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Abstract—Localisation of surgical tools during operation is of
paramount importance in the context of robotic assisted surgery.
3D pose estimation can be utilised to explore the interaction of
tools with registered tissue and improve the motion planning of
robotic platforms, thus avoiding potential collisions with external
agents.

With the problems of traditional tracking systems being cost
and the need to redesign surgical tools to accommodate markers,
there has been a shift towards image-based, markerless tracking
techniques. This study introduces a network capable of detecting
and localising tools in 3D using a monocular setup.

For training and validation, a novel dataset, 3dStool, was
produced, and the network was trained to obtain a mean Dice
coefficient of 85.0% for detection, along with a mean position and
orientation error of 5.5mm and 3.3◦ respectively. The presented
method is significantly more versatile than various state of the
art solutions, as it requires no prior knowledge regarding the
3D structure of the tracked tools. The results were compared to
standard pose estimation networks using the same dataset and
demonstrated lower errors along most metrics. In addition, the
generalisation capabilities of the proposed network were explored
by performing inference on a previously unseen pair of scissors.

Index Terms—Surgical Tool Detection, Instance Segmentation,
3D Pose Estimation, Monocular, Surgical Tool Localisation

I. INTRODUCTION

Throughout the past 25 years, Minimally Invasive Surgery
(MIS) has been the focus of numerous developing tech-
nologies, and thus the number of Robot Assisted Surgeries
(RAS) in this context has been constantly growing [1], not
only due to the high precision and dexterity achieved, but
also due to the potential efficiency gains offered [2]. Various
surgical areas have received attention, including laparoscopic
surgeries, orthopaedics and retinal surgeries. With the constant
improvement of surgical robotics, the need to track tools
involved in the procedure has been further underlined.

Detection of surgical tools has received significant atten-
tion, especially with recent improvements in computational
resources and the development of deep learning techniques.
A distinction can be made between image-based and non-
image-based approaches for detection and 3D localisation.
Non-image-based methods encompass either external sensors
or mechanical solutions. The former usually manifests in
the form of highly accurate, expensive and bulky optical
trackers that are capable of tracking specific markers in 3D
space. Although very effective in locating markers and straight
forward in their use, such methods suffer from two major
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drawbacks, namely cost and the need to redesign surgical
tools to facilitate the tracked markers. The latter drawback is
especially significant when tracking ”off-the-shelf” tools such
as scalpels and scissors, since the incorporation of markers
would involve redesigning of the tools and manufacturing at
high tolerance, thus further increasing cost per operation. Me-
chanical solutions, on the other hand, incorporate components
such as motor encoders and cable driven components, which
is the case with the da Vinci [3], to localise the tool-tip during
operation. Such solutions also boast high accuracy, but require
the development of a precisely manufactured system, which
can be expensive.

With the emergence of computer vision practises in the
past decades, detecting surgical tools within the operating
room (OR) using image-based techniques has received signif-
icant attention. Deep learning, image-based techniques offer
a desirable alternative to their non-image-based counterpart,
since they significantly reduce cost and size of detection
components. In addition, the tracked tools usually require no
design readjustements.

Unfortunately, there exist several restrictions which prevent
the direct application of image-based approaches in a surgical
context to achieve tool detection and pose estimation. In
endoscopic procedures, for example, tools are significantly
close to the endoscope camera lens, which in turn amplifies
the effects of image distortions. In addition, most surgical
tools comprise of highly reflective or featureless materials,
thus impeding the ability of a network to detect keypoints.
Blood, smoke and other image occlusions present another
obstacle in this process. Furthermore, several standard tools,
such as scalpels and scissors are not accompanied by 3D
models, usually in the form of Computer Aided Design (CAD)
data, that can be used not only for point correspondences in
detection, but also for pose estimation purposes. Finally, in
order to estimate the pose of a tool in 3D space using cameras
poses a significant challenge, especially with a monocular
setup, which lacks any scene depth information. It should also
be noted that, despite the high versatility offered by image-
based solutions, they still underperform in terms of accuracy
compared to the more expensive solutions offered by optical
trackers.

With these limitations in mind, this paper introduces
SimPS-Net, Simultaneous Pose and Segmentation Network
that utilises a single RGB camera to segment “off-the-shelf”
surgical tools within a frame and estimate their 3D pose in
space. In addition, a novel dataset constructed for the purpose
of training and testing this network is introduced.
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This paper is structured as follows. Section II provides an
investigation of relevant research on the topic of tool detection
and pose estimation in a surgical context, along with results
that verify the suitability of such methods. Section III outlines
the dataset that was constructed for the purposes of training
and testing the network. Section IV then gives an overview
of the developed network, and the experimental setup used to
test it, with the results being analysed in section V. Section
VI utilises these results to compare the performance of the
examined technique with respect to the state of the art, and in
section VII an outline of future improvements is provided.

II. RELATED WORK

With the improvement of computing resources and the
development of Deep Learning (DL) techniques in computer
vision, mostly in the form of Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), significant
recent research has focused on developing tool detection
pipelines that utilise neural networks, as opposed to previ-
ous, “traditional” techniques which usually perform feature
extraction and matching or incorporate various sensors. This
is not only because DL techniques usually demonstrate higher
accuracies, but also because of their deployment convenience,
assuming a labelled dataset is available. An extensive analysis
of traditional methods for surgical tool detection has been
undertaken [4], and these generally suffer from low accuracy
in the case of camera based methods, or the need to redesign
surgical tools in the case of optical trackers. For this reason,
the use of standard RGB cameras is favoured, alongside a steep
development of Deep Learning techniques for tool detection
and pose estimation related research.

A. Deep Learning Detection

To achieve pose estimation using deep learning techniques,
object detection in an image is usually a prerequisite. There-
fore, when discussing pose, it is only natural to first examine
various methods of surgical tools detection and segmentation.
The two standard tool classification methods are box detection,
achieved by creating a bounding box around each tool in the
frame and classifying the contents of each box, and instance
segmentation, where pixel-wise classification is performed to
identify what class each pixel belongs to. Note that when ex-
amining single object frames, the term semantic segmentation
is used, which essentially identifies the regions of an image
that belong to a tool, without specifying which tool. Several
approaches have been developed to achieve bounding box
tool classification. One interesting implementation examined
the performance of a You Only Look Once (YOLO) based
network [5] across 7 different types of tools [6]. YOLO based
networks boast very high performance speeds, making them
an ideal choice for real time applications. However, with the
lack of optimisation, they underperform in harsh environments
such as the ones associated to laparoscopic or orthopaedic
operations. To address this, a YOLO900 based network [7]
was constructed to take into account motion prediction from
previous frames in order to improve detection performance

[8]. This use of temporal information, however, can lead
to an exponentially increasing error, since the success of
tool detection in the current frame depends on the success
of previous detections. Nevertheless, this approach further
underlines the high speed and tunability of YOLO based
networks. These networks, however, are not the only ones
that demonstrate high detection speeds. It has been shown
that it is possible to achieve extremely fast box detection
by constructing non-region-based networks for tool detection.
Specifically, the Extremely Fast and Precise Network (EF-
PNet) [9] was constructed with the aim of optimising de-
tection speed, achieving 270 fps in detection. This research
suggests that in a surgical context, YOLO based networks
may not be optimal for box detection. A similar process was
explored when developing a box detection network that did
not require the formulation of anchors [10]. Even though the
inference speed only ran at 37 fps, the accuracy was increased
significantly. Another advantage of deep learning approaches
was the option to integrate spatio-temporal data across the
detection process to improve results. A Spatial Transformer
Network (STN) has been combined with a CNN to detect
tools moving at high speed, a condition which usually suffers
from erroneous detections due to image blur [11]. However,
occlusions significantly impact such methods.

With the development of U-Net [12], numerous techniques
for surgical tool segmentation have been proposed to address
the difficulties presented in the operating room. Furthermore,
detection could now be effectively performed on non-rigid
tools. It was shown that with minimal modification, a stan-
dard Fully Convoluted Network (FCN), namely the FCN-8s
[13], was adjusted to semantically segment surgical tools in
operation. The results of this network were further combined
with the detected optical flow across subsequent frames to
further refine the segmentation [14]. Expanding on the FCN-8s
network, two variations of a new network, ToolNet [15] were
developed for real-time segmentation, namely ToolNetMS and
ToolNetH. Both ToolNet versions benefit from fewer network
parameters than standard FCNs. ToolNetMS achieves faster in-
ference at 43 fps, whereas ToolNetH boasts a higher segmenta-
tion accuracy. A different approach explored for segmentation
was the construction of a hybrid structure, consisting of both
CNN and RNN elements [16]. The convolutional layers extract
and encode features across image pixels, whereas the recurrent
layers identify pixel dependencies. The hybrid structure was a
significant improvement from previous implementations.

The effect of data augmentation in segmentation results has
also been explored to an extent. Initial segmentation state of
the art networks such as U-Net and TernausNet directly used
image masks for training. However, surgical environments
significantly vary across operations, and therefore augmented
data could potentially account for this discrepancy. UNetPlus,
a network that brought together aspects of both U-Net and Ter-
nausNet was therefore constructed [17], and a novel augmenta-
tion technique was employed throughout training, proving that
detection results greatly benefit from image augmentation. The
effect of augmentation is further underlined when comparing
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UNetPlus to other U-Net - TernausNet hybrids which do
not incorporate data augmentation [18]. Instance segmentation
can be taken one step further by defining different classes
across a single object, such as for example the tool shaft and
blade on a scalpel. This was first achieved by employing a
standard Residual Network, ResNet-101, and training it to
detect various parts of each tool [19]. Besides the accuracy
improvements that this network benefits from, it has also
proven successful for occlusion handling, since segmentation
of an object will not fail completely if a region of the tool
is occluded. In this case, occlusions over the tool shaft still
allow for tool tip segmentation and vice versa. Segmenta-
tion networks also incorporated temporal information through
the construction of three dimensional convolutional layers.
For example, laparoscopic videos have been used across an
encoder-decoder architecture that includes three dimensional
convolutional layers to improve segmentation results [20] and
identify tool landmarks. Such architectures address detection
errors caused by unfavourable background conditions.

B. Pose Estimation

Significant effort has been directed towards extracting the
pose of an object through a monocular RGB camera using
deep learning techniques. Early approaches were not, how-
ever, applied on surgical tools. The majority of the solutions
approach the estimation of object pose either as a regression
problem, a template matching problem or, more rarely, via a
coordinates based approach [21]. Usually, two-stage methods
are employed, which involve a network that achieves object
detection, followed by a pose estimation pipeline. Regression
methods were initially applied on large object pose estimation
with the development of PoseNet [22], however networks were
further refined to address everyday objects. An example is
the PoseCNN [23], where an object is localised in an image
using a bounding box, and the 6D posed is regressed within
the detected region. In template matching, the pose is solved
through a PnP problem using correspondences between image
points and 3D model points. Correspondence methods are
more frequent, but require 3D information of the detected
object, usually extracted through CAD models. These methods
sometimes boast increased robustness against occlusion by
matching numerous pixels against the 3D model [24], or fast
running times, as is the case of EfficientPose [25], which
can localise objects and estimate the respective pose values
in real time. Another noteworthy pose estimation technique,
which was a direct result of the development of the Single-
Shot Detection (SSD) [26], is the SSD-6D [27]. In this case,
objects are detected in a single RGB frame using the SSD
network in the form of a bounding box, and the 6D pose is
subsequently estimated via viewpoint classification instead of
translation and rotation regression.

Several approaches have been developed to detect tools and
estimate their pose within images. Most of these are two
stage approaches, though some employ a single-step structure
where detection and pose estimation are achieved within the
same network. Interestingly, a lot of effort has been directed

towards 2D pose estimation using monocular images instead
of 3D pose, as it is easier to label data for network training
in this manner. One initial single-stage implementation is
the direct regression of 2D tool pose in an image within
an encoder-decoder network [28]. In such a case, tool joints
are identified within an image alongside tool segmentation.
This process is then further refined to localise these same
tool joints by obtaining heatmaps for each landmark and
identifying small regions that contain the points of interest,
which are then overlayed to the original image. A similar
approach was developed to segment tools using a U-Net and
simultaneously localise tool landmarks in an image through
the use of probability maps [29]. These two approaches were
the first single-stage techniques to be applied on surgical tools
to not only detect them, but also estimate their 2D pose. In
theory, if the definition of 2D pose is reduced to identifying
tool landmarks, a detection network alone could be sufficient
for this task. However, when comparing such an approach
to a two-stage solution, the benefits of the latter become
clear. The standard semantic segmentation networks, which are
usually encoder-decoder types, usually only offer dense pixel
segmentation. In one such example [30], a standard encoder-
decoder network was initially used to estimate joint positions.
However, it quickly became obvious that any network would
benefit from some mechanism dedicated to pose estimation.
In this example, a regression stage was applied on the dense
segmentation results to extract accurate pixel location of tool
joints. Similarly, attention methods instead of regression have
been employed to further refine the pixel region containing
tool landmarks in 2D pose detection [31].

Examining 3D surgical tool pose using monocular RGB
cameras through deep learning is still relatively unexplored.
Following the development of the SSD-6D [27], some effort
was directed towards applying it on surgical tools [32]. To
do so, it was shown that the structure of SSD-6D needed
to be altered so that pose estimation could be tackled as a
regression problem instead of a classification one. The network
was trained on artificial images, and in doing so utilised the
required 3D model information, but some degree of generali-
sation was presented when using real images. Pose estimation
on artificial images was further refined in [33], where different
rendering options were explored for the artificial dataset, and
the pose model was adjusted accordingly. Lastly, a noteworthy
approach was developed to address the need for 3D models
in 3D pose estimation. In laparoscopic surgery, it is safe to
assume that most tools observed by the camera will be cylin-
drical, and therefore the Augmented Reality Tool Network
(ART-Net) [34] was developed to include a single encoder
followed by multiple decoders. One of the decoders is used for
detection, another for segmentation, and the remaining ones
are used to extract tool edge-lines, mid-axis line and tool tip,
from an image. These parameters are refferred to as geometric
primitives, and knowledge of their 3D location can be used to
solve simple algebraic statements that can provide the pose of
cylindrical objects.
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Fig. 1: Examples of true poses in 2D (Forceps, Scissors, Burr, Scalpel from left to right)

Fig. 2: Examples of manual image annotations (Scissors, Scalpel, Forceps, Burr from left to right)

III. DATASET

Most datasets of surgical tools available examine laparo-
scopic conditions and usually do not provide any labelled
images of ”off-the-shelf” tools. In addition, such datasets
usually lack 3D pose labels. Hence, a custom dataset was
required to train SimPS-Net. Specifically, the dataset should
consist of RGB images of surgical tools in action, alongside
the 3D pose of each tool. For that purpose, the novel dataset,
3D Surgical Tools (3dStool) was constructed. Four surgical
tools were initially chosen, namely a scalpel, a pair of scissors,
a pair of forceps, and an electric burr. The first three of these
are extremely common in surgical operations. An electric burr,
while less common, was also included in order to explore the
response of the network to axisymmetric, cylindrical objects.
All objects were recorded while operating on a cadaveric knee*

to best mimic the real-life environmental conditions.
Overall, 5370 images were collected and annotated, split

into 4027 images for training, 537 for validation and 806 for
testing purposes. Each image was semantically labelled and
was accompanied by a value for the observed 3D pose. Addi-
tionally, while the main dataset consists of only one variation
of each tool, a separate set of 553 images of a different set
of scissors was collected, annotated, and used to explore the
generalisation capabilities of the network. Ultimately, the pre-
sented dataset is publicly available, accompanied by a detailed
explanation of the structure and some relevant functions for
image processing [35].

*The knee was obtained from a licensed tissue bank, and ethical approval
was acquired from the Imperial College Healthcare Tissue Bank, project code
R21046.

IV. MATERIALS AND METHODS

This section initially outlines the dataset construction, fol-
lowed by the structure of the proposed network and, ultimately,
the hardware employed.

A. Dataset Collection & Extrinsic Calibration

For each tool, two different sources of data were required.
Firstly, the RGB image of the tool in action, which would
subsequently be manually annotated; secondly, the 3D pose
of the observed tool in the camera frame. For the purpose
of RGB image collection, a RealSense D415 camera (Intel,
USA) was employed. For the collection of position data, the
ftk500 optical tracker (Atracsys, Switzerland) was utilised,
allowing for localisation of fiducials in 3D space. The two
sensors were rigidly positioned relative to each other, and
extrinsically calibrated in order to obtain the 3D poses in
camera coordinates, as outlined in Equations 1 and 2:

xcam

ycam
zcam
1

=

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



xA

yA
zA
1

 (1)

∴ pcam = [R|t] pA (2)

where [R|t] is the extrinsic calibration matrix, pA are the
3D coordinates of a point in the optical tracker frame and
pcam are the same 3D coordinates of a point in the camera
frame. Note that a similar transformation was undertaken to
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Fig. 3: SimPS-Net Architecture

calculate the orientation of each tool in camera coordinates.
In order to estimate [R|t], an implementation of the standard
Iterative Closest Point (ICP) algorithm [36] was employed.
Specifically, a geometry of known shape was designed and
3D printed, with fiducial markers also attached to it. The
geometry was subsequently placed before the camera and the
optical tracker. The RealSense D415 was used in depth mode
to collect a pointcloud of the detected geometry, which was
then matched to the CAD model to create an initial estimate of
the transformation. ICP was then utilised to further refine the
transformation matrix, allowing for the calculation of [R|t].

Having obtained the extrinsic matrix, 3D printed clamps
were utilised to incorporate optical tracker markers on each
surgical tool. The tools were recorded in operation, with the
background set up to best mimic actual operating room con-
ditions. For this purpose, data was collected while operating
on a cadaveric knee. Each batch of images was accompanied
by the calculated 3D pose, which was subsequently converted
to camera coordinates. For visualisation purposes, the intrinsic
matrix of the camera, K, was used to visualise the 3D pose
using the 2D RGB images, as shown in Figure 1. It should be
noted that some sources of error, such as slight vibrations of
the sensors, or displacement of the tool clamps, could have
caused some variation between the tracked and the actual
position of the tool.

Upon verifying the pose data for each batch of images,
the batches were combined, shuffled, and split. Images where
no pose was detected due to heavy occlusion were rejected.
Ultimately, polygon annotations were manually generated, as
shown in Figure 2, for training and testing of the network.
The poses were included in an annotation file in the form of
translation (x, y, z) and orientation (4 quaternions).

B. The Network

The proposed network architecture allows for multi-instance
segmentation and 3D pose estimation. It is based on the fa-
mous Region Based CNN, Mask-RCNN [37], which is widely
used for semantic segmentation. Mask-RCNN comprises the
backbone, which is followed by two branches, one responsible

for segmentation and the other for classification. SimPS-Net
expands on the Mask-RCNN by introducing a third branch
which performs 3D pose regression, as shown in Figure 3.
The novelty of the proposed approach is represented by the
”Pose Branch” in the figure, since the rest of the architecture
is approximately similar to that of Mask-RCNN. As observed,
the examined branch comprises of an initial convolution step,
where the coloured image is passed through the convolutional
layers. During this layer, a 7x7 pooling is applied to extract
features from the original image being passed through the
layer. Note that to maintain a consistent output dimension,
no zero-padding was undertaken during the initial step. Upon
extracting the necessary features during the convolutional
layer, the output is then passed through two identical, fully
connected layers. In doing so, the general features extracted
during the first step of the branch are further refined, in order
to better understand the position and orientation of the detected
tools. Ultimately, the results are passed through a dense layer,
which utilises a Rectified Linear Unit (ReLU) activation, thus
expressing the output in the form of seven parameters, namely
the position and orientation values. Various activation methods
were explored, such as the sigmoid and the softmax methods,
with ReLU achieving optimal results.

The network was set up using ResNet-50 as the backbone
to extract the regions of interest, according to relevant findings
that indicate improved surgical tool detection in doing so [38].
Minor alterations were made in the classification and mask
branches, in order to allow for faster deployment.

In this application, the 3D pose, p, is defined as the combi-
nation of the position and orientation vector for an identified
object. Quaternions were used to describe the orientation of
each tool:

p = [x, θ]

where

x = [x, y, z] is the position vector
θ = [qx, qy, qz, qw] is the orientation vector

In this context, the pose branch predicts the 3D pose of

5



Fig. 4: Examples of predicted masks and poses in 2D (Forceps, Scissors, Burr, Scalpel from left to right)

each tool within the frame, ppred. The predicted result is then
compared to the true 3D pose of the detected tools, ptrue.
This comparison is undertaken in the final step of the branch,
where the pose loss function is constructed to compare position
and orientation separately, before the two are amalgamated to
calculate the overall loss. This is demonstrated in Equation 3.

L = α ∥xtrue, xpred∥2 + β ∥θtrue, θpred∥2 (3)

The constant β has been proven to improve orientation
prediction [22], whereas α is needed to account for the
discrepancy in scale between the values of the orientation and
the position vector, since position values were incorporated in
meters.

C. Hardware

The network was trained and deployed using an NVIDIA
GeForce GTX 1060. Training was undertaken for 160 epochs.
The current implementation achieved inference at 2.2 fps.

V. RESULTS

Evaluation of SimPS-Net was achieved by presenting un-
seen images of all four classes to the trained network and
performing tool detection and pose estimation for each frame.
This was repeated for various permutations of pose constants,
α and β, to identify the best configuration of the network, by
examining the errors along the position and orientation values
obtained. Inference was also undertaken for a different pair of
scissors to explore the extent to which SimPS-Net detection
and pose estimation can be generalised across ”off-the-shelf”
items.

A. Inference Results on Dataset

Detection, position and orientation metrics were obtained
for each permutation across all frames. The pose constants
themselves had minimal impact on the detection metrics, and
therefore the detection findings reported in Table I remained
relatively constant across tests. Examples of the predicted
masks, along with the predicted poses, are shown in Figure
4. The metrics used for detection were the mean average
precision (mAP) and the mean Dice coefficient (mDice). For
pose estimation, the output was processed in mm and degrees.

To better explore the effect of pose constants, the network
was initially trained so that position and orientation could be

inspected separately. This was done by setting one of the pose
constants to zero and considering various values for the non-
zero constant.

Training was then undertaken with various constant permu-
tations to converge on a suitable combination. When merging
both components of the loss function, the better pair was
found to be α = 700, β = 300. The inference error for both
position and orientation was ultimately calculated as the mean
difference between predicted and true vectors across all test
images along each axis. The results of this proposed method
are reported in Table I.

B. Inference Results on Unseen Scissors

The same configuration of α and β was then used to perform
inference on the pair of scissors that had not been included in
the training process beforehand. The purpose of this test was to
understand whether or not the network could easily generalise
on surgical tools that have not been seen before, since tool
shapes and sizes can deviate to an extent, depending on the
manufacturer. The network was used to infer the poses of the

Fig. 5: Pose Estimation on Unseen Scissors
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scissors, which are shown alongside the ground truth poses in
Figure 5.

VI. DISCUSSION

The main benefit of this network is improved versatility over
competing designs. No prior knowledge of the 3D structure of
the tools is required to achieve results that generally exceed the
state-of-the-art in 3D pose estimation. Furthermore, no initial
assumptions regarding the shape of the tools are required, as
opposed to methods which assume the surgical tools can be
approximated to, e.g. cylinders.

SimPS-Net was compared to three networks which allow for
3D pose estimation, specifically PoseNet [22], Robust Object
Pose Estimation (ROPE) [39], and Geometry-Guided Direct
Regression Network (GDR-Net) [40].

PoseNet allows for the estimation of camera position and
orientation by regressing quaternions, without the need for any
prior 3D structure knowledge. Specifically, it involves a CNN
that can estimate camera pose over 6 degrees of freedom by
utilising a single, RGB image. The purpose of developing this
network was to address pose estimation cases of varying fields,
both indoors and outdoors, whilst also accommodating severe
cases where harsh lighting or other occlusions are present.
The authors first deployed this network for the purpose of
calculating camera pose when examining big objects, such
as buildings, however it is expected that the network can be
deployed in closer proximities

ROPE allows for some degree of occlusion handling in de-
tection and 3D pose estimation. Interestingly, when exploring
the architecture of this competing network, it is noted that
the authors also utilised a Mask R-CNN as a basis, however
the mask branch was also changed to allow for 2D image
landmark identification. The landmarks are subsequently used
to estimate the 6 degrees-of-freedom pose of the detected
object on the scene. The landmarks are then matched to
the object, and through a standard Perspective-n-Point (PnP)
method [41], the pose of the object is calculated in 3D space.

Finally, GDR-Net makes use of correspondences using geo-
metric representations. More analytically, the network initially
achieves detection of all relevant objects in a single RGB
image using a standard detection network. Subsequently, for
each object, a zoomed in sub-section is extracted from the
image, containing only the object of interest. This sub-section
is utilised in the network to generate geometric feature maps.
Ultimately, these feature maps are used in order to regress the
3D position and orientation of the target object.

As shown in Table I, the position and orientation metrics
obtained for the proposed method are promising. Indeed, none
of the position errors along each direction exceeds 10mm, as
opposed to the state of the art results. In addition, orientation
errors remain low throughout. Pitch and yaw are similar
when compared to the other networks. Interestingly, SimPS-
Net appears to be more robust along the roll axis than its
counterparts, which, along with the results along the depth
direction (Z), indicates suitability for 3D tasks. The reported
errors can be amalgamated to a mean positional error of

5.5mm and a mean orientation error of 3.3◦. As expected,
these accuracies cannot outperform optical trackers, but the
ease of deployment can counteract this shortcoming, making
this the preferred method for applications that do not require
submilimiter accuracies, such as robot path planning outside
the body.

Another interesting finding is associated with the orientation
estimation in axisymmetric tools. All four tools employed
in this survey were almost identical on either face, with
minimal feature discrepancies. Irrespective of this, the network
managed to consistently identify the exposed tool side and
correctly calculate the 3D pose in the majority of the cases in
the constructed dataset.

Unfortunately, the detection results are worse when com-
pared to competing networks which focus solely on detection.
This, however, can also be mitigated by editing the Mask-
RCNN branch of the network to address cases of occlusion,
which are frequent in the context of surgical operations. As
previously discussed, operating rooms suffer from a plethora
of detection impediments, some of which have been exten-
sively addressed in other pieces of research and could be
integrated in the proposed network in the future.

Some degree of generalisation has also been achieved by
the network. Figure 5 demonstrates the differences between
true and estimated pose in four instances of a previously
unseen pair of scissors. Even though the positional errors have
increased compared to the larger dataset, it is important to note
that, to some degree, localisation is successful. A trade-off is
noted between orientation accuracy and positional accuracy.
For example, the top two images demonstrate relatively low
orientation error, with more significant positional errors, whilst
the bottom right image achieves low positional error, but at
the cost of higher orientation error. The bottom left image
also demonstrates a low orientation error, but it is interesting
to note that in this case, the network has failed to identify
the correct face of the pair of scissors, and therefore one of
the axes has been offset by 180◦. These findings suggest that
the chosen permutation of α and β may need to be further
optimised.

Not many techniques utilise a monocular setup to estimate
the pose of surgical tools in 3 dimensions without fusing
any other information. In fact, as stated in Section II, most
research has focused on 2D pose, which reports position error
in terms of pixels. While useful, such methods do not provide
3D localisation of tools in the OR, and therefore any results
comparison would provide limited insights.

Despite the encouraging results presented in this paper, how-
ever, the generalisation capabilities of the proposed network
are still obstructed by the limitations of the dataset in its
current state. Specifically, the use of a single cadaveric knee
for data collection does not allow the network to be optimised
for the case of different patient skin colours. In practise, skin
colour will be a significantly varying parameter, and therefore
the dataset should be expanded to accommodate this concern.
Additionally, even though the image background was set up
to mimic the conditions of an operating room, some annotated
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TABLE I: SimPS-Net Results Comparison against Literature

Source mAP (%) mDice (%) X (mm) Y (mm) Z (mm) Pitch (deg) Yaw (deg) Roll (deg)

PoseNet [22] NA NA 18.4 (11.6) 18.6 (13.1) 13.4 (9.2) 2.3 (1.8) 1.3 (1.0) 28.2 (28.2)

ROPE [39] 56.8 80.2 8.4 (3.5) 11.4 (6.2) 9.2 (5.2) 3.2 (2.5) 1.8 (2.1) 8.3 (16.2)

GDR-Net [40] 58.5 83.7 6.1 (5.2) 5.0 (2.4) 7.3 (3.4) 2.6 (3.1) 2.3 (2.6) 6.7 (10.7)

SimPSNet 62.9 85.0 5.2 (4.5) 4.0 (4.3) 6.3 (6.0) 2.4 (2.8) 1.5 (1.5) 6.1 (37.3)

images of tools in actual operation would be very beneficial
and further improve the network.

Moreover, considering the versatility of this network, en-
doscopic applications could be achieved. Nevertheless, a new
dataset should be generated for the purposes of training, which
should comprise of endoscopic tools in action, with manual
annotations and 3D pose accompanying the collected images.
Since the use of optical trackers for pose estimation is not
an option for motion of fully occluded tools, an alternative
technique, such as robot kinematics, should be utilised instead.
However, as discussed in Section II-B, endoscopic tools can
be represented as cylindrical objects, and therefore there exist
networks that are more appropriate for this purpose, such as
the ART-Net [34].

Regardless of the aforementioned limitations of the dataset,
this paper introduces an inexpensive, monocular camera-based
method capable of not only detecting, but also localising
standard surgical tools in operation in 3D space. SimPS-Net
requires no prior information regarding the shape of the tools,
unlike the majority of pose estimation networks. Furthermore,
when compared to similar state of the art methods, the
proposed technique managed to outperform other networks
across all six examined degrees of freedom.

VII. CONCLUSION AND FUTURE WORK

This study has established a successful methodology for
simultaneous segmentation and 3D localisation of surgical
tools upon inspecting a single RGB camera image. A new
dataset was created that incorporates manually labelled masks
along with the associated tool 3D position and orientation in
the form of quaternions. A Mask-RCNN has been modified
to regress the 3D pose of detected tools. The errors obtained
using the proposed network along with the constructed dataset
outperform other networks that allow for 3D pose estimation
without any prior 3D tool structure knowledge, in both position
and orientation.

However, some areas need to be further surveyed. Specif-
ically, the hardware available at the time of collecting the
dataset did not allow for images that included multiple tools.
Therefore, the pose errors will need to be explored when
multiple tools are present in a frame. Additionally, the dataset
should be expanded to include cadaveric knees of different
skin colours. Ultimately, with an improved GPU, the real-time
capabilities of the network should also be explored. Such a feat
could lead the development of a visual active constraint that

would allow for the integration of the proposed network in the
worklflow of a surgical robot pipeline, thus making operation
smoother and ensuring patient safety, whilst avoiding robot
damage.
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