ϕ̈≪ V ′(ϕ), so that the scalar field equations are approximately

ϕ̇ ≈ −V
′(ϕ)

3H
and ρϕ ≈ V (ϕ) . (4.120)

Therefore, in this approximation, the scalar field energy density enters the first Friedmann

equation as an effective cosmological constant, in the same way a vacuum energy would. If we

also assume that it dominates over other contributions, we find

H2 =
1

3M2
Pl

(
ρϕ + other contributions

)
≈ V (ϕ)

3M2
Pl

. (4.121)

However, having the scalar field contributing with an approximately constant and positive energy

density is not enough to guarantee an accelerated expansion. In fact, it follows from the definition

of H that
ä

a
= H2

(
1 +

Ḣ

H2

)
, (4.122)

and thus accelerated expansion (ä > 0) requires

ϵ ≡ − Ḣ

H2
< 1 . (4.123)

One can use the expansion parameter ϵ to determine whether and when a certain scalar field

system that dominates the energy density of the Universe will source an accelerated expansion

and explain Dark Energy. In general, this requires us to know the dynamical evolution of

the scalar field system and to take into account their kinetic energy as they move along the

potential — one does not necessarily need slow-roll in order to have accelerated expansion.37

Nonetheless, if one does have slow-roll, the expansion parameter is approximately given by the

slow-roll parameter ϵV that is only a function of the scalar potential,

ϵV =
M2

Pl

2
gϕϕ

(
V ′(ϕ)

V (ϕ)

)2

< 1 . (4.124)

We conclude that a quintessence field that slowly rolls along a runaway tail of its potential must

satisfy both V (ϕ) > 0 and ϵV < 1 in order to give accelerated expansion.

Moreover, not only must this field result in accelerated expansion, it must also do so with an

effective energy density that agrees with current observations ρϕ ∼ ρΛ ∼ (10−3 eV)4, which

37For example, for scaling solutions, the slow-roll approximation is generically not valid and the slow-roll
parameter ϵV should not be used to determine whether there is accelerated expansion as was emphasised in [204].
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ϕ

V (ϕ)

ϕ→∞ Runaway

ϕ→ 0 Runaway

Λ

Figure 4.10: In runaway quintessence models a scalar field can either be frozen or slowly-roll along a flat
region of a potential which is at the tail of a runaway. This is an expected behaviour for the asymptotic
regions of moduli space and provides an effective cosmological constant.

generically forces the quintessence field to be extremely light, with a mass mϕ ≲ 10−33 eV 38—

as we will see in much more detail in chapter 5, such light fields will mediate fifth forces unless

their couplings to the Standard Model fields are somehow suppressed so as to evade current

observational constraints. On the other hand, the usual string theory relation between scalar

fields and couplings in the low-energy EFT means that a rolling quintessence field can lead

to time variation of fundamental constants, which is also highly constrained by current data.

These problems may be addressed if the quintessence field comes from a hidden sector that is

sequestered from the visible sector (e.g. due to a separation in the compact space; we will see

a concrete example of suppressed couplings in chapter 5), although there are as yet no explicit

constructions that realise the degree of sequestering that would be necessary (see [205] for some

challenges, [206] for a more optimistic point of view, and [207] for recent work in this direction).

Arguably the simplest class of runaway moduli are those originating from supersymmetric flat

directions. However, it is impossible for such a runaway tail to play the role of Dark Energy

and source an accelerated expansion. To see why, suppose some early Universe scenario, such

as inflation, which ends in a supersymmetric Minkowski minimum in which most of the string

moduli, Φi, are stabilised and heavy,

⟨DiWsusy⟩ = 0 and ⟨Wsusy⟩ = 0 , (4.125)

and we can safely integrate them out, leaving only an EFT describing the remaining flat direc-

tions. Assume for simplicity a single flat direction, corresponding to the chiral superfield Φ with

scalar component also labelled Φ = ϕ + iθ, with saxion ϕ and axion θ. As we have seen, the

scalar potential in a supergravity framework (3.78) will depend on both the Kähler potential K

38This follows from requiring the second slow-roll parameter

ηV ≡M2
Pl

∣∣∣∣gϕϕ V ′′(ϕ)

V (ϕ)

∣∣∣∣ ≲ 1

in order to maintain slow-roll, together with V (ϕ) ∼ (10−3 eV)4 and m2
ϕ ≡ gϕϕV ′′(ϕ).
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and superpotential W responsible for lifting this flat direction. These will in turn depend on the

origin of the modulus Φ and one might hope that among the many moduli of string theory com-

pactifications, there will be some that allow for slow-roll quintessence at the runaway tail. Let

us therefore consider different types of moduli and explore their ability to provide accelerated

expansion.

Bulk moduli

A bulk modulus may have the leading Kähler potential

K = −n ln
(
Φ+ Φ̄

)
, (4.126)

with e.g. n = 3 for the overall volume modulus, or n = 1 for another Kähler modulus, a complex

structure or dilaton, or some other n < 3 for a fibre modulus.

As we are in a supersymmetric Minkowski background, the flat direction is protected to all finite

orders by the non-renormalisation theorem — the axion shift symmetry forbids dependence on

θ, and holomorphicity of the superpotential implies a dependence on ϕ alone is also forbidden

[208] (see [209] and [161] for interesting generalisations). Even if K can receive perturbative

corrections, the flat direction cannot be lifted so long as W = 0. However, as we saw in the

previous sections, the axion shift symmetry is broken by non-perturbative effects, so that at

some scale a leading order non-perturbative superpotential can be generated

W = Ae−aΦ , (4.127)

which leads to a scalar potential

V =
A2

2nn M2
Pl

e−2aϕϕ−n
(
n2 + 4a2ϕ2 + n (−3 + 4 aϕ)

)
. (4.128)

Thus the flat direction for ϕ is lifted. The axion, θ, at this leading order remains a flat direction,

but can also be lifted by subleading corrections. The overall scale of the potential energy is

fixed by the constant A, and the exponential suppression in ϕ. In a complete string theory

model, A = ⟨A(Φi)⟩ and could itself be exponentially suppressed in the heavy moduli Φi.

For example, when the superpotential is generated through gaugino condensation in a hidden

sector, W = µ2e−af , where µ is the scale at which the gauginos condense, a is determined

from the hidden sector beta function coefficient [210], and the gauge kinetic function is given by

f = Φ+∆1−loop(Φi), with one-loop threshold corrections depending on heavy moduli. Thus one

would expect to be able to obtain a non-perturbatively generated potential with energy density

of order the observed cosmological constant Λ ∼ e−280M4
Pl.

However, it is very simple to show that such a scalar potential cannot source an accelerated
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Figure 4.11: Potential (4.128) for n = 1 (left) and n = 3 (right) with a =
√
2 and A = e−1105/8 in

Planck units.

expansion at its tail. Note that so long as the field is frozen by Hubble friction, it mimics

effectively a cosmological constant, but as the Hubble parameter falls the field will eventually

begin to roll. As we have just reviewed, the Friedmann and Klein-Gordon equations imply that

in order for a frozen or slowly rolling field to dominate the energy density of the Universe (over

matter and radiation) and drive an accelerated expansion, the slow-roll condition (4.124) must

be satisfied. Plugging the potential (4.128) into (4.124) and considering the tail of the runaway,

one finds

ϵV →
4

n
a2ϕ2 as ϕ→∞ . (4.129)

Therefore it is impossible to satisfy the slow-roll condition ϵV < 1 (4.124) and drive an acceler-

ated expansion at the tail of the non-perturbative runaway. Another way to state this is that

the scalar potential for the canonically normalised field, φ =MPl

√
n
2 log ϕ,

V (φ) ≈ 4A2a2

2nn M2
Pl

e−2ae

√
2
n

φ
MPl

(
e

√
2
n

φ
MPl

)2−n

at large φ, (4.130)

with its double-exponential dependence, is too steep to allow a slow-roll accelerated expansion.

Note that with suitably fine-tuned initial conditions, it is possible to obtain viable models of

frozen quintessence at the hilltop of the potential V (ϕ) with n = 1 plotted in Fig. 4.11 (a

fine-tuning of around 4% for the parameter space studied in [211] is sufficient). However, it is

difficult to find an explanation for such special initial conditions, even an anthropic one.

One may be tempted to think that the failure to get accelerated expansion at the tail of the

runaway is caused by the non-perturbative nature of the superpotential. Rather than considering

a non-perturbative correction to W , one could try combining the Kähler potential (4.126) with

a perturbative superpotential (later we will extend the superpotential to W =W0 +AΦp),

K = −n ln
(
Φ+ Φ̄

)
and W = AΦp , (4.131)
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for which

V (ϕ) =
A2

2nn M2
Pl

ϕ−n(ϕ2 + θ2)−1+p
((
(−3 + n)n− 4np+ 4p2

)
ϕ2 + (−3 + n)nθ2

)
. (4.132)

If we consider the potential around θ ≈ 0,

V (ϕ) =
A2

2nn M2
Pl

(
(−3 + n)n− 4np+ 4p2

)
ϕ−n+2p

+
A2

2nn M2
Pl

p
(
(−3 + n)n− 4np+ 4p2 + 4(n− p)

)
ϕ−2−n+2pθ2 +O(θ3) ,(4.133)

it is easy to see that θ = 0 corresponds to a metastable minimum as long as

p <
n+ 1

2
−
√
n+ 1

2
or p >

n+ 1

2
+

√
n+ 1

2
(4.134)

while the scalar potential is positive, V (ϕ) > 0, at θ = 0 provided

p <
n

2
−
√
3n

2
or p >

n

2
+

√
3n

2
(4.135)

For example, if n = 1 and p ≥ 2, then θ is stabilised at θ = 0, and the potential for the

canonically normalised φ becomes V (φ) = A2

2M2
Pl
(−2− 4p+4p2)e(−1+2p)

√
2φ/MPl > 0 — however,

the slow-roll parameter ϵV = (1 − 2p)2 is always greater than one. For general n > 0 and p,

assuming θ = 0, the slow-roll parameter is

ϵV =
(n− 2p)2

n
, (4.136)

such that it is impossible to have simultaneously ϵV < 1 and V (ϕ) > 0.

If we relax somewhat the constraints from a supergravity description of the action, a Kähler

potential (4.126) implies that any power-law scalar potential for ϕ will lead to a standard expo-

nential scalar potential for the canonically normalised field

V (ϕ) = Aϕ−p =⇒ V (φ) = Ae
−
√

2p2

n
φ

MPl . (4.137)

We have seen above that the structure of supergravity scalar potentials imposes relations between

its coefficients, such that it is impossible to have both ϵV < 1 and V (φ) > 0. However, for (4.137),

a slow-roll accelerated expansion is possible for39

p2

n
≲ 1 . (4.138)

39See [212, 213] for a dynamical systems analysis of such potentials. In [214], observational constraints on the
dark energy equation of state w(z) were used to constrain the constant in the de Sitter swampland conjecture
|∇V | ≳ cV to c ≲ 0.6. Here, we consider the simplest scenario of a frozen field mimicking a cosmological constant,
w = −1, for most of the cosmological history.
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For the value n = 1 often seen for bulk string moduli, then we would need p ≲ 1. A fibre

modulus with e.g. n = 2 [215] would need p ≲
√
2. It would be very interesting to identify

such perturbative runaways in explicit, well-under-control string constructions, though the lack

of supersymmetry might make this particularly difficult. If successful, one would then have to

furthermore explain how the hierarchy in the vacuum energy and mass are stable with respect

to the ultraviolet cutoff (the second part of the cosmological constant problem as we reviewed

in section 4.1), and how to avoid fifth forces (note that, even if not sequestered, fundamental

constants would not vary with time so long as the quintessence field is frozen by Hubble friction).

Local moduli

Bearing in mind the need to suppress fifth forces, it is interesting to consider a local modulus,

which may be sequestered from the Standard Model using geometric separation within the extra

dimensions. However, once again the simplest models within supergravity do not allow for slow-

roll quintessence. Consider for example a blow-up modulus with Kähler potential (see e.g. [216]

for explicit string examples of such moduli)

K =k0 − 2 ln
(
k1 − k2(Φ + Φ̄)3/2

)
(4.139)

≈ k0 − 2 ln(k1) + 2
k2
k1

(Φ + Φ̄)
3
2 , (4.140)

where in the second line we assumed small values of the blow-up modulus, k2
k1
ϕ3/2 ≪ 1. Then,

the canonically normalised field is

φ =
27/4√

3

√
k2
k1
ϕ

3
4 . (4.141)

As before, consider a non-perturbative superpotential, W = Ae−aΦ. The full scalar potential

becomes

V (ϕ) =
A2

3k21M
2
Pl

e
k0−2aϕ+2

k2
k1

(2ϕ)3/2
(
−9 + 8(aϕ)

aϕ
k2
k1
(2ϕ)3/2

− 24(aϕ) + 18
k2
k1

(2ϕ)3/2

)
(4.142)

When aϕ < k2
k1
(2ϕ)

3
2 ≪ 1 or k2

k1
(2ϕ)

3
2 < aϕ≪ 1 this leads to negative potential energy

V (ϕ) ≈ − 3A2ek0

k21 M
2
Pl

. (4.143)

When instead aϕ ≳ 1, the potential has an exponential dependence in ϕ

V (ϕ) ≈ 8A2

3k21M
2
Pl

ek0−2aϕ k1

k2(2ϕ)3/2
a2ϕ2 , (4.144)
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Figure 4.12: Potential arising from blow up modulus with K given in (4.140) and a non-perturbative
superpotential, W = Ae−aΦ, for k0 = −265, k1 = 2075, k2 = 1, A = 1.5 and a = 0.1, in Planck units.

which gives the slow-roll parameter

ϵV =
k1

2k2(2ϕ)3/2
2

3
(1− 4aϕ)2 (4.145)

and thus ϵV > 1 (so that slow-roll quintessence is impossible) unless ϕ ∼ 1
4a , which corresponds

to fine-tuning the initial value of ϕ to the hilltop (Fig. 4.12).

Another candidate amenable to sequestering is the complex structure modulus responsible for

the deformation of a conifold, which has been one of the main characters of the de Sitter

constructions discussed in the previous sections. Its Kähler potential takes the form (cf. (4.21))

K = k0 + k1|Φ|2
(
ln

(
k2
|Φ|

)
+ 1

)
+ k3|Φ|

2
3 , (4.146)

and, in the presence of fluxes, a superpotential is generated which is given by (cf. (4.27))

W = −iw1Φ

(
ln

(
k2
Φ

)
+ 1

)
+ iw2Φ . (4.147)

Assuming a strongly-warped scenario with |Φ| ≪ l3s , the k3 term dominates over the k1 term in

(4.146), and the slow-roll parameter becomes

ϵV ≈
16

3

(
1 +

3

4k3|Φ|
2
3

)
> 1 , (4.148)

not suitable for slow-roll quintessence.

More generally, a local modulus with Kähler potential of the form

K = k0 +
|Φ|2n

k1
or K = k0 +

(Φ + Φ̄)2n

k1
(4.149)
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with a non-perturbative superpotential W = Ae−aΦ (below we will extend this to W = W0 +

Ae−aΦ) leads, respectively, to the scalar potentials

V (ϕ) =
A2

n2 M2
Pl

e
k0−2aϕ+ϕ2n

k1

(
(aϕ)2

k1
ϕ2n
− 3n2 − 2n(aϕ) + n2

ϕ2n

k1

)
for θ = 0

≈ A2

n2 M2
Pl

ek0−2aϕ
(
a2ϕ2

) k1
ϕ2n

when ϕ2n ≪ k1 and aϕ ≳
ϕ2n

k1
(4.150)

and

V (ϕ) =
A2

(2n− 1)2n M2
Pl

e
k0−2aϕ+

(2ϕ)2n

k1

(
4(aϕ)2

k1
(2ϕ)2n

− 6n(2n− 1)− 8n(aϕ) + 4n2
(2ϕ)2n

k1

)

≈ A2

(2n− 1)2n M2
Pl

ek0−2aϕ
(
4a2ϕ2

) k1
(2ϕ)2n

when (2ϕ)2n ≪ k1 and aϕ ≳
(2ϕ)2n

k1
, (4.151)

(for aϕ < ϕn

k1
≪ 1, we instead have a negative potential energy V (ϕ) ≈ −3A2ek0

M2
Pl

for both

potentials). The corresponding slow-roll parameters are approximately

ϵV ≈
(n− 1 + aϕ)2

n2
k1
ϕ2n

> 1 (4.152)

and

ϵV ≈
2(n− 1 + 2aϕ)2

(2n− 1)n

k1
(2ϕ)2n

> 1 . (4.153)

Combining instead the Kähler potentials (4.149) with a perturbative superpotential W = AΦp

(extended to W =W0 +AΦp below) leads, respectively, to the power-law scalar potentials

V (ϕ) =
A2

n2 M2
Pl

e
k0+

ϕ2n

k1 ϕ2p
k1
ϕ2n

(
p2 − n(3n− 2p)

ϕ2n

k1
+ n2

ϕ4n

k21

)
for θ = 0

≈ A2ek0

n2 M2
Pl

k1
ϕ2n

ϕ2pp2 when ϕ2n ≪ k1 (4.154)

and

V (ϕ) =
A2

(2n− 1)2n M2
Pl

e
k0+

(2ϕ)2n

k1 ϕ2p
k1

(2ϕ)2n

(
4p2 + 2n(3− 6n+ 4p)

(2ϕ)2n

k1
+ 4n2

(2ϕ)4n

k21

)

≈ A2ek0

(2n− 1)2n M2
Pl

k1
(2ϕ)2n

ϕ2p(4p2) when (2ϕ)2n ≪ k1 . (4.155)

In the first case, the deformation-like modulus, the slow-roll parameter is

ϵV =
k1
ϕ2n

(
p2(p− n) + 3n(p− n)ϕ

2n

k1
− n2(2n− 3p)ϕ

4n

k21
+ n3 ϕ

6n

k31

)2
n2
(
p2 − n(3n− 2p)ϕ

2n

k1
+ n2 ϕ

4n

k21

)2 (4.156)

=
(n− p)2

n2
k1
ϕ2n

+O
(
ϕ2n

k1

)
or

ϕ6n

k31
+O

(
ϕ8n

k41

)
for n = p
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and ϵV < 1 is only possible for p = n, where V (ϕ) = A2k1
M2

Pl
e
k0+

ϕ2n

k1

(
1− ϕ2n

k1
+ ϕ4n

k21

)
> 0. In this

example, θ remains a flat direction. Unfortunately, for the well-known string theory example

of the deformation modulus of the deformed conifold, n = 1/3 and p = 1, so slow-roll is not

possible in agreement with our previous conclusion. Again, it would be extremely interesting

to identify string theory constructions where p = n (e.g. by generating a contribution to the

superpotential W ∼ Φ1/3, which could dominate at small |Φ|).

In the second case, the blow-up-like modulus, the slow-roll parameter is

ϵV =
k1

(2ϕ)2n

(
8p2(n− p) + 12np(2n− 1− 2p) (2ϕ)

2n

k1
+ n2(2n− 3− 6p) (2ϕ)

4n

k21
− n3 (2ϕ)

6n

k31

)2
2n(2n− 1)

(
4p2 − 2n(6n− 3− 4p) (2ϕ)

2n

k1
+ 4n2 (2ϕ)

4n

k21

)2
=

4(n− p)2

(2n− 1)2n

k1
(2ϕ)2n

+O
(
(2ϕ)2n

k1

)
for n ̸= p , (4.157)

or

ϵV =
(2ϕ)2n

k1

9

2n(2n− 1)
+O

(
(2ϕ)4n

k21

)
for n = p , (4.158)

so that ϵV < 1 is only possible for p = n, for which

V (ϕ) =
A2k1

2n(n− 1) M2
Pl

e
k0+

(2ϕ)n

k1

(
n− (n− 3)

(2ϕ)n

k1
+ n

(2ϕ)2n

k21

)
> 0 .

We must moreover have n > 1 in order for the axion value θ = 0 to be metastable.

Generalising the analysis

So far we have assumed that the light quintessence field starts as a flat direction, and that

along the runaway direction (ϕ → ∞ for a bulk or fibre modulus, and ϕ → 0 for a local

modulus) W → 0. We may extend the analysis to include a non-vanishing constant term, W0,

in the superpotential originating from the stabilisation of the heavy moduli, e.g. from fluxes

W0 = ⟨Wflux⟩. Motivated by the simplicity of a runaway tail, we will assume in this analysis that

there is no particular fine-tuning between the different ingredients. We will also not consider the

possibility of fine-tuning initial values of ϕ to hilltops, but focus on sourcing quintessence along

the runaway tail. The axion θ will be set to zero throughout. It will be helpful to introduce the

following dimensionless variables

x =
W −W0

W0
, y = K − k0 ≪ 1 , z = aϕ , (4.159)

where y only applies to the local moduli (y = ϕ2n

k1
for a deformation modulus and y = (2ϕ)2n

k1

for a blow-up modulus; we always assume y ≪ 1 for consistency) and z only applies to the
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non-perturbative superpotential (in actual string theory constructions, one usually needs z > 1

in order to neglect higher order non-perturbative effects), while x always measures the hierarchy

between the terms in the superpotential (x = Ae−aϕ

W0
for the non-perturbative superpotential and

x = Aϕp

W0
for the perturbative one; see [217] and [152] for recent work on hierarchically small

and large W0). We can then explore the parameter space for regions that allow, simultaneously,

V (ϕ) > 0 and ϵV < 1. The results are summarised in Tables 4.6-4.7.

K = −n log
(
Φ+ Φ̄

)
, W =W0 +Ae−aΦ

V =
W 2

0

M2
Pl

n(n−3)(1+x)2+4nx(1+x)z+4x2z2

n2nϕn

ϵV = (n(1+x)+2xz)2(n(n−3)(1+x)+4xz(n−1+z))2

n(n(n−3)(1+x)2+4nx(1+x)z+4x2z2)2

Parameters V → ϵV → V > 0 ϵV < 1

x≫ 1
z ≫ 1

W 2
0

M2
Pl

4x2z2

n2nϕn > 0 4z2

n > 1 No-go

z ≪ 1
W 2

0

M2
Pl

(n−3)x2

2nϕn n ≥ 1 No-go

x≪ 1
xz ≫ 1

W 2
0

M2
Pl

4x2z2

n2nϕn > 0 4z2

n > 1 No-go

xz ≪ 1
W 2

0

M2
Pl

(n−3)
2nϕn

(n(n−3)+4xz2)2

n(n−3)2
≥ 1 No-go

K = −n log
(
Φ+ Φ̄

)
, W =W0 +AΦp

V =
W 2

0

M2
Pl

(n(x+1)−2px)2−3n(x+1)2

n2nϕn

ϵV = (n(1+x)−2px)2(n(n−3)+n(n−3)x−4px(n−p))2

n(4p2x2+n2(1+x)2−n(1+x)(3(1+x)+4px))2

Parameters V → ϵV → V > 0 ϵV < 1

x≫ 1
W 2

0

M2
Pl

x2((n−2p)2−3n)
n2nϕn

(n−2p)2

n No-go

x≪ 1
W 2

0

M2
Pl

(n−3)
2nϕn n No-go

Table 4.6: Summary of interesting parameter space for string inspired supergravity models of runaway
quintessence with a bulk like or fibre like modulus. The parameters x, y, z are defined and discussed in and
around eq. (4.159). Note that when W0 = 0, one should take the limit W0x

2 → Ae−aϕ or W0x
2 → Aϕp

respectively. In actual string compactifications, one usually requires z = aϕ > 1, to be able to neglect
higher order non-perturbative terms.

This analysis shows that non-perturbative runaway potentials for bulk-like and fibre-like moduli

with K = −n ln
(
Φ+ Φ̄

)
, which contain exponentials of exponentials in the canonically nor-

malised saxion, are too steep to source slow-roll quintessence along their tails. Although one

might have expected that a bulk-like modulus with a perturbative runaway W (Φ) = AΦp could

lead to an exponential-like quintessence model for the canonically normalised saxion, we find

that it is impossible to satisfy simultaneously ϵV < 1 and V (ϕ) > 0 (Table 4.6). The same is

true for a local modulus with K = k0 +
(Φ+Φ̄)2n

k1
or K = k0 +

|Φ|2n
k1

with a non-perturbative

runaway, which despite having an exponential potential can never realise slow-roll quintessence

(Tables 4.7 and 4.8). However, if a local modulus develops a perturbative runaway, it can source
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slow-roll quintessence within supergravity in very special cases, where the leading power in the

superpotential, p, is equal to the leading power in the Kähler potential, n. As we explicitly

checked, the conifold deformation modulus does not satisfy this relation (p = 1, n = 1/3). It

would therefore be very interesting to find concrete string theory realisations of this scenario.

Different approaches to realise quintessence in string theory, including generalisations to multi-

field models, seem to point in the same direction — just as with de Sitter vacua, one seems

to be pushed towards the boundaries of control and require a large degree of fine-tuning (e.g.

[120, 130–132, 204, 205, 207, 218–224]; see [121] for a review). This is in line with the swampland

de Sitter conjecture [125, 126] which constrains the behaviour of any scalar potential arising from

a consistent UV completion and translates into a lower bound on the slow-roll parameter ϵV

(making quintessence difficult to achieve, at least in the slow-roll regime). The conjecture has

since motivated both scenarios that embrace its consequences (combined with other conjectures,

such as the distance conjecture) and explore the resulting phenomenology — e.g. the Dark

Dimension proposal [225–230] — and those that try to evade these constraints altogether —

e.g. expanding bubble braneworlds on non-SUSY AdS vacua [231–237], or coherent states over

a supersymmetric Minkowski vacuum [238, 239]. At the moment, it is probably fair to say that

more work is needed in order to obtain a fully under control scenario of accelerated expansion

within string theory (see [121, 240] for reviews).
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K = k0 +
|Φ|2n
k1

, W =W0 +Ae−aΦ

V =
W 2

0

M2
Pl

ek0+y

n2y (n2(1 + x)2(y − 3)y − 2nx(1 + x)yz + x2z2)

ϵV = (n(1+x)y−xz)2(n2(1+x)(y−2)y+nx(1−2y)z+(z−1)xz)2

n2y(n2(1+x)2(y−3)y−2nx(1+x)yz+x2z2)2

Parameters V → ϵV → V > 0 ϵV < 1

x≫ 1
z ≫ y

W 2
0

M2
Pl

ek0

n2 x
2
(
z2

y − 3n2
) (n−1+z)2

n2( z2

y −3n2)

z2

y ( zy )
2 No-go

z ≪ y − W 2
0

M2
Pl

ek0

n x2 (3n+ 2z) < 0 4y
9 No-go

x≪ 1
xz ≫ y

W 2
0

M2
Pl

ek0

n2

( (xz)2
y − 3n2

) (n−1+z)2

n2(3n2− (xz)2

y )2

(xz)2

y (xzy )2 No-go

xz ≪ y − W 2
0

M2
Pl

ek0

n (3n+ 2xz) < 0 y
9n4

(
xz2

y − 2n2
)2

No-go

K = k0 +
|Φ|2n
k1

, W =W0 +AΦp

V =
W 2

0

M2
Pl

ek0+y

n2y ((px+ n(1 + x)y)2 − 3n2(1 + x)2y)

ϵV = (p3x2+3n2px(1+x)(y−1)y+n3(1+x)2(y−2)y2+np2x(y+x(3y−1)))2

n2y(p2x2+2npx(1+x)y+n2(1+x)2(y−3)y)2

Parameters V → ϵV → V > 0 ϵV < 1

p ̸= n
x≫ 1

W 2
0

M2
Pl
ek0 p2

n2
x2

y > 0 (p−n)2

n2
1
y > 1 No-go

x≪ 1
x≫ y

W 2
0

M2
Pl

p2ek0

n2

(
x2

y − 3n2

p2

) (n−p)2

n2
(

x2

y −3n2

p2

)2 x2

y (xy )
2 > 1 No-go

x≪ y − 3W 2
0 e

k0

M2
Pl

< 0 4y
9 < 1 No-go

Parameters V → ϵV → V > 0 ϵV < 1

p = n

x≫ 1
W 2

0

M2
Pl
ek0 x2

y > 0 (1 + xy)2 y
x2 < 1 Yes

x≪ 1
x2 ≫ y

W 2
0

M2
Pl
ek0 x2

y > 0 4y
x2 < 1 Yes

x2 ≪ y − 3W 2
0 e

k0

M2
Pl

< 0 4y
9

(
1 + x

y

)2
< 1 No-go

Table 4.7: Summary of interesting parameter space for string inspired supergravity models of runaway
quintessence with a deformation like modulus. The parameters x, y, z are defined and discussed in and
around eq. (4.159). Note that when W0 = 0, one should take the limit W0x

2 → Ae−aϕ or W0x
2 → Aϕp

respectively. We always assume y ≪ 1 for consistency. In actual string compactifications, one also usually
requires z = aϕ > 1, to be able to neglect higher order non-perturbative terms.
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K = k0 +
(Φ+Φ̄)2n

k1
, W =W0 +Ae−aΦ

V =
W 2

0

M2
Pl

ek0+y

n(2n−1)y (2n
2(1 + x)2(y − 3)y + 2x2z2 + n(1 + x)y(3− x(3− 4z)))

ϵV = 2(2n3(1+x)2(y−2)y2−2x2(z−1)z2−3n2(1+x)y(−2xz+y(−1+x(2z−1)))+nxz(−2xz+y(−5+2z+x(−5+6z))))2

n(2n−1)y(2n2(1+x)2(y−3)y+2x2z2−n(1+x)y(−3+x(4z−3)))2

Parameters V → ϵV → V > 0 ϵV < 1

x≫ 1
z ≫ y

W 2
0

M2
Pl

2ek0

n(2n−1)x
2
(
z2

y −
3n(2n−1)

2

) 2(n−1+z)

n(2n−1)
(

z2

y − 3n(2n−1)
2

)2 z2

y ( zy )
2 No-go

z ≪ y − 3W 2
0 e

k0

M2
Pl

x2 < 0 2n(4n−3)2

9(2n−1)3 y < 1 No-go

x≪ 1
xz ≫ y

W 2
0

M2
Pl

2ek0

n(2n−1)

( (xz)2
y − 3n(2n−1)

2

) 2(n−1+z)2

n(2n−1)
(

(xz)2

y − 3n(2n−1)
2

)2 (xz)2

y (xzy )2 No-go

xz ≪ y − 3W 2
0 e

k0

M2
Pl

< 0 2y
9n

( xz2

y −n(4n−3))2

(2n−1)3 No-go

K = k0 +
(Φ+Φ̄)2n

k1
, W =W0 +AΦp

V =
W 2

0

M2
Pl

ek0+y

n(2n−1)y (2p
2x2 + 4npx(1 + x)y + n(1 + x)2(3 + 2n(y − 3))y)

ϵV = 2(2p3x2+2n3(1+x)2(y−2)y2+3n2(1+x)y(2px(y−1)+(1+x)y)+npx(3(1+x)y+2p(y+x(3y−1))))2

n(2n−1)y(2p2x2+4npx(1+x)y+n(1+x)2(3+2n(y−3))y)2

Parameters V → ϵV → V > 0 ϵV < 1

p ̸= n
x≫ 1

W 2
0

M2
Pl

2p2ek0

n(2n−1)
x2

y > 0 2(n−p)2

n(2n−1)
1
y > 1 No-go

x≪ 1
x≫ y

W 2
0

M2
Pl

2p2ek0

n(2n−1)

(
x2

y −
3n(2n−1)

2p2

) 2(n−p)2

n(2n−1)
(

x2

y − 3n(2n−1)

2p2

)2 x2

y (xy )
2 > 1 No-go

x≪ y − 3W 2
0 e

k0

M2
Pl

< 0 2n(4n−3)2

9(2n−1)3 y < 1 No-go

Parameters V → ϵV → V > 0 ϵV < 1

p = n

x≫ 1
W 2

0

M2
Pl
ek0 2n

2n−1
x2

y > 0 9y
2n(2n−1) < 1 Yes

x≪ 1
x2 ≫ y

W 2
0

M2
Pl
ek0 2n

2n−1
x2

y > 0 (4n−3)2

2n(2n−1)
y
x2 < 1 Yes

x2 ≪ y − 3W 2
0 e

k0

M2
Pl

< 0 2n
9

(4n−3)2

(2n−1)3

(
1 + x

y

)2
y No-go

Table 4.8: Summary of interesting parameter space for string inspired supergravity models of runaway
quintessence with a blow-up like modulus. The parameters x, y, z are defined and discussed in and
around eq. (4.159). Note that when W0 = 0, one should take the limit W0x

2 → Ae−aϕ or W0x
2 → Aϕp

respectively. We always assume y ≪ 1 for consistency. In actual string compactifications, one also usually
requires z = aϕ > 1, to be able to neglect higher order non-perturbative terms.
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The problem is nature, not string theory!

What I mean is that nature (...) seems to

predict that the fundamental length is far

beyond experiment.

Joseph Polchinski

The recent success of the LIGO and Virgo collaboration in directly observing gravitational

waves (GW) from the merger of two black holes [241] kick-started the era of GW astronomy.

Since then several signals were detected, not only originating from black hole mergers [242–

245], but also from black hole-neutron star [246] and binary neutron star [247] mergers, with

associated electromagnetic signals which can be used to extract more information from these

events. In particular, the study of GW signals can be used to test General Relativity (GR) in an

unprecedented way [248–254], constraining deviations from GR and therefore alternative theories

of gravity and quantum gravity completions, such as string theory. With several ground and

space-based experiments, such as the Einstein Telescope (ET) [255] and LISA [256, 257], planned

for the near future, and interest in GW searches at ultra-high frequencies (UHF) in the range

MHz–GHz [258] not covered by these experiments, the gravitational signals of modifications to

GR will have the potential to test any theory (such as a UV completion) in which they arise.

This exciting progress in gravitational wave detection is complemented by a host of other diverse

experiments and observations. From torsion table-top experiments, astronomical tests [259]

and atom interferometry [260], to the Event Horizon telescope [261, 262] and collider searches

[263], GR is being tested in all possible regimes, with strong and weak field tests. One should

ultimately combine all these results, looking for how they match, differ or complement each

other, in order to know what kind of deviations of GR are still possible and which are excluded

[264]. A useful way to combine some of these tests is by choosing a common parameterisation,

e.g. expressing the results in terms of a correction to the Newtonian potential [263] — in that way

one can compare a specific string theory compactification setup with several experimental and

observational results by looking at such corrections in the form of a single Yukawa interaction.
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Has we have seen in the previous chapters, one of the main features of string theory is the

presence of extra dimensions that need to be made compatible with all available observations

— in particular, a typical step in a string theory construction is to hide the extra dimensions

which have so far never been observed. As reviewed in chapter 3, one usually considers the

compactification of the extra dimensions onto an internal compact space, which results in a

4d EFT in which each higher-dimensional field gives rise to an infinite KK tower of massive

modes1 (cf. Fig. 3.1), whose UV cutoff is the mass of the lightest KK state (or lower if lighter

moduli have been integrated out, cf. Fig. 4.1). Since in string theory gravity is described by

the ten-dimensional graviton, the KK towers include a tower of massive graviton KK modes

which might have direct effects on gravitational waves and other gravitational effects [265–272].

These massive graviton states are usually integrated out as their masses are much higher than

the energy scale of interest, such that the low-energy 4d theory gives simply GR. However, for

high enough energies, i.e. for energies close to the masses of these states, the first KK modes will

start contributing with corrections to the effective theory and, in particular, with corrections to

the Newtonian potential2.

On the other hand, within string theory, our Universe could be confined to a (3+1)-dimensional

brane (or stack of branes), since the states giving rise to the Standard Model can come from open

strings which end on different types of branes (cf. chapter 2) — these states are then confined

to live on the brane and cannot directly probe the extra dimensions. The brane itself could

be located at the tip of a warped throat in the internal compact space — the warped throat

allows the natural high scale of the higher-dimensional theory, typically the string scale, to be

suppressed on the brane, helping to bridge the gap between the UV scales considered in string

theory and the observed IR scales of the 4d theory — this was precisely what motivated the GKP

solution of section 3.6. Chapter 4 was all about applying these warped throat constructions in

the search for de Sitter solutions — in proposals such as KKLT [75] and LVS [76, 77], strong

warping is invoked in order to suppress the naturally high scale of an D3-brane responsible for

uplifting an AdS minimum into dS. Moreover, the Klebanov-Strassler (KS) solution [86] gives

an explicit construction of such a background using a warped deformed conifold (cf. section 3.5)

— this is a non-compact solution, but one usually considers smoothly gluing a finite portion of

this solution to a compact Calabi-Yau 3-fold CY3, such that the internal space is compact.

With this in mind, in [273] we started exploring the following question: how does the strong

warping in these string compactifications affect the gravitational signatures of extra dimensions?

1Recall that the existence of such a discrete tower of states relies on the compactness of the internal space
— if the extra dimensions are not compact, the spectrum will be a continuum of states (e.g. the spectrum of
[58] is continuous whereas the very similar setup in [57] gives a discrete spectrum because the extra dimension
is now compact). This has a direct impact on the form of the corrections to the Newtonian potential that arise
from these extra-dimensional models, which will take a Yukawa-type form for compact cases such as [57] but a
power-law form for non-compact cases such as [58].

2In principle, light moduli and higher string modes could also contribute with corrections to the Newtonian
potential. We will show below that the higher string modes are typically heavier than the KK modes for our
constructions, and so present subleading corrections. We will further assume no light moduli; alternatively their
contributions could also be worked out in concrete constructions (e.g. taking into account the deformation modulus
or volume modulus).
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By considering a flux compactification of Type IIB supergravity in the presence of a warped

throat, we studied its effects on the gravitational sector of the 4d EFT. Although this work was

motivated by the prospects of GW astronomy, our main focus in [273] were the corrections to the

Newtonian potential which can be compared to observations across diverse scales [263] — while

the ingredients entering this analysis are also required for the prediction of GW signals in these

models, this provides a simpler but important comparison between this setup and observational

data.

The effects of extra dimensions in gravitational wave signals were also studied in [269], where the

dimensional reduction of a D-dimensional gravitational theory down to 4d was performed, with

warping taken into account. The effects of the warping were further explored in [270, 271] in the

context of warped toroidal backgrounds. Here we will focus specifically on Type IIB supergravity

and dimensionally reduce the 10d action down to 4d by considering the warped background to

be described by a compact CY3 with a warped throat described by the KS solution. The effects

of this warped geometry on the tower of KK states were previously considered in [274] (see

also [275]), where the mass spectrum of graviton KK modes was obtained. We reproduce the

results found in [274], paying careful attention to the normalisation of the graviton KK mode

wavefunctions which provide the couplings to other modes in the theory. The importance of

this normalisation was already emphasised in [276], where it was noted that higher KK modes

have stronger couplings when considering a KS warped throat rather than the Randall-Sundrum

model (RSI) [57], the latter giving a good approximation only away from the tip of the throat.

We will consider a braneworld model within this warped Type IIB setup and study the cor-

rections to the Newtonian potential between masses living on the brane due to the presence of

the KK tower (this was done in the context of RSI in [277, 278]). We obtain direct relations

between the phenomenological parameters characterising a Yukawa-type correction to the New-

tonian potential and the parameters defining the string compactification. By combining this

with consistency conditions on the compactification, we identify the exclusion region in the pa-

rameter space for a Yukawa-type correction to the Newtonian potential arising from a Type IIB

brane model in which the Standard Model hierarchy is achieved by placing the brane somewhere

along a KS warped throat. We will end the chapter with some implications of warped throats

for gravitational wave experiments, identifying points in the parameter space of the KS solution

which bring gravitational wave frequencies down to observable scales.

5.1 Dimensional reduction of Gravitational Waves

We have already encountered the equation describing 10-dimensional GWs (3.54), when we

studied the equation of motion for the 10d graviton of Type IIB supergravity in section 3.3.
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This wave equation can be conveniently rewritten as [273]

210hMN + 2R̄ P Q
M N hPQ = 2T (1)

MN + 2hP (M T̄
P

N) +
1

4

(
ḠPQT (1)

PQ

)
GMN , (5.1)

in terms of

TMN ≡ −
δL

δGMN
, (5.2)

such that the energy-momentum tensor is given by TMN = 2TMN + GMNL, with L being the

Type IIB Lagrangian that couples to the metric (i.e. not including the Chern-Simons topological

term), which gives

TMN =
1

2
(∂MΦ)(∂NΦ) +

e2Φ

2
(∂MC0)(∂NC0) +

g2s
4× 4!

(F̃5)MPQRS(F̃5)
PQRS

N

+
gs
4

(
eΦ(F̃3)MPQ(F̃3)

PQ
N + e−Φ(H3)MPQ(H3)

PQ
N

)
, (5.3)

whose linear order perturbation in hMN is

T (1)
MN = −

(gs
2

(
eΦ(F̃3)

RS
M (F̃3)NRP + e−Φ(H3)

RS
M (H3)NRP

)
+
g2s
4!
(F̃5)

SIJR
M (F̃5)NPIJR

)
ḠPQhSQ . (5.4)

Although in 10d the fluctuation hMN described by these equations is indeed a GW, it does not

look like one from the point of view of our 4d EFT — at low energies, when a 4-dimensional

theory is a good description of the physical phenomena, only the hµν components correspond

to GWs; the others will instead manifest as vectors or scalars (some of these scalar degrees

of freedom were precisely the geometric moduli that we encountered in the previous sections).

Using the background metric (3.127)3 we can rewrite the wave equation (5.1) in terms of 4d and

6d operators, as equations for the different components hµν , hµn and hmn. It is also important

to recall that each of these 10d degrees of freedom gives rise to an infinite tower of KK modes,

including the spin-2 fields hµν that do describe 4d GWs. We will come back to this point in the

next section.

On the other hand, the requirement that the 4d spacetime in (3.127) is maximally symmetric

implies that the background solutions for H3, F3 and F5 take the form

H3 =
1

3!
Hmnp dym ∧ dyn ∧ dyp , (5.5)

F3 =
1

3!
Fmnp dym ∧ dyn ∧ dyp , (5.6)

F5 =
1

5!
(1 + ⋆10)

√
−g4 dα ∧ dxµ ∧ dxν ∧ dxρ ∧ dxσ , (5.7)

3In this chapter we slightly change notation in order to match the one used in [273], and will use c = ⟨V⟩2/3.
Since we are working on a background solution, we will also set the 4d Weyl rescaling e2ω(x) = 1 in accordance
with our conventions (cf. Appendix A.2).
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where we also use the self-duality condition that must be imposed on F5 (2.73). Since we

are interested in the type B solutions of Type IIB flux compactifications that preserve N = 1

supersymmetry (cf. section 3.4), the function α = α(y) in the F5 background is related to the

warping, gsα = H−1 (3.121). We can write these background fields in component form as

(H3)MNP = δmMδ
n
Nδ

p
PHmnp (5.8)

(F3)MNP = δmMδ
n
Nδ

p
PFmnp (5.9)

(F5)MPQRS = δmMδ
π
P δ

η
Qδ

ρ
Rδ

σ
S

√
−g4(∂mα)ϵπηρσ

+ δaMδ
p
P δ

q
Qδ

r
Rδ

s
S

√
−G
5!

√
−g4(∂mα)ϵπηρσϵmπηρσ

apqrs . (5.10)

Similarly, the background values of ∂MΦ, ∂MC0 are only non-zero for internal components. We

can therefore compute the different components of T̄MN (5.3) and T (1)
MN (5.4),

T̄µν =
g2s

4c1/2H5
(∂H)2gµν , (5.11)

T̄µn = 0 , (5.12)

T̄mn =
1

2
(∂mΦ)(∂nΦ) +

e2Φ

2
(∂mC0)(∂nC0) +

gs
4cH

e−Φ(H3)mpq(H3)
pq

n

+
gs
4cH

eΦ(F̃3)mpq(F̃3)
pq

n − g2s
4H4

(∂mH)(∂nH) , (5.13)

T (1)
µν =

1

4c1/2H9/2
(∂H)2(hµν − hρρgµν)−

1

4cH11/2
{gmpgnq(∂pH)(∂qH)hmn}gµν , (5.14)

T (1)
µn = − 1

4c1/2H9/2
hµmg

mp(∂pH)(∂nH) (5.15)

T (1)
mn =

gs

2c3/2H3/2
(e−ΦH rs

m Hnrp + eΦF rs
m Fnrp)g

pqhsq −
1

4H7/2
hρρ(∂mH)(∂nH) , (5.16)

where (∂H)2 ≡ gpq(∂pH)(∂qH), from which follows the trace

GPQT (1)
PQ = − g2s

c1/2H4
hρρ(∂H)2 − g2s

cH5
gmpgnq(∂pH)(∂qH)hmn

+
gs

2c2H2
(e−ΦHmrsH

mrq + eΦFmrsF
mrq)gsphpq . (5.17)

When decomposing the wave equation (5.1) into the three equations describing the 4d dynamics

of the tensor, vector and scalar modes, we are only taking into account fluctuations of hMN ,

whereas all other field fluctuations are set to zero for simplicity. One should ultimately check that

this is consistent — e.g. because the fields are heavier than the first KK modes of the graviton
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— or take into account such fluctuations. Under this assumption, the equations become

µν : H1/224hµν +
∆Mhµν

c1/2H1/2
+
hµν∆MH

2c1/2H3/2
− 2Hhραg

ασRρ
µνσ −

gpq∇(µhν)p∂qH

2c1/2H3/2
(5.18)

+
gpq∂phµν∂qH

c1/2H3/2
− 1

4c1/2H5/2
(∂H)2hµν −

hρρ

8c1/2H5/2
hµν(∂H)2

+ gµν
gpqgrs

2cH7/2

(
hpr(H∇q∂sH − ∂qH∂sH) +

1

4
hpq∂rH∂sH

)
− gs

8c2H5/2
gµν(e

−ΦHmrsH
mrq + eΦFmrsF

mrq)gsphpq = 0 ,

µn : H1/224hµn +
∆Mhµn

c1/2H1/2
− gpqhµp∇p∂nH

2c1/2H3/2
− 1

c1/2H5/2
(∂H)2hµn (5.19)

− gpq∇µhpn∂qH

2c1/2H3/2
+

1

2
H−1/2gρσ∇ρhµσ∂nH +

gpq∂[qH ∇n]hµp

c1/2H3/2

− 1

c1/2H1/2
gpqhµqτ

(0)
np −

g2s
4c1/2H9/2

(∂H)2hµn −
g2s

2c1/2H9/2
hµmg

mp(∂pH)(∂nH) = 0 ,

mn : H1/224hmn +
∆Mhmn

c1/2H1/2
− hmn∆MH

2c1/2H3/2
− 2grshprR

p
mns

c1/2H1/2
(5.20)

gρσ∇ρhσ(m∂n)H

H1/2
−
gpq∇phq(m∂n)H

c1/2H3/2
+
gpq∇(nhm)p∂qH

c1/2H3/2

− gpq∇phmn∂qH

c1/2H3/2
+

1

c1/2H5/2
(∂H)2hmn −

5gpqhp(n∂m)H∂qH

4c1/2H5/2

+
hρρ

2H3/2

(
H∇m∂nH − ∂mH∂nH +

1

4
gmng

pq∂pH∂qH
)

+
hrs∂pH∂qH

8c1/2H5/2

(
δpmδ

q
ng

rs + gmn(g
prgqs − grsgpq)

)
( 1

4H7/2
hρρ(∂H)2 +

1

4c1/2H9/2
gmpgnq(∂pH)(∂qH)hmn

− gs

2c3/2H3/2
(e−ΦHmrsH

mrq + eΦFmrsF
mrq)gsphpq

)
gmn −

2

c1/2H1/2
gpqhq(mT̄n)p

+
gs

c3/2H3/2
(e−ΦH rs

m Hnrp + eΦF rs
m Fnrp)g

pqhsq −
1

2H7/2
hρρ(∂mH)(∂nH) = 0 ,

where 24 = gµν∇µ∇ν , ∆M = gpq∇p∇q and the covariant derivative ∇ρ (∇p) is with respect to

the 4d metric gµν (6d metric gpq).

The resulting equations (5.18–5.20) couple hµν , hµn and hmn, which makes it hard to find a

general solution. Since we are most interested in the 4d gravitational modes hµν , we may

consider the simpler case where hµn = hmn = 0, i.e. a solution for which the vector and scalar

modes vanish.4 We also make the field redefinition hµν → H−1/2hµν , so that (5.18) describes

4Note that by choosing this simple solution, we are missing some possibly interesting effects, e.g. the breathing
mode identified in [269] will not be present. We should also recall the relation between hmn and the complex
structure and Kähler moduli. See also [275] for an analysis of the spin-0 modes on a Klebanov-Strassler back-
ground.
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fluctuations of the 4d (unwarped) metric gµν . The equations become

µν : 24hµν +
∆Mhµν

c1/2H
− 2hραg

ασRρ
µνσ −

hµνh
ρ
ρ

8c1/2H5/2
(gpq∂pH∂qH) = 0 , (5.21)

µn : ∂nH(gρσ∇ρhµσ) = 0 , (5.22)

mn : hρρ

(
H∇m∂nH − ∂mH∂nH +

1

4
gmng

pq∂pH∂qH
)

+
1

2H2
hρρ
(
(∂H)2gmn − 2(∂mH)(∂nH)

)
= 0 . (5.23)

Although we set hµn = hmn = 0, the equations describing these fluctuations must still be

satisfied to ensure that this is indeed a solution. For a non-constant warp factor, which is the

case we want to study, the vector equation implies that gρσ∇ρhµσ vanishes. Tracing the scalar

equation we find

hρρ(H∆MH + 2(∂ lnH)2) = 0 , (5.24)

which gives hρρ = 0. Therefore, the vector and scalar equations impose conditions on hµν which

correspond to the 4d transverse-traceless gauge [269],

gρσ∇ρhµσ = 0 , hρρ = 0 . (5.25)

The equation for hµν is then

24hµν +
∆Mhµν

c1/2H
− 2hραg

ασRρ
µνσ = 0 . (5.26)

On the other hand, for a 4d spacetime that is maximally symmetric, we have the following

relation

Rρ
µνσ =

Λ4

3
(δρνgµσ − δρσgµν) , (5.27)

where Λ4 = R4/4, which gives

Rρ
µνσg

σαhαρ =
Λ4

3
(hµν − gµνhρρ) , (5.28)

and using hρρ = 0 the wave equation becomes

24hµν +
∆Mhµν

c1/2H
− 2

3
Λ4hµν = 0 . (5.29)

This equation describes the 4d tensor components of hMN , but we should remember that

hµν(x
µ, ym) is still a function of both external and internal coordinates, which means it prop-

agates in the 10-dimensional spacetime. In the 4d EFT, we must express it in terms of modes

which are only functions of external coordinates hµν(x
µ) and therefore only propagate in the 4d

spacetime. More precisely, equation (5.29) corresponds to an infinite tower of 4d spin-2 modes

hkµν(x
µ), where k labels each mode in the tower (cf. (3.18)). We should also note that (5.29)
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only describes the propagation of each mode in this tower, but not how it interacts with other

degrees of freedom (including other modes in the same tower) and therefore how gravitational

waves are sourced. It does however tell us the properties of the propagating degrees of freedom

which carry information about how gravitational waves propagate in this warped background

and the way they will couple to sources once these are taken into account. In the next section

we will study these properties, which include the masses of each mode, their wavefunctions in

the extra dimensions and the respective normalisations.

5.2 Warping the graviton tower

5.2.1 KK mode equation

Let us rewrite (5.29) in the following suggestive way

24hµν +OMhµν = 0 , (5.30)

with OM ≡ ∆M
c1/2H

− 2
3Λ4. In the 4d EFT, we must express hµν(x

µ, yp) in terms of modes which

are only functions of external coordinates hkµν(x
µ), where k labels each mode in an infinite tower,

and a complete basis Φk of eigenmodes of OM,

hµν(x
µ, yp) =

∑
k

hkµν(x
µ)Φk(y

p) . (5.31)

The decomposition is such that

OMhµν = OM(hkµν(x
µ)Φk(y

p)) = hkµνOMΦk(y
p) = −m2

kh
k
µνΦk(y

p) (5.32)

where there is an implicit sum in k, following from the eigenvalue equation OMΦk(y
p) =

−m2
kΦ(y

p). Since Φk is a scalar,5

∆MΦk =
1
√
g
∂p(
√
ggpq∂qΦk) , (5.33)

and hence the eigenvalue equation can be written as

1
√
g
∂p(
√
ggpq∂qΦk) + c1/2H

(
m2

k −
2

3
Λ4

)
Φk = 0 . (5.34)

We should remember that the compact space contains two pieces glued together — a warped

throat described by the Klebanov-Strassler solution and a compact bulk, which is usually chosen

to be a Calabi-Yau whose metric we do not explicitly know. Therefore the 6d metric gpq which

5Notice the difference in the form of the Laplacian ∆M compared to [269, 279], which follows from the different
choice of metric conventions in (3.127).
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Figure 5.1: Warp factor H(τ) (in log scale) for different choices of τc. We can see how the choice of τc
is directly related to the strength of the warping and the size of the warped throat (defined as the region
with non-trivial warping).

appears in (5.34) will be different inside the throat and in the bulk — it corresponds to the metric

of the warped deformed conifold in the throat region and (usually) to the unknown metric of

a compact CY3 in the bulk. However, we can still solve the equation in the region where the

metric is unkown if Φk = 0 in the CY3 bulk, which for consistency implies that the modes

must vanish at the point where these two regions meet. We will motivate further this boundary

condition below.

Importantly, the question of whether a region is warped, through H(τ) (3.128), depends not

only on the solution e−4A0(τ), but also on the size of the bulk to which the throat is glued.

The warping will dominate when e−4A0(τ) ≫ c and be negligible when e−4A0(τ) ≪ c, so that

effectively the warped throat ends at e−4A0(τ) ∼ c (recall the change in notation, c = ⟨V⟩2/3).
This interplay between e−4A0(τ) and c gives an interesting intermediate regime of weak warping

which was a key point of our discussion in chapter 4 of the new weakly-warped solutions [172].

For concreteness, we can define the gluing point τc such that e−4A0(τc) = c, keeping in mind that

the gluing must involve a smooth transition between the warped throat and the bulk around τc.

Therefore τc can be defined implicitly in terms of the conifold parameters (cf. (3.108))

e−4A0(τc)

c
= 1 =⇒ 22/3

(α′gsM)2

c ϵ8/3
=

1

I(τc)
, (5.35)

which allows us to rewrite the warp factor as

Hτc(τ) = 1 +
I(τ)

I(τc)
. (5.36)

This highlights the fact that the warp factor depends on one parameter only, τc. Even though

it is implicitly determined by a specific combination of the more familiar parameters through

(5.35), it is a convenient parametrisation since a choice of τc has a clear physical interpretation.

In Fig. 5.1 we show how the warp-factor H(τ) behaves for different choices of τc.
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Figure 5.2: The internal space consists of a 6d compact manifold with a warped region described by
the Klebanov-Strassler solution (i.e. a warped deformed conifold). We split the bulk into two different
pieces: one piece is a generic CY3 and the other takes the metric of an unwarped deformed conifold and
serves as a transition between the warped throat and the CY3 (with τc < τ < T , where τ is the radial
coordinate in the deformed conifold metric (3.103)).

However, gluing the warped throat directly onto a compact CY3, would not let us take the

interesting limit where there is no warping and the whole internal space is the CY3 whose

metric we do not know, since the wavefunctions will be identically zero. In order to consider

this regime, we may split the bulk region into two different pieces: one piece is the generic CY3

and the other takes the metric of an unwarped deformed conifold and serves as a transition (with

τc < τ < T ) between the warped throat and the CY3 (see Fig. 5.2). While we still solve the

equation in the CY3 with Φk = 0, we can now have a non-vanishing wavefunction in the piece

of the bulk described by the unwarped deformed conifold. Whereas τc determines the size of the

warped throat, T determines the portion of the bulk in which the wavefunctions do not vanish6

(more precisely, T − τc determines the extension of the wavefunction into the bulk). Notice that

a fully warped conifold corresponds to the limit τc → T and an unwarped conifold corresponds,

roughly, to τc → 0.7

Therefore we will write (5.34) explicitly using the metric (3.103) in terms of the warp factor

Hτc(τ). We consider splitting the 6d coordinates ym into a radial coordinate τ and angular

coordinates θa, a = 1, ..., 5 (these are related to the 1-forms gi in the conifold metric (3.99)).

This will split the Laplacian into two pieces, one for τ and one along the angular coordinates.

6Note that T is nothing but the cutoff τΛ (related to the scale Λ0) where the deformed conifold metric was
glued to the compact CY3 in the notation used in chapter 4. Also there, in the context of the new weakly-warped
solutions, this cutoff was not necessarily determined by the warping and could be chosen such that at least part
of the deformed conifold was effectively unwarped.

7Strictly speaking, the unwarped limit corresponds to H(τ) = 1 for all τ , whereas when τc = 0, H(0) = 2. At
τc = 0, the second term in (3.128) becomes of the same order as the first term, marking the boundary between a
warped and an unwarped regime.
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With this in mind, we can decompose the functions Φk(τ, θ
a) as (see [280])

Φk(τ, θ
a) = G(τ)−1/2Bk(τ)φk(θ

a) , (5.37)

such that (5.34) becomes a Schrödinger equation for Bk(τ)

B′′
k − VeffBk = 0 , (5.38)

with an effective potential given by

Veff = −gττ
(
c1/2H

(
m2

k −
2

3
Λ4

)
+
OangΦk

Φk

)
+

(G1/2)′′

G1/2
, (5.39)

where we factorise (gcon)mn = Kmn(τ)γmn(θ) (with no summation) and define

G(τ) =
24

ϵ8/3
gττ
√
gcon = K(τ)2 sinh2(τ) , (5.40)

Oangφk ≡ Kab(τ)
1
√
γ
∂θa
(√
γγab(θ)∂θbφk

)
, (5.41)

with gττ = ϵ4/3

6K(τ)2
following directly from the metric (3.103), the operator Oang containing the

angular information of the metric and the sum in a, b implied. Since the contribution from the

angular coordinates is more complicated, we look at modes with8 Oangφk = 0 (usually known

as the s-orbital). In this case, we have φk(θ
a) = const. and we can absorb it into the overall

normalisation of the wavefunction. Notice that trying a constant wavefunction (i.e. with no

dependence on the internal coordinates) requires Bk(τ) = G(τ)1/2, in which case (5.38) reduces

to

gττ

(
m2

k −
2

3
Λ4

)
= 0 , (5.42)

from which it follows that m2
k = 2

3Λ4. We see that for a flat Minkowski background, i.e. Λ4 = 0,

the constant wavefunction Φ0 corresponds to a massless 4d graviton, which no longer exists if

Λ4 ̸= 0.9 In what follows we assume a Minkowski background and set Λ4 = 0.

Defining also Êk = ϵ2/3c1/4mk the effective potential can be written as

Veff = − Hτc(τ)

6K(τ)2
Ê2

k +
(G1/2)′′

G1/2
, (5.43)

which we can think of as a family of potentials, each member of which is determined by a choice

of τc and is only a function of τ (Fig. 5.3). There is no analytical solution for the corresponding

Schrödinger equations — it can either be solved numerically (Section 5.2.4) or we can consider

8These s-orbital modes will be the lightest ones [280, 281]. The isometries in the KS throat imply that KK
modes carry conserved angular momenta, which can have interesting cosmological consequences as explored in
[281–283]. Although gluing to a compact CY breaks the isometries, as the wavefunctions of the KK modes are
localised at the tip (or even vanish in the bulk), the effects of this isometry breaking should be small [281].

9Interestingly, if we choose a de Sitter background the zero mode mass matches the Higuchi bound [284, 285].
Note that this is consistent with current constraints on the graviton mass [286].
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Figure 5.3: Effective potential Veff corresponding to the first mode for different choices of τc (left) and
for the first 3 modes when τc = 9 (right), both with T = 10.

approximations to this potential (Section 5.2.5).

5.2.2 Boundary conditions

In order to obtain the wavefunctions, we must also impose boundary conditions, which we choose

as follows.

1. The wavefunction is finite at τ = 0, i.e.

lim
τ→0

Φk(τ) <∞ =⇒ lim
τ→0

Bk(τ) = 0 ;

2. The wavefunctions vanish as they approach the CY3 region, i.e.

Φk(T ) = 0 =⇒ Bk(T ) = 0 .

As we discussed below (5.34), the boundary condition at τ = T is useful if one wants to re-

main agnostic with respect to the geometry of the bulk beyond the conifold. Moreover, it is

a well-motivated approximation thanks to the following arguments. Locally, a vanishing10,11

wavefunction in the bulk is certainly a solution to the KK wave equations (5.34) irrespective of

the metric. With limited knowledge of the compact CY region and gluing, we could not exclude

a global obstruction to such a solution. However, the localisation of the KK modes at the tip

of the throat where they minimise their energy à la Randall-Sundrum [57, 58] suggests that the

solution is a good approximation, at least in the warped case. Moreover, it connects to the in-

finite throat limit (τc → T →∞), for which the wavefunction must decay towards zero in order

to be normalisable. Note that in the unwarped case an alternative boundary condition would

10Note that a non-vanishing constant wavefunction would not be a solution to equation (5.34) for the massive
modes in the tower.

11Although other KK modes will be present that are not suppressed in the bulk, we would expect these to be
heavier than the modes considered here [170].
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be ∂τΦk(T ) = 0, motivated e.g. by the conifold ending on an O3-plane [280]. We would not

expect the mass spectrum to change qualitatively and the precise predictions could be worked

out easily following the same methods used here. However, we choose to explore the boundary

condition Φk(T ) = 0 also for the unwarped case as it clearly demonstrates that the localisation

of the wavefunctions in the warped case is a consequence of the warping and not the boundary

conditions.

5.2.3 Normalisation of the wavefunctions

Although the normalisation of the eigenfunctions Φk(y) does not affect the propagation of each

mode, it does encode the strength of their gravitational couplings. In order to fix the normalisa-

tion, we canonically normalise the kinetic terms of each mode (even though the kinetic term for

hµν is a sum of terms involving the different possible index contractions, it is sufficient to look at

one such term; the full kinetic term can be conveniently encoded in the so-called Lichnerowicz

operator [287]),

S =
1

2κ2

∫
d10x
√
−G R10

=
1

2κ2

∫
d4x
√
−g4 c3/2

∫
d6y
√
g6 HR4 + ...

= S̄ +
1

2κ2

∫
d4x
√
−g4

{
c3/2

∫
d6y
√
g6H ∇ρhµν∇ρhµν

}
+ ...

= S̄ +

∫
d4x
√
−g4

{
1

2
∇ρh

k
µν∇ρhk

′,µν
(
c3/2

∫
d6y
√
g6 H Φk(y)Φk′(y)

)
+ ...

}
. (5.44)

In the last line, we make the usual field redefinition hµν → κ hµν , which gives the standard mass

dimension of 4 for a 10d bosonic field hµν (notice that this means δgµν = κ hµν =
√
Vw

MPl
hµν), and

substitute the decomposition (5.31), with an implicit sum in the indices k and k′. Being the

eigenmodes of the operator OM, the functions Φk ≡ Φk(y
p) form an orthogonal basis12 under

the inner product weighted by H,∫
d6y
√
g6 H Φk(y)Φk′(y) = δkk′ . (5.45)

In order to have canonical kinetic terms for each spin-2 mode in 4d, hkµν , we include a normali-

sation constant in each wavefunction Φk = N(k)Φ̃k, with N(k) defined as

N−2
(k) = c3/2

∫
d6y
√
g6 H |Φ̃k(y)|2 , (5.46)

12One can show this by noting that (5.38) is a regular Sturm-Liouville problem, which guarantees (i) real eigen-
values, (ii) a unique (up to normalisation) eigenfunction for each eigenvalue and (iii) normalised eigenfunctions
which form an orthonormal basis under the inner product

∫ √
g6 H Φk(y)Φk′(y). This is equivalent to verifying

that the Hamiltonian for the corresponding Schrödinger equation is hermitian.
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where Φ̃k(y) = G(τ)−1/2Bk(τ) is the wavefunction obtained by solving (5.38). This gives a

canonically normalised action (at this order in perturbations)

S =

∫
d4x
√
−g4

{
1

2
∇ρh

k
µν∇ρhµνk −

1

2
m2

kh
k
µνh

µν
k

}
, (5.47)

from which the decoupled equations of motion for each hkµν could be derived,

24h
k
µν −m2

kh
k
µν = 0 . (5.48)

This is an infinite set of equations describing spin-2 modes of mass mk in 4d. For the zero mode,

Φ̃0(τ) = const, which we can set to one by absorbing the constant in the normalisation N(0),

Φ0(τ) = N(0)Φ̃0(τ) = N(0) , (5.49)

so that we have

N−2
(0) = c3/2

∫
d6y
√
g6 H = Vw . (5.50)

Hence the graviton zero mode wavefunction is simply

Φ0(τ) =
1√
Vw

, (5.51)

constant over the compact dimensions — the graviton zero mode does not localise.

We are interested in the contributions from higher modes with mk ̸=0 ̸= 0. For these modes we

find

N−2
(k) = c3/2

∫
d6y
√
g6 H|Φ̃k(y)|2 (5.52)

=
c3/2ϵ4

25 · 3

(∫ ∏
i

gi

)∫ T

0
dτ

sinh2(τ)

G(τ)
Hτc(τ)|Bk(τ)|2 (5.53)

=
2π3

3
c3/2ϵ4N−2

(k) (τc, T ) , (5.54)

where we used
∫ ∏

i g
i = 64π3 and the fact that Φ̃k = 0 in the CY3, and with τc given by (5.35).

We also define N(k)(τc, T ) as

N−2
(k) (τc, T ) ≡

∫ T

0
dτ
Hτc(τ)

K(τ)2
|Bk(τ)|2 , (5.55)

which only depends on the pair (τc, T ), the known functions I(τ), G(τ) and the wavefunctions

Bk(τ). Note that one can easily take the limits τc → 0 (unwarped conifold) and τc → T (fully
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warped conifold). In particular,

N−2
(k) ≈

1

I(τc)

∫ τc

0
dτ

I(τ)

K(τ)2
|Bk(τ)|2 +

∫ T

τc

dτ
|Bk(τ)|2

K(τ)2
, (5.56)

where we split the integral between the warped throat (τ < τc) and the unwarped portion of

the deformed conifold (τc < τ < T ).

As we mentioned before, the Schrödinger equation (5.38) that determines the masses and wave-

functions of the modes hkµν does not admit an exact analytical solution. Therefore one can

either solve it numerically or study some analytical approximations in order to get some in-

sight into the behaviour of the solutions. We will start by presenting some numerical solutions,

which will qualitatively set our expectations for the different limits, and will then give analytical

approximations for the fully warped and unwarped conifold limits.

5.2.4 Numerical solutions

We can solve (5.38) with the effective potential (5.43) and the boundary conditions chosen above,

for different values of (τc, T ), which may be interpreted as the strength of the warping, given by

τc, and the proportion of the conifold that is warped, given by τc/T .

In Fig. 5.4 we plot the eigenvalues Êk as a function of the ratio τc/T for T = 10 and k = 1, 2, 3

(left), and for T = 150 and k = 1 (right). We can see from the left plot that the effect of the

warping only starts influencing the masses once the warped throat dominates over the (unwarped

conifold) bulk τc/T ≳ 1/2, with higher modes starting to feel the effects of warping for smaller

values τc/T . In the right plot we clearly identify the dominant behaviour of the masses in the

different regimes (throat dominated vs bulk dominated) — they are suppressed by the warping

when the throat dominates and by the volume when the bulk dominates.

In Fig. 5.5 we plot the wavefunctions Φ̃k(τ) prior to normalisation (left) and the normalised

wavefunctions Φk(τ) (right) for the first three modes (k = 1, 2, 3), when T = 30 and τc = 0, 15, 30,

representing the unwarped, partially warped and fully warped regimes, respectively. Without

the warping, τc = 0, the wavefunctions will spread throughout the internal space, much like

the zero mode, only being forced to go to zero by our choice of boundary conditions. When we

increase the warping by setting τc/T = 1/2, we see the wavefunction starting to localise near the

tip, but reaching a plateau in the bulk — this is a transition between a warping dominated and

a bulk dominated regime. When the warping completely dominates, the wavefunctions localise

at the tip and quickly decrease as they approach the bulk. This illustrates how the balance

between a strong warping and a large bulk may influence the localisation of the modes, i.e. the

profile of their wavefunctions — this is reflected in the couplings to other modes, as we discuss

in Section 5.3. Finally, we see how the normalisation affects the wavefunctions, with higher

modes having larger amplitudes than lower modes — this will translate into stronger couplings
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Figure 5.4: (Left) Eigenvalues Êk for the first 3 modes obtained by solving the Schrödinger equation
numerically with Veff (5.43), for fixed T = 10 and different values of τc; (Right) Eigenvalues Ê1 for the
first excited mode obtained by solving the Schrödinger equation numerically with Veff (5.43), for fixed
T = 150 and different values of τc.

for higher modes, which was also found in [276]. We also see that the wavefunction amplitudes

will be smaller for weaker warping and larger volumes, which can be understood by noting that

in the absence of warping the wavefunctions will spread through a larger region and therefore

have smaller overall amplitudes — this translates into weaker couplings.

5.2.5 Analytical approximation

Now that we have a qualitative expectation of what the solutions should look like in different

regimes, let us study some analytical approximations. In order to find an approximate analytical

solution for the Schrödinger equation (5.38), we split the potential into two pieces, the warped

region when τ < τc and the unwarped region when τ > τc, and approximate each region using

the corresponding dominant term in Hτc(τ) (5.36). The asymptotic behaviours of the functions

appearing in Veff (5.43), as τ →∞, are given by

I(τ)

K(τ)2
→ 3

2
τe−2τ/3 , (5.57)

(G1/2)′′

G1/2
→ 4

9
− 16

3
τe−2τ (5.58)

and K(τ) → 21/3e−τ/3. Notice that the subleading term in the second line goes as τ(e−2τ/3)3,

which is subdominant compared to τe−2τ/3 in the first line. In this limit the effective potential

becomes

Veff
τ→∞
≈ Vasym ≡


−1

4

Ê2
k

I(τc)
τe−2τ/3 +

4

9
, τ < τc

− 1

6 · 22/3
Ê2

ke
2τ/3 +

4

9
τc < τ < T

(5.59)

We plot Vasym in Fig. 5.6 together with the exact form of Veff . We can see that this is a good
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Figure 5.5: Plot of Φ̃k(τ) (left) and Φk(τ) (right) with k = 1, 2, 3, for different values of τc = 0, 15, 30
and fixed T = 30. When τc = 0 (unwarped case) the wavefunctions spread as much as possible (given
our boundary conditions) through the conifold, being constant for most of values of τ , and when τc = T
they localise at the tip τ = 0. Wavefunctions for modes with higher k always have a larger amplitude
than lower modes.

approximation for large τ , as expected, but it behaves rather differently at small τ . This can be

problematic since we are dealing with an eigenvalue problem, which depends crucially on this

behaviour. For small τ , τe−
2τ
3 ∼ τ , so that (5.59) will approach the positive constant 4/9 as

τ → 0. If instead we have only the exponential behaviour, the negative contribution at small τ

remains, which means we can better approximate this regime (Fig. 5.6). For larger τ , however,

this makes the approximation less accurate. We can modify this approximation by including a

couple of free parameters, as suggested in [280], to obtain a Vapprox that looks more like Veff at
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Figure 5.6: Effective potential Veff (5.43) for the first excited mode, obtained numerically for τc =
15, T = 25, together with Vasym (5.59) and Vapprox (5.60) for the best fit values (a, ν) = (1.96, 2.45). We
see that for small τ , Vasym this behaves rather differently from Veff . Using Vapprox (5.60) we can better
approximate this regime. Notice that a better fit could be achieved by introducing further terms, but
this would not allow for an analytical solution, which is the main goal of this approximation.

small τ . Using the notation in [280], we write the potential as

Vapprox ≡

(−λ21e−
2
ν

2τ
3 + 4)/9 , τ < τc

(−λ22e
2τ
3 + 4)/9 , τc < τ < T

(5.60)

where λ1 = aÊk/I(τc)
1/2, with free parameters a and ν, and λ2 = λ1e

−(1+ 2
ν )

τc
3 such that Vapprox

is continuous at τc (in the absence of the throat region, we would have λ2 =
31/2

25/6
Êk, which is what

we use in the limit τc → 0). These free parameters should be thought of as a compensation for

changing the asymptotic (τ →∞) form of the potential. They should be chosen by comparing

the analytical solution obtained with Vapprox (5.60) with the numerical result obtained with Veff

(5.43).

The wavefunction will have a profile Φ
(1)
k (τ) inside the throat (τ < τc), a profile Φ

(2)
k in the

unwarped piece of the conifold (τc < τ < T ), and will vanish Φ
(3)
k (τ) = 0 in the CY3 (τ > T ).

We therefore choose the following boundary conditions

1. The wavefunction is finite at τ = 0, i.e.

lim
τ→0

Φ
(1)
k (τ) <∞ =⇒ lim

τ→0
B

(1)
k (τ) = 0 ;

2. The wavefunctions match at τ = τc, i.e.

Φ
(1)
k (τc) = Φ

(2)
k (τc) and ∂τΦ

(1)
k (τc) = ∂τΦ

(2)
k (τc) ;
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3. The wavefunctions vanish as they approach the CY3 region, i.e. Φ
(2)
k (T ) = 0.

The Schrödinger equation in the warped region is

(
B

(1)
k

)′′
+

[
λ21
9
e−4τ/3ν − 4

9

]
B

(1)
k = 0 , (5.61)

whose solution is a linear combination of Bessel functions

B
(1)
k (τ) = C1Jν

(
νλ1
2
e−2τ/3ν

)
+D1Yν

(
νλ1
2
e−2τ/3ν

)
, 0 ≤ τ ≤ τc , (5.62)

and the Schrödinger equation in the unwarped region is

(
B

(2)
k

)′′
+

[
λ22
9
e2τ/3 − 4

9

]
B

(2)
k = 0 , (5.63)

with solution

B
(2)
k (τ) = C2J2

(
λ2e

τ/3
)
+D2Y2

(
λ2e

τ/3
)
, τc < τ ≤ T , (5.64)

where C1,2, D1,2 are integration constants that are fixed using the boundary conditions 1–3 as

follows

1. The wavefunction is finite at τ = 0 (hence we use B(1)(τ)),

C1Jν

(
νλ1
2

)
+D1Yν

(
νλ1
2

)
= 0 =⇒ D1 = −

Jν(x1)

Yν(x1)
C1 , (5.65)

with x1 =
νλ1
2 .

2. The wavefunctions match at τ = τc. The first condition Φ
(1)
k (τc) = Φ

(2)
k (τc) =⇒

B
(1)
k (τc) = B

(2)
k (τc) (cf. (5.37) with trivial angular dependence), which gives

C1Jν(x2) +D1Yν(x2) = C2J2(x2) +D2Y2(x2) , (5.66)

with x2 =
νλ1
2 e−2τc/3ν . The second condition ∂τΦ

(1)
k (τc) = ∂τΦ

(2)
k (τc), after using

∂τΦ
(i)(τ) = −1

2

G′(τ)

G(τ)
Φ(i)(τ) +G(τ)−1/2∂τB

(i)(τ) , i = 1, 2 , (5.67)

and Φ
(1)
k (τc) = Φ

(2)
k (τc), implies ∂τB

(1)(τc) = ∂τB
(2)(τc). Moreover, we can use the relation

Z ′
α(x) =

α

x
Zα(x)− Zα+1(x) , (5.68)

for a Bessel function Zα(x), to rewrite ∂τB
(1)(τc) = ∂τB

(2)(τc) as

λ1{C1Jν+1(x2) +D1Jν+1(x2)} = −λ2{C2J3(x2) +D2Y3(x2)} . (5.69)
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3. The wavefunctions vanish at τ = T , i.e. Φ
(2)
k (T ) = 0, which implies

C2J2(λ2e
T/3) +D2Y2(λ2e

T/3) = 0 =⇒ D2 = −
J2(x3)

Y2(x3)
C2 , (5.70)

with x3 = λ2e
T/3.

Putting all these together, we find

D1 = −
Jν(x1)

Yν(x1)
C1 (5.71)

C2 =
Y2(x3)

Yν(x1)

Jν(x2)Yν(x1)− Jν(x1)Yν(x2)
J2(x2)Y2(x3)− J2(x3)Y2(x2)

C1 , (5.72)

D2 = −
J2(x3)

Y2(x3)

Y2(x3)

Yν(x1)

Jν(x2)Yν(x1)− Jν(x1)Yν(x2)
J2(x2)Y2(x3)− J2(x3)Y2(x2)

C1 , (5.73)

as well as the quantisation condition (cf. [280])

e(1+
2
ν )

τc
3
J2(x2)Y2(x3)− J2(x3)Y2(x2)
Jν(x2)Yν(x1)− Jν(x1)Yν(x2)

=
J2(x3)Y3(x2)− J3(x2)Y2(x3)

Jν+1(x2)Yν(x1)− Jν(x1)Yν+1(x2)
. (5.74)

Notice that this is an equation for λ1 = aÊk depending on the choices of τc and T . Once more,

this cannot be solved analytically. Instead, we can look at the different limits τc → T (fully

warped conifold) and τc → 0 (unwarped conifold) for which there are analytical solutions.

Fully warped conifold (τc → T )

Let us start by exploring the limit τc → T . This corresponds to a fully warped deformed conifold,

so that the whole region where the wavefunctions are not forced to vanish is significantly warped.

In practice, one should think of this as the limiting case of a warped throat that dominates over

the bulk contribution (cf. Fig. 5.4).

In this limit x2 → x3, so that J2(x2)Y2(x3)− J2(x3)Y2(x2)→ 0 which, together with the Bessel

function property J2(x3)Y3(x3)− J3(x3)Y2(x3) = − 2
πx2
̸= 0, implies

Jν(x2)Yν(x1)− Jν(x1)Yν(x2)
!
= 0 =⇒ Jν

(
νλ1
2

)
= 0 , (5.75)

where we assume x2 ≪ 1. For large z, Jν(z) can be approximated by

Jν(z) ∼
√

2

πz
cos
(
z − νπ

2
− π

4

)
, (5.76)

whose roots are

z = kπ +

(
ν − 1

2

)
π

2
. (5.77)
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Hence, for z = νλ1
2 and recalling the definitions of λ1 and Êk, we have

Êk = I(τc)
1/2
{2π
aν
k +

(
ν − 1

2

)
π

aν

}
, (5.78)

or in terms of the masses mk,

mk = H
−1/4
tip

Ms√
gsM

·
{2π
aν
k +

(
ν − 1

2

)
π

aν

}
. (5.79)

We can fit to a numerical solution with τc = T ≫ 1 to find the best values of a and ν for this

analytical approximation,13 which gives ν ∼ 2.45 and a ∼ 1.96. Notice that the masses (5.79)

are not only suppressed by the warping, as we would expect for a warped throat, but also depend

on the characteristic length scale at the tip of the throat RS3 ≈
√
α′gsM (3.110), setting the

KK scale associated with this tower (cf. (D.16)),

mKK ≡ m1 ≈ H−1/4
tip

Ms√
gsM

. (5.80)

The quantisation condition also implies D1 ≈ 0, so that in this limit the wavefunction takes the

simpler form

Φk(τ) ≈
N(k)

(sinh(2τ)− 2τ)1/3
Jν

(
νλ1
2
e−2τ/3ν

)
, (5.81)

which peaks near the tip of the throat and quickly decays towards the bulk (Fig. 5.7), in good

agreement with the corresponding regime in our numerical solutions (bottom plots in Fig. 5.5).

Notice that, while the wavefunction profiles constitute a local property of the solution, i.e. the

way hkµν is weighted by Φk(y) (5.31) depends on the position in the extra dimensions, the mode

masses only depend on the strength of the warping and are not influenced by the internal space

coordinates. Since the peak near the tip of the throat corresponds to a peak in the coupling

strength of these modes, as we shall see in the next section, we say that the warped throat

localises the fields at the tip and warps down their masses.

Unwarped conifold (τc → 0)

The opposite limit, τc → 0, corresponds to a fully unwarped conifold. Again, we should think

of this as the limiting case of a warped throat which is dominated by a large bulk (cf. Fig. 5.4).

In this limit x2 → x1, so that Jν(x2)Yν(x1) − Jν(x1)Yν(x2) → 0. Together with the Bessel

function property Jν+1(x1)Yν(x1)− Jν(x1)Yν+1(x1) =
2

πx1
̸= 0, this implies

J2(x1)Y2(x3)− J2(x3)Y2(x1)
!
= 0 =⇒ J2(λ2e

T/3) = 0 , (5.82)

13The difference between our result and the one in [280] comes from an extra factor of 21/3 in our Êk.
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Figure 5.7: Wavefunctions obtained analytically in the limits τc → T (5.81) and τc → 0, with T = 25.
Notice the localisation near the tip in the limit τc → T and the spreading of the wavefunctions in the
limit τc → 0.

where we assume x1 ≪ 1. Using the same approximation for Jν(z) (5.76), these roots are given

approximately by

z = kπ +
3π

4
. (5.83)

Hence, for z = λ2e
T/3 and recalling that in the τc → 0 limit we have λ2 =

31/2

25/6
Êk, we find

Êk =
25/6

31/2
e−T/3

{
πk +

3π

4

}
, (5.84)

or in terms of the masses mk,

mk =
1

Rcon

{
πk +

3π

4

}
, (5.85)

where Rcon = c1/4rT is the physical size of the conifold, with rT the value of the radial coordinate

r = 31/2

25/6
ϵ2/3eτ/3 at which the conifold meets the CY3, i.e. at τ = T . Notice that the masses

are now suppressed by the size of the conifold, Rcon, which is the overall volume of the compact

space felt by these modes (recall that their wavefunctions vanish in the CY3 portion) — this

corresponds to the usual definition ofmKK fixed by the characteristic scale of the compact space.

This quantisation condition also implies D2 ≈ 0, so that in this limit the wavefunctions take the

form14

Φk(τ) ≈
N(k)

(sinh(2τ)− 2τ)1/3
J2

(
λ2e

τ/3
)
. (5.86)

In Fig. 5.7 we plot the approximate wavefunctions in the two limits described above. We can

clearly see the localisation near the tip in the limit τc → T and the spreading of the wavefunctions

in the limit τc → 0, as one would expect from the physical interpretation of the two regimes.

These should be compared with the wavefunctions obtained numerically (Fig. 5.5).

Now that we have a full description of the tower of spin-2 KK modes, which are the 4d mani-

festation of the extra dimensions, we may study its effects on 4d gravitational interactions. As

14In this limit, it is actually important to keep the D2 term in the wavefunction at small values of τ , otherwise
it will not be regular at τ = 0.
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we mentioned at the beginning of the chapter, an interesting application is to the prediction of

gravitational wave signals of these warped extra dimensions. We will have more to say about

this in section 5.4. As a starting point, we will study the new interactions mediated by the mas-

sive modes in the KK tower, which contribute at low-energies as corrections to the Newtonian

potential between two masses. This will allow us to introduce and explore several important

features that will also be useful in the study of GWs, and compare quantities derived from this

string compactification with current observational constrains on fifth forces.

5.3 Fifth forces

In Type IIB constructions, the Standard Model degrees of freedom typically arise from open

string states which are confined on some intersection of D-branes. As a consequence, these states

are not allowed to travel in all directions and directly probe the compact space, but will rather

be localised in some specific region. Depending on its position, the coupling between Standard

Model particles and the tower of KK states that we studied in the previous section may be either

suppressed or enhanced. Let us see how this works in practice.

We will consider the corrections to the Newtonian gravitational potential between two point

masses living on a (3+1)-dimensional brane sitting somewhere along the deformed conifold

region of the compact space and compare with experimental and observational constraints. In

Section 5.3.1 we derive the modifications to the Newtonian potential induced by the KK tower

of spin-2 modes, which can be parameterised by a Yukawa-type interaction with a single-massive

field and parameters (α, λ). In Section 5.3.2, we relate these phenomenological parameters to

the parameters of the Klebanov-Strassler solution. By fixing the warped-down scale at the

brane to be ∼ TeV scale, and bearing in mind the need for D3-tadpole cancellation (3.85), we

explore the predictions for (α, λ) for a range of string parameters and compare with current

constraints. Then, in Sections 5.3.3 and 5.3.4, we restrict to the fully warped and unwarped

cases, respectively, where we can obtain clear theoretical bounds on the (α, λ) parameter space

depending on where the brane lies along the conifold.

5.3.1 Modified Newtonian potential

In order to study the effects of the KK tower of spin-2 modes obtained in Section 5.2, we picture

a braneworld scenario, with the Standard Model fields localised on a (3+1)-dimensional brane

(stack/intersection) at ybrane in the compact space. We want to consider the corrections to

the Newtonian potential between masses living on the brane due to the presence of the infinite

tower of massive KK gravitons. The (Fourier transformed) potential is obtained by looking at

a scattering diagram where two particles interact through the exchange of a virtual graviton, in

the limit where the energy of the graviton goes to zero [288], For this we need both the graviton
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propagator and the interactions with matter on the brane. Using the decomposition (5.31) and

normalising the wavefunctions such that (5.45) is satisfied, each propagator is simply the 4d

propagator for a spin-2 field. Assuming the spacetime is approximatly flat Minkowski, we have

[289]

D
(4,mk)
µναβ (x, x′) =

∫
d4q

(2π)4

P
(mk)
µναβ(q)

q2 −m2
k + iε

e−iq·(x−x′) , (5.87)

where D
(4,mk)
µναβ (x, x′) is the 4d propagator of the kth mode (with mass mk) and with the polari-

sation tensor

P
(m=0)
µναβ (q) =

1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ) , (5.88)

P
(m>0)
µναβ (q) =

1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ)−

1

2m2
(ηµαqνqβ + ηµβqνqα + ηµβqµqα)

+
1

6

(
ηµν +

2

m2
qµqν

)(
ηαβ +

2

m2
qαqβ

)
. (5.89)

We now consider the brane action, which contains the fields living in the world-volume of the

brane at yb and their interactions with the graviton,

Sbrane =

∫
d4x
√
−g LM , (5.90)

where gµν is the pullback of the metric GMN onto the (3+1)-dimensional brane (cf. (2.92))

gµν = GMN
∂XM

∂xµ
∂XN

∂xν
, (5.91)

for 10d coordinates XM and 4d coordinates on the brane ξµ = xµ, which we align with the 4d

coordinates xµ of (3.127). Recalling that the brane positions can fluctuate, we have ∂µX
M =

δMµ +(2πα′)∂µϕ
M , with brane fluctuations ϕM (xµ) (2.93), which gives for the pulled-back metric

gµν = Gµν + 2(2πα′)GM(µ∂ν)ϕ
M + (2πα′)2GMN∂µϕ

M∂νϕ
N . (5.92)

We may therefore expand
√
−g in the action15 and express it in terms of GMN ,

Sbrane =

∫
d4x
√
−detGµν LM

(
1 + (2πα′)G µ

M ∂µϕ
M +

1

2
(2πα′)2GMN∂µϕ

M∂µϕN
)
. (5.93)

We will neglect the fluctuations of the brane and study the interactions between graviton KK

15We use the known result det(1 + ϵA) = 1 + ϵTr(A) +O(()ϵ2), when ϵ≪ 1.
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modes and matter fields only, so that the action is simply

Sbrane =

∫
d4x
√
−detGµν LM . (5.94)

When we perturb the bulk metric GMN → ḠMN + δGMN , the action becomes

Sbrane = S̄brane −
1

2

∫
d4x
√
−det Ḡµν T̃

µνδGµν , (5.95)

where T̃µν is the energy-momentum tensor with respect to Gµν . Using the background metric

(3.127) and the fluctuations in terms of (canonically normalised) perturbations of gµν , with

δGµν = κ H−1/2 hµν ,

Sbrane = S̄brane −
1

2

∫
d4x
√
−det gµν

∑
k

(
κ Φk(yb)

)
Tµνhkµν , (5.96)

where Tµν is now defined with respect to gµν ,

T̃µν = − 2√
−det gµν

δ(
√
−detGµνLM )

δgµν
H(yb)

3/2 = TµνH(yb)
3/2 . (5.97)

From this action we conclude that the kth mode couples to matter with a coupling (κ Φk(yb))

that depends on the 10d gravitational coupling κ =
√
Vw/MPl and its wavefunction evaluated at

the position of the brane yb. For the zero mode, with constant wavefunction (5.51), the coupling

is therefore the usual 1/MPl no matter where in the compact space the brane is located.

Using S̄brane, we can also see how the warping affects the energy scales on the braneworld theory.

Taking LM to include a single scalar field φ with a Higgs-like potential [57],

S̄brane =

∫
d4x
√
−detGµν {Gµν(Dµφ)

†(Dνφ)− λ(|φ|2 − v20)2}

=

∫
d4x
√
−det gµν {H(yb)

−1/2gµν(Dµφ)
†(Dνφ)− λ(H(yb)

−1/2|φ|2 −H(yb)
−1/2v20)

2}

→
∫
d4x
√
−det gµν {gµν(Dµφ)

†(Dνφ)− λ(|φ|2 − v2)2} , (5.98)

with the field redefinition φ→ H(yb)
1/4φ, so that the field is canonically normalised. The mass

scales are then warped down as v = H(yb)
−1/4v0, which again depends on the position of the

brane in the compact space — the biggest hierarchy is achieved by placing the brane at the tip

of the throat (yb = 0) where the warping is maximised.

Putting everything together, the gravitational potential in momentum space is given by

V (q) =
Vw
M2

Pl

∑
k

|Φk(yb)|2
Tµν
1 P

(mk)
µναβT

αβ
2

|q2 −m2|

∣∣∣∣∣
q0→0

, (5.99)
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where Tµν
1 = m1δ

µ
0 δ

ν
0 and Tαβ

2 = m2δ
α
0 δ

β
0 are the energy-momentum tensors of two point particles

of masses m1 and m2 at rest, so that only P
(m)
0000 is relevant, which in the q0 → 0 limit simply

gives

P
(m)
0000(q)

1
2 m = 0 ,

2
3 m > 0 .

(5.100)

Inserting this in the potential, we obtain

V (q) =
m1m2Vw
M2

P

{
1

2

|Φ0(yb)|2

q2
+

2

3

∑
k>0

|Φk(yb)|2

q2 +m2
k

}
, (5.101)

or in position space

V (r) = GN
m1m2

r
Vw

{
|Φ0(yb)|2 +

4

3

∑
k>0

|Φk(yb)|2e−mkr

}
, (5.102)

where we usedM−2
Pl = 8πGN , together with the factor of 4π coming from the Fourier transform,

to write the potential in terms of Newton’s constant GN . The first term gives the contribution of

the massless graviton, which is independent of the position of the brane due to (5.51) and repro-

duces the Newtonian gravitational potential. The second term contains the contribution from

the tower of massive KK-modes, weighed by their respective wavefunctions and suppressed by

the exponential e−mkr, which corrects the Newtonian potential and becomes negligible for large

distances and larger KK masses. The range of these new interactions is therefore determined by

the masses of the KK modes.

Using the zero mode wavefunction (5.51) we have

V (r) = GN
m1m2

r

{
1 +

4

3
Vw
∑
k>0

|Φk(yb)|2e−mkr

}
. (5.103)

Figure 5.8 shows the experimental bounds on deviations from the Newtonian gravitational po-

tential — from laboratory, geophysical, astrophysical and collider constraints16 [263, 292] —

parametrised as V (r) = GN
m1m2

r (1 + δV ) with

δV = α e−r/λ , (5.104)

where α is a dimensionless parameter describing the strength of the interaction and λ has

dimensions of length and is given in meters (m). This parametrisation arises from considering

the correction coming from a Yukawa-type interaction involving a single massive field, which

takes the exponential form above. Since we have an infinite tower of massive scalars, we will

have an infinite sum of such Yukawa terms. We must, however, either keep only the first mode,

which is the dominant contribution due to the exponential suppression for larger masses, or

16See [290, 291] for cosmological constraints from overclosure and the diffuse cosmic gamma ray background,
which however assume Planckian couplings with the KK tower.
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Figure 5.8: Experimental constraints on the parameters α (coupling strength) and λ (range) of a
Yukawa-type interaction, with the shaded area indicating the excluded region of parameter space at 95%
confidence level. Figure adapted from [263, 292]. See [263, 292] for details and further references.

rewrite the sum of Yukawa terms in the form of δV given above if we want to compare our

predictions with the experimental constraints.

After exploring the general case, we will consider in detail the fully warped (τc → T ) and

unwarped (τc → 0) limits, with the brane located at different points in the compact space —

either at the tip (τ = 0) or away from the tip (τ ≫ 1). In these limits we are able to exclude

large portions of parameter space by taking into account the usual control requirements in string

compactifications: gs < 1, gsM > 1, and well-motivated upper bounds on the flux number M

coming from the flux contribution to the D3-tadpole.

5.3.2 General case

As discussed in Section 5.2.4, solving numerically the Schrödinger equation (5.38) with the

potential17 (5.43) for a given choice of (τc, T ) we find a set (Êk, Bk(τ)) of eigenvalues and

eigenfunctions. We then substitute

Φk(τ) = N(k)Φ̃k(τ) , (5.105)

N−2
(k) =

2π3

3
c3/2ϵ4N−2

(k) (τc, T ) , (5.106)

G(τ) = (sinh(2τ)− 2τ)2/3 , (5.107)

mk = Êk/(ϵ
2/3c1/4) , (5.108)

17With trivial angular dependence, i.e. s-orbital.
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with N−2
(k) (τc, T ) as defined in (5.55) and Φ̃k(τ) = G(τ)−1/2Bk(τ), into (5.103) to obtain

δV =
2

π3
Vw

c3/2ϵ4

∑
k>0

N 2
(k)(τc, T )|Φ̃k(τb)|2e

−Êk
r

ϵ2/3c1/4 . (5.109)

Defining A(τb, τc, T ) and µ(τc, T ) such that

A(τb, τc, T )e
−µ(τc,T ) r

ϵ2/3c1/4 ≡
N∑
k>0

N 2
(k)(τc, T )|Φ̃k(τb)|2e

−Êk
r

ϵ2/3c1/4 , (5.110)

we can write the parameters (α, λ) in (5.104) as

α =
2

π3
Vw

c3/2ϵ4
A(τb, τc, T ) λ−1 =

µ(τc, T )

ϵ2/3c1/4
. (5.111)

It will be useful to replace Vw with the hierarchy between the brane and the bulk, which has a

direct physical interpretation. From (5.98) we know that the hierarchy between the fundamental

scale and the world-volume theory on the brane is given by the warp factor (5.36) evaluated at

the position of the brane,

Hτc(τb) = 1 +
I(τb)

I(τc)
. (5.112)

For string theory, the natural scale in the UV is the string scale ms. If Mb is the scale on the

brane, using (3.129), we can write it in terms of the known Planck scale MPl,

Hτc(τb)
−1/4 =

v

v0
=
Mb

ms
=

Mb

MPl

√
4πVw
gs

, (5.113)

where MPl = 2.14 × 1018 GeV. This implies that the hierarchy between the known scales Mb

and MPl,

H ≡ Mb

MPl
= Hτc(τb)

−1/4 gs√
4πVw

, (5.114)

depends on the volume and string coupling, as well as the warp factor Hτc(τb). If we choose

Mb = 1 TeV, trying to solve the hierarchy problem, the hierarchy takes the value H ∼ 10−15.

Although we will use this as a concrete example in what follows, one could consider more general

cases where either the hierarchy problem is not explained by the warping or the UV scale is not

necessarily the string scale ms. Our analysis can be easily adapted to these cases.

Using this in (5.111), we find

α =
(2π)2

(gsM)3
2A(τb, τc, T )

I(τc)3/2
Hτc(τb)

−1/2 g
2
s

H2
, (5.115a)

λ−1 =
H
21/6

2π√
gsM

Hτc(τb)
1/4

I(τc)1/4
µ(τc, T )

lp
. (5.115b)

The free parameters in (5.115) are six in total (τc, T, gs,M,H, τb). We should remember that
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M τb Vw mbulk
KK H(τb)

−1/4mbulk
KK mKK MK

A1 20
0 9.6× 1016 600 3× 10−3 14 755

A2 75 7.3 10382

A3 20 15 3.0× 1020 3 8× 10−4 0.253 806

Table 5.1: All points Ai have τc = T = 40 (corresponding to the fully warped conifold) and fixed
H = 10−15, gs = 0.2. Masses are given in TeV and volumes are in string units. See main text for
discussion.

H is keeping the dependence on Vw, which is fully determined by the choice of (τc, τb, gs,H)
through (5.114) — one should check that a choice of these parameters is consistent with the

supergravity requirement Vw ≫ 1. Note also that τc is determined by the deformation modulus

|z| = ϵ2/l3s , which means we can think of a choice of τc as representing a choice of |z| (which
in turn depends on the flux parameter K via z ∼ e

− 2πK
gsM [94, 142, 148, 166, 168, 172]). We

will fix the hierarchy H = 10−15 as explained above and give two examples for the position of

the brane τb, which leaves four free parameters. In principle, the position of the brane should

also be determined dynamically, since it becomes a modulus that experiences a potential due to

several different ingredients [293–295]. In this work we assume that the position can be fixed

to a certain value due to the balance between these ingredients, without addressing the issue

explicitly.

Notice that generically

Vw ≈ Vbulk + Vconifold , (5.116)

so that the value we end up fixing for Vw includes both contributions. On the other hand, we

are choosing T independently of Vw, which means that in general Vw ≥ Vconifold. Due to our

boundary conditions, the scale mKK associated with our graviton KK tower will not feel the

Vbulk contribution and thus it will be different from the scale mbulk
KK one would find from the

size of the whole compact space (D.15). Moreover, the characteristic size setting this scale will

also depend on the warping regime, as we explicitly saw in the previous section. Therefore, in

the examples below we show both scales for comparison, although only mKK corresponds to a

physical scale in our (albeit restricted) case. We also show the value of a warped down mbulk
KK

(when warping is significant) which can be compared with the actual value mKK.

In Fig. 5.9 we show a sample of predictions (λi, αi) for different choices of the parameters,

divided in three main groups: the fully warped limit, with τc = T ; the unwarped conifold limit,

with τc = 0; and a mid-regime with τc = T/2 — in this regime we see the competition between

the throat trying to localise the modes and the bulk trying to spread them evenly throughout

the compact space (see discussion on boundary conditions in Section 5.2). The string coupling

is fixed to gs = 0.2 in all parameter sets. Tables 5.1–5.3 summarize the parameter choices and

the relevant quantities for each set of examples.

The first thing to note is that none of these examples lies within the excluded region of parameter

space, both due to the small couplings and small length scales — this means that none of
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M τb Vw mbulk
KK mKK Rcon MK

B1 20
0 2.3× 1027 7× 10−5 0.275 7.0× 103 556

B2 75 0.142 1.4× 104 7585

B3 20 15 3.2× 1027 6× 10−5 0.232 7.0× 103 558

Table 5.2: All points Bi have τc = 0, T = 30 (corresponding to the unwarped conifold) and fixed
H = 10−15, gs = 0.2. Masses are given in TeV and volumes are in string units. See main text for
discussion.

M τb Vw mbulk
KK H(τb)

−1/4mbulk
KK mKK Rcon MK

C1 20
0 1.0× 1024 1× 10−2 2× 10−4 4.9 125 546

C2 75 2.5 243 7442

C3 20 15 2.3× 1024 7× 10−5 6× 10−5 0.104 125 595

Table 5.3: All points Ci have τc = 15, T = 30 (corresponding a partially warped conifold) and fixed
H = 10−15, gs = 0.2. See main text for discussion.

them can be excluded from this large set of gravitational experiments and observations. The

most likely case to be probed in the near future is the fully warped limit, which is not far

from the collider experiments — these need to go slightly up in energy, but mostly be able to

probe smaller couplings, which requires an increase in the statistics (i.e. higher luminosity).18

By contrast, the case that seems harder to probe is the unwarped conifold (representing an

unwarped compactification),19 which must have all its scale suppression coming from a large

compactification volume, V.

We can see that in all cases, increasing the flux number M slightly lowers both the masses and

the couplings of the graviton KK modes. It also leads to a larger tadpole charge MK, which is

determined through the choice of (τc, gs,M)→ c|z|4/3 →MK from (5.35) and z ∼ e−
2πK
gsM , with

Vw being determined through (5.114) by further fixing (H, τb). In fact, we can put this together

to find

MK ∼ −3(gsM
2)

2π
log

{
21/3

(2π)5/6

√
gsM

g
1/3
s

I(τc)
1/6I(τb)

1/12H1/3

}
. (5.117)

From our previous discussion on the tadpole cancellation condition and how it lead to the Tapole

Conjecture [101, 102, 105, 106], we know that large values ofMK may be difficult to accomodate

in these string flux compactifications. If we restrict to O3-planes, all examples in the literature

have a number of O3-planes less than or equal to 64, which gives a tadpole charge contribution20

|QO3| ≤ 32. With no other ingredients, tadpole cancellation would require MK ≤ 32. Note

however that, even staying close to the boundary of control (e.g. gs = 0.5,M = 4 =⇒ gsM = 2)

18Of course, the fact that we are close to the collider energies is not fully surprising, since the hierarchy H plays
a crucial role in determining the masses and roughly matches the current reach of colliders (1 TeV). What is much
less obvious is that the couplings are enhanced by the warping in such a way that brings these predictions closer
to the parameter space reached by the colliders.

19This can be compared with the ADD models [296, 297], with n = 6 large extra dimensions. Note that we
cannot model n = 1, 2 ADD models with the conifold.

20There is an extra factor of 2 arising from the Z2 action of the orientifold when the fluxes are those of the
un-orientifolded space [168].
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and with very small warping τc = 1, (5.117) gives MK ∼ 47 > 32. Relaxing the hierarchy such

that it connects the string scale with e.g. 103 TeV rather than 1 TeV still gives MK ∼ 38 > 32.

If one doubles gsM for better control of the supergravity approximation (e.g. gs = 0.25,M =

16 =⇒ gsM = 4), (5.117) gives MK ∼ 360. For the choice of parameters in A1 we find

MK ∼ 755 as reported in Table 5.1 (in choosing the parameters for the sample points Ai we

also require mKK < mbulk
KK and rUV > ls, which is why we actually use different values of gs and

M giving the same gsM = 4). Just asking for the hierarchy to come (at least partially) from the

warping requires a large tadpole contribution MK, requiring us to take the Tadpole Conjecture

into account when judging the vality of our setup.

We also see that moving the brane away from the tip of the throat has a big effect on the

gravitational corrections. For A3 the effect is more intuitive, being due to the localisation of the

modes, since the couplings depend explicitly on the wavefunction profile (Fig. 5.5). Graviton

KK modes will therefore have much weaker couplings to modes living away from the tip of

the throat. However, (5.115a) tells us that the coupling strength also depends on the warp

factor, with weaker warping giving stronger couplings, which explains why the coupling actually

increases for C3, rather than decrease — in this mid-regime the wavefunctions reach a constant

plateau rather than quickly decaying towards zero (see Fig. 5.5), so that the biggest effect will

come from the decrease in the warp factor and the coupling increases.

Although the Ai have strong warping, one still requires a large volume Vw to meet the fixed

hierarchy, even if significantly smaller than in the unwarped examples Bi. Having lower values

of Vw would require stronger warping and therefore larger tadpole contributions MK > O(103).
Note also that in Ci a big part of the hierarchy is coming from the volume rather than the warp

factor, which is why the volume is much larger than in Ai (thereby allowing for smaller tadpoles

MK) and why it does not change a lot from C1 to C3 when moving the brane away from the

tip.

In all cases, the scale mKK associated with the graviton tower is around the TeV scale, which

is reflecting our choice of hierarchy. One might expect that this alone would be enough to

make these modes detectable since we are able to access these energies at colliders like the

LHC. However, as is well-known, the energy scale (masses of the modes) alone is not enough to

determine whether new effects are detectable. The way these extra modes couple to Standard

Model particles (which in our setup are confined on the brane) is extremely important — the KK

gravitons might be extremely light and yet couple so weakly to Standard Model particles that

they are still undetectable with current experiments and observations. This makes the details

of the compactification crucial when studying these effects, not only because they determine the

masses of the modes, but also because they will affect the profile of the wavefunctions over the

extra dimensions and consequently the couplings to other states.

When looking for examples to show in Fig. 5.9 we could not find any points within the excluded
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Figure 5.9: A few examples of the corrections δV (5.104) to the Newtonian potential for different choices
of the free parameters in (5.115). The hierarchy is fixed to H = 10−15 and gs = 0.2 in all parameter sets.
All points Ai have τc = T = 40, corresponding to the fully warped conifold limit. All points Bi have
τc = 0 and T = 30, corresponding to the unwarped conifold limit. All points Ci have τc = T/2 = 15,
corresponding to a mid-regime with a warped throat and a piece of the bulk described by an unwarped
conifold. We also chooseM = 20 and 75 for i = 1, 3 and i = 2, respectively, and τb = 0 and 15 for i = 1, 2
and i = 3, respectively. We notice in particular that all predictions are outside the excluded region, with
the couplings being too small to be probed at colliders and the length scales too small to be probed by
large scale experiments. See main text for detailed discussion. Figure adapted from [263, 292], with the
shaded area indicating the excluded region of parameter space at 95% confidence level.

region, despite apparently having a lot of freedom.21 In the next two sections, we will focus

on the fully warped and unwarped limits, through which we can gain further insight into the

allowed region of parameter space.

5.3.3 Fully warped deformed conifold

The fully warped deformed conifold corresponds to the limit τc → T . In this limit, the solution

pair (Êk,Φk) only depends on τc, so that A(τb, τc, T ) = A(τb, τc) and µ(τc, T ) = µ(τc). In par-

ticular, we know from the analytical approximations (confirmed using the numerical solutions)

that in this limit

Êk ≈ I(τc)1/2ek , ek =
2π

aν
k +

(
ν − 1

2

)
π

aν
, (5.118)

with ν ∼ 2.45, a ∼ 1.96. Notice that we must always have τb < τc since our boundary condition

Φk(T = τc) = 0 would imply vanishing contributions to a brane at τb ≥ τc, and hence

Hτc(τb) ≈
I(τb)

I(τc)
. (5.119)

21The conifold background we are considering does not allow for an anisotropic compactification, which would
be required to realise an unwarped ADD model [296, 297] with less than 6 large extra dimensions.
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Figure 5.10: Plot of N 2
(1)(τc) in the fully warped limit τc → T . We see that the normalisations fall with

A0I(τc), with A0 ≈ 0.3.

Assuming that only the first massive mode has a relevant contribution,22 we find A(τb, τc) ≈
N 2

(1)(τc)|Φ̃1(τb)|2 and µ(τc) ≈ I(τc)1/2e1, where N 2
(1)(τc) ≈ A0I(τc) and A0 ≈ 0.3 (see Fig. 5.10)

— physically this implies smaller masses for modes living in longer warped throats (i.e. with

stronger warping); as for the couplings, they will depend strongly on τb (cf. left panel of Fig.

5.7). Notice that taking the leading contribution to be the first KK mode rather than the

massive string states is well-justified as, in this strongly warped limit, we have (5.80)

mKK ≈
Mw

s√
gsM

, (5.120)

that is, the first KK mode is suppressed with respect to the warped string scale by the factor
√
gsM . Since the supergravity approximation requires gsM ≫ 1 and masses appear exponen-

tially in the corrections δV (5.109), effects from the warped down tower of string states should

be suppressed with respect to leading effects from the first KK mode on which we focus here.

The parameters (α, λ) become

α ≈ (2π)2

(gsM)3
2|Φ̃1(τb)|2

I(τb)1/2
g2s
H2

, (5.121a)

λ−1 ≈ H
21/6

2π√
gsM

I(τb)
1/4 e1

lp
. (5.121b)

For fixed (τb,H), the bounds gs < 1 and gsM > 1, required for control of the string loop

22Although higher modes have larger couplings at the tip, as emphasised in [276], the exponential suppression
from higher masses will dominate, so that the net result is an exponential suppression of the contributions from
higher modes to the gravitational potential compared to the first mode in the tower.
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expansion and supergravity approximation, respectively, translate into direct bounds on (α, λ),

α <
(2π)2

H2

4|Φ̃1(τb)|2

I(τb)1/2
, (5.122a)

λ−1 <
H
21/6

(2π)I(τb)
1/4 e1

lp
. (5.122b)

However, there is a stronger bound on α given by the combination

αλ6 =
1

(2π)4
4|Φ̃1(τb)|2

I(τb)2
g2s
H8

l6p
e61
, (5.123)

which is bounded from above and is a diagonal line with fixed negative slope in Fig. 5.11.

Finally, one can find a lower bound on the combination

αλ2 =
21/3

H4

2|Φ̃1(τb)|2

I(τb)

l2p
e21

1

M2
, (5.124)

by putting an upper bound on the flux numberM . Thinking in terms of the tadpole contribution

MK and since the flux numbers are both positive and no smaller than 1, we have MK <

(MK)max =⇒ M < (MK)max. Imposing the bound M < (MK)max allows us to connect with

the tapole cancellation discussion. Inspired by the examples given below (5.117) we choose three

reference bounds, M < (MK)max = 32, 100, 1000. Note that all of these will include point A1

in Fig. 5.9 (M = 20), although MK ∼ 755 — for a given choice of bound M < (MK)max, all

points with MK < (MK)max clearly lie within the allowed region M < (MK)max, even though

there are also points inside that region with MK > (MK)max, such as A1.

The allowed regions of parameter space are shown in Fig. 5.11. The points (A,B,C) correspond

to the specific choice gs = 0.2 and M = 20, for each choice of τb = 0, 20, 40 (note that α and λ

in (5.121) are independent of τc, though recall that a combination of τc and Vw is fixed by our

choice of hierarchy via (5.114)). Putting the brane away from the tip allows the KK graviton

modes to have lower masses due to stronger warping without affecting the hierarchy between the

bulk and the brane (which we keep fixed), while at the same time suppressing their couplings to

matter on the brane, which depend on their wavefunctions (see Fig. 5.5). This means that we

can move to regions of larger λ but at the expense of also moving to lower α — this gives rise

to the diagonal dashed line in Fig. 5.11, which is an upper bound for the allowed regions which

never crosses the excluded region of parameter space.

The upper right bounds on each region follow from (5.123) and gs < 1, while the left bounds

follow from (5.121b) and gsM > 1. The lower lines in each triangle represent the lower bound

on (5.124) with M < 32, 100, 1000 (with larger values giving weaker bounds, i.e. lower lines).
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Figure 5.11: The shaded triangles correspond to the allowed regions of parameter space for the fully
warped limit τc → T , for different choices of τb and fixed H = 10−15. All points (A,B,C) have gs =
0.2,M = 20. The upper right bounds on each region follow from (5.123) and gs < 1, while the left bounds
follow from (5.121b) and gsM > 1. The lower lines in each triangle represent the lower bound on (5.124)
with M < 32, 100, 1000 (with larger values giving weaker bounds, i.e. lower lines). Figure adapted from
[263, 292], with the shaded area indicating the excluded region of parameter space at 95% confidence
level.
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Figure 5.12: Plot of N 2
(1)(T ) in the unwarped limit τc → 0. We see that the normalisations fall with T

as χe−aT , with χ ≈ 193 and a ≈ 2. See main text for further discussion.

5.3.4 Unwarped deformed conifold

The unwarped deformed conifold corresponds to the limit τc → 0. In this limit, the solution pair

(Êk,Φk) only depends on T , so that A(τb, τc, T ) = A(τb, T ) and µ(τc, T ) = µ(T ). In particular,

we know from the analytical approximations (confirmed using the numerical solutions) that

Êk ≈ e−T/3ek , ek =
25/6

31/2

{
πk +

3π

4

}
. (5.125)

Again notice that we must always have τb < T since our boundary condition Φk(T ) = 0 would

imply vanishing countributions to a brane at τb ≥ T . In this limit

H ≈ gs√
4πVw

. (5.126)

The general result (5.115) is expressed in terms of τc, whose (implicit) definition is (5.35).

However, this follows from the condition H(τc) − 1 = 1, whereas a fully unwarped conifold

would have H(τ) = 1 for all τ . This is not possible for the deformed conifold, since the presence

of fluxes necessary to deform the conifold will automatically source some warping, i.e. H(τ) ̸= 1

for any finite τ . Nevertheless, we could still have a deformed conifold for which

H(τ)− 1 = 22/3
(α′gsM)2

c ϵ8/3
I(τ)≪ 1 ∀ τ , (5.127)

which gives H(τ) ≈ 1 as we would expect from an unwarped compactification. In this case, the

definition of τc (5.35) is no longer useful — one should instead substitute back in (5.115) the
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parameters of the conifold and remove τc completely. This gives

α =
1

(2π)4
8A(τb, T )

c3/2|z|2
g2s
H2

, (5.128a)

λ−1 =
H

c1/4|z|1/3
µ(T )

lp
. (5.128b)

One can now relate c1/4|z|1/3 to the physical size of the conifold,

Rcon =
31/2

25/6
(c1/4|z|1/3ls)eT/3 , (5.129)

such that the parameters become

α =
1

(2π)4
27A(τb, T )

8
e2T

(
ls
Rcon

)6 g2s
H2

, (5.130a)

λ−1 =
31/2

25/6
H
(

ls
Rcon

)
eT/3

µ(T )

lp
. (5.130b)

Assuming that only the first massive mode has a relevant contribution (as all other modes

will be exponentially suppressed), we find A(τb, T ) ≈ N 2
(1)(T )|Φ̃1(τb)|2 and N 2

(1) ≈ χe−2T , with

χ ≈ 193 (see Fig. 5.12), and µ(τc) ≈ e−T/3e1 — we can interpret this physically by noting that

larger conifolds (larger Rcon ∼ eT/3 =⇒ Vcon ∼ R6
con ∼ e2T ) will lead to mode wavefunctions

spreading over a larger volume, and since they spread evenly throughout the internal space,

they consequently have a smaller amplitude at each point. This means that modes living on

larger unwarped conifolds have weaker couplings to fields living on the brane. Again, neglecting

contributions from massive string states is well-justified as now

mKK ≈
Ms

(Rcon/ls)
, (5.131)

which gives the usual hierarchy between the KK and string scales in the absence of warping,

with the characteristic scale of the compact space given by Rcon.

With these simplifications we find

α ≈ 1

(2π)4
27χ|Φ̃(τb)|2

8

(
ls
Rcon

)6 g2s
H2

, (5.132a)

λ−1 ≈ 31/2

25/6
H
(

ls
Rcon

)
e1
lp
. (5.132b)

Once again we can put bounds on these parameters by using the consistency conditions that

must be satisfied in our setup. First, we note that the conifold cannot be arbitrarily small,

since the validity of our supergravity approximation requires any region of interest to be at
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Figure 5.13: Allowed regions of parameter space for the unwarped limit τc → 0, for different choices of
the parameters (τb, Rmin/ls) and fixed H = 10−15. See main text for further discussion. Figure adapted
from [263, 292], with the shaded area indicating the excluded region of parameter space at 95% confidence
level.

least bigger that the string size ls. This gives us the absolute minimum value that Rcon could

take, but for better control of the approximations one may actually want to have larger lower

bounds Rmin < Rcon, with Rmin = ls corresponding to the boundary of control. Each choice

of Rmin directly puts a bound on λ. On the other hand, the strongest bound on α comes from

eliminating Rcon through the combination

αλ6 =
4χ|Φ̃(τb)|2

(2π)4

(
lp
e1

)6 g2s
H8

, (5.133)

which is bounded from above by gs < 1.

With these bounds we can plot the allowed region of parameter space over the experimental

and observational constraints (see Fig. 5.13). The points (A,B,C) correspond to the specific

choice gs = 0.2,M = 20, with Rcon = 10 ls for A and B, and Rcon = 104 ls for C. Notice that

the upper limit following from (5.133) is only a function of τb (once the hierarchy H has been

fixed) and in the unwarped limit the wavefunctions are constant for most values of τ (see Fig.

5.5). Therefore the allowed regions in this case are only functions of Rmin, larger values of which

decrease their size within the region with Rmin = ls (bigger triangle). One should remember

that the example points in Fig. 5.9 have c1/4|z|1/3 fixed by (gs,M, τc = 0) through (5.35) — for

T = 30 as in Fig. 5.9, this implies Rcon ≈ 5 × 103 ls. There is again no overlap between the

theoretically allowed regions of parameter space and the experimentally excluded regions.
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5.4 4d Gravitational Waves

All the available and planned GW experiments give us the opportunity to probe regimes of

strong gravity, which could potentially give interesting constraints to explicit models [265, 266,

268, 269, 272]. Although [273] did not include a careful study of GW signatures, we do work

out how a warped throat affects the scales involved in GW detection. In particular, we identify

points in the Klebanov-Strassler parameter space where the hierarchy problem is solved by

warping and the gravitational wave frequencies corresponding to the graviton KK tower reach

LISA, LIGO-Virgo/ET and UHF windows.

From (5.48) we obtain a wave equation for each mode k in an infinite tower, whose frequency is

given by23

ω2
k = m2

k + |p⃗k|2 , (5.135)

where p⃗k is the momentum of the wave. When an event (e.g. a black hole merger) generates

gravitational waves it does so by exciting hµν(x
µ, yp), which is decomposed into an infinite tower

of modes in the 4d EFT (5.31), all of which are excited. For the zero mode we have m0 = 0, h0µν

corresponds to the massless graviton and the gravitational wave will have a frequency associated

to the source event. Higher modes hk>0
µν belong to the tower of massive spin-2 states, which have

mk > 0. If mk ≫ |p⃗k|, the frequency of the wave is given by the mass of the respective mode,

ωk ≈ mk . (5.136)

When these frequencies are much higher than the frequency range covered by GW experiments,

we can only probe the zero mode, while the massive tower remains out of reach together with

the extra dimensions that it encodes. If on the other hand the masses of the KK modes are low

enough to give frequencies covered by current or future experiments, then one might hope to

detect a characteristic signature of the extra dimensions — a tower of signals whose frequencies

are separated by a constant gap ∆ω = m1 ≡ mKK. For reference, we give in Table 5.4 the

frequency ranges and corresponding mKK for some current and future GW detectors.24

We focus on the fully warped case studied in Section 5.3.3. Since mk = λ−1, (5.115) is fixed by

choosing a value for mk that could potentially be detected by one of these GW experiments. In

23This follows from
(pk)

µ(pk)µ = −m2
k =⇒ −E2

k + |p⃗k|2 = −m2
k , (5.134)

and by noting that for a wave Ek = ℏωk (with ℏ = 1 and c = 1 in all equations).
24We obtain fGW by reintroducing factors of c and ℏ, which were set to 1,

fGW =
mKKc

2

2πℏ
, (5.137)

where mKK must be in (kg) such that the result is expressed in (Hz).
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fGW (Hz) mKK (eV)

LISA 10−4 − 100 10−31 − 10−27

LIGO-Virgo/ET 101 − 104 10−26 − 10−23

UHF 106 − 109 10−21 − 10−18

Table 5.4: Frequency range of different gravitational wave experiments and the associated mass ranges
for the case in which the wave corresponds to the excitation of a massive spin-2 mode of mass mKK.

fGW (Hz) mKK (eV) τb τc z1/3 rUV Vth MK

LISA 100 10−27 195 239 1.51× 10−47 1.70 290 3259
LIGO-Virgo/ET 104 10−23 168 211 1.51× 10−43 1.64 240 2906

UHF 109 10−18 133 176 1.51× 10−38 1.57 183 2464

Table 5.5: Explicit examples of parameters and scales associated with GW signals covered by LISA,
LIGO-Virgo/ET and UHF. We fix H = 10−15 and Vw = 1015 in all cases. Lengths and volumes are given
in string units.

this limit mk is given by (5.121b) and we can fix the ratio

mKK

H
=
I(τb)

1/4

21/6
2π√
gsM

e1
lp
, (5.138)

by fixing both mKK ≡ m1 and H, and choosing the values of the parameters gs and M . In

what follows we choose gs = 0.2 and M = 20 as before. This determines the position of the

brane τb. One can then use (5.114) to determine |z|/Vw, which emphasises the fact that only

a combination of these parameters is fixed by our choices. To have a concrete example, we fix

the volume to Vw ∼ 1015, which uniquely fixes |z| and therefore MK. In Table 5.5 we give

three examples by taking the upper bounds on the frequency ranges for LISA, LIGO-Virgo/ET

and UHF. We see that all these examples require tadpole contributions of O(103), which brings

us back to considering the Tadpole Conjecture [100]. The lower the frequency, the larger the

warping must be to suppress mKK, which we can see by the larger τc that results in longer

throats. Since we are fixing the volume to Vw ∼ 1015 in all cases, this also requires a larger τb in

order to keep the hierarchy fixed — if the warping is stronger, the brane must be farther away

from the tip. Different values of Vw will require different values ofMK, since the strength of the

warping depends on the combination V1/6w |z|1/3 (5.35). For the UHF case, choosing Vw ∼ 102

would requireMK ∼ 2021, while Vw ∼ 1030 would requireMK ∼ 2847, which is always O(103).

It is important to note that even if the warping is such thatmKK is low enough to give frequencies

that lie in the ranges of any of these GW experiments, one is not guaranteed to make a detection

— we must also take into account the amplitude of the waves. This requires a more careful

analysis of the wave equations, which includes in particular the GW source,

24h
k
µν −m2

kh
k
µν = c3/2

∫
d6y
√
g6 H Φk(y)Tµν(x, y) . (5.139)

It is clear that how strongly a given mode is sourced depends on the overlap of its wavefunction

Φk(y) and the energy-momentum tensor Tµν(x, y) of the source. Hence, most of the lessons we
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learn from our (simpler) analysis of fifth force signatures — including the wavefunction profiles

of the KK modes in different limits and the dependence of both masses and wavefunctions on the

parameter space of the compactification setup — are crucial in understanding GW signatures

as well.

For example, one would expect a source localised on the Standard Model brane, Tµν(x, y) ∼
Tµν(x)δ

(6)(yb) (e.g. a neutron star merger) to have very small couplings (cf. (5.96)), due to

the large suppression of the KK mode wavefunctions away from the tip of the throat (where

the hierarchy H would not be inconsistently large even when the warping is strong enough

to significantly lower the GW frequencies). Even if such an event was energetic enough to

source higher KK modes, the amplitudes of those signals would likely be too small for detection.

Conversely, we would expect a source localised on a brane at the tip of the throat, Tµν(x, y) ∼
Tµν(x)δ(ytip), to have its signals enhanced by the peaked wavefunctions of the KK modes.

Interestingly, whereas the former example with suppressed amplitudes could be accompanied by

an electromagnetic signal carrying more detailed information about the source, the latter with

enhanced amplitudes would not contribute with this companion radiation. On the other hand, a

source which is higher dimensional (e.g. a higher dimensional black hole) might be able to couple

strongly to the KK modes, not being confined to the brane far away from the tip. Bulk moduli

(e.g. complex structure and Kähler moduli) might also source the wave equation and these could

have wavefunctions with big overlaps with the KK modes, and may therefore provide signals

with higher amplitudes. It would also be interesting to understand if any resonance effects,

which are not obvious at this level of our discussion, can enhance the wave amplitude in either

case.

One could also consider events in the very early Universe, where it is natural to consider higher

energy sources, for which large redshifts might help lower the high frequencies and thus somewhat

relax the need for strong warping. This might be particularly relevant in relation to the large

tadpole contributions and the Tadpole Conjecture [100]. As a final remark we also note that

there are proposals of experimental setups capable of detecting frequencies much higher than

the ones covered by the detectors we have been considering [298–301].
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Deep in the human unconscious is a pervasive

need for a logical Universe that makes sense.

But the real Universe is always one step

beyond logic.

Frank Herbert

And the way we make sense of the Universe has become increasingly more abstract over the

course of history. Partly because of that, string theory often faces criticism for its reliance on

mathematical consistency and apparent detachment from experience and the real world. Despite

its recurrent serendipity, it is likely that full consensus will only be reached upon experimental

verification, in line with the traditional view of empirical science — more importantly, exper-

iments and observations might be the only way to take that one step beyond the logic of the

equations and make sense of our Universe.

At the start of this thesis, we highlighted the reason why one should not be surprised that there

is no direct experimental evidence for string theory. Let us reiterate: the lack of experimental

evidence is not a characteristic of strings, but one of quantum gravity theories and the large scales

at which they are needed. While these scales remain out of reach of our detectors (potentially

by many orders of magnitude), so will the stringy effects inherent to string theory. Although one

can not rush the technological development that might slowly close this gap, there are structures

within the framework itself that naturally arise when addressing concrete problems (such as the

hierarchy and cosmological constant problems) and could help us do just that — warped extra

dimensions are a perfect example and were the focus of our work.

We have seen how “warped throats” naturally arise in the context of flux compactifications

of Type IIB string theory on Calabi-Yau manifolds, which constitute a promising arena for

phenomenological studies of high-energy particle physics and cosmology. Moreover, we have

studied how warped throats play a crucial role in some of the best proposals for de Sitter vacuum

solutions, whose status in string theory has been heavily debated for over two decades and has

recently been put into question in the context of the Swampland programme. Motivated by

recent works regarding the (in)consistency of these constructions (e.g. the Tadpole Conjecture),

169
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we introduced a new de Sitter solution on the same deformed conifold background as in previous

proposals, but in a region of parameter space where the warping is weak due to the interplay

between the conifold dynamics and the overall size of the compact space. While this new solution

evades several potential issues (e.g. large tadpoles, the singular-bulk problem, conifolds that do

not fit in the compact space), we have also found that it cannot be fully trusted without further

investigation that takes into account potentially dangerous corrections to the scalar potential

(this is similar to what was previously shown for the strongly-warped solutions). These results

suggest that one should take a closer look at these corrections and study how they affect current

de Sitter constructions — more than just preserving the solutions, these may even benefit them

or replace some of their (potentially problematic) ingredients.

By studying warped solutions in different regimes — strong warping vs weak warping — one can

also gain some insight into what ingredients are actually playing crucial roles. It is commonly

believed that strong warping is necessary in order to suppress the D3-brane uplift in the KKLT

and LVS proposals, and avoid destabilising the moduli. However, our weakly-warped solutions

show that the minimum can be maintained even in a weakly-warped regime, by balancing

the unsuppressed brane contribution with a large scale in the superpotential. Despite looking

promising, as it does not require strongly-warped throats and the consequent large tadpoles, it is

precisely this large superpotential scale that makes higher corrections to the potential important.

Motivated by the difficulty to find a de Sitter vacuum, we briefly discussed runaway quintessence

models as an alternative explanation of dark energy, concluding that these are (at least) equally

hard to achieve.

Warped throats also present opportunities for experimental searches due to their power to bring

down unaccessible large scales. Given the current growth of gravitational wave astronomy, it is

natural to ask what signatures these warped extra dimensions would leave on gravitational waves.

Since the extra-dimensional effects would näıvely give rise to frequencies that are extremely large

(in contrast with the range covered by many of current and future GW experiments), warped

throats might just be the mechanism that makes these effects observable. In the second part of

this thesis, we started an exploration of these signatures.

By determining the masses and wavefunction profiles of the tower of spin-2 KK modes in the

presence of a warped throat, we studied their effects on the ranges and coupling strengths of

fifth forces mediated by these modes. This allowed us to compare concrete predictions based on

the parameter space of consistent Type IIB warped compactifications to current observational

constraints, finding that none of it can be excluded — despite the smaller masses of the KK

modes achieved through warping — once one takes into account the effect of warping on the

KK mode couplings. This teaches us important lessons for the prediction of gravitational wave

signatures. Although we do not go into the details of GW predictions, we ended with a brief

comparison between the scales covered by the LVK/LISA/ET detectors and the parameter space

that allows the KK mode masses to be suppressed enough for detection and a discussion of how

the location of both sources and detectors within the compact space affects the amplitude of
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GWs. This suggests different scenarios (e.g. sources localised at the tip of a warped throat with

the Standard Model living away from it) as the most promising for detection, which motivates

future work in this direction.

Warping has become one of the main characters in the string phenomenology endeavour of

connecting string theory to the Universe we observe. One can either start with the data that

needs to be accommodated by the theory — such as the observation that the expansion of the

Universe is currently accelerating — or, conversely, with the existing warped constructions whose

signatures we might try to observe — e.g. using gravitational waves. Explaining the nature of

Dark Energy and exploiting our recent ability to detect gravitational waves have become major

goals in high-energy physics, which makes warped throats extremely relevant and interesting

objects among those that string theory has to offer. One may hope that by understanding them

better, one might not only be able to solve long-standing problems but also finally find some

evidence for string theory, getting us one step closer to decoding the logic of our own Universe.



A. Conventions

A.1 Changing frames in 10d

In the string frame, the gravitational part of the action is not in the canonical Einstein-Hilbert

form. Physically this means that the graviton does not have canonical kinetic terms and the

string-frame metric GS does not directly correspond to the propagating graviton — only once

we write the action in canonical form can we read off the gravitational interactions of all fields

in the way we are used to in GR. The frame in which the action takes the canonical Einstein-

Hilbert form – i.e. the Ricci scalar does not couple to anything other than
√
−GE — is known

as the Einstein frame, which we can choose by performing a conformal transformation of the

10d metric GS → GE = e2ΥGS , with a conformal factor

Υ = −Φ− Φ0

4
, (A.1)

where the constant Φ0 is a choice of convention.1 Hence the two metrics are related by

GE
MN = e−

Φ−Φ0
2 GS

MN , (A.2)

and the first term in the action (2.70) becomes, in the Einstein frame,

SE
grav =

1

2κ2

∫
d10x

√
−GE

{
RE − 9

2
(GE)µν(∂µΦ)(∂νΦ)

}
, (A.3)

where κ ≡ eΦ0κ10 is the rescaled coupling. Including the contribution from the kinetic term of

Φ, which also transforms under this conformal transformation, the Einstein frame gravitational

plus dilaton action becomes

SE
grav+Φ =

1

2κ2

∫
d10x

√
−GE

{
RE − 1

2
(∂µΦ)(∂

µΦ)
}
. (A.4)

Note that the dilaton is canonically normalised in Einstein frame.

1Choosing the Einstein frame fixes the required conformal transformation up to a constant, which is a simple
rescaling of the coupling constant κ, so that one still obtains the Einstein frame — this constant therefore is a
matter of convention.
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The kinetic terms of the NS and RR form fields include an implicit metric associated to the

index contraction of the forms. For a generic p-form η we have

|η|2S =
1

p!
(GS)µ1ν1 ...(GS)µpνpηµ1...µpην1...νp

=
1

p!
(e2Υ)p(GE)µ1ν1 ...(GE)µpνpηµ1...µpην1...νp = e2Υ·p |η|2E . (A.5)

Putting everything together, with the appropriate choice (A.1), the action (2.70) in Einstein

frame becomes

SE
IIB =

1

2κ2

{∫
d10x

√
−GE

(
RE − 1

2
(∂µΦ)(∂

µΦ)− eΦ0

2
e−Φ|H3|2E

)
(A.6)

−
∫
d10x

√
−GE

(
e2Φ

2
|F1|2E +

eΦ0

2
eΦ|F̃3|2E +

e2Φ0

4
|F̃5|2E

)
− e2Φ0

2

∫
C4 ∧H3 ∧ F3

}
.

Note that the Chern-Simons term in the action does not transform, apart from via the constant

relating κ and κ10, as it is a topological term, independent of the metric. A common choice of

Φ0 is such that the metric in the string frame and the metric in the Einstein frame are the same

at the vacuum, i.e. Φ0 = ⟨Φ⟩ – this allows us to discuss quantities in a frame-independent way

at the vacuum. For that choice, the action in Einstein frame reads

SE
IIB =

1

2κ2

{∫
d10x
√
−G

(
R− 1

2
(∂µΦ)(∂

µΦ)− gs
2
e−Φ|H3|2

)

−
∫
d10x
√
−G

(
e2Φ

2
|F1|2 +

gs
2
eΦ|F̃3|2 +

g2s
4
|F̃5|2

)
− g2s

2

∫
C4 ∧H3 ∧ F3

}
, (A.7)

where we dropped the E, as all metrics are in Einstein frame. With this choice, the gravitational

coupling is related to the string scale as

2κ2 = 2κ210g
2
s = (2π)7g2sα

′4 or 2κ2 =
g2s l

8
s

2π
. (A.8)

Another common choice of convention is Φ0 = 0. In this case, volumes are frame-dependent in

the vacuum (A.14) and one needs to be careful in using the right frame, e.g. when checking

whether the α′-expansion is under control for a certain vacuum, which should be done using the

string frame volume. For this choice the gravitational coupling is related to the string scale as

2κ2 = 2κ210 = (2π)7α′4 or 2κ2 =
l8s
2π

. (A.9)

In terms of the fields G3 and τ , i.e. in its manifestly SL(2,R)-invariant form, the Einstein frame
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action (2.70) takes the form

SE
IIB =

1

2κ2

∫
d10x
√
−G

(
R− (∂µτ)(∂

µτ̄)

2(Im τ)2
− eΦ0

2(Im τ)
|G3|2 −

e2Φ0

4
|F̃5|2

)
− 1

2κ2
ie2Φ0

4

∫
1

(Im τ)
C4 ∧G3 ∧G3 . (A.10)

Another occasionally used convention (see e.g. [164, 302–304]) is to redefine the RR forms in

Einstein frame as CE
p = eΦ0CS

p , so that the action becomes

SE
IIB =

1

2κ2

∫ (
R ⋆ 1− dτ ∧ ⋆dτ

2(Im τ)2
− G3 ∧ ⋆G3

2(Im τ)
− 1

4
F̃5 ∧ ⋆F̃5 −

i

4(Im τ)
C4 ∧G3 ∧G3

)
, (A.11)

where the axio-dilaton was also redefined as τE = eΦ0τS = eΦ0CS
0 + ie−φ, with e−φ = e−(Φ−Φ0),

and GE
3 = eΦ0GS

3 = FE
3 − τEH3. Note that in terms of τE we have ⟨Im τE⟩ = 1, rather than

⟨Im τS⟩ = g−1
s , and flux quantisation takes the form

1

(2π)2α′

∫
Cp
FE
p ∈ eΦ0Z . (A.12)

Although with this field redefinition the action looks the same regardless of the choice of con-

vention, one must keep in mind both of these differences and the fact that also the gravitational

coupling κ will depend on the convention in use.

It is worth emphasising that volumes measured using a string frame metric may differ from

the ones measured using an Einstein frame metric, depending on the convention used, i.e. on

the choice of Φ0. To see this, recall that the two metrics are related by GE
MN = e−

Φ−Φ0
2 GS

MN .

Therefore, a generic d-dimensional volume can be written as

V E
d =

∫
ddy
√
gEd f(y) =

∫
ddy
√
gSd e−

d
4
(Φ−Φ0)f(y) , (A.13)

where we allow for some function f(y), such as H(y) in the definition of Vw (A.20). Therefore,

the volumes in the two frames (assuming Φ is stabilised) are related as V S
d =

(
e⟨Φ⟩−Φ0

) d
4V E

d ,

which for the volume of the 6d compact space in string compactifications means

VS = e
3
2
(⟨Φ⟩−Φ0)VE . (A.14)

Hence, it is important to note the convention being used for the Einstein frame metric and how it

relates to quantities that are obtained in either string frame or Einstein frame (e.g. perturbative

and non-perturbative corrections).
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A.2 Changing frames in 4d

In order to obtain a 4d EFT at low energies, we consider a compactification (or dimensional

reduction) of the 10d theory down to 4 dimensions. The 4d theory describes perturbations

around a 10d vacuum solution and is valid for energies much lower than the compactification

scale2. We consider a vacuum solution which corresponds to a warped product spacetimeM10 =

R1,3×wX6, where R1,3 is a 4d Lorentzian spacetime and X6 is a 6d compact space. The Einstein

frame metric takes the form3

ds210 = H−1/2(y) e2ω(x)gµνdx
µdxν +H1/2(y) V1/3gmndy

mdyn , (A.15)

where xµ (µ = 0, ..., 3) are 4d coordinates and ym (m = 4, ..., 9) are 6d coordinates on the

compact space X6. The metric gmn = (g6)mn is the 6d metric of a Calabi-Yau (Ricci flat)

manifold normalised such that ∫
d6y
√
g6 ≡ l6s ,

with V = VE(x) keeping track of the physical size of the compact space, and the warp factor H

is defined as

H(y) ≡ 1 +
e−4A0(y)

V2/3
. (A.16)

The factor e2ω(x) is introduced to Weyl rescale to the 4d Einstein frame, with metric gµν , as we

now describe.

Dimensionally reducing the 10d Einstein-Hilbert term (in Einstein frame)

SE
IIB =

1

2κ2

∫
d10x
√
−G R10 (A.17)

down to 4d using the ansatz (A.15) gives, among other contributions, the term

S4d ⊃
1

2κ2

∫
d4x
√
−g4 · e2ω(x)

(
V
∫
d6y
√
g6 ·H(y)

)
R4 . (A.18)

Any choice of e2ω(x) that leaves a non-canonical coupling of the volume modulus V to R4 is said

to be in the Jordan frame. Requiring a canonical form for the Einstein-Hilbert term instead —

which defines the 4d Einstein frame — fixes the Weyl rescaling e2ω(x), up to a constant factor

e2ω0 , as

e2ω(x) =
e2ω0 · l6s

V
∫
d6y
√
g6 ·H(y)

≡ e2ω0 · l6s
Vw

=
e2ω0

Vw
, (A.19)

2Depending on the details of the compactification, this scale could correspond to different scales.
3Since we start with Einstein frame metric (A.15) and action (A.17), the volumes V and Vw are Einstein frame

volumes.
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where we defined the warped volume Vw = Vw · l6s as4

Vw ≡ V
∫
d6y
√
g6 ·H(y)︸ ︷︷ ︸

⟨H⟩av· l6s

. (A.20)

This definition of Vw only differs from V · l6s by the factor ⟨H⟩av, the average of the warp factor

over the compact space. If the integral is dominated by the unwarped bulk, then ⟨H⟩av ≈ 1 and

Vw ≈ V · l6s .

Note the similarities with the conformal transformation in 10d to go from string frame to Einstein

frame, where we also had some freedom in the form of a constant. There a convenient choice

was the one for which the two metrics matched at the vacuum. Here we are going from the

Jordan frame, in which some scalars couple to the Ricci scalar in the action, to the 4d Einstein

frame, in which we recover the canonical Einstein-Hilbert term. The two metrics will match at

the vacuum if we choose e2ω0 = ⟨Vw⟩. The action in Einstein frame for general ω0 becomes

SE
4d ⊃

e2ω0 · l6s
2κ2

∫
d4x
√
−g4 ·R4 ≡

M2
Pl

2

∫
d4x
√
−g4 ·R4 , (A.21)

which defines the relation between the string scale5 (ms = 1/ls) and the Planck scale as

ms =
eΦ0

√
4πe2ω0

MPl . (A.22)

For the convenient choice eΦ0 = gs and e2ω0 = ⟨Vw⟩, this relation becomes

ms =
gs√
4πVw

MPl = ⟨H⟩−1/2
av

gs√
4πV

MPl . (A.23)

Note also that in the unwarped limit the warped volume tends to the volume modulus of the

compactification, Vw → V, and – with these choices of convention for the Weyl rescalings –

we recover the common expression for the ratio ms/MPl. If instead we choose conventions

Φ0 = 0 = ω0, then ms = MPl/
√
4π. This convention dependence arises from the fact that we

are comparing quantities measured in different frames, as ms is the string mass measured in

the string frame. This can be immediately seen for string states localised in regions of constant

warp factor, H(y0) (these states could arise, for example, from open string states localised on a

brane at the tip of a warped throat). The mass of a string state with momentum pµ measured

4Note that this differs from the volume of the 6d compact space in the ansatz (A.15), which is

V
∫
d6y

√
g6 H

3/2(y) .

5See footnote 30.
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in Einstein frame would then be

(
(mw

s )
E
)2

= gµνE pµpν = H(y0)
−1/2 · e

2ω0

VE
·Gµν

E pµpν

= H(y0)
−1/2 · e2ω0

VS e
3
2
(Φ−Φ0)

· e
Φ−Φ0

2 ·Gµν
S pµpν

= H(y0)
−1/2 · e

2Φ

VS
· e

2ω0

e2Φ0
· (mS

s )
2 , (A.24)

from which follows a warped string scale given by

(mw
s )

E ≡ H−1/4(y0) ·
eΦ√
4πVS

MPl , (A.25)

whose relation to MPl is fully convention independent in terms of string frame volumes. For

closed string states that are allowed to propagate along directions of varying warp factor, one

needs to take into account their dimensional reduction (see section D.1 for details). Let us take

the scalar field ψ to represent a closed string state of mass mS
s measured in the string frame,

S ∝
∫
d10x

√
−GS

{
− 1

2
GMN

S (∂Mψ)(∂Nψ) + (mS
s )

2ψ2
}

∝
∫
d10x

√
−GE

{
− 1

2
e

Φ−Φ0
2 GMN

E (∂Mψ)(∂Nψ) + (mS
s )

2ψ2
}

∝
∫
d4x e4ω(x)

√
−g4

∫
d6y
√
g6 H

1/2(y)V
{
− 1

2
e

Φ−Φ0
2 H1/2(y)e−2ω(x)gµν(∂µψ)(∂νψ)

+ internal momentum + (mS
s )

2ψ2
}

∝
∫
d4x
√
−g4 e

Φ−Φ0
2 e2ω(x)V

∫
d6y
√
g6 H(y)

{
− 1

2
gµν(∂µψ)(∂νψ) + internal momentum

+ e−
Φ−Φ0

2 e2ω(x)H−1/2(y)(mS
s )

2ψ2
}

(A.26)

Following the same steps as for the KK modes and using (A.19), we find for the lowest mode

ψ0 in the tower

S ∝
∫
d4x
√
−g4

{
− 1

2
gµν(∂µψ0)(∂νψ0) ·

∫
d6y
√
g6 ·H(y) (ξ0)2

+ e−
Φ−Φ0

2 · e
2ω0

VE
· (mS

s )
2ψ2

0 ·
∫
d6y
√
g6 ·H(y) (ξ0)2 ·H−1/2(y)

}
,

=

∫
d4x
√
−g4

{
− 1

2
gµν(∂µψ0)(∂νψ0) + (mE

s )
2ψ2

0

}
, (A.27)

and we identify the Einstein frame mass as

(mE
s )

2 =
e2Φ

VS
· e

2ω0

e2Φ0
·
{∫

d6y
√
g6 ·H(y) (ξ0)2 ·H−1/2(y)

}
· (mS

s )
2 . (A.28)
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Therefore, assuming again that most of the compact space is unwarped (or in the absence of

warping, H = 1) and using (A.23) we find for the Einstein frame string scale

mE
s =

eΦ√
4πVs

MPl , (A.29)

so that its relation to MPl is fully convention independent in terms of string frame volumes.

Finally, we recover the standard relation between the warped string scale for localised states

(A.25) and the bulk string scale (A.29) as

(mw
s )

E = H−1/4(y0) ·mE
s . (A.30)

A.3 Quantum corrections in different conventions

Since the flux superpotential leaves all Kähler moduli unstabilised, either leaving them as flat

directions or generating runaways, one must resort to higher-order corrections to the EFT in or-

der to stabilise them. Both perturbative and non-perturbative corrections have been considered

in the literature — while the former are computed at the level of the 10d EFT and in string

frame, the latter are obtained directly at the level of the 4d EFT and are computed in Einstein

frame. One must therefore be careful with the conventions being used to change frames, i.e. the

choice of Φ0, in order to remain consistent.

Perturbative corrections

In [147], it was shown that α′-corrections to the Type IIB effective action (A.6) manifest as

corrections to the 4d volume modulus Kähler potential and spoil the no-scale structure of its

scalar potential. These corrections arise from higher-derivative terms at order (α′)3 appearing

in the type IIB effective action,

SS
IIB =

1

2κ210

∫
d10x

√
−GS e−2Φ

(
RS + 4(∂Φ)2S + (α′)3 · ζ(3)

3 · 211
· J0
)
, (A.31)

where the higher-order term is schematically given by

J0 ∼ (RMNPQ)
4 . (A.32)

One must also add a term

δSS
Φ ∼

∫
d10x

√
−GSe−2Φ(α′)3(∇2Φ) Q , (A.33)

where Q ∼ (RMNPQ)
3 is a generalisation of the 6d Euler integrand

∫
X6
d6y
√
g6 Q = χ, with

χ the Euler characteristic of X6 [147]. This term corrects the 10d solution to the equation of
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motion for Φ, such that Φ = Φ10+
ζ(3)
16 Q. It is then shown in [147] that this leads to a correction

to the Kähler potential of the form

K = −2 log
(
VS +

ξ

2

)
= −2 log

(
VE e

3
2
(Φ−Φ0) +

ξ

2

)
(A.34)

= −2 log
(
VE +

ξ

2
e−

3
2
(Φ−Φ0)

)
+ ... , (A.35)

where we have used (A.14), keeping Φ0 unspecified, and ξ is defined as6

ξ = − ζ(3)χ

2(2π)3
. (A.36)

Note in particular that the correction expressed in Einstein frame depends on the convention

one chooses for Φ0,

Φ0 = 0 =⇒ K = −2 log

(
V +

ξ

2g
3/2
s

)
, (A.37)

Φ0 = ⟨Φ⟩ =⇒ K = −2 log
(
V +

ξ

2

)
, (A.38)

where we have assumed as usual that the dilaton has been stabilised by fluxes.

Non-perturbative corrections

Although the superpotential W does not receive perturbative corrections, it may receive non-

perturbative corrections from either instantons arising from Euclidean D3-branes wrapping 4-

cycles or gaugino condensation on the world-volume theory of D7-branes wrapped around in-

ternal 4-cycles. Let us consider the latter case in some detail. In what follows, Tp = 2π

lp+1
s

is the brane tension. The DBI action for a Dp-brane, in the string frame, is given by (2.90)

[20, 26, 29, 39]

SDp
DBI = −TDp

∫
dp+1σ e−Φ

√
−det

(
gS +B +

l2s
2π
F

)
, (A.39)

where gS and B refer to the pull-back of the string frame metric (GS)MN and 2-form BMN

onto the world-volume of the brane and F to the field-strength Fab of the brane gauge fields.

Rewriting the action in terms of the Einstein frame metric,

SDBI
Dp = −Tp

∫
dp+1σ e−Φ

√
−det gS

√
det

(
1+ (gS)−1

(
B +

l2s
2π
F
))

(A.40)

6In [147], we find the definition ξ = − ζ(3)χ(X6)
2

. The missing factor of (2π)3 comes from their conventions
for the volume, V[147] = V6/(2πα

′)3, whereas we are using V = V6/l
6
s = (2π)−3 V6/(2πα

′)3, with the convention
(2π)2α′ = l2s . There are also instances in the literature where the factor of 1/2 is absorbed into the definition of
ξ.
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⊃ −Tp
∫
dp+1σ e−Φ

√
−det gS

1

4

( l2s
2π

)2
(gS)ac(gS)bdFabFcd (A.41)

= −Tp
4

l4s
(2π)2

∫
dp+1σ

√
−det gE e

p−3
4

(Φ−Φ0)e−ΦFabF
ab , (A.42)

where the indices in FabF
ab are contracted with Einstein frame metrics. This is the kinetic

term for the brane gauge bosons (see Appendix A.2. of [163]) and tells us the gauge coupling

of the corresponding theory, which is a key parameter for gaugino condensation. If the brane is

wrapping a (p− 3)–cycle Σp−3, we find the corresponding 4d term (assuming that Φ is constant

over the cycle)

S4d
Dp ⊃ −

1

8πlp−3
s

∫
d4x

√
−det gE4 e

p−3
4

(Φ−Φ0)e−Φ

(∫
dp−3σ

√
gEp−3

)
︸ ︷︷ ︸

τEΣp−3
lp−3
s

FabF
ab (A.43)

= −
∫
d4x

√
−det gE4

{
τEΣp−3

8πeΦ
e

p−3
4

(Φ−Φ0)

}
FabF

ab , (A.44)

and we can read off the gauge coupling gc,

1

g2c
=

τEΣp−3

4πe⟨Φ⟩ e
p−3
4

(⟨Φ⟩−Φ0) , (A.45)

where we have assumed as usual that the dilaton has been stabilised by fluxes at some higher

scale. Gaugino condensation on the world-volume theory of D7-branes will then give a non-

perturbative contribution to the superpotential [210],7

Wnp ∼ e
− 8π2

g2c

1
N = e

− 2π
N

τE

gs
e⟨Φ⟩−Φ0

, (A.46)

where we used e⟨Φ⟩ = gs. Holomorphicity of W then leads to the general contribution

Wnp =
∑
i

Aie
i
ai
gs

e⟨Φ⟩−Φ0TE
i , (A.47)

where the sum is over the contributing cycles, ai = 2π
Ni

and the fields Ti = bi + iτi are the

complexified Kähler moduli. Hence, we can compare the two most common conventions for Φ0,

Φ0 = 0 =⇒ Wnp =
∑
i

Aie
iaiT

E
i , (A.48)

Φ0 = ⟨Φ⟩ =⇒ Wnp =
∑
i

Aie
i
ai
gs

TE
i . (A.49)

7Here N is the number of branes stacked on top of each other, responsible for the gauge group. It appears
through the beta-function coefficient [210].
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The superpotential as written, in terms of Einstein frame 4-cycle volumes, appears to depend

on the choice of convention for Φ0, but one should recall that the 4-cycle volumes also depend

on this choice of convention. The convention-independence becomes manifest if we express the

4-cycle volumes in terms of the string frame metric (A.13),

τSi = e⟨Φ⟩−Φ0τEi . (A.50)



B. Differential forms and Cohomology

The spectrum of string theory includes several differential form fields, such as B2 already present

in the bosonic string and (C2, C4) that arise in Type IIB. Strictly speaking, also the scalars

(Φ, C0) are differential 0-forms. The machinery of differential geometry is therefore extremely

useful when discussing the physics of string theory1. We will therefore compile here for easy

reference some of the concepts and results which are crucial for string compactifications, briefly

describing the map between harmonic forms on a compact space and cohomology and homol-

ogy groups. We leave to Appendix C an equally brief discussion of Calabi-Yau manifolds and

Dolbeault-cohomology, crucial for Calabi-Yau compactifications of Type IIB. A detailed presen-

tation of these and many other topics in differential geometry can be found in [305, 306].

A differential r-form ωr on a manifold M is a totally antisymmetric tensor of type (0, r) and

can be written as

ωr =
1

r!
ωµ1µ2...µrdx

µ1 ∧ dxµ2 ∧ ... ∧ dxµr . (B.1)

The vector space of r-forms at a point p ∈M is denoted Ωr
p(M). The exterior product between

two forms ξq and ηr gives the (q + r)-form

ξq ∧ ηr =
1

q!r!
ξµ1...µqην1...νrdx

µ1 ∧ ... ∧ dxµq ∧ dxν1 ∧ ... ∧ dxνr , (B.2)

which is only non-zero if q+r ≤ m = dim(M). A form ωm ∈ Ωm
p (M) is known as a top form and

is the only type of form that can be integrated over M. We can also think of smooth r-forms

on M, ωr ∈ Ωr(M), for which the exterior derivative operator d : Ωr(M) → Ωr+1(M) can be

defined as

dω =
1

(r + 1)!
∂νωµ1...µrdx

ν ∧ dxµ1 ∧ ... ∧ dxµr . (B.3)

If we have a metric g defined onM, we can also define the Hodge star operator as

⋆ω =

√
|g|

(m− r)!

(
1

r!
ωµ1...µr

)
ϵµ1...µr

νr+1...νmdx
νr+1 ∧ ... ∧ dxνm , (B.4)

mapping an r-form to an (m−r)-form with the help of the totally antisymmetric tensor ϵµ1...µm =

gµ1ν1 ...gµmνmϵν1...νm = g−1ϵµ1..µm . This gives us a natural way to define an inner product of two

1In fact, differential geometry is an extremely power tool to study almost any physics.
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r-forms ωr, ηr ∈ Ωr(M) as the integral over a top form (the only forms which one can integrate

overM),

(ω, η) ≡
∫
ω ∧ ⋆η =

1

r!

∫
ωµ1...µrη

µ1...µr
√
|g| dx1...dxm (B.5)

The inner product is symmetric and, if the metric is Riemannian, positive definite, i.e. (ω, ω) ≥ 0

and only 0 for ω = 0. The adjoint exterior derivative, d† : Ωr(M)→ Ωr−1(M), is then defined

with respect to the inner product such that

(dω, η) = (ω,d†η) =⇒ d† ≡ (−1)1+m(r+1) ⋆ d ⋆ . (B.6)

Finally, we can define the Laplacian, ∆ : Ωr(M)→ Ωr(M), in terms of d and d† as

∆ = dd† + d†d . (B.7)

The Laplacian acting on the components of p-form ω can be expressed as [20]

∆ωm1...mp = −∇q∇qωm1...mp + pRq[m1
ωq

m2...mp
− 1

2
p(p− 1)Rqr[m1m2

ωqr
m3...mp]

, (B.8)

in terms of covariant derivatives, the Riemann and the Ricci tensors. This expression is useful

in section 3.3.

Differential forms can then be classified in terms of how the operators (d, d†,∆) act on them,

(closed) dω = 0 (co-closed) d†ω = 0

(exact) ω = dη (co-exact) ω = d†ξ

(harmonic) ∆ω = 0 .

One can show that a form ω is harmonic if and only if it is both closed and co-closed2.

∆ω = 0 ⇐⇒ dω = 0 and d†ω = 0 . (B.9)

It also follows from d2 = 0 = (d†)2 that any (co-)exact form is also (co-)closed. The converse

statement is not true in general (at least globally3) and there may be closed forms dω = 0 which

are not exact ω ̸= dη. Let us define the equivalence class

[ωp] = {ω̃p : ω̃p = ωp + dηp−1} ∈ Hp(M) , (B.10)

by identifying all closed forms ω which differ by an exact form. These equivalence classes form

the so-called de Rham cohomology group Hr(M).

2See section 7.9 of [305].
3Poincaré’s lemma determines that on any contractible region of M, any closed form is also exact, which

means that locally all closed forms are also exact.
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On the other hand, the homology group is defined in a very similar way for manifolds Cp and

submanifolds Cp−1 through the boundary operator δ : Cp → Cp−1. We can again define

(closed = cycles) δCp = {}

(exact = boundary) Cp = δCp−1 .

Since the boundary operator is also nilpotent, δ2 = 0, all boundaries are cycles, but not all

cycles are necessarily boundaries. Homology equivalence classes are defined by identifying all

cycles (closed manifolds) which differ by a boundary (exact submanifold),

[Cp] = {C̃p : Cp + δCp+1} ∈ Hp . (B.11)

A p-form ωp and a p-dimensional submanifold Cp can be paired by integrating ωp over Cp,

(Cp, ωp) =

∫
Cp

ωp , (B.12)

which relates the exterior derivative d and the boundary operator δ as dual operators through

Stokes theorem. Precisely because of Stokes theorem, this inner product is well-defined in

Hp(M)×Hp(M), since the elements differing by exact components integrate to the same value.

This leads to the important result of de Rham’s theorem.

de Rham’s theorem

If M is a compact manifold, then Hp(M) and Hp(M) are finite dimensional and the

dual vector space of each other. They are therefore isomorphic, Hp(M) ∼= Hm−p(M).

This means in particular that we can learn about cohomology classes [ωp] by thinking about

homology classes [Cp], i.e. from the topology of the compact manifold. Another important

connection comes from Hodge’s decomposition theorem.

Hodge decomposition theorem

Let (M, g) be a compact orientable Riemannian manifold without a boundary. Then

any r-form ω ∈ Ωr(M) can be (globally) uniquely decomposed into

ω = dη + d†ξ + γ , with γ a harmonic form. (B.13)

This theorem is useful because it leads to the following connection between the space of harmonic

forms onM and the cohomology group Hp(M).
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Hodge’s theorem

On a compact orientable Riemannian manifold (M, g), Hp(M) is isomorphic to the

space of harmonic p-forms, Harmp(M).

Hence, the set of harmonic forms, cohomology groups and homology groups are all isomorphic

Harmp(M) ∼= Hp(M) ∼= Hm−p(M) . (B.14)

The reason why this result is so useful is that it relates the number of independent solutions of

a differential equation to the topology of the underlying manifold,

∆ωp = 0←→ dim Hd−p(M) ≡ bd−p , (B.15)

in particular the number of cycles which cannot be deformed into one another. The numbers bp

are called Betti numbers and are defined as the dimensions4 of the homology groups Hp(M).

They are related to a topological invariant known as the Euler characteristic by

χ(M) =
m∑
p=0

(−1)p bp(M) . (B.16)

For completeness, let us also mention Poncaré duality, which relates cohomology classes in

Hp(M) with cohomology classes in Hm−r(M) through the inner product

⟨ω, η⟩ =
∫
M
ω ∧ η . (B.17)

This establishes the isomorphism Hp(M) ∼= Hm−p(M) and, consequently, the identity bp =

bm−p. Thus, the number of harmonic p-forms onM is bp.

Combining the two inner-products (B.12) and (B.17), we can also define a duality between

(m− p)-forms and p-cycles, which we also call Poincaré duality.

Poincaré duality (between forms and cycles)

An (m− p)-form ωm−p is Poincaré dual to a p-cycle Cp if ⟨ηp, ωm−p⟩ = (Cp, ηp), for any
p-form ηp, i.e. ∫

Cp

ηp =

∫
M
ηp ∧ ωm−p . (B.18)

4More precisely, they are defined as the rank of the homology groups, but the distinction will not be important
for our purposes.
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C. Calabi-Yau manifolds

Requiring that some supersymmetry is preserved in a compactification of the 10d theory puts

strong constraints on the allowed compact spaces. In particular, preserving the minimum amount

of supersymmetry fixes the holonomy group of the compact space to be SU(3), i.e. the space

should be a Calabi-Yau manifold. In this appendix we briefly outline the characteristics of a

Calabi-Yau manifold, including the structures that determine its holonomy and the counting of

harmonic forms through Dolbeault cohomology classes.

Calabi-Yau manifolds

Calabi-Yau manifolds are Kähler manifolds (complex and symplectic) on which the first

Chern class is trivial (c1 = 0). These manifolds always admit a Ricci-flat metric.

Let us define each of these terms. One point worth emphasising is that each of them is adding

structure to the manifold and therefore restricting the group of allowed transformations upon

parallel transport — this is what reduces the holonomy group and in turn the number of super-

symmetries that remain in the compactified solution.

A complex manifold is a (2n)-dimensional manifold that admits a complex structure, which is

perhaps not extremely enlightening. A complex structure is a map I on the tangent space such

that I2 = −1, which is also integrable. The map is called a(n almost) complex structure because

its n (+i) and n (−i) eigenvalues allow us to define holomorphic and anti-holomorphic vectors,

such as

∂

∂z
≡ ∂

∂x1
+ i

∂

∂x2
,

∂

∂z
≡ ∂

∂x1
− i ∂

∂x2
, ... (C.1)

This effectively splits the tangent space into two pieces, a holomorphic space and an anti-

holomorphic space. However, it does not guarantee that there are globally defined holomorphic

coordinates zi, unless the (almost) complex structure is also integrable so that holomorphic

one-forms dzi give holomorphic coordinates zi.

Complex manifolds look locally like Cn. They have holonomy (at most) GL(n,C) because
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parallel transfort must preserve its complex structure. Any r-form on a complex manifold can

be decomposed into its holomorphic and anti-holomorphic components,

ωp,q =
1

p!q!
ωi1...ip ȷ̄1...ȷ̄q dzi1 ∧ ... ∧ dzip ∧ dz̄ ȷ̄

1 ∧ ... ∧ dz̄ ȷ̄q , (C.2)

as can the exterior derivative d = ∂ + ∂̄, with ∂ : (p, q)→ (p+ 1, q) and ∂̄ : (p, q)→ (p, q + 1).

On the other hand, a sympletic manifold is a (2n)-dimensional manifold on which a nowhere-

vanishing 2-form J can be defined, such that

dJ = 0 and J ∧ ... ∧ J︸ ︷︷ ︸
n

̸= 0 . (C.3)

As before, preserving this extra structure reduces the set of allowed transformation upon parallel

transport, which is this case gives a holonomy group (at most) Sp(2n).

Kähler manifolds are manifolds for which both structures are compatible, i.e. complex and

sympletic manifolds on which

J = Jiȷ̄ dz
i ∧ dz̄ ȷ̄ . = igiȷ̄ dz

i ∧ dz̄ ȷ̄ . (C.4)

Having to preserve both structures at the same time, the holonomy group must be contained in

the intersection of GL(n,C) and Sp(2n), which is U(3). This is not yet the SU(3) holonomy we

are after, so we will require one more condition to get there. The metric on a Kähler manifold

can be derived from a real scalar function K, the Kähler potential,

giȷ̄ = ∂i∂̄ȷ̄K . (C.5)

Not only can de Rham cohomology classes be defined in terms of d-closed and d-exact (p, q)-

forms (cf. Appendix B), we can also define Dolbeault cohomology classes in terms of ∂-closed

and ∂-exact (p, q)-forms. On Kähler manifolds,

Hp,q
d = Hp,q

∂ = Hp,q

∂̄
, (C.6)

so that the cohomology groups coincide. The numbers hp,q ≡ dimHp,q
∗ satisfy the conditions

p∑
k=0

hp−k,k = bp , hp,q = hq,p = hn−p,n−q . (C.7)

The Hodge numbers are commonly presented in the form of a Hodge diamond, which highlights

their several symmetries.
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h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

= b0

= b1

= b2

= b3

= b4

= b5

= b6

Complex conjugation

P
o
in
ca
ré

d
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Finally, we can define the Ricci 2-form,

R = iRiȷ̄ dz
i ∧ dz̄ ȷ̄, (C.8)

which is closed, dR = 0, on a Kähler manifold with metric (C.5). Being a closed form, it must

belong to some cohomology class — the class that includes R is called the first Chern class

c1 =
1

2π
[R] . (C.9)

Calabi-Yau manifolds are precisely those Kähler manifolds on which the first Chern class is

trivial, i.e. for which the Ricci 2-form belongs to the class of exact forms and is therefore a

globally exact form itself. This means that on a Calabi-Yau manifold there exists a globally

well-defined one-form A such that R = dA. Note that this would not necessarily imply that

the metric is Ricci-flat, Rmn = 0 — however, it was conjectured by Eugenio Calabi [307] and

later proved by Shing-Tung Yau [308] that these manifolds do indeed always admit a Ricci-flat

metric.1

On a (2n)-dimensional Calabi-Yau manifold there exists a unique covariantly constant holomor-

phic (n, 0)-form Ω, which must be preserved under parallel transport around closed loops. This

restricts the holonomy further down to SU(n). The Hodge numbers are also further constrained

[20],

hn,0 = 1

hp,0 = 0 , for 0 < p < n ,

1In fact, the theorem is more general and does not restrict to manifolds whose first Chern class is zero — these
simply turn out to be the immediate application of interest to us. The construction of Calabi-Yau manifolds was
also generalised by Yau, shortly after his original proof, to non-compact manifolds.
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together with h0,0 = 1 for connected manifolds. From h1,0 = 0, it follows that there are no

continuous isometries on Calabi-Yau manifolds. The Hodge triangle on a 6d Calabi-Yau takes

the simple form

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

with only 2 free Hodge numbers, h1,1 and h2,1, characterising the topology of the manifold. They

are related to the Euler characteristic as

χ(M) = 2(h1,1 − h2,1) . (C.10)

Here is the upshot of all this: on a Calabi-Yau manifold we know a lot more about the forms that

enter the decomposing of harmonic forms. For example, in the decomposition of B2 (3.25) in

section 3.1, we included harmonic 1-forms ωi
1(y

m), but since a Calabi-Yau has b1 = h1,0+h0,1 = 0,

there are no harmonic 1-forms in which we could expand. Hence, B2 will not give rise to massless

spacetime vectors.

The elements of H1,1 (i.e. the representatives of the independent cohomology classes in H1,1)

are commonly denoted as ωa, a = 1, ..., h1,1, while the elements of H2,2 are denoted as ω̃a, and

these can be chosen such that ∫
ωa ∧ ω̃b = δba . (C.11)

Likewise, αK and βK , K = 0, ..., h2,1, are commonly used for the real 3-form elements of H3,

which can also be chosen such that ∫
αK ∧ βL = δLK , (C.12)

while χk denotes the basis of complex elements of H2,1 alone (with χk, Ω and Ω completing the

2(h2,1 + 1) elements of H3).
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D.1 Kaluza-Klein (KK) scale(s)

Let us determine the Kaluza-Klein (KK) scale at which the towers of massive states associated

with the compact dimensions appear. Considering the simple case of a 10d scalar field ρ,

S =

∫
d10x
√
−G

{
−1

2
GMN (∂Mρ)(∂Nρ)

}
(D.1)

=

∫
d4x

∫
d6y ·H−1(y)e2ω

√
−g4 ·H3/2(y) V√g6{

−1

2
H1/2(y)e−2ωgµν(∂µρ)(∂νρ)−

1

2
H−1/2(y)V−1/3gmn(∂mρ)(∂nρ)

}
(D.2)

=

∫
d4x
√
−g4 V

∫
d6y
√
g6

{
−1

2
H(y)gµν(∂µρ)(∂νρ)−

1

2

e2ω

V1/3
gmn(∂mρ)(∂nρ)

}
(D.3)

=

∫
d4x
√
−g4 V

∫
d6y
√
g6

{
−1

2
H(y)gµν(∂µρ)(∂νρ) +

1

2

e2ω

V1/3
H(y)(∆6ρ) · ρ

}
, (D.4)

where in the last step we integrated the second term by parts and defined the internal space

Laplacian operator

∆6ρ ≡
H−1(y)
√
g6

∂m(
√
g6 g

mn∂nρ) . (D.5)

Decomposing the field ρ(x, y) in a basis of eigenfunctions of ∆6 (i.e. ∆6ξ
k = −λ2kξk, with no

sum over k),

ρ(x, y) =
∑
k

ϱk(x)ξ
k(y) , (D.6)

the action for the 10d scalar ρ becomes an action for infinitely many 4d scalars ϱk(x),

S =

∫
d4x
√
−g4 V

∫
d6y
√
g6
∑
k,l

{
− 1

2
H(y)gµν(∂µϱk)(∂νϱl)(ξ

kξl)

− 1

2

e2ω

V1/3
H(y)λ2k ϱkϱl (ξ

kξl)

}
(D.7)
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=

∫
d4x
√
−g4 V

∑
k,l

{
− 1

2
gµν(∂µϱk)(∂νϱl) ·

∫
d6y
√
g6 ·H(y) ξkξl

− 1

2

e2ω

V1/3
λ2kϱkϱl ·

∫
d6y
√
g6 ·H(y) ξkξl

}
. (D.8)

Since the eigenmodes ξk satisfy the orthogonality condition∫
d6y
√
g6 ·H(y) ξkξl = c1δ

kl , (D.9)

the KK modes decouple and the action reduces to

S =
∑
k

∫
d4x
√
−g4

{
− 1

2
gµν(∂µϱk)(∂νϱk)(c1V) +

1

2

e2ω

V1/3
λ2kϱ

2
k(c1V)

}
(D.10)

=
∑
k

∫
d4x
√
−g4

{
− 1

2
gµν(∂µϱ

c
k)(∂νϱ

c
k) +

1

2
·
λ2k
V1/3

e2ω0

Vw
· (ϱck)2

}
, (D.11)

where in the second line we canonically normalise the fields ϱk. Therefore, the mass of ϱck is

mk =
λk
V1/6

(
e2ω0

Vw

)1/2

=⇒ mKK =
λ1

V1/6

(
e2ω0

Vw

)1/2

, (D.12)

where we identify the KK scale, mKK, with the mass of the lightest mode m1.

To determine λk (and the eigenfunctions1) one must solve the eigenvalue equation

1
√
g6
∂m(
√
g6 g

mn∂nξ
k) +H(y) · λ2k · ξk = 0 , (D.13)

together with appropriate boundary conditions. It is therefore not possible to give a fully generic

expression for λk, and thus mKK, as it depends on the details of the compactification. If we

consider the case of a torus with a single common radius as the prototypical example of an

isotropic compact space2 with characteristic scale ls and constant warp factor3 H = 1, the

eigenvalue is λ1 = (2π) ·ms. Then the KK scale becomes

mKK =

(
e2ω0

Vw

)1/2

· 2π

V1/6
ms =

2π

V1/6
· eΦ0

√
4πV1/2w

MPl . (D.14)

1These are commonly referred to as the wavefunctions of the modes ϱk.
2More generically one could consider different scales in different directions, which would result in different KK

scales.
3This is consistent with our normalisation for the coordinates ym, such that

∫
d6y

√
g6 = l6s — it corresponds

to an identification of the normalised coordinates ym ∼ ym + 1 (with ds26 = l2s dymdym), rather than ym ∼
ym + 2π. Moreover, with a constant warp factor, H(y) ≡ H0, the eigenfunctions respecting the (periodic)

boundary conditions on the torus would be ξk⃗ ∝ e2πi k⃗·y⃗, with a vector of integers k⃗ labeling the modes, and

hence ∆6ξ
k⃗ = −H−1

0 · (2π)2k2 ·ms · ξk⃗, giving λk⃗ = H
−1/2
0 · (2π|⃗k|) ·ms. On the other hand, a constant warp

factor can always be absorbed in the definition of the overall volume and so we can set it to H = 1.
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We should note that generally there are two distinct volumes appearing inmKK (D.12). One usu-

ally takes Vw ≈ V, i.e. one assumes that the unwarped region of the compact space dominates the

volume integral, in which case we recover the well-known volume suppression mKK ∼MPl/V2/3

(of course, this is not an issue for the constant warp factor case H = 1 where V = Vw). For the
convenient choice eΦ0 = gs and e2ω0 = ⟨Vw⟩, and approximating Vw ≈ V, we have

mKK =
2π

V1/6
ms =

2πgs√
4πV2/3

MPl , (D.15)

while for the common alternative choice Φ0 = 0, the factor of gs will be absent.

When the warp factor is not trivial, its functional form will qualitatively change the eigenvalue

equation (D.13) and the solutions λk will depend, in particular, on the balance between warped

and unwarped regions of the compact space. When the warping dominates over the unwarped

bulk, the eigenfunctions will localise near the region of maximum warping (typically the tip

of a warped throat) and the KK scale will not only be warped down, but also depend on the

characteristic scale of the tip geometry rather than that of the overall compact space,

mKK ∼ H−1/4
tip · 2π

V1/6tip

·ms . (D.16)

In the classic example of a Klebanov-Strassler throat (cf. section 3.5), the characteristic scale is

the size of the S3 at the tip, RS3 ≈
√
α′gsM , and hence this is what sets the KK scale for towers

whose eigenfunctions localise near the tip. In section 5.2 we find this explicitly by solving the

eigenvalue equation in the fully warped limit, which represents the regime where the warping

dominates over the bulk (cf. (5.80)).

One also often finds in the literature another scale

mw
KK ≡ H−1/4(y0) m

loc
KK , (D.17)

where mloc
KK corresponds to a KK scale associated with modes localised on a subspace at some

fixed y = y0 (e.g. the tower of states associated with fields living on the world-volume of a brane

wrapping an internal cycle of the compact space).

Finally, it is interesting to note that the ratio mKK/ms is manifestly independent of the choice

for eΦ0 , i.e. on the convention used in changing from string frame to Einstein frame, whereas

the ratio mKK/MPl is manifestly independent of the choice for eω0 , i.e. on the convention used

in going to 4d Einstein frame. After taking into account the dependence of the Einstein frame

volume on the frame convention, the ratiomKK/MPl is also actually independent of the choice for

eΦ0 , as it must be. Approximating Vw ≈ V and expressing the ratio in terms of the string-frame

volume, the convention-dependent factors fall out,

mKK

MPl
=

2πgs√
4πV2/3S

. (D.18)
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D.2 Flux scalar potential

The scalar potential for the moduli fields and the dilaton comes from the terms R, |G3|2 and

|F̃5|2 in the action (2.76), after dimensional reduction to 4d. The contributions from the R and

F̃5 terms can be shown to give (see section 5.3 of [170])

1

2κ2

∫ (
R ⋆ 1− e2Φ0

4
F̃5 ∧ ⋆F̃5

)
=
eΦ0

2κ2

∫
d4x
√
−g4 · e4ω(x)

∫
H−1G3 ∧ iG3

2(Imτ)
, (D.19)

which we can put together with the G3 ∧ ⋆G3 term to give in total

SE
IIB ⊃

eΦ0

2κ2

∫
d4x
√
−g4 · e4ω(x)

∫
H−1

2(Imτ)
G3 ∧ (iG3 + ⋆6G3) (D.20)

=
eΦ0

2κ2

∫
d4x
√
−g4 · e4ω(x)

∫
H−1

(Imτ)
G+

3 ∧ ⋆6G
+
3 , (D.21)

with G+
3 = 1

2(G3 + i ⋆6 G3) such that ⋆6G
+
3 = −iG+

3 [170]. Using the metric (3.127) we can

rewrite this action in terms of gmn,

SE
IIB ⊃

∫
d4x
√
−g4

{
eΦ0

2κ2
e4ω(x)

∫
H−1 G

+
3 ∧ ⋆g6G

+
3

(Imτ)

}
≡ −

∫
d4x
√
−g4 V , (D.22)

which defines the 4d scalar potential V as

V = −i e
Φ0

2κ2
e4ω(x)

∫
H

(H−1G+
3 ) ∧ (H−1G

+
3 )

(Imτ)
. (D.23)

It is now possible to rewrite this potential in an N = 1 supergravity form, by defining [71]

W =
1

a

∫
G3 ∧ Ω , (D.24)

where a is a normalisation constant to be determined below, and using that∫
H (H−1G+

3 ) ∧ (H−1G
+
3 ) =

a2∫
H Ω ∧ Ω

Gαβ̄(DαW )(Dβ̄W ) (D.25)

where α, β run over the complex structure moduli and the axio-dilaton. Using this, the scalar

potential becomes

V = −i e
Φ0

2κ2
e4ω(x)

(Im τ)

a2∫
H Ω ∧ Ω

(
Giȷ̄(DiW )(Dȷ̄W )− 3|W |2

)
=
eΦ0

2κ2

(e2ω0 · l6s
Vw

)2 1

(Im τ)

a2

l6s

l6s
i
∫
H Ω ∧ Ω

(
Giȷ̄(DiW )(Dȷ̄W )− 3|W |2

)
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=
2π

eΦ0 · l8s

(e2Φ0M2
Pl · l2s · l6s

4πVw

)2 1

(Im τ)

a2

l6s

l6s
i
∫
H Ω ∧ Ω

(
Giȷ̄(DiW )(Dȷ̄W )− 3|W |2

)
=

e3Φ0

4π · l4s
M4

Pl

a2

l6s
·
( l6s
Vw

)2 1

2(Im τ)

l6s
i
∫
H Ω ∧ Ω

·M2
Pl

(
Giȷ̄

M2
Pl

(DiW )(Dȷ̄W )− 3

M2
Pl

|W |2
)

=

{
e3Φ0

4π · l10s
M6

Pl

}
eK/M2

Pl

(
Kiȷ̄(DiW )(Dȷ̄W )− 3

M2
Pl

|W |2
)
, (D.26)

where now i, j run over complex structure moduli, Kähler moduli and the axio-dilaton, the

Kähler potential K is given by

K/M2
Pl = −2 logVw − log(−i(τ − τ̄))− log

(
i

l6s

∫
H Ω ∧ Ω

)
(D.27)

and Kiȷ̄ is the inverse field space metric that follows from Kiȷ̄ = ∂i∂ȷ̄K. Note that the volume

term in K includes not only the overall volume modulus V, but also the other Kähler moduli.

This scalar potential leads to the normalisation

W/M3
Pl =

e
3
2
Φ0

√
4π · l5s

∫
G3 ∧ Ω . (D.28)

We can see that the normalisation constant, a, is convention-dependent through the choice of

eΦ0 .

An important scale in string flux compactifications is the gravitino mass, which for this super

and Kähler potentials is given by

m3/2 = e
K

2M2
Pl
|W |
M2

Pl

=
e

1
2
⟨Φ⟩

Vw ||Ω||w
e

3
2
Φ0W0√
8π

MPl , (D.29)

where e
1
2
⟨Φ⟩ comes from ⟨Im τ⟩, ||Ω||2w · l6s = i

∫
H Ω ∧ Ω and we define

W0/M
3
Pl ≡

〈
1

l5s

∫
G3 ∧ Ω

〉
. (D.30)

A consistent 4d supergravity description requires that the gravitino remains in the theory, i.e.

its mass is not above the EFT cutoff — typically mKK — and therefore integrated out.4 It

follows from (D.29) and (D.14) that the important ratio (assuming the bulk dominates all the

integrals, so that Vw ≈ V and ||Ω||w ≈ ||Ω||)

m3/2

mKK
= H

1/2
0

e
1
2
(⟨Φ⟩+Φ0)

V1/3E

W0√
2(2π)||Ω||

, (D.31)

where we highlight the fact that the volume being used is the Einstein frame volume, VE . Note
4It was shown that the ratio m3/2/mKK also serves as a control parameter for certain corrections to the scalar

potential, e.g. from higher F-terms [180].
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that this mass ratio, as written in terms of the Einstein frame volume, seems to depend on the

convention used for the 10d change of frames, i.e. the choice of Φ0. It is however convention-

independent, as it must be, since the Einstein frame volume also depends on the choice of Φ0.

If we express the mass ratio in terms of the string frame volume instead, which corresponds to

the volume perceived by the string itself, using (A.14) we find

m3/2

mKK
= H

1/2
0

e⟨Φ⟩

V1/3S

W0√
2(2π)||Ω||

, (D.32)

which is manifestly independent of conventions5.

D.3 Conifold modulus metric on moduli space

Here we will review the computation of the metric component Gzz̄ for the conifold deformation

modulus, z, following closely [166] and making explicit the appearance of the volume modulus in

the warping correction. Let us save the notation z to denote the dimensionless complex structure

modulus that we will introduce below and refer to the coordinate defined through the periods

(3.123) as S (this is also the notation used in [166], which will hopefully facilitate comparison).

The metric in the complex structure moduli space can be computed using

Gαβ̄ =
i
∫
H χα ∧ χβ̄

i
∫
H Ω ∧ Ω̄

, (D.33)

with the warp factor defined in (3.128), which corresponds to the warping corrected Kähler

potential [170]

Kc.s. = − log

(
i

l6s

∫
H Ω ∧ Ω̄

)
. (D.34)

We assume that all complex structure moduli are stabilised in the UV, i.e. in the bulk, except

for the deformation modulus S that governs the Klebanov-Strassler geometry and lives in the

highly-warped region. In particular, this means we can split the Kähler potential into two

different contributions

Kc.s. = − log

(
i

l6s

∫
H Ω ∧ Ω̄

)
= − log

(
i

l6s

∫
bulk

H Ω ∧ Ω̄ +
i

l6s

∫
conifold

H Ω ∧ Ω̄

)
5Note that we give mass ratios for canonically normalised fields defined in the Einstein frame. Whilst these

mass ratios must be invariant under change of conventions, a change in frame would come with field redefinitions,
and new masses and couplings. In a setup in which all couplings, including the gravitational coupling, are
constant (e.g. assuming that the dilaton and volume modulus are stabilised and integrated out), the change of
frames becomes a change of convention from one Einstein frame to another Einstein frame, and the mass ratios
would be invariant.
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≈ − log

(
i

l6s

∫
bulk

Ω ∧ Ω̄ +
i

l6s

∫
conifold

H Ω ∧ Ω̄

)
= − log

(
i

l6s

∫
bulk

Ω ∧ Ω̄

(
1 +

i
∫
conifoldH Ω ∧ Ω̄

i
∫
bulkΩ ∧ Ω̄

))

= − log

(
i

l6s

∫
bulk

Ω ∧ Ω̄

)
− log

(
1 +

i
∫
conifoldH Ω ∧ Ω̄

i
∫
bulkΩ ∧ Ω̄

)

≈ KUV
c.s. +

eK
UV
c.s.

l6s
i

∫
conifold

h Ω ∧ Ω̄

= KUV
c.s. +K(S, S̄) , (D.35)

where the first approximation follows from H ∼ 1 in the bulk and the second assumes the contri-

bution from the bulk is much bigger than the one from the conifold. Since the UV contribution

only depends on moduli that were integrated out, it is simply a constant in our EFT,

KUV
c.s. = − log

(
i

l6s

∫
bulk

Ω ∧ Ω̄

)
= − log

(
||Ω||2V6
l6s

)
, (D.36)

and we should recall that ||Ω||2 = 1
3!ΩmnpΩ

mnp = 8 is fixed by the normalisation of the globally

defined covariant spinor which is a requirement for preserving N = 1 supersymmetry in 4d [309].

We can now find the conifold contribution to the metric following the computations in [166]

GSS̄ =
eK

UV
c.s.

l6s
i

∫
conifold

H χS ∧ χS̄ . (D.37)

For the deformed conifold (3.103), the (2,1)-form χS is given by

χS = g3 ∧ g4 ∧ g5 + d[F (τ)(g1 ∧ g3 + g2 ∧ g4)]− id[f(τ)(g1 ∧ g2) + k(τ)(g3 ∧ g4)], (D.38)

where the functions F, f, k were computed in [86]

F (τ) =
sinh τ − τ
2 sinh τ

, (D.39)

f(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ − 1) , (D.40)

k(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ + 1) . (D.41)

It will be useful to look at the limits τ → 0 and τ →∞ of these functions,

F (τ → 0) =
τ2

12
, f(τ → 0) =

τ3

12
, k(τ → 0) =

τ

3
, (D.42)

F (τ →∞) =
1

2
− τe−τ , f(τ →∞) =

τ

2
, k(τ →∞) =

τ

2
. (D.43)
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Surprisingly the combination we need, χS ∧ χS̄ , is a total τ -derivative

χS ∧ χS̄ = − 2i

64π4
dτ ∧

(∏
i

gi

)
d

dτ
[f + F (k − f)], (D.44)

from which we find for GSS̄ (with all integrals performed over the conifold region)

GSS̄ =
eK

UV
c.s.

l6s
i

∫
H χS ∧ χS̄

=
i

||Ω||2V6

∫
H χS ∧ χS̄

=
1

||Ω||2V6
2

64π4

∫
H dτ ∧

(∏
i

gi

)
d

dτ
[f + F (k − f)]

=
2

64π4||Ω||2V6

(∫ ∏
i

gi

)∫
dτ H

d

dτ
[f + F (k − f)]

b.p.
=

2

π||Ω||2V6

(∫
dτ

d

dτ
[H {f + F (k − f)}]−

∫
dτ
dH

dτ
· {f + F (k − f)}

)
, (D.45)

where in the last step we integrate by parts and use
∫ ∏

i g
i = 64π3. We are left with an integral

in τ , whose domain corresponds to the conifold region only, which is glued to the bulk at some

finite value τΛ that constitutes the integral upper bound. In terms of the coordinate defined in

the limit τ →∞,

r2 =
3

25/3
s2/3e2τ/3, (D.46)

this corresponds to a cutoff scale ΛUV,

Λ2
UV ≡ r2UV =

3

25/3
s2/3e2τΛ/3 =⇒ τΛ =

3

2
log

25/3

3
+ log

Λ3
UV

s
, (D.47)

We see that the first term in the integral is just a boundary term, so it suffices to evaluate

H {f+F (k−f)} at τ → 0 and τ → τΛ (where we can think of τΛ ≫ 1 and use the approximations

for τ →∞). It is useful to recall the warp factor for the deformed conifold, now written in terms

of the complex structure s = |S| = ϵ2

e−4A0(y) = 22/3
(α′gsM)2

s4/3
I(τ), I(τ) ≡

∫ ∞

τ
dx

x coth(x)− 1

sinh2 x
(sinh(2x)− 2x)1/3 , (D.48)

At τ → 0, I(0) ≈ 0.718 and f + F (k − f) = 0, and at τ → τΛ (in the bulk), H ≈ 1 and

f + F (k − f) ≈ τΛ
2

=
3

4
log

25/3

3
+

1

2
log

Λ3
UV

s
. (D.49)
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As for the second term, all we need is the derivative of H

dH

dτ
=

1

V2/3
de−4A0(y)

dτ
= 22/3

(α′gsM)2

s4/3
1

V2/3
dI(τ)

dτ

= −4× 22/3
(α′gsM)2

s4/3
1

V2/3
f + F (k − f)

(sinh(2τ)− 2τ)2/3
, (D.50)

and so the integral (which is well approximated by taking τΛ →∞) gives

−4× 22/3
(α′gsM)2

s4/3
1

V2/3

∫ τΛ

0

{f + F (f − k)}2

(sinh(2τ)− 2τ)2/3
≈ 0.093× (−4× 22/3)

(α′gsM)2

s4/3
1

V2/3
. (D.51)

Putting everything together, the metric GSS̄ becomes

GSS̄ =
1

π||Ω||2V6

(
3

2
log

25/3

3
+ log

Λ3
UV

s
+ 0.093× 8× 22/3 × (α′gsM)2

s4/3
1

V2/3

)
. (D.52)

Defining the constant c′ ≈ 0.093× 8× 22/3 ≈ 1.18 and for s≪ Λ3
UV (which is equivalent to the

assumption τΛ ≫ 1), we can neglect the first term

GSS̄ =
1

π||Ω||2V6

(
log

Λ3
UV

s
+ c′

(α′gsM)2

s4/3
1

V2/3

)
. (D.53)

This metric corresponds to the Kähler potential

K(S, S̄) = 1

π||Ω||2V6

(
|S|2

(
log

Λ3
UV

|S|
+ 1

)
+

9c′(α′gsM)2

V2/3
|S|2/3

)
. (D.54)

We can now make a field redefinition, introducing a dimensionless deformation modulus z = S/l3s

in terms of which the Kähler potential becomes

K(z, z̄) = l6s
π||Ω||2V6

(
|z|2

(
log

Λ3
0

|z|
+ 1

)
+

9c′(gsM)2

(2π)4V2/3
|z|2/3

)
, (D.55)

where now Λ0 = ΛUV/ls is expressed in string units of ls. With this redefinition we can say that

“z is small”, i.e. the dimensionless quantity |S|/l3s ≪ 1 or |S| is small in string units.

Finally, we can make the choice V6 = l6s . Keeping it allows us to keep track of V6 and remember

where this factor comes from but, being just a volume integral, we can always choose to normalize

it in this way and let the volume modulus keep the overall volume dependence.
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