
An Arrow-based Dynamic Logic of Normative
Systems and Its Decidability

Hans van Ditmarsch1, Louwe Kuijer2, and Mo Liu3

1 University of Toulouse, CNRS, IRIT hans.van-ditmarsch@irit.fr
2 University of Liverpool louwe.kuijer@liverpool.ac.uk

3 University of Lorraine, LORIA mo.liu@loria.fr

Abstract. Normative arrow update logic (NAUL) is a logic that com-
bines normative temporal logic (NTL) and arrow update logic (AUL).
In NAUL, norms are interpreted as arrow updates on labeled transition
systems with a CTL-like logic. We show that the satisfiability problem
of NAUL is decidable with a tableau method and it is in EXPSPACE.

Keywords: normative system · arrow update logic · tableau method

1 Introduction

Deontic logic is the study of rules, norms, obligations and permissions, through
logical means [17,5,7,10,13], and this has also been extensive investigated in
dynamic modal logics [16,6,20,12,11]. In the field of deontic logic, there is a
sub-field that studies rules or norms by comparing the situation where a rule
is not in effect, or not being followed, to the situation where the rule/norm
is obeyed. There is no universally accepted name for this sub-field, but “social
laws” [18,19,9] and “normative systems” [1,3] are often used. We will use the term
normative systems, and refer to the behavioural restrictions under consideration
as norms.

A logic of normative systems is concerned with what things agents are capable
of doing, and what they are allowed to do if a norm is enacted. It therefore
requires a model of agency at its core. Any model of agency will do, but the
most commonly used choices are labeled transition systems with a CTL-like
logic of agency [8] and outcome function transition systems with ATL-like logic
[4]. Here, we will follow the CTL-style approach as normative temporal logic [2].
This means that a model is a labeled transition system, i.e., it contains a set S
of states and a set {R(a) | a ∈ A} of accessibility relations, where R(a) ⊆ S×S.
A transition (s1, s2) ∈ R(a), is an action or an agent that changes the state of
the world from s1 to s2.

In order to choose a course of action, we need to decide whether we should
adopt a norm and then check if an action is allowed by the norm. Whether an
action a is allowed may depend on a logical condition φ before the action takes
place, so on the situation in s1, and also may depend on a logical condition ψ
after the action took place, so on a condition satisfied in s2. We refer to s1 as

2 H. van Ditmarsch L. Kuijer M. Liu

the source of the action, to φ as a source condition, to s2 as the target, and
to ψ as a target condition. For norms with both source and target conditions
one cannot reduce multiple source conditions to one (for example by taking the
disjunction), nor multiple target condition to one. A norm in our formalism will
be therefore represented by a list of clauses, each with a source condition and a
target condition. This is as in arrow update logic [14,21]. The arrow eliminating
updates in arrow update logic now correspond to adherence to norms.

We will also introduce more complex ways to describe norms, so we will refer
to such a list of clauses as an atomic norm. We distinguish four ways to combine
norms. If N1 and N2 are norms, then

– −N1 is the negation of N1, and allows exactly those actions that are disal-
lowed by N1,

– N1+N2 is the additive combination of N1 and N2, and allows exactly those
actions that are allowed by N1 or N2,

– N1 ×N2 is the multiplicative combination of N1 and N2, and allows exactly
those actions that are allowed by both N1 and N2.

– N1 ◦N2 is the sequential composition of N1 and N2, and allows exactly those
actions that are allowed by N2 in the transition system restricted to those
actions that are allowed by N1.

We further distinguish static from dynamic applications of norms. A liveness
condition such as “if the norm N is obeyed, then φ is guaranteed to be true
at every time in the future” can be formalized in two ways, which we denote
[N]Gφ (dynamic) and GNφ (static). The difference lies in whether the norm N is
assumed to hold during the evaluation of φ: when evaluating [N]Gφ, everything
inside the scope of [N] is considered in the transition system restricted to the
actions allowed by N . When evaluating GNφ, on the other hand, the “forever
in the future” operator G is evaluated in the system restricted to N -allowed
actions, but φ is evaluated in the non-restricted system.

The dynamic operator [N] can be expressed using only the static operators,
and the combined norms can be expressed using only atomic norms. They do
not affect the expressivity. However, the combined and dynamic norms affect
the succinctness of the language, and thus the complexity of decision problems.
The logic will be called NAUL, Normative Arrow Update Logic (preliminarily
presented as [15]). We will now formally define its syntax and semantics and
then investigate the complexity of satisfiability with a tableau method.

2 Language and Semantics

Let A be a finite set of agents and P a countably infinite set of propositional
variables.

An Arrow-based Dynamic Logic of Normative Systems and Its Decidability 3

Definition 1. The formulas of LNAUL are given by

φ ::= p | ¬φ | φ ∨ φ | [N]φ | □Nφ | GNφ | FNφ

N ::= (φ,B, φ) | (φ,B, φ) | N , (φ,B, φ) | N , (φ,B, φ)

N ::= N | −N | N +N | N ×N | N ◦N

where p,∈ P and B ⊆ A.

Remark 1. In NAUL we use only three temporal operators: □N , GN and FN .
These temporal operators include an implicit universal quantification over all
paths, so we could have denoted them in a more CTL-like fashion as AXN ,
AGN and AFN . Operators corresponding to the other temporal operators from
CTL can be defined in NAUL. For example, E(φ1UNφ2) can be defined as
¬G(φ1,A,⊤)×N¬φ2.

In NAUL, the set of subformulas (SubF) or subnorms (SubN) of a formula φ
(or a norm N) includes all formulas or norms occur in φ (or N).

Strictly speaking a norm of type N is a list of clauses, but we abuse notation
by identifying it with the set of its clauses. Additionally, we use a number of
abbreviations. We refer to norms of type N as atomic norms and norms of type
N simply as norms. Note that every atomic norm is also a norm.

Definition 2. We use ∧,→,↔,
∧
,
∨

and ♢N in the usual way as abbreviations.
Furthermore, we use ĜN and F̂N as abbreviations for ¬GN¬ and ¬FN¬. We
write □B for □(⊤,B,⊤), GB for G(⊤,B,⊤) and FB for F(⊤,B,⊤). Finally, we use
□, G and F for □A, GA and FA.

Definition 3. A model M is a triple M = (S,R, v) where S is a set of states,
R : A → 2S×S maps each agent to an accessibility relation on S, and v : P → 2S

is a valuation. A pointed model is a pair (M, s) where M = (S,R, v) is a model
and s ∈ S.

A pair (s1, s2) ∈ R(a) is also called transition in M. It is denoted s1
a17−→ s2. A

path in M is a (possibly infinite) sequence s1
a17−→ s2, s2

a27−→ s3, · · · of transitions
in M. A path P ′ extends a path P if P is an initial segment of P ′. The semantics
of LNAUL are given by the following two interdependent definitions.

Definition 4. Let M = (S,R, v) be a relational model and N a norm. A tran-

sition s1
a7−→ s2 satisfies N in M if one of the following is holds:

1. N is an atomic norm, there is a positive clause (φ,B, ψ) ∈ N such that
M, s1 |= φ, a ∈ B and M, s2 |= ψ. Furthermore, there is no negative clause
(φ,B, ψ) ∈ N such that M, s1 |= φ, a ∈ B and M, s2 |= ψ,

2. N is of the form −N1 and s1
a7−→ s2 does not satisfy N1,

3. N is of the form N1 +N2 and s1
a7−→ s2 satisfies N1 or N2 in M,

4. N is of the form N1 ×N2 and s1
a7−→ s2 satisfies N1 and N2 in M,

5. N is of the form N1 ◦ N2, s1
a7−→ s2 satisfies N1 in M and the transition

s1
a7−→ s2 satisfies N2 in M∗N1.

4 H. van Ditmarsch L. Kuijer M. Liu

A path s1
a17−→ s2

a27−→ s3 · · · is an N -path in M if every transition si
ai7−→ si+1 in

the path satisfies N in M. An N -path is full in M if there is no N -path in M
that extends it.

When the modelM is clear from context, we say simply that a transition satisfies
N or that a path is an N -path.

Definition 5. Let M = (S,R, v) be a transition system and s ∈ S. The relation
|= is given as follows.

M, s |= p ⇔ s ∈ v(p) for p ∈ P
M, s |= ¬φ ⇔ M, s ̸|= φ
M, s |= φ1 ∨ φ2 ⇔ M, s |= φ1 or M, s |= φ2

M, s |= □Nφ ⇔ M, s′ |= for every transition s 7−→ s′ that satisfies N
M, s |= GNφ ⇔ for every N -path P starting in s and

every s′ ∈ P we have M, s′ |= φ
M, s |= FNφ ⇔ for every full N -path P starting in s there is

some s′ ∈ P such that M, s′ |= φ
M, s |= [N]φ ⇔ M∗N, s |= φ

where M∗N = (S,R ∗N, v) and, for every a ∈ A,

R ∗N(a) = {(s, s′) ∈ R(a) | s a7−→ s′ satisfies N}.

Recall that the single state s is a degenerate path with no transitions. So
every transition in s satisfies every norm N , so it is an N -path. As a result,
M, s |= GNφ implies M, s |= φ.

3 Example: Self-driving Cars

We will give a simple example of NAUL. Suppose we have a racetrack where a
number of self-driving cars operate. We want to equip cars with norms that will
guarantee that they avoid

(a) collisions with each other and stationary objects;
(b) “deadlock” situations where no one can act.

Let coll be the proposition variable that represents “a collision happens”. Note
that situations where no one can act are represented by □⊥.

For (a), we create a norm Nc such that if no collision has occurred then it
should prevent collisions for every point in the future. Nc is therefore successful
if we have ¬coll → [Nc]G¬coll . The simplest way is to disallow any action, then
Nc is (⊥,A,⊥). However, we would like to let Nc allow at least one action to
avoid deadlock. Thus we take Nc := (⊤,A,¬F coll). It is indeed successful as we
have |= ¬coll → [Nc]G¬coll .

For (b), we interpret it as “there must be some available action that is not
only possible but also allowed”, and then we construct a Nd such than [Nd]G3⊤
holds. we should takeNd := (⊤,A,¬F□⊥). This gives us |= ¬F□⊥ → [Nd]G♢⊤.

An Arrow-based Dynamic Logic of Normative Systems and Its Decidability 5

In other words, as long as there is an infinite path the norm Nd forces agents to
follow such a path.

For combining Nc and Nd, Nc × Nd allows agents to perform actions that
result in a situation where movement, while possible, is disallowed because it
will lead to a collision. The sequential combination solves this problem: the
norm Nc ◦ Nd allows exactly those actions that lead to neither collisions nor
situations where agents cannot or are not allowed to act. In other words, we
have |= ¬F (coll ∨□⊥) → [Nc ◦Nd]G(¬coll ∧ ♢⊤).

The self-driving cars example is also useful for illustrating the difference
between the static operators □N , GN , and FN on the one hand, and the dynamic
operator [N] on the other. We have M, s |= GNφ if φ holds after every sequence
of action that starts in s and is allowed by N . Importantly, during the evaluation
of φ it is not assumed that everyone follows N . We have M, s |= [N]Gφ if,
under the assumption that all agents follow N permanently from now on, every
sequence of actions leads to a φ state. In this case, during the evaluation of φ,
we do assume that all agents follow N .

Sometimes we may require that Nc not only avoids collisions, but also sit-
uations where a single mistake could cause a collision. We cannot phrase this
stronger success condition as [Nc]φ for any φ. After all, the φ in [Nc]φ is evalu-
ated under the assumption that all agents follow the norm Nc—so no mistakes
are made. This is where the static operator GNc is useful. Consider the formula
GNc

(¬coll ∧□¬coll). The □ in that formula is not evaluated under the assump-
tion that the agents follow Nc, so GNc

(¬coll ∧ □¬coll) holds exactly if every
sequence of actions allowed by Nc leads to a state where there is no collision and
no single action can cause a collision.

4 Satisfiability Problem

Definition 6. The satisfiability problem for NAUL is defined as follows:

– Input: an NNF formula φ.
– Output: YES if and only if there is a model (M, s) such that M, s ⊨ φ.

In this section, we present a tableau method to show the satisfiability problem
of NAUL is decidable. We will use negation normal form (NNF) of formulas or
norms. An NNF formula only has negation on literals. An NNF norm only has
negations on atomic norms instead of clauses.

Definition 7 (Negation normal form (NNF)). Given a set of variables P
and a finite set of agents A.

φ ::= p | ¬p | φ∧φ | φ∨φ | 2Nφ | 3Nφ | GNφ | ĜNφ | FNφ | F̂Nφ | [N]φ | ⟨N⟩φ

N ::= (φ, a, φ) | N , (φ, a, φ)

N ::= N | N | N +N | N ×N | N ◦N

where p ∈ P, a ∈ A.

6 H. van Ditmarsch L. Kuijer M. Liu

Theorem 1. Every NAUL-formula or norm can be transformed to an equivalent
formula or norm in NNF.

Proof. For NAUL-formulas, it can be shown easily by an induction. As for atomic
norms, since the order of clauses in an atomic norm does not matter, given an
atomic NAUL-normN , andN+ as all positive clauses,N− as all negative clauses
of N , clearly N is equivalent to N+ + N− which is an NNF norm. As for the
negations of combined norms, we have the following transformations:

– N = N
– N1 +N2 = N1 ×N2

– N1 ×N2 = N1 +N2

– N1 ◦N2 = N1 +N1 ◦N2

Given an NAUL-formula φ or NAUL-norm N , the time of transforming it into
an NNF formula φ′ or NNF norm N ′ and the size of ψ or N ′ is polynomial in
the size of φ or N .

4.1 Tableau method

We introduce some concepts related to tableau method.

Definition 8 (Term). There are two types of terms:

F-term ⟨s;λ;φ⟩ where s ∈ S, λ is a sequence of norms, φ is a formula. It means the
model has been updated by λ and φ is true on s.

N-term ⟨s1
a7→ s2;λ; η⟩ where s1, s2 ∈ S, λ, η are sequences of norms. It means the

transition s1
a7→ s2 satisfies η successively after the model is updated by λ.

Definition 9 (Tableau). A tableau T is a structure T = (W,V,E, π) where W
is an infinite set, and V is a finite set, E is a binary relation on V . Given a set
of terms L, π : V → P(L) is a labelling map.

Let A,C1, · · · , Cn be sets of terms. A tableau rule is represented as

A

C1 | · · · | Cn

Above the line, A is the antecedent; below the line, there are consequents. A
tableau rule is applicable on a node if the node has terms as an instance of the
antecedent. If there are multiple consequents after applying a rule, one need to
choose one of them.

Definition 10 (Interpretability). Given a model M = (S,R, v), it interpret
(noted as ⊨T) a set of terms T if any term in T satisfies:

– M ⊨T ⟨s;λ;φ⟩ if and only if M∗ λ, s ⊨ φ.
– M ⊨T ⟨s1

a7→ s2;λ; η⟩ if and only if s1
a7→ s2 satisfies η on M∗ λ.

A set of terms T is interpretable if there exists a model M such that M interprets
all terms in T .

An Arrow-based Dynamic Logic of Normative Systems and Its Decidability 7

Definition 11. Given a tableau T , we define an order ≺ on all terms of T as

– ⟨s;λ;φ⟩ ≺ ⟨s;λ′;ψ⟩ if φ is a subformula of ψ.

– ⟨s a7→ s′;λ; η⟩ ≺ r ⟨s;λ′;φ⟩ if η is a parameter of some operator in φ.

– ⟨s;λ;φ⟩ ≺ ⟨s a7→ s′;λ′; η⟩ if φ is in some clause of η.

– ⟨s a7→ s′;λ; η⟩ ≺ ⟨s a7→ s′;λ; η′⟩ if η is a sub-norm of η′;

– ⟨s a7→ s′;λ;N ′⟩ ≺ ⟨s a7→ s′;λ′;N⟩ if λ is an initial segment of λ′.

Now we define the tableau rules for NAUL. We omit terms which remain
the same after applying a certain rule. Let ϵ be the norm (⊤,A,⊤) after which
nothing is updated.

Definition 12 (Tableau rules).

(lit)
⟨s;λ; p⟩
⟨s; ϵ; p⟩

⟨s;λ;¬p⟩
⟨s; ϵ;¬p⟩

(∧) ⟨s;λ;φ ∧ ψ⟩
⟨s;λ;φ⟩ , ⟨s;λ;ψ⟩

(∨) ⟨s;λ;φ ∨ ψ⟩
⟨s;λ;φ⟩ | ⟨s;λ;ψ⟩

(G)
⟨s;λ;GNφ⟩

⟨s;λ;φ⟩ , ⟨s;λ;2NGNφ⟩
(Ĝ)]

⟨s;λ; ĜNφ⟩
⟨s;λ;φ⟩ | ⟨s;λ;3N ĜNφ⟩

(F)
⟨s;λ;FNφ⟩

⟨s;λ;φ⟩ | ⟨s;λ;3N⊤⟩ , ⟨s;λ;2NFNφ⟩

(F̂)
⟨s;λ; F̂Nφ⟩

⟨s;λ;φ⟩, ⟨s;λ;2N⊥⟩ | ⟨s;λ;φ⟩, ⟨s;λ;3N F̂Nφ⟩

(3)
⟨s;λ;3Nφ⟩

⟨s′;λ;φ⟩, ⟨s a17→ s′;λ;N⟩ | · · · | ⟨s′;λ;φ⟩, ⟨s an7→ s′;λ;N⟩

(2)
⟨s;λ;2Nφ⟩ , ⟨s

a7→ s′; ϵ;λ⟩
⟨s′;λ;φ⟩ , ⟨s a7→ s′;λ;N⟩ | ⟨s a7→ s′;λ;−N ′⟩

(−N ′ is the NNF of −N)

(Dyn)
⟨s;λ; [N]φ⟩
⟨s;λ,N ;φ⟩

⟨s;λ; ⟨N⟩φ⟩
⟨s;λ,N ;φ⟩

(At)
⟨s ai7→ s′;λ;N⟩

⟨s;λ;φi⟩, ⟨s′;λ;ψi⟩
where (φi, ai, ψi) ∈ N

(Neg)
⟨s a7→ s′;λ;−N⟩

⟨s;λ;
∧

j∈K1
φ′
j⟩, ⟨s′;λ;

∧
j∈K2

ψ′
j⟩ | · · ·

(@)

(Add)
⟨s a7→ s′;λ;N1 +N2⟩

⟨s a7→ s′;λ;N1)⟩ | ⟨s
a7→ s′;λ;N2)⟩

(Multi)
⟨s a7→ s′;λ;N1 ×N2⟩

⟨s a7→ s′;λ;N1)⟩, ⟨s
a7→ s′;λ;N2)⟩

(Seq)
⟨s a7→ s′;λ;N1 ◦N2⟩
⟨s a7→ s′;λ,N1;N2⟩

(DN)
⟨s a7→ s′;λ,N1;N2⟩
⟨s a7→ s′;λ;N1⟩

(@): rule Neg is branching over all K1,K2 ⊆ [1, n] such that K1 ∪ K2 = {i |
(φi, a, ψi) ∈ N}, and K1 ∩ K2 = ∅, and φ′

j and ψ′
j are the NNF of resp. ¬φj

and ¬ψj with (φj , a, ψj) ∈ N .

8 H. van Ditmarsch L. Kuijer M. Liu

(lit), (∧) and (∨) are Boolean rules. (G), (F), (Ĝ), (F̂) handle temporal modali-
ties. (G) says if we have GNφ at a word s, then we have φ as well as 2NGNφ
at s. (F) says if we have FNφ at s, then whether we have φ, or s has some
N -successor (3N⊤ is true) and 2NFNφ. (Ĝ) says if we have ĜNφ at s, then
whether we have φ or 3N ĜNφ at s. (F̂) says if we have F̂Nφ at s, then we
have φ at s and whether s has no N -successor or it has 3N F̂Nφ. (3) says if we
have 3Nφ at s, then we can choose an agent a ∈ A to “assume” that there is
a transition s

a7→ s′ satisfying N and we have φ at s′. Note that (3) is the only
rule that generates new states and whether a state can be actually generated will
be examined later. (2) says if we have 2Nφ at s and transition s

a7→ s′ exists,

then whether we have φ at s′ or s
a7→ s′ does not satisfy N . (Dynamic) handle

dynamic operators. It says if we have [N]φ (or ⟨N⟩φ) at s updated by λ, then
we have φ at s updated by λ then by N .

The other rules handle norms. (Atomic) says if we have atomic norm N for

s
ai7→ s′ where ai occurs in some clause (φi, ai, ψi) ∈ N , then we have φi at s and

ψi at s′. (Neg) says if we have N for s
a7→ s′, then given {i | (φi, a, ψi) ∈ N}

we choose some K1,K2 ⊆ [1, n] such that K1 ∪K2 = {i | (φi, a, ψi) ∈ N} and∧
j∈K1

¬φ is at s and
∧

j∈K2
¬ψ is at s′. As a result, none of clause in N will

be satisfied by s
a7→ s′. (Add), (Multi) and (Seq) are standard with respect to

Def 4. (DN) says if s
a7→ s′ satisfies some norm N2 after updating by λ,N1, then

it satisfies N1 after updating by λ. A special case of (DN) is

(DN*)
⟨s a7→ s′;λ;N⟩
⟨s a7→ s′; ϵ;λ⟩

(DN*) says if transition s
a7→ s′ is updated by λ, then it satisfies λ.

Besides above tableau rules, we also need principles to delete inconsistent
states, set an order of applying rules, and avoid infinite consequents

Definition 13 (Tableau principles). Given an NNF formula φ, we start from
the root with label ⟨s0; ϵ;φ⟩. We have the following the principles of generating
a tableau of φ:

(Inc) If a node has inconsistent literals, then mark it as “deleted”. If all
consequents are marked deleted, then mark the antecedent as deleted. In par-
ticular, if one node have no consequent then mark it as deleted directly.
(Exh) We should apply rules to terms with respect to one state until no rule
is applicable on that state. When no rule is applicable on a state s, we mark
s as “exhausted”. After that, we can apply rules to terms on its successors.
(Cyc) When a state s are marked as “exhausted’, one needs to check if there
some exhausted ancestor s∗ of s which has the same F-terms with s on some
node t∗. If so, we should add (t, t∗) ∈ E and mark s as “exhausted” as well.
If a state s is merged with some ancestor, then all successors of s are also
marked as “exhausted”, and we stop to explore any term with respect to these
successors further. In addition, let ∼ ⊆ S ×S be an equivalent relation, and
use s∗ ∼ s to “merge” these two state to a reflexive state.

An Arrow-based Dynamic Logic of Normative Systems and Its Decidability 9

(EveĜ) If all consequences of an antecedent t are marked as deleted, then
mark t as “deleted”. If ĜNφ is in some term of a node t with respect to a
state s, and there is no reachable state from s such that φ occurs in some
term, then mark t as “deleted”.
(EveF) If FNφ is in some term of a node t with respect to a state s, and
there exists a full branch from s on which φ does not occur in any term of
state on that branch, then mark t as ”deleted”.

If there is no rule applicable any more, the procedure of generating the tableau
terminate, and the tableau is complete. If the root of a complete tableau T is not
marked as “deleted”, then we call a path from the root to a leaf node on T an
open branch. If a complete tableau has at least one open branch, then we call it
an open tableau.

Proposition 1. For any NNF-formula φ, the procedure of generate a tableau
for φ will terminate.

4.2 Soundness and Completeness

Proposition 2 (Soundness). Given an NNF-formula φ, if φ is satisfiable then
there is an open tableau rooted at (s0; ϵ;φ).

Proof. We show all tableau rules preserve interpretability. If a tableau rule has
multiple consequents, then as least one of them is interpretable.

– (lit) and (∧) preserve interpretability obviously. For (∨), if one of its conse-
quences is interpretable, then so is the antecedent.

– For the rules (G), (F), (Ĝ), (F̂) and (Dynamic), it can be shown by seman-
tics. We present the case of (F) as an example. Suppose M∗λ, s ⊨ FNφ. By
semantics, for every full N -path P starting from s, there is some s′ ∈ P such
that M∗ λ, s′ ⊨ φ. Since s in every N -path starting from s, it is sufficient if
M∗λ, s ⊨ φ. Otherwise, we have there is some N -successor s′ of s such that
M∗ λ, s′ ⊨ FNφ. In this case, M∗ λ, s ⊨ 3N⊤ and M∗ λ, s ⊨ 3NFNφ.

– (3N): Suppose M∗ λ, s ⊨ 3Nφ. By semantics, there is a transition s
a7→ s′

satisfying N and M∗ λ, s′ ⊨ φ for some a ∈ A.
– (2N): Suppose M ∗ λ, s ⊨ 2Nφ and s

a7→ s′ satisfies λ on M. If s
a7→ s′

satisfies N on M ∗ λ, then by semantics we have M ∗ λ, s′ ⊨ φ. If s
a7→ s′

does not satisfy N on M∗ λ, then it satisfies −N on M∗ λ.
– (Atomic): Suppose s

ai7→ s′ satisfies N on M∗λ. It follows that M∗λ, s ⊨ φi

and M∗ λ, s′ ⊨ ψi. Thus M ⊨T ⟨s;λ;φi⟩ , ⟨s′;λ;ψi⟩.
– (Neg): Suppose s

ai7→ v satisfies N on M ∗ λ. It follows that s
a7→ v sat-

isfies no clause with respect to a in N . Thus let K1 = {i | M ∗ λ, v ⊨
¬φi for any (φi, a, ψi) ∈ N} andK2 = {i | M∗λ, v ⊨ ¬ψi for any (φi, a, ψi) ∈
N}. Therefore, we have K1 ∪ K2 = {i | (φi, ai, ψi) ∈ N}, and M ⊨T〈
v;λ;

∧
i∈K1

¬φi

〉
and M ⊨T

〈
v;λ;

∧
i∈K2

¬ψi

〉
.

– (Add), (Multi), (Seq) is straightforward by the definition.

10 H. van Ditmarsch L. Kuijer M. Liu

– (DN): Suppose s
a7→ s′ satisfies N2 on M∗λ∗N1. By definition, if s

a7→ s′ is on
M∗λ∗N1, then it satisfies N1 on M∗λ as well. Thus M ⊨T ⟨s 7→ s′;λ;N1⟩.

Note that the trace-back links by (Cyc) only connect nodes with the same terms
on the same state. Thus interpretability is preserved as well.

Suppose φ is satisfiable, then there is a pointed model M, s ⊨ φ. Let s be
s0, then there is an open tableau rooted at ⟨s0; ϵ;φ⟩.

Proposition 3 (Completeness). Given an NNF-formula φ, if there is an open
tableau rooted at (s0; ϵ;φ), then φ is satisfiable.

Proof. Suppose there is an open tableau T rooted at ⟨s0;λ;φ⟩. Let T ∗ be a full
branch on T . We construct a model M = (S,R, v) where

– S = {[s] | ⟨s;λ;ψ⟩ is in T ∗}
– R = {s a7→ s′ |

〈
s

a7→ s′; ϵ; ϵ
〉
∈ T ∗} ∪ {s a7→ s | a ∈ A, |[s]| > 1}

– v(s) = {p | ⟨s; ϵ; p⟩ ∈ T ∗}

where [s] = {s′ ∈ S | s ∼ s′}.

We show the following claims:

1. if ⟨s;λ;ψ⟩ is in T ∗, then M∗ λ, s ⊨ ψ.
2. if

〈
s1

a7→ s2;λ;N
〉
is in T ∗, then s1

a7→ s2 is in M∗λ and satisfies η on M∗λ.

Make an induction on all terms by the order ≺ in Def. 11 to show the above
claims. For Claim 2,

– If
〈
s1

ai7→ s2;λ;N
〉
∈ T ∗ where N = (φ1, a1, ψ1), · · · , (φn, an, ψn), i ∈ [1, n],

then by (Atomic) rule ⟨s1;λ;φi⟩ , ⟨s;λ;ψi⟩ ∈ T ∗. Then by IH, we have M∗
λ, s1 ⊨ φ, M∗ λ, s2 ⊨ ψ. Thus s1

ai7→ s2 satisfies N on M∗ λ.
– If

〈
s1

a7→ s2;λ;N
〉
∈ T ∗ where N = (φ1, a1, ψ1), · · · , (φn, an, ψn), i ∈ [1, n],

then by (Neg) rule,
〈
s1;λ;

∧
i∈K1

¬φi

〉
∈ T ∗ and

〈
s2;λ;

∧
i∈K2

¬ψi

〉
∈ T ∗

for some disjoint K1 ∪ K2 = {i | (φi, a, ψi) ∈ N}. Thus, no φi and ψi are
satisfied simultaneously so that no clause in N with respect to a is satisfied.
Therefore, s1

a7→ s2 satisfies N .
– The cases of N1 +N2, N1 ×N2, and N1 ◦N2 are straightforward by IH.

For Claim 1,

– If ⟨s;λ; p⟩ ∈ T ∗, then by by the rule (lit), ⟨s; ϵ; p⟩ ∈ T ∗. Thus M, s ⊨ p, and
then M ∗ λ, s ⊨ p. Similarly, if ⟨s;λ;¬p⟩ ∈ T ∗, then M ∗ λ, s ⊨ ¬p. The
boolean cases, dynamic case and ⟨s;λ;3Nψ⟩ ∈ T ∗ are straightforward by
IH.

– If ⟨s;λ;2Nψ⟩ ∈ T ∗, then for any
〈
s

a7→ s′; ϵ;λ
〉
∈ T ∗, by (2N) rule, ⟨s′;λ;ψ⟩ ∈

T ∗ or
〈
s

a7→ s′;λ;−N
〉
∈ T ∗. If ⟨s′;λ;ψ⟩ ∈ T ∗, then by IH M∗ λ, s′ ⊨ ψ; If〈

s
a7→ s′;λ;−N

〉
∈ T ∗, then by Claim 1, s

a7→ s′ satisfies −N , that is to say,

s
a7→ s′ does not satisfy N . Thus by semantics, M, s ⊨ 2Nφ.

An Arrow-based Dynamic Logic of Normative Systems and Its Decidability 11

– Suppose ⟨s;λ;GNψ⟩ ∈ T ∗. Let P = s
a17→ s1

a27→ s2 · · ·
an7→ sn+1 be any

N -path starting from s. We show that ⟨s′;λ;2NGNψ⟩ ∈ T ∗ and M ∗
λ, s′ ⊨ ψ for any s′ ∈ P by induction on n + 1. By (G) rule, ⟨s;λ;ψ⟩ ∈
T ∗ and ⟨s;λ;2NGNψ⟩ ∈ T ∗. Since ⟨s;λ;ψ⟩ ∈ T ∗, by IH we have M ∗
λ, s ⊨ ψ. Assume ⟨sn;λ;2NGNψ⟩ ∈ T ∗ and M ∗ λ, sn ⊨ ψ. By (G) rule

again, we have ⟨sn+1;λ;2NGNψ⟩ ∈ T ∗. Since sn
an7→ sn+1 ∈ R, we have〈

sn
an7→ an+1;λ;N

〉
∈ T ∗. Then by (2N) rule, we have ⟨wn+1;λ;ψ⟩. By IH,

we have M∗λ, sn+1 ⊨ ψ. Thus for every s′ ∈ P , we have M∗λ, s′ ⊨ ψ. As P
is arbitrary, by semantics M∗ λ, s ⊨ GNψ. For terms with FNψ, ĜNψ and
F̂Nψ, it is routine by IH.

Theorem 2. For any NNF formula φ, φ is satisfiable if and only if there is an
open tableau rooted at (s0, ϵ, φ).

Therefore, the satisfiability problem of NAUL is decidable. We wil show its upper
bound is in EXPSPACE.

Theorem 3. The satisfiability problem of NAUL is in EXPSPACE.

Proof. Let φ be an NNF formula, and T be an open tableau for φ. We show the
following claims:

1. The depth of T is at most exponential.
2. The width of T is at most double exponential.
3. The procedure can be done in double exponential amount of time.

Note that tableau rules does not decompose formulas strictly, thus the sizes of
formulas in the consequents may be larger than the sizes of formulas in the
antecedents. However we can give an upper bound of how many terms a single
open branch in T has.

The agenda Ag(φ) of a formula φ is the smallest set containing ϵ, SubF (φ)
as well as SubN(φ) and satisfying the following conditions:

– If ψ ∈ Ag(φ), then ¬ψ∗ ∈ Ag(φ);
– If GNψ ∈ Ag(φ), then 2NGNψ ∈ Ag(φ);
– If ĜNψ ∈ Ag(φ), then 3N ĜNψ ∈ Ag(φ);
– If FNψ ∈ Ag(φ), then 3N⊤,2NFNψ ∈ Ag(φ);
– If F̂Nψ ∈ Ag(φ), then 2N⊥,3N F̂Nψ ∈ Ag(φ);

– If N ∈ Ag(φ), then N
∗ ∈ Ag(φ).

Clearly, the cardinality of Ag(φ) is polynomial in |φ|.
Proof of 1: For any F-term ⟨s;λ;ψ⟩ or N-term

〈
s

a7→ s′;λ;N
〉

occurring in

T when s is marked as exhausted, it can be shown that ψ, N ∈ Ag(φ) and all
elements of λ are in Ag(φ) by examining every rule. Firstly, we could give an
upper bound of states in one open branch. We have shown the formulas of all F-
terms are in Ag(φ). Since two exhausted states get merged if they have the same
F-terms, we can get at most exponential many states in the size of φ. Secondly,

12 H. van Ditmarsch L. Kuijer M. Liu

we could give an upper bound of how many transitions are generated from one
state. Note that the (3N) rule is the only rule that generates new transitions.
The frequency that (3N) rule is applied is bounded by the size of φ, one state
has at most polynomial many arrows in the size of φ.

Therefore, the upper bounds of the amount of F-terms and N-terms are both
at most exponential in the size of φ. One open branch has at most exponential
depth as well, as there are at most exponentially many exhausted states with
the same F-terms. This is because if a state is merged with some ancestor, then
we will stop exploring terms of it. Therefore, the frequency that each state can
be merged is no more than the number of paths starting from it. Since each
exhausted state has polynomial many arrows to other states, it can be merged
at most exponentially many times. In short, the depth of one open branch is in
at most exponential.

Proof of 2: The rule leads to exponentially many branches is (Neg). Given an
atomic norm N , |N | is bounded by |φ|. The cardinality of branches is in O(2|φ|).
As there are at most exponentially many terms in one branch, the width of T is
in O(2|φ|2), so at most double exponential in the size of φ.

Proof of 3: The algorithm contains: applying tableau rules, checking, marking
and pruning the tableau by principles, transforming formulas with negation into
NNF. For each branch, as there are at most exponentially many terms in the
size of φ, all of three procedures above can be done in an exponential amount
of time. To be specific, applying rules contains searching suitable premises and
executing. The input of searching is the power set of labels on some node, which
is exponential in the size of φ and the executions of applying rules are no more
than the amount of terms; the input of checking inconsistency and states with
the same terms is exponential in the size of φ and can be done in exponential
time; the frequency of transforming NNF formulas is at most exponential and
each transformation can be done in polynomial time.

To sum up, as we can reuse the space for each open branch, the procedure is
in EXPSPACE.

5 Conclusion

We have presented a logic named normative arrow update logic (NAUL). In
NAUL, we can combine norms in three ways: additive, multiplicative and sequen-
tial. We can also distinguish static and dynamic ways to consider norms. We have
shown that the satisfiability problem of NAUL is decidable via a tableau method
and the complexity of this problem is in EXPSPACE. For the further research,
firstly, we conjecture the satisfiability problem of NAUL is EXPSPACE-hard
but have no proof yet. Secondly, we are interested in finding tractable fragments
of NAUL. Lastly, it may be interesting to develop a variant of arbitrary arrow
update logic (AAUL) [21] for normative systems. It would have quantifier over
norms and express “there is some norm that guarantees φ”.

An Arrow-based Dynamic Logic of Normative Systems and Its Decidability 13

References

1. T. Ågotnes, W. van der Hoek, J. A. Rodŕıguez-Aguilar, C. Sierra, and
M. Wooldridge. On the logic of normative systems. In Proc. of 20th IJCAI,
pages 1175–1180, 2007.

2. T. Ågotnes, W. van der Hoek, J.A. Rodŕıguez-Aguilar, C. Sierra, and
M. Wooldridge. A Temporal Logic of Normative Systems. In David Makinson,
Jacek Malinowski, and Heinrich Wansing, editors, Towards Mathematical Philoso-
phy: Papers from the Studia Logica conference Trends in Logic IV, pages 69–106.
Springer Netherlands, Dordrecht, 2009.

3. T. Ågotnes, W. van der Hoek, and M. Wooldridge. Robust normative systems and
a logic of norm compliance. Logic Journal of the IGPL, 18:4–30, 2010.

4. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49:672–713, 2002.

5. A.R. Anderson and O.K. Moore. The formal analysis of normative concepts. Amer-
ican Sociological Review, 22:9–17, 1957.

6. P. Bartha. Conditional obligation, deontic paradoxes, and the logic of agency.
Annals of Mathematics and Articial Intelligence, 9(1-2):1–23, 1993.

7. R.M. Chisholm. Contrary-to-duty imperatives and deontic logic. Analysis, 24:33–
36, 1963.

8. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Dexter Kozen, editor, Logics of Programs,
pages 52–71, 1981. LNCS 131.

9. D. Fitoussi and M. Tennenholtz. Choosing social laws for multi-agent systems:
Minimality and simplicity. Artificial Intelligence, 119:61–101, 2000.

10. D. Føllesdal and R. Hilpinen. Deontic Logic: An Introduction. In Risto Hilpinen,
editor, Deontic Logic: Introductory and Systematic Readings, Synthese Library,
pages 1–35. Springer Netherlands, Dordrecht, 1971.

11. A. Herzig, E. Lorini, F. Moisan, and N. Troquard. A dynamic logic of normative
systems. In T. Walsh, editor, Proceedings of the Twenty-second International Joint
Conference on Artificial Intelligence (IJCAI11), pages 228–233, 2011.

12. J.F. Horty. Agency and deontic logic. Oxford University Press, 2001.
13. A.J.I. Jones and M. Sergot. On the characterisation of law and computer sys-

tems: The normative systems perspective. In Deontic Logic in Computer Science:
Normative System Specification, pages 275–307, 1993.

14. B. Kooi and B. Renne. Arrow update logic. Review of Symbolic Logic, 4(4):536–
559, 2011.

15. L.B. Kuijer. An arrow-based dynamic logic of norms. In 3rd International Work-
shop on Strategic Reasoning (SR 2015), 2015.

16. J. Ch. Meyer. A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. Notre Dame Journal of Formal Logic, 29:109–136, 1988.

17. A. Ross. Imperatives and logic. Theoria, 7:53–71, 1941.
18. Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for artificial

agent societies. In Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI 1992), pages 276–281, 1992.

19. Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: off-line
design. Artificial Intelligence, 73:231–252, 1995.

20. R. van der Meyden. The dynamic logic of permission. Journal of Logic and Com-
putation, 6(3):465–479, 1996.

21. H. van Ditmarsch, W. van der Hoek, B. Kooi, and L.B. Kuijer. Arbitrary arrow
update logic. Artificial Intelligence, 242:80–106, January 2017.

	An Arrow-based Dynamic Logic of Normative Systems and Its Decidability

