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Abstract 11 

This study proposes a framework to evaluate the performance of borehole arrangements for the design 12 

of rectangular shallow foundation systems under spatially variable soil conditions. Performance metrics 13 

are introduced to quantify, for a fixed foundation layout and given soil sounding locations, the variability 14 

level of the foundation system bearing capacities in terms of their mean values and standard deviations. 15 

To estimate these metrics, the recently proposed Random Failure Mechanism Method is adopted and 16 

extended to consider any arrangement of rectangular foundations and boreholes. Hence, three-17 

dimensional bearing capacity estimation under spatially variable soil can be efficiently performed. 18 

Several numerical examples are presented, in terms of different foundation arrangements and soil 19 

correlation structures, to illustrate the applicability of the approach. Overall, the proposed framework 20 

represents a potentially useful tool to support the design of geotechnical site investigation programs, 21 

especially in situations where very limited prior knowledge about the soil is available. 22 

Keywords: Foundations, geotechnical engineering, bearing capacity, optimal borehole placement, soil 23 

spatial variability 24 

Introduction 25 

The growing interest in uncertainty quantification in geotechnical engineering observed in recent years 26 

(Chwała et al., 2022) is accelerated by the need to account for the considerable uncertainties arising in 27 
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the estimation of natural soil parameters. In this regard, methods to handle these uncertainties have been 28 

developed not only from a general perspective (Cao and Wang, 2013; Baecher, 2017; Ching et al., 2018; 29 

Ching and Phoon, 2020), but also for specific geotechnical applications such as foundations (Fenton and 30 

Griffiths, 2005; Halder and Chakraborty, 2019; Wu et al., 2020; Li et al., 2021, Wang et al., 2022), slope 31 

stability (Huang et al., 2013; Javankhoshdel et al., 2017; Chen et al., 2020; Zhang et al., 2021), and 32 

retaining walls (Bathurst et al., 2019, Kawa et al., 2021). Despite the rapid development of probabilistic 33 

approaches in geotechnical engineering, as a recent report for the TC304 Time Capsule Project (Ching, 34 

2022) indicates, there are major gaps between the state of the art and state of the practice related to 35 

uncertainty quantification in geotechnical engineering. One of the mentioned gaps is between theory 36 

and practice. While engineers seek simplified techniques, easy-to-implement methods, or results that 37 

can be directly used in practice, recent research developments in this area usually prove mathematically 38 

convoluted and difficult to implement. This highlights the need for methods that provide practical 39 

elements for decision making under uncertainty in geotechnical engineering applications.   40 

One of the most important aspects of recent research in geotechnical engineering corresponds to the 41 

development of optimal sampling schemes for site investigation. In this context, some reported 42 

approaches aim to reduce the error in soil strength parameter estimation, e.g., Goldsworthy et al. 2007a, 43 

Gong et al., 2017, Huang et al., 2020, Crisp et al., 2021, Guan et al., 2022. In general, the main goal of 44 

these methods is to maximize the robustness of site investigation programs while minimizing site 45 

investigation costs. Alternatively, application-specific approaches have been developed for, e.g., 46 

foundation settlement, Goldsworthy et al. 2007b; slope stability, Jiang et al. (2020), Li et al. (2016a); Li 47 

et al. (2016b); Li et al., (2019); or pile foundations, Crisp et al., 2020. However, relatively little attention 48 

has been given to evaluating the impact of soil sounding locations on shallow foundation bearing 49 

capacity under spatially variable soil. Even though some approaches to estimate the bearing capacity 50 

(BC) of this class of systems have been reported (Al-Bittar et al., 2018; Kawa and Puła, 2020; Bolaños 51 

and Hurtado, 2021; Li et al., 2021), the effect of soil soundings has not been usually incorporated in 52 

their formulation. In this regard, the study by Li et al. (2022) assesses the effect of soil soundings on the 53 

reliability of an isolated shallow foundation using the random finite element method. Alternatively, the 54 
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approach presented in (Chwała, 2020b; Chwała, 2021) addresses bearing capacity estimation for cases 55 

involving a single rectangular foundation and up to two boreholes. Nevertheless, methods to assess the 56 

impact of multiple sampling locations on the bearing capacity of multiple foundations have not been yet 57 

reported. 58 

It is the objective of this contribution to develop a framework to assess the performance of borehole 59 

arrangements for the design of rectangular shallow foundation systems. Four performance measures are 60 

proposed in terms of the standard deviation and mean value of the bearing capacities of the system. 61 

Since the estimation of these quantities using direct finite element-based techniques for spatially variable 62 

soil can be computationally very demanding or even prohibitive in real-life cases, a recently proposed 63 

approach named Random Failure Mechanism Method (RFMM) (Chwała, 2019) is adopted and suitably 64 

extended to consider any number of foundations and boreholes, provided that the corresponding footings 65 

are sufficiently distant from each other. In this manner, efficient estimation of three-dimensional 66 

undrained bearing capacity considering spatially variable soil is enabled. Furthermore, the formulation 67 

is suitable for cases where very limited prior information about the soil is available. Overall, the 68 

proposed framework represents a potentially useful tool to identify optimal configurations of soil 69 

soundings and aid practical decision-making processes in the context of geotechnical site investigation 70 

programs. 71 

Background  72 

Spatially variable soil 73 

Due to the heterogeneity of natural soils (e.g., Phoon, 2017, Konkol et al., 2019), their inherent spatial 74 

variability (Phoon and Kulhawy, 1999; Pieczyńska-Kozłowska et al., 2021), and the unavoidable errors 75 

arising in their monitoring processes (Yang et al., 2022), the consideration of uncertainties in the 76 

mechanical properties of soils is an important aspect of geotechnical engineering. In this regard, it is 77 

commonly accepted to model soil spatial variability by means of random fields (Fenton and Griffiths, 78 

2008), and this approach is used in this work. In particular, undrained soil conditions are considered in 79 

this contribution. The undrained shear strength, 𝑐𝑐𝑢𝑢, is modelled as a stationary three-dimensional 80 
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random field with a given correlation structure. Thus, the foundation bearing capacities become random 81 

variables. In this regard, their corresponding mean values and standard deviations are of particular 82 

interest in this work. It is noted that estimating such quantities can be numerically demanding, as it 83 

usually involves uncertainty propagation through complex nonlinear and large-scale three-dimensional 84 

finite element models (e.g., Kawa and Puła, 2020; Li et al., 2021). 85 

Borehole placement for foundation design 86 

Borehole placement can have a significant effect on the quality of information for geotechnical 87 

engineering analyses. Further, optimal sounding locations depend on the specific type of geotechnical 88 

structure under consideration (Goldsworthy et al., 2007b). This study addresses soil sounding placement 89 

for a fixed foundation layout, which is a common scenario in civil engineering. Boreholes are 90 

incorporated into the analysis by correlating the undrained shear strength along vertical lines at their 91 

locations with the rest of the soil domain (Chwała, 2020b). This consideration tends to reduce, in general, 92 

the variability of the bearing capacity of the different foundations. While finding optimal borehole 93 

locations for a single foundation is conceptually simple, it is not straightforward for systems with 94 

multiple foundations. Thus, measures to enable the comparison between alternative soil sounding 95 

configurations for cases with multiple footings are proposed in the next section. It is noted that the 96 

adopted strategy is different from the implementation of conditional random fields; e.g., Li et al. 97 

(2016b), Li et al. (2016c), Li et al., (2019). 98 

Performance measures for optimal borehole placement 99 

Four types of performance measures are presented to compare the effectiveness of alternative borehole 100 

locations for the design of shallow foundation systems. These measures rely on the mean values and 101 

standard deviations of the bearing capacities of the different foundations. It is noted that the choice of a 102 

proper performance measure is problem-specific, and it can depend on several factors such as, e.g., 103 

design requirements or the type of supported structure. In this context, alternative performance measures 104 

requiring only the mean value and standard deviation of the bearing capacities can be also implemented 105 

within the proposed framework.  106 



5 
 

To describe the scenarios considered in this work, 𝑛𝑛𝐵𝐵 boreholes and 𝑛𝑛𝐹𝐹 foundations are considered. For 107 

a given borehole arrangement, the bearing capacity, 𝑝𝑝, of the 𝑘𝑘-th foundation, 𝑘𝑘 = 1, … , 𝑛𝑛𝐹𝐹, has mean 108 

value 𝜇𝜇𝑝𝑝,𝑘𝑘, standard deviation 𝜎𝜎𝑝𝑝,𝑘𝑘 and coefficient of variation 𝑣𝑣𝑝𝑝,𝑘𝑘 = 𝜎𝜎𝑝𝑝,𝑘𝑘/𝜇𝜇𝑝𝑝,𝑘𝑘  , which are estimated 109 

by means of direct Monte Carlo simulation. 110 

Average coefficient of variation 111 

The arithmetic average of 𝑣𝑣𝑝𝑝,𝑘𝑘 normalized by the coefficient of variation of the undrained shear strength, 112 

𝑣𝑣𝑐𝑐𝑢𝑢, can serve as a measure of performance for a given borehole arrangement, which is given by  113 

𝛿𝛿𝑣𝑣 =
1
𝑣𝑣𝑐𝑐𝑢𝑢

∑ 𝑣𝑣𝑝𝑝,𝑘𝑘
𝑛𝑛𝐹𝐹
𝑘𝑘=1
𝑛𝑛𝐹𝐹

(1) 114 

It is noted that the normalization in Eq. (1) by 𝑣𝑣𝑐𝑐𝑢𝑢 is only for convenience. The measure can be useful 115 

to address cases in which all foundations are regarded as equally relevant, and the expected variability 116 

level across all bearing capacities is the primary element for decision making. 117 

Maximum coefficient of variation 118 

Instead of using the average coefficient of variation given in Eq. (1), the maximum of 𝑣𝑣𝑝𝑝,𝑘𝑘 can be a 119 

target for engineers as  120 

𝜓𝜓𝑣𝑣 =
1
𝑣𝑣𝑐𝑐𝑢𝑢

max
𝑘𝑘=1,…,𝑛𝑛𝐹𝐹

�𝑣𝑣𝑝𝑝,𝑘𝑘� (2) 121 

This measure ensures that the coefficient of variation of the bearing capacity will be at most 𝜓𝜓𝑣𝑣𝑣𝑣𝑐𝑐𝑢𝑢 for 122 

all foundations. Such a formulation is convenient when all foundations are regarded as equally important 123 

for the structural safety and the designer's intention is to ensure an upper bound for the variability level 124 

of all bearing capacities in terms of their coefficients of variation.  125 

Average normalized variability measures 126 

The two measures defined above consider the variability levels of all bearing capacities, in terms of the 127 

coefficients of variation, as equally important. However, an optimal borehole configuration found by 128 
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these two measures may not provide an optimal usage of the information retrieved by soil soundings. 129 

Therefore, it is convenient to consider measures that quantify the impact of boreholes in terms of the 130 

level of information gain; see Li et al. (2016b) or Li et al., (2019). One way to achieve this is to compare 131 

the variability levels of the different bearing capacities in the cases with and without boreholes. In this 132 

regard, a measure called ‘average normalized standard deviation’ is proposed as  133 

𝛿𝛿𝜎𝜎 =
∑

𝜎𝜎𝑝𝑝,𝑘𝑘
𝜎𝜎𝑝𝑝,𝑘𝑘
unc

𝑛𝑛𝐹𝐹
𝑘𝑘=1

𝑛𝑛𝐹𝐹
(3) 134 

where 𝜎𝜎𝑝𝑝,𝑘𝑘
unc is the BC standard deviation for the 𝑘𝑘-th foundation without borehole conditioning (no 135 

borehole is considered or, equivalently, the borehole is located sufficiently far away from the 136 

foundation). Hence, in general, 𝛿𝛿𝜎𝜎 ≤ 1. In analogy to Eq. (3), the ‘average normalized coefficient of 137 

variation’ is defined as 138 

𝛿𝛿𝑣𝑣 =
∑

𝑣𝑣𝑝𝑝,𝑘𝑘
𝑣𝑣𝑝𝑝,𝑘𝑘
unc

𝑛𝑛𝐹𝐹
𝑘𝑘=1

𝑛𝑛𝐹𝐹
(4) 139 

The difference between 𝛿𝛿𝜎𝜎 and 𝛿𝛿𝑣𝑣 is that the latter explicitly integrates information about changes in the 140 

mean values of bearing capacities due to the inclusion of boreholes. In this regard, it is noted that the 141 

consideration of the simultaneous effect of borehole locations on the mean values and standard 142 

deviations of the different bearing capacities might be relevant in some practical applications. Such 143 

study will be considered in future research efforts. 144 

Maximum normalized variability measures 145 

Based on the concept of usage of information, two alternative measures are defined in terms of the 146 

unconditioned and conditioned variability measures. The first is referred to as ‘maximum normalized 147 

standard deviation’, and it is given by  148 

𝜓𝜓�𝜎𝜎 = max
𝑘𝑘=1,…,𝑛𝑛𝐹𝐹

�
𝜎𝜎𝑝𝑝,𝑘𝑘

𝜎𝜎𝑝𝑝,𝑘𝑘
unc� (5) 149 

whereas the second is called ‘maximum normalized coefficient of variation’, and it is defined as 150 
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𝜓𝜓�𝑣𝑣 = max
𝑘𝑘=1,…,𝑛𝑛𝐹𝐹

�
𝑣𝑣𝑝𝑝,𝑘𝑘

𝑣𝑣𝑝𝑝,𝑘𝑘
unc� (6) 151 

The previous metrics ensure a maximum variability level, expressed as a percentage of the initial 152 

variability measure, for the bearing capacities of all foundations. Thus, they can be particularly useful 153 

to identify borehole locations in case the designer needs to ensure a minimum level of information usage 154 

for all foundations and, in addition, all foundations are regarded as equally important.  155 

Numerical implementation 156 

The evaluation of the measures proposed in the previous section requires, in principle, a relatively large 157 

number of Monte Carlo realizations of the bearing capacities to estimate their mean values and standard 158 

deviations. For three-dimensional cases involving multiple foundations, such as the ones considered in 159 

this contribution, the use of finite element models usually requires significant computational efforts to 160 

evaluate a single realization of the bearing capacities (Kawa and Puła, 2020; Li et al., 2021). Moreover, 161 

finding an optimal arrangement of soil soundings would require, in principle, the nested evaluation of 162 

mean values and standard deviations within an optimization procedure. To avoid these issues, an 163 

alternative approach is considered in this contribution.  164 

Random Failure Mechanism Method (RFMM) 165 

The RFMM (Puła and Chwała, 2018; Chwała, 2019) is adopted to estimate the bearing capacity of 166 

rectangular footings for spatially variable soil. The method is based on local averaging (Vanmarcke, 167 

1983) applied to dissipation regions resulting from the kinematical analysis of the upper bound theorem 168 

(Chen, 1975; Pietruszczak, 2010). The idea is to generate spatially averaged soil parameters in the 169 

dissipation regions instead of using, e.g., the original random field together with a finite element model 170 

of the entire soil domain, which significantly improves numerical efficiency. In particular, the RFMM 171 

is based on the discretization of the original random field to a correlated set of random variables. The 172 

correlation between them is determined by a covariance matrix, which depends on both the geometry of 173 

the failure mechanism and the random field parameters.  This formulation avoids the need for explicit 174 
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realizations of the entire random field associated with large-scale three-dimensional finite element 175 

models or computationally expensive reanalysis of such models. Overall, the RFMM provides 176 

significant computational savings for bearing capacity estimation under spatially variable soil conditions 177 

(Chwala, 2020a). For completeness, a short review of the most important features of the method is 178 

provided below.  179 

The failure geometry for a representative rough foundation base consists of 30 dissipation regions, as 180 

shown in Fig. 1. For reference purposes, all types of dissipation regions and their short names are as 181 

follows. The rectangular dissipation regions are ABFE, DCHG, AMEP, NORS with corresponding short 182 

names 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4; the triangular regions are ABI, ICD, EFW, GWH, TAM, TON, UEP, USR, IAJ, 183 

TAJ, IKL, TKL, WEZ, WXY, UEZ, UXY with corresponding short names 𝑡𝑡5,…, 𝑡𝑡20; the cylindrical 184 

regions are ABC-EFG, AMN-EPR with corresponding short names 𝑡𝑡21 and 𝑡𝑡22; and the conical regions 185 

are EFG-W, ABC-I, EPR-U, AMN-T, AKJ-I, AKJ-T, EYZ-W, EYZ-U with corresponding short names 186 

𝑡𝑡23,…, 𝑡𝑡30. Formulas for the estimation of the bearing capacity associated with this failure mechanism 187 

are provided in Appendix A.  188 
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 189 

Fig. 1. Failure geometry for undrained bearing capacity of a rectangular foundation. 190 

Once the optimal failure geometry corresponding to the expected value of undrained shear strength is 191 

found, the Vanmarcke local averaging technique (Vanmarcke, 1983) is applied to obtain a so-called 192 

moving average field. This process averages the random field within each dissipation region 𝑡𝑡. Finally, 193 

as previously mentioned, the initial random field of undrained shear strength 𝐶𝐶𝑢𝑢 is discretized to a set of 194 

correlated single random variables 𝐶𝐶𝑢𝑢,𝑡𝑡𝑖𝑖, 𝑖𝑖 = 1, … , 30. Thus, each random variable is assigned to one 195 

dissipation region. Since the random field under consideration is stationary, the mean value of 𝐶𝐶𝑢𝑢,𝑡𝑡𝑖𝑖 is 196 

preserved. On the other hand, the variance is reduced by the so-called variance function 𝛾𝛾(𝑡𝑡). The 197 

covariance between two single random variables is given by 198 

Cov �𝐶𝐶𝑢𝑢,𝑡𝑡𝑖𝑖 ,𝐶𝐶𝑢𝑢,𝑡𝑡𝑗𝑗� =
1

|𝑡𝑡𝑖𝑖|�𝑡𝑡𝑗𝑗�
� � 𝑅𝑅�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖, 𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗, 𝑧𝑧𝑗𝑗�

𝑡𝑡𝑗𝑗𝑡𝑡𝑖𝑖

d𝑡𝑡𝑖𝑖d𝑡𝑡𝑗𝑗 (7) 199 

where 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑗𝑗 are the considered dissipation regions, |∙| is the Lebesgue measure of the corresponding 200 

region (in this case area or volume), and 𝑅𝑅 is a covariance function. In this study two types of correlation 201 

structures are considered, which correspond to the Gaussian covariance function  202 
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𝑅𝑅(∆𝑥𝑥,∆𝑦𝑦,∆𝑧𝑧) = 𝜎𝜎𝐶𝐶𝑢𝑢
2 exp �− ��

√𝜋𝜋∆𝑥𝑥
𝜃𝜃𝑥𝑥

�
2

+ �
√𝜋𝜋∆𝑦𝑦
𝜃𝜃𝑦𝑦

�
2

+ �
√𝜋𝜋∆𝑧𝑧
𝜃𝜃𝑧𝑧

�
2

�� (8) 203 

and the Markovian covariance function 204 

𝑅𝑅(∆𝑥𝑥,∆𝑦𝑦,∆𝑧𝑧) = 𝜎𝜎𝐶𝐶𝑢𝑢
2 exp �− �

2|∆𝑥𝑥|
𝜃𝜃𝑥𝑥

+
2|∆𝑦𝑦|
𝜃𝜃𝑦𝑦

+
2|∆𝑧𝑧|
𝜃𝜃𝑧𝑧

�� (9) 205 

where 𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦 and 𝜃𝜃𝑧𝑧 are the scales of fluctuation (SoF) in the 𝑥𝑥,𝑦𝑦 and 𝑧𝑧 direction, respectively; and ∆𝑥𝑥, 206 

∆𝑦𝑦 and ∆𝑧𝑧 are the distances along the corresponding axes. Detailed derivations for the variance and 207 

covariance formulas are provided in (Chwała, 2019). Then, the 30-by-30 covariance matrix describing 208 

the correlation between the random variables corresponding to the 30 dissipation regions is given by 209 

[𝐶𝐶] = Cov�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗�    𝑖𝑖, 𝑗𝑗 = 1, … , 30. (10) 210 

Note that in case 𝑖𝑖 = 𝑗𝑗, a variance is obtained.    211 

Extension to multiple foundations 212 

To preserve the correlation between all dissipation regions, the covariance matrix from Eq. (10) must 213 

be expanded to include information on the correlation between all dissipation regions occurring in the 214 

𝑛𝑛𝐹𝐹 foundations. For each foundation 𝐹𝐹𝑘𝑘  (𝑘𝑘 = 1, … ,𝑛𝑛𝐹𝐹) the corresponding covariance matrix is 215 

determined as 216 

[𝐶𝐶]𝑘𝑘 = Cov�𝑡𝑡𝑖𝑖𝑘𝑘 , 𝑡𝑡𝑗𝑗𝑘𝑘�      𝑖𝑖, 𝑗𝑗 = 1, … , 30 (11) 217 

where 𝑘𝑘 = 1, … ,𝑛𝑛𝐹𝐹. Note that the covariance matrices and dissipation regions for the different 218 

foundations are indexed by the foundation number 𝑘𝑘.  219 
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 220 

Fig. 2. Failure geometries of two rectangular foundations for determining the covariance between the dissipation 221 

regions of two failure mechanisms. 222 

Equation (11) characterizes the correlation between the random variables associated with a single 223 

foundation. However, it is also necessary to quantify the correlation between the random variables of 224 

different foundations. To this end, new formulas have been derived. As an illustration, the covariance 225 

between the random variables associated with the ABC-EFG cylinders of foundations k and l (see Fig. 226 

2) for a Gaussian covariance function is given by 227 

Cov�𝐶𝐶𝑢𝑢,𝐴𝐴𝑘𝑘𝐵𝐵𝑘𝑘𝐶𝐶𝑘𝑘−𝐸𝐸𝑘𝑘𝐹𝐹𝑘𝑘𝐺𝐺𝑘𝑘 ,𝐶𝐶𝑢𝑢,𝐴𝐴𝑙𝑙𝐵𝐵𝑙𝑙𝐶𝐶𝑙𝑙−𝐸𝐸𝑙𝑙𝐹𝐹𝑙𝑙𝐺𝐺𝑙𝑙� = Cov �𝐶𝐶𝑢𝑢,𝑡𝑡21𝑘𝑘
,𝐶𝐶𝑢𝑢,𝑡𝑡21𝑙𝑙

�228 

= � � � � � � exp

𝑦𝑦𝐹𝐹𝑙𝑙

𝑦𝑦𝐵𝐵𝑙𝑙

�−�
𝑥𝑥𝐵𝐵𝑘𝑘 + 𝑟𝑟𝑘𝑘 sin𝜌𝜌𝑘𝑘 − �𝑥𝑥𝐵𝐵𝑙𝑙 + 𝑟𝑟𝑙𝑙 sin𝜌𝜌𝑙𝑙�

𝜔𝜔𝑥𝑥
�
2

�

|𝐴𝐴𝑙𝑙𝐵𝐵𝑙𝑙|

0

𝜌𝜌𝑟𝑟𝑙𝑙

−𝜌𝜌𝑙𝑙𝑙𝑙

𝑦𝑦𝐹𝐹𝑘𝑘

𝑦𝑦𝐵𝐵𝑘𝑘

|𝐴𝐴𝑘𝑘𝐵𝐵𝑘𝑘|

0

𝜌𝜌𝑟𝑟𝑘𝑘

−𝜌𝜌𝑙𝑙𝑘𝑘

 229 

exp �−�
𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑙𝑙
𝜔𝜔𝑦𝑦

�
2

� exp �− �
𝑟𝑟𝑘𝑘 cos𝜌𝜌𝑘𝑘 − 𝑟𝑟𝑙𝑙 cos𝜌𝜌𝑙𝑙

𝜔𝜔𝑧𝑧
�
2
� 𝑟𝑟𝑘𝑘𝑟𝑟𝑙𝑙d𝜌𝜌𝑘𝑘d𝑟𝑟𝑘𝑘d𝑦𝑦𝑘𝑘d𝜌𝜌𝑙𝑙d𝑟𝑟𝑙𝑙d𝑦𝑦𝑙𝑙 (12) 230 

where 𝜔𝜔𝑥𝑥 = 𝜃𝜃𝑥𝑥 √𝜋𝜋⁄ , 𝜔𝜔𝑦𝑦 = 𝜃𝜃𝑦𝑦 √𝜋𝜋⁄ , 𝜔𝜔𝑧𝑧 = 𝜃𝜃𝑧𝑧 √𝜋𝜋⁄ . Note that the previous expression represents a 6th-231 

order integral expressed in a global coordinate system, which is evaluated using a Monte Carlo 232 
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integration scheme (Chwała, 2019). For illustration purposes, Fig. 3 presents the parametrization scheme 233 

considered in the formulation of Eq. (12). An analogous formula can be obtained for the Markovian 234 

covariance function in Eq. (9).  235 

 236 

Fig. 3.  Parametrization of dissipation region 𝐴𝐴𝑘𝑘𝐵𝐵𝑘𝑘𝐶𝐶𝑘𝑘-𝐸𝐸𝑘𝑘𝐹𝐹𝑘𝑘𝐺𝐺𝑘𝑘. 237 

The covariance matrix [𝐶𝐶]𝑘𝑘,𝑙𝑙 comprises the covariances between the random variables of regions 𝑘𝑘 and 238 

𝑙𝑙, where 𝑘𝑘, 𝑙𝑙 = 1, … ,𝑛𝑛𝐹𝐹. Note that in case 𝑘𝑘 = 𝑙𝑙, the covariance matrix of Eq. (11) is obtained. 239 

Specifically, the covariance matrix [𝐶𝐶]𝑘𝑘,𝑙𝑙 is given by   240 

[𝐶𝐶]𝑘𝑘,𝑙𝑙 = Cov�𝑡𝑡𝑖𝑖𝑘𝑘 , 𝑡𝑡𝑗𝑗𝑙𝑙� (13) 241 

Once the covariances between all random variables involved in the problem are obtained, an enlarged 242 

covariance matrix of size 30𝑛𝑛𝐹𝐹 × 30𝑛𝑛𝐹𝐹 is generated. This matrix can be readily used to estimate the 243 

mean values and standard deviations of the bearing capacities of the different foundations. However, 244 

such a matrix refers to the unconditional case, i.e., no information about the boreholes has been yet 245 

included. To address this issue, an approach to include multiple boreholes in bearing capacity assessment 246 

is implemented in this contribution. 247 

Extension to multiple boreholes 248 

The enlarged covariance matrix described in the previous section is further extended to consider cases 249 

with multiple boreholes. To this end, the geometry of each borehole is first assumed as a straight vertical 250 

line. Then, the mean value of the undrained shear strength along that line is assumed to be the mean 251 

value of the stationary random field. Further, a small variability is assumed to reflect measurement 252 

accuracy. Based on this formulation, the properties of the 𝑛𝑛𝐵𝐵 random variables associated with the 𝑛𝑛𝐵𝐵 253 



13 
 

boreholes can be obtained following the same principles described in the previous subsections. For 𝑛𝑛𝐵𝐵 ≥254 

2, the covariances between all possible pairs of boreholes need to be determined. For a Gaussian 255 

correlation structure, the covariance between boreholes 𝑏𝑏𝑖𝑖 and 𝑏𝑏𝑗𝑗 is given by  256 

Cov�𝑏𝑏𝑖𝑖, 𝑏𝑏𝑗𝑗� = 𝜎𝜎𝑐𝑐𝑢𝑢
2 exp �− �

𝑥𝑥𝑏𝑏𝑖𝑖 − 𝑥𝑥𝑏𝑏𝑗𝑗
𝜔𝜔𝑥𝑥

�
2
� exp �−�

𝑦𝑦𝑏𝑏𝑖𝑖 − 𝑦𝑦𝑏𝑏𝑗𝑗
𝜔𝜔𝑦𝑦

�
2

� (14) 257 

where  (𝑥𝑥𝑏𝑏𝑖𝑖, 𝑦𝑦𝑏𝑏𝑖𝑖) and (𝑥𝑥𝑏𝑏𝑗𝑗, 𝑦𝑦𝑏𝑏𝑗𝑗) are, respectively, the 𝑥𝑥 and 𝑦𝑦 coordinates of the 𝑖𝑖-th and 𝑗𝑗-th borehole 258 

expressed in a global coordinate system. Additionally, the covariances between the random variables of 259 

the different boreholes and all failure regions need to be determined. As an example, the covariance 260 

between borehole 𝑏𝑏𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛𝐵𝐵 and a part of the cylinder 𝐴𝐴𝑘𝑘𝐵𝐵𝑘𝑘𝐶𝐶𝑘𝑘-𝐸𝐸𝑘𝑘𝐹𝐹𝑘𝑘𝐺𝐺𝑘𝑘,  𝑘𝑘 = 1, … ,𝑛𝑛𝐹𝐹 for a 261 

Gaussian correlation structure is given by 262 

Cov�𝑋𝑋𝐴𝐴𝑘𝑘𝐵𝐵𝑘𝑘𝐶𝐶𝑘𝑘−𝐸𝐸𝑘𝑘𝐹𝐹𝑘𝑘𝐺𝐺𝑘𝑘 ,𝑏𝑏𝑖𝑖� = Cov �𝑋𝑋𝑡𝑡21𝑘𝑘 , 𝑏𝑏𝑖𝑖� 263 

= � � � exp �− �
𝑥𝑥𝐵𝐵𝑘𝑘 + 𝑟𝑟𝑘𝑘 sin𝜌𝜌𝑘𝑘 − 𝑥𝑥𝑏𝑏𝑖𝑖

𝜔𝜔𝑥𝑥
�
2

�

𝑦𝑦𝐹𝐹𝑘𝑘

𝑦𝑦𝐵𝐵𝑘𝑘

|𝐴𝐴𝑘𝑘𝐵𝐵𝑘𝑘|

0

𝜌𝜌𝑟𝑟𝑘𝑘

−𝜌𝜌𝑙𝑙𝑘𝑘

exp �−�
𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑏𝑏𝑖𝑖
𝜔𝜔𝑦𝑦

�
2

� 𝑟𝑟𝑘𝑘d𝜌𝜌𝑘𝑘d𝑟𝑟𝑘𝑘d𝑦𝑦𝑘𝑘 (15) 264 

In the previous setting, two horizontal fluctuation scales are distinguished, i.e., 𝜃𝜃𝑥𝑥 and 𝜃𝜃𝑦𝑦. However, in 265 

this study the assumption of 𝜃𝜃𝑥𝑥 = 𝜃𝜃𝑦𝑦 is used. In the following, 𝜃𝜃𝑥𝑥 = 𝜃𝜃𝑦𝑦 = 𝜃𝜃ℎ and 𝜃𝜃𝑧𝑧 = 𝜃𝜃𝑣𝑣 are considered 266 

for the horizontal and vertical SoF, respectively. The extension of the covariance matrix in Eq. (13) is 267 

obtained by adding as many rows and columns as the number of boreholes 𝑛𝑛𝐵𝐵, which leads to a final 268 

covariance matrix [𝐶𝐶]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹  of size (30𝑛𝑛𝐹𝐹 + 𝑛𝑛𝐵𝐵)×(30𝑛𝑛𝐹𝐹 + 𝑛𝑛𝐵𝐵). Finally, it is noted that all covariance 269 

matrix terms are positive in the present formulation. Therefore, special strategies to treat negatively 270 

correlated parameters are not required in the proposed framework. 271 

Summary of the proposed procedure 272 

The covariance matrix [𝐶𝐶]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹  is the basis for the generation of averaged undrained shear strength 273 

samples. For any given sample, the bearing capacity is estimated individually for each foundation. The 274 

procedure is repeated 𝑁𝑁MCS times and, based on the corresponding realizations of the bearing capacities, 275 
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their mean values and standard deviations are estimated. Then, the proposed performance measures can 276 

be calculated.  By repeating this procedure for alternative borehole arrangements, the proposed measures 277 

can be used to decide which configuration of soil soundings is more beneficial. For clarity and 278 

completeness, a detailed algorithm for the proposed scheme is presented in Appendix B.  279 

Remarks 280 

In accordance with previous studies (e.g., Fenton and Griffiths, 2008), a lognormal stationary random 281 

field is used to model the undrained shear strength of the soil. Then, the computation of the covariance 282 

matrix, [𝐶𝐶]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹 , requires specifying the sizes and locations of the different foundations as well as the 283 

borehole positions. Generally, the algorithm detailed in Appendix B can be used for any location and 284 

number of boreholes, and any size and number of rectangular foundations. Further, this procedure can 285 

be repeated for alternative borehole arrangements to compare their performance. In this regard, it is 286 

noted that only the covariances associated with the borehole locations must be updated for alternative 287 

soil sounding configurations, whereas the covariances between dissipation regions must be determined 288 

only once for a given foundation arrangement. This feature is advantageous from a practical viewpoint. 289 

While this contribution focuses on stationary random fields, it is noted that the same basic approach can 290 

also be applied, in principle, to non-stationary cases (Chwała and Kawa, 2021). Finally, the only 291 

restriction of this approach is that the different foundations must be separated by a minimum distance, 292 

to ensure that the failure mechanisms are not interfering with each other. Such a minimum distance can 293 

be taken as two times the foundation width (e.g., Gourvenec et al., 2006; Alzabeebee, 2022). In practice, 294 

this assumption implies that mechanical interaction between different footings cannot be explicitly 295 

incorporated within the proposed framework. 296 

Examples 297 

Three examples involving systems with multiple foundations are presented to illustrate the capabilities 298 

and applicability of the proposed approach. Example 1 illustrates the effect of the number of Monte 299 

Carlo simulations and the number of boreholes in a relatively simple foundation system. In Example 2, 300 

a symmetric foundation layout is addressed to study the effect of the scales of fluctuation and correlation 301 
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function type on the proposed performance measures. Finally, Example 3 considers a non-symmetrical 302 

arrangement of foundations of different sizes to show the applicability of the proposed framework to 303 

identify optimal regions for borehole placement. 304 

Example 1 305 

 306 
The example concerns three square footings of width 1 m separated 10 m from each other. These are 307 

shown in Fig. 4 with their corresponding indices. For illustration purposes, the undrained shear strength 308 

(𝑐𝑐𝑢𝑢) is modeled as a lognormal random field with Gaussian correlation function, mean value of 100 kPa, 309 

and standard deviation equal to 50 kPa.  310 

First, a scenario with a single borehole located directly under the second footing is considered for an 311 

anisotropic correlation structure given by 𝜃𝜃v = 1 m and 𝜃𝜃h = 2 m. The mean values, standard 312 

deviations, and coefficients of variation of the bearing capacity of the different footings, in terms of the 313 

number of samples 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, are presented in Fig. 5. From the figure, it is seen that placing the borehole 314 

directly under the center of a foundation results in a significant reduction of the variability of its bearing 315 

capacity, which is reasonable from an engineering viewpoint. In addition, the results indicate that a few 316 

hundred samples (in the order of 100 to 300) are adequate to obtain sufficiently accurate estimates of 317 

the different quantities under consideration. 318 

 319 

Fig. 4. Placement of square footings and one borehole location. 320 
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 321 

Fig. 5. Evolution of mean values, standard deviations, and coefficients of variation of the bearing capacities in terms of the 322 

number of samples for a single borehole. 323 

A case considering two boreholes is now studied, as shown in Fig. 6. Note that one borehole is located 324 

in the vicinity of footing 1, whereas the other sounding is placed equally distant from footings 1 and 3. 325 

To illustrate the effect of the horizontal SoF, two scenarios are considered as 𝜃𝜃h = 2 m (scenario 1) and 326 

𝜃𝜃h = 10 m (scenario 2). Hence, scenario 1 presents a weaker correlation of the undrained shear strength 327 

than scenario 2. In both scenarios, the vertical SoF is taken as 𝜃𝜃v = 1 m. The corresponding results are 328 

shown in Fig. 7. Several observations can be made from the figure. First, the values of 𝜎𝜎𝑝𝑝,1 and 𝑣𝑣𝑝𝑝,1  are 329 

the lowest in both scenarios. This is expected since the boreholes are located closer to footing 1. Second, 330 

these values are significantly smaller in scenario 2. For this case, a higher correlation in the undrained 331 

soil strength enhances the beneficial effect of the soil soundings on footing 1, which ultimately reduces 332 

the variability of its bearing capacity to a greater extent. Third, the opposite effect is observed for 𝜎𝜎𝑝𝑝,2 333 

and 𝑣𝑣𝑝𝑝,2, whereas 𝜎𝜎𝑝𝑝,3 and 𝑣𝑣𝑝𝑝,3 remain almost equal in both scenarios. This indicates that the variability 334 

reduction achieved by the presence of soil soundings tends to decrease when they are located farther 335 

from the foundations, as expected. Finally, it is seen that scenario 1 provides smaller expected values of 336 

the bearing capacity than scenario 2 for all footings. In other words, a stronger correlation is associated 337 

with a reduced bearing capacity for this configuration of footings and boreholes. This can be interpreted 338 

as a manifestation of the worst-case effect (Cami et al., 2020; Pieczyńska-Kozłowska et al., 2022; Li et 339 

al., 2022), i.e., the expected value of the bearing capacity achieves its minimum for finite values of the 340 



17 
 

fluctuation scales. In general, this minimum is observed for values of the horizontal fluctuation scales 341 

that are comparable to the foundation width (Cami et al., 2020). 342 

 343 

Fig. 6. Placement of square footings and two boreholes location. 344 

 345 

Fig. 7. Evolution of mean values, standard deviations, and coefficients of variation of the bearing capacities in terms of the 346 

number of samples for two boreholes and two alternative correlation structures. 347 

Example 2 348 
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This example considers a symmetric foundation system of four identical square footings with sides of 1 349 

m each. In addition, the random field of the undrained shear strength is the same considered in Example 350 

1.  351 

Numerical results in the context of this example suggest that, in general, the vertical fluctuation scale 352 

has a very limited impact on the normalized performance measures defined in Eqs. (3) to (6). To 353 

illustrate this, Fig. 8 presents the contours of 𝛿𝛿𝜎𝜎 and 𝜓𝜓�𝜎𝜎 obtained for a single borehole in the cases 𝜃𝜃v =354 

0.4 m and 𝜃𝜃v = 1 m, with the horizontal SoF kept constant for both cases as 𝜃𝜃h = 10 m. It is noted that 355 

the performance measures are considered as explicit functions of the coordinates (𝑥𝑥,𝑦𝑦)  of the borehole 356 

under consideration, i.e.,  𝛿𝛿𝜎𝜎 = 𝛿𝛿𝜎𝜎(𝑥𝑥,𝑦𝑦) and 𝜓𝜓�𝜎𝜎 = 𝜓𝜓�𝜎𝜎(𝑥𝑥,𝑦𝑦) . To obtain these contours, the performance 357 

measures are evaluated for a number of alternative borehole locations. Specifically, the coordinates for 358 

the borehole are associated with a regular grid with a step of 1 m along each direction. From the figure, 359 

it is seen that the contours of 𝛿𝛿𝜎𝜎 are practically overlapping for both cases (see Figs. 8-a and 8-b), and 360 

analogous results can be observed for 𝜓𝜓�𝜎𝜎 (see Figs. 8-c and 8-d). Furthermore, additional validation 361 

calculations indicate that the same behavior is observed when considering alternative values for the 362 

horizontal SoF. Thus, even though 𝜃𝜃v does have an impact on the standard deviation of the bearing 363 

capacities (e.g., Fenton and Griffiths, 2008; Chwała, 2019), the normalized measures show a very weak 364 

dependence on this parameter for this example. 365 
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 366 

Fig. 8. Contours of normalized performance measures for 𝜃𝜃ℎ = 10 𝑚𝑚 and different vertical SoF. (a) 𝛿̂𝛿𝜎𝜎, 𝜃𝜃𝑣𝑣 = 0.4 𝑚𝑚. (b) 𝛿̂𝛿𝜎𝜎, 367 

𝜃𝜃𝑣𝑣 = 1.0 𝑚𝑚. (c) 𝜓𝜓�𝜎𝜎, 𝜃𝜃𝑣𝑣 = 0.4 𝑚𝑚. (d) 𝜓𝜓�𝜎𝜎, 𝜃𝜃𝑣𝑣 = 1.0 𝑚𝑚. 368 

The results shown in Fig. 8 are associated with 𝜃𝜃h = 10 m, which leads to a relatively strong correlation 369 

between the bearing capacities of all foundations. As a result, both measures present a similar behavior 370 

with respect to the borehole position for this case. In fact, the optimal locations identified by both 371 

performance measures lie near the geometrical center of the foundation system. These results agree with 372 

those obtained for settlements of square footings, in which sampling in the center of the footing system 373 

is found to be beneficial when no centralized footing exists (Goldsworthy, 2007b). However, for shorter 374 

horizontal fluctuation scales, there are some differences between these measures. This is illustrated in 375 

Fig. 9, where the contours of 𝛿𝛿𝜎𝜎 and 𝜓𝜓�𝜎𝜎 are shown for 𝜃𝜃h = 4 m. Four local minima are observed for 376 

𝛿𝛿𝜎𝜎, which indicates that local information gain becomes more important for this measure in cases with 377 

relatively mild correlation. On the other hand, the optimal location identified by 𝜓𝜓�𝜎𝜎 is at the center of 378 

the foundation system, which agrees with the results observed in Fig. 8. In addition, it is noted that the 379 

values of 𝜓𝜓�𝜎𝜎 are close to one in the entire domain (i.e., the function is practically constant over the entire 380 

domain). Further, additional calculations indicate that 𝜓𝜓�𝜎𝜎 is almost constant for 𝜃𝜃ℎ < 4 m and, therefore, 381 
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a unique optimal borehole location cannot be identified in such cases. Meanwhile, for 𝜃𝜃ℎ > 4 m the 382 

most convenient region for placing the borehole is consistently observed at the center of the foundation 383 

system. In other words, a weak dependence of the optimal borehole location is observed when using 𝜓𝜓�𝜎𝜎 384 

as performance measure for scenarios involving relatively strong horizontal correlation. This is 385 

particularly relevant when considering how challenging in engineering practice is the determination of 386 

𝜃𝜃h (e.g., Ching et al., 2018). If no prior information about the site of interest is available, it is 387 

recommended to consider fluctuation scales from studies of sites with similar geological history (e.g., 388 

Pieczyńska-Kozłowska et al., 2017) or, if such data are not accessible, reference values reported in the 389 

literature (e.g., Cami et al., 2020). 390 

 391 

Fig. 9. Contours of 𝛿̂𝛿𝜎𝜎 (left) and 𝜓𝜓�𝜎𝜎 (right) for 𝜃𝜃𝑣𝑣 = 1 𝑚𝑚 and 𝜃𝜃ℎ = 4 𝑚𝑚. 392 

For illustration purposes, a case involving two boreholes is now considered. One borehole position is 393 

assumed to be fixed under the leftmost footing, whereas the second borehole can be placed at any desired 394 

position. Figure 10 shows the contours of 𝛿𝛿𝜎𝜎 and 𝜓𝜓�𝜎𝜎 obtained for different locations of the second 395 

borehole. In this case, the performance measures are considered as explicit functions of the coordinates 396 

(𝑥𝑥,𝑦𝑦) of the second borehole, while the first borehole is kept fixed at the position 𝑥𝑥 = 0 m, 𝑦𝑦 = 2 m.  397 

It is seen that the optimal regions for placing the second borehole identified by both measures are 398 

relatively similar between each other, i.e., they are adjacent to the rightmost foundation. Nonetheless, 399 

the shapes of both contours are slightly different, with 𝜓𝜓�𝜎𝜎 being less sensitive to the position of the 400 

second borehole. This agrees with the results observed in Fig. 9, in the sense that 𝛿𝛿𝜎𝜎 is more sensitive 401 
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to local usage of information. Finally, it is noted that these optimal locations are conditional on a fixed 402 

borehole, which are most likely sub-optimal from a global perspective. This highlights the need of 403 

extending this framework to assist optimal decision-making processes for geotechnical site investigation 404 

programs involving multiple soil soundings.  405 

 406 

Fig. 10. Contours of 𝛿̂𝛿𝜎𝜎 (left) and 𝜓𝜓�𝜎𝜎 (right) for two boreholes with 𝜃𝜃ℎ = 10 𝑚𝑚 and 𝜃𝜃𝑣𝑣 = 1 𝑚𝑚. The first borehole is fixed at x 407 
= 0 and y =2. 408 

In all previous scenarios, a Gaussian covariance function has been considered. To illustrate the effect of 409 

the correlation structure, Fig. 11 presents the contours of 𝛿𝛿𝜎𝜎 obtained for Gaussian and Markovian 410 

covariance functions. Two scenarios in terms of the horizontal SoF are considered, i.e., 𝜃𝜃h = 2 m and  411 

𝜃𝜃h = 10 m. From the figure, it is observed that changing the type of covariance function does not affect 412 

the optimal region for borehole placement in this case. This is an important insight because the 413 

covariance functions are generally assumed and are quite difficult to determine based on available data 414 

(e.g., Ching et al., 2019). Note that both correlation functions are commonly used in modelling soil 415 

spatial variability in geotechnical engineering, but their properties are relatively different. From the 416 

comparison of Eqs. (8) and (9), it is seen that the Gaussian covariance function provides stronger 417 

(weaker) correlation for distances shorter (longer) than 2𝜃𝜃/𝜋𝜋 when compared to the Markovian 418 

covariance function. As a result, the contours shown in Fig. 11 for the Gaussian and Markovian cases 419 

show some differences in the values of 𝛿𝛿𝜎𝜎 for 𝜃𝜃ℎ = 10 m. Meanwhile, such differences are significantly 420 

smaller for 𝜃𝜃ℎ = 2 m, as expected.  421 
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 422 

Fig. 11. Contours of 𝛿̂𝛿𝜎𝜎 obtained for 𝜃𝜃𝑣𝑣 = 1 𝑚𝑚 and different correlation cases. (a) 𝜃𝜃ℎ = 2 𝑚𝑚, Markovian. (b) 𝜃𝜃ℎ = 2 𝑚𝑚, 423 
Gaussian. (c) 𝜃𝜃ℎ = 10 𝑚𝑚, Markovian. (d) 𝜃𝜃ℎ = 10 𝑚𝑚, Gaussian. 424 

Example 3 425 

The previous examples consider foundation arrangements with some symmetry axes, for which optimal 426 

borehole locations can be regarded as more intuitive. However, the proposed framework can be most 427 

beneficial for general foundation layouts in which convenient locations for the soil soundings are 428 

difficult to identify a priori. In this example, a nonsymmetrical foundation arrangement of four footings 429 

with different dimensions is addressed to show the capabilities and applicability of the approach. For 430 

illustration purposes, the random field of the undrained shear strength is the same considered in Example 431 

1, a Gaussian correlation structure is assumed, and the vertical SoF is taken as 𝜃𝜃v = 1 m. 432 

First, to study the effect of the horizontal SoF, Fig. 12 presents the contours of the performance measure 433 

𝛿𝛿𝜎𝜎 for 𝜃𝜃h = 4 m, 𝜃𝜃h = 10 m, and 𝜃𝜃h = 20 m. As in Example 2, the performance measures are 434 

considered as explicit functions of the borehole coordinates (𝑥𝑥,𝑦𝑦). In general, the results are 435 

qualitatively similar to those reported in the previous examples, that is, 𝛿𝛿𝜎𝜎 tends to prioritize local 436 
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information gain when shorter correlation scales are considered. In fact, local minima appear in all 437 

foundation centers for 𝜃𝜃h = 4 m, and the corresponding global minima seem to be located under the 438 

smallest footings. On the other hand, the contours associated with longer fluctuation scales, i.e., 𝜃𝜃h =439 

10 m and 𝜃𝜃h = 20 m, show a different behavior. In these cases, the most convenient borehole locations 440 

seem to lie near the left and central footings. Finally, it is noted that the optimal regions identified in all 441 

cases are not straightforward to determine based on engineering judgment only. This highlights the 442 

usefulness of the proposed framework, as it can provide non-trivial insight for decision-making 443 

purposes. 444 
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 445 

Fig. 12. Contours of 𝛿̂𝛿𝜎𝜎 for different horizontal SoFs. (a) 𝜃𝜃ℎ = 4 𝑚𝑚 . (b)  𝜃𝜃ℎ = 10 𝑚𝑚 . (c) 𝜃𝜃ℎ = 20 𝑚𝑚. 446 

The previous results correspond to the average normalized standard deviation, i.e., 𝛿𝛿𝜎𝜎. To illustrate the 447 

effect of choosing an alternative performance measure, the contours corresponding to 𝜓𝜓�𝜎𝜎 for 𝜃𝜃h = 4 m, 448 

𝜃𝜃h = 10 m, and 𝜃𝜃h = 20 m are presented in Fig. 13. Note that these results are significantly different 449 

from those presented in Fig. 12. For the case 𝜃𝜃h = 4 m, the values of 𝜓𝜓�𝜎𝜎 are almost equal to 1 in the 450 

entire domain. Thus, from a practical viewpoint, it seems that no optimal region can be identified in this 451 
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case. This indicates that, in this example, a single borehole cannot reduce the variability level of all 452 

foundations if the undrained shear strength of the soil is weakly correlated. On the other hand, for longer 453 

scales of fluctuation the optimum locations seem to lie closer to the centroid of the foundation system 454 

when 𝜓𝜓�𝜎𝜎 is considered as performance measure. This behavior agrees with the results presented in the 455 

previous example, in the sense that 𝜓𝜓�𝜎𝜎 tends to assign more importance to global information gain rather 456 

than local variability reduction. 457 
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 458 

Fig. 13. Contours of 𝜓𝜓�𝜎𝜎 for different horizontal SoFs. (a) 𝜃𝜃ℎ = 4 𝑚𝑚 . (b)  𝜃𝜃ℎ = 10 𝑚𝑚 . (c) 𝜃𝜃ℎ = 20 𝑚𝑚. 459 

 460 

To illustrate the differences between the four types of measures introduced in this work, the contours of 461 

𝛿𝛿𝑣𝑣, 𝜓𝜓�𝑣𝑣, 𝛿𝛿𝑣𝑣 and 𝜓𝜓𝑣𝑣, associated with the location of a single borehole, are compared in Fig. 14 for 𝜃𝜃h =462 
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6 m. Recall that 𝛿𝛿𝑣𝑣 and 𝜓𝜓𝑣𝑣 consider only the variability levels when the soil sounding is accounted for, 463 

whereas 𝛿𝛿𝑣𝑣 and 𝜓𝜓�𝑣𝑣 additionally include the unconditional variability measures as normalizing constants. 464 

From the figure, it is seen that the differences between the contours of the average-based measures, i.e., 465 

𝛿𝛿𝑣𝑣 and 𝛿𝛿𝑣𝑣, are quite small. On the other hand, the results obtained for 𝜓𝜓�𝑣𝑣 and 𝜓𝜓𝑣𝑣 differ significantly. 466 

Not only the global minima are attained at different locations, but also the shapes of both functions are 467 

dissimilar. Moreover, 𝜓𝜓�𝑣𝑣  is approximately equal to one in the entire domain, which agrees with the 468 

behavior observed in Fig. 13-a. Such a situation can indicate, e.g., that more boreholes might be needed 469 

to reduce the uncertainty of bearing capacities. Thus, this measure can be potentially useful to decide on 470 

the appropriate number of soil soundings to implement in a given geotechnical site. 471 

 472 

Fig. 14. Contours of different performance measures for 𝜃𝜃ℎ = 6 𝑚𝑚. (a) 𝛿̂𝛿𝑣𝑣. (b)  𝜓𝜓�𝑣𝑣. (c) 𝛿𝛿𝑣𝑣. (d) 𝜓𝜓𝑣𝑣. 473 
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 474 

Figure 15 shows the contours of the four performance measures for 𝜃𝜃ℎ = 20 𝑚𝑚. In this case, which 475 

involves a higher value for the horizontal SoF, the differences between 𝛿𝛿𝑣𝑣 and 𝛿𝛿𝑣𝑣 are negligible. 476 

Similarly, the contours of 𝜓𝜓�𝑣𝑣 resemble those of 𝜓𝜓𝑣𝑣. These results are reasonable from the engineering 477 

viewpoint and agree with those reported in the previous example, since the coefficients of variation of 478 

the different foundations tend to be more similar between each other when a stronger correlation is taken 479 

into account. 480 

Finally, the comparison of Fig. 12c with Fig. 15a indicates that the contours in both plots are very similar 481 

between each other. Since the only difference between the corresponding performance measures 𝛿𝛿𝜎𝜎 and 482 

𝛿𝛿𝑣𝑣 is that the latter also incorporates the mean values in its definition, this suggests that the effect of 483 

bearing capacity mean values on the optimal borehole location is minor for this case. Moreover, 484 

additional validation calculations in the context of this example indicate that analogous results are 485 

obtained for different scales of fluctuations, which seems reasonable from an engineering viewpoint.  486 
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 487 

Fig. 15. Contours of different performance measures for 𝜃𝜃ℎ = 20 𝑚𝑚. (a) 𝛿̂𝛿𝑣𝑣. (b)  𝜓𝜓�𝑣𝑣. (c) 𝛿𝛿𝑣𝑣. (d) 𝜓𝜓𝑣𝑣. 488 

 489 

CONCLUSIONS 490 

This contribution has presented a framework to assess the performance of soil sounding configurations 491 

for the design of rectangular shallow foundation systems. Four performance measures based on the mean 492 

values and standard deviations of the bearing capacities of the different foundations are proposed. To 493 

estimate these quantities, the Random Failure Mechanism Method (RFMM) is extended to consider any 494 

arrangement of rectangular foundations and boreholes for a class of shallow foundation systems in which 495 

the corresponding footings are sufficiently distant from each other. In this manner, computationally 496 
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intensive approaches based on, e.g., finite element models are circumvented and, simultaneously, three-497 

dimensional soil variability is rigorously incorporated into the analysis. 498 

Three examples involving different foundation arrangements and soil correlation characteristics have 499 

been addressed to evaluate the capabilities of the proposed framework. Based on the corresponding 500 

numerical results, the following conclusions can be drawn. 501 

1. Measures based on the maximum operator tend to give more importance to global information gain, 502 

whereas those based on the average operator prioritize local usage of the information provided by 503 

the borehole array. 504 

2. Based on the assumptions of the approach, the effect of the vertical fluctuation scale on the behavior 505 

of the normalized performance measures seems to be negligible for all the examples considered in 506 

this work.  507 

3. For the different performance measures, the Markovian and Gaussian correlation functions provide 508 

similar optimal borehole locations in the examples presented in this work. This insight can be 509 

important for future applications. 510 

4. Sufficiently accurate estimates of the performance measures can be obtained with a few hundred 511 

samples (in the order of 100 to 300), which can be advantageous from a practical viewpoint. 512 

Based on the previous discussion, the proposed approach provides valuable insight about the 513 

performance of different borehole configurations for the design of shallow foundation systems. In 514 

general, the choice of a particular performance measure is problem-specific and depends on several 515 

factors, such as project requirements and the nature of supported structures. However, alternative 516 

performance measures can be directly implemented within the proposed framework as long as the mean 517 

values and standard deviations of the foundation bearing capacities are involved in their definition. 518 

Overall, the approach presented in this contribution constitutes a potentially useful, flexible and 519 

numerically efficient tool to assist the design of geotechnical site investigation programs with explicit 520 

uncertainty treatment. 521 
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Future research efforts aim to extend the proposed framework to optimal borehole placement when 522 

multiple soil soundings are available and to decide whether the assumed number of boreholes is 523 

sufficient or not.  In this case, an appropriate optimization strategy is needed. Another research direction 524 

involves the treatment of situations with multiple foundations that are very close to each other which 525 

requires, in principle, the explicit inclusion of mechanical interaction between different footings. 526 

Additional subjects for future research include the treatment of scenarios involving sequential 527 

construction of footings, the inclusion of trends for undrained shear strength, and the extension of the 528 

methodology to systems with non-rectangular foundations. Some of these topics are currently under 529 

consideration. 530 
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Appendix A. Bearing capacity formula 546 

The bearing capacity formula for the failure geometry shown in Fig. 1 is given by 547 
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𝑝𝑝 = 𝑝𝑝1 + 𝑝𝑝2 + 𝑝𝑝3 + 𝑝𝑝4 (16) 548 

where 549 

𝑝𝑝1 = 𝑏𝑏2�𝑎𝑎 − (𝑑𝑑1 + 𝑑𝑑2)�𝑚𝑚1 + 0.5𝑏𝑏2𝑑𝑑1𝑛𝑛1𝑚𝑚2 + 0.5𝑏𝑏2𝑑𝑑2𝑛𝑛2𝑚𝑚3 (17) 550 

𝑝𝑝2 = 𝑏𝑏1�𝑎𝑎 − (𝑑𝑑1 + 𝑑𝑑2)�𝑚𝑚4 + 0.5𝑏𝑏1𝑑𝑑1𝑛𝑛3𝑚𝑚5 + 0.5𝑏𝑏1𝑑𝑑2𝑛𝑛4𝑚𝑚6 (18) 551 

𝑝𝑝3 = 0.5𝑏𝑏1𝑑𝑑1𝑛𝑛5𝑚𝑚7 + 0.5𝑏𝑏2𝑑𝑑1𝑛𝑛6𝑚𝑚8 (19) 552 

𝑝𝑝4 = 0.5𝑏𝑏1𝑑𝑑2𝑛𝑛7𝑚𝑚9 + 0.5𝑏𝑏2𝑑𝑑2𝑛𝑛8𝑚𝑚10 (20) 553 

For a given sample of undrained shear strengths, 𝑐𝑐𝑢𝑢1����, … , 𝑐𝑐𝑢𝑢30������, the above formula is taken as the objective 554 

function in the optimization procedure proposed by Chwała (2019). As a result, the procedure provides 555 

the lowest possible value for the upper bound of the bearing capacity.  556 

Table 1. Coefficients from Eq. (17) – Eq. (20). Note that the undrained shear strengths 𝑐𝑐𝑖𝑖 are defined individually 557 

for each dissipation region (for more details see Chwała,  2019).  558 

Coeff. Expression Coeff. Expression 
𝑚𝑚1 𝑐𝑐𝑢𝑢,1����� cot𝛽𝛽2 + 2𝑐𝑐𝑢𝑢,21������(𝛼𝛼2 + 𝛽𝛽2) + 𝑐𝑐𝑢𝑢,2����� cot𝛼𝛼2 

𝑛𝑛2 �1 +
𝑏𝑏22

𝑑𝑑22(sin𝛽𝛽2)2 
𝑚𝑚2 𝑐𝑐𝑢𝑢,6����� cot𝛼𝛼2 + 2𝑐𝑐𝑢𝑢,24������(𝛼𝛼2 + 𝛽𝛽2) + 𝑐𝑐𝑢𝑢,5����� cot𝛽𝛽2 

𝑚𝑚3 𝑐𝑐𝑢𝑢,8����� cot𝛼𝛼2 + 2𝑐𝑐𝑢𝑢,23������(𝛼𝛼2 + 𝛽𝛽2) + 𝑐𝑐𝑢𝑢,7����� cot𝛽𝛽2 
𝑛𝑛3 �1 +

𝑏𝑏12

𝑑𝑑12(sin𝛽𝛽3)2 
𝑚𝑚4 𝑐𝑐𝑢𝑢,3����� cot𝛽𝛽3 + 2𝑐𝑐𝑢𝑢,22������(𝛼𝛼3 + 𝛽𝛽3) + 𝑐𝑐𝑢𝑢,4����� cot𝛼𝛼3 
𝑚𝑚5 𝑐𝑐𝑢𝑢,10������ cot𝛼𝛼3 + 2𝑐𝑐𝑢𝑢,26������(𝛼𝛼3 + 𝛽𝛽3) + 𝑐𝑐𝑢𝑢,9����� cot𝛽𝛽3 

𝑛𝑛4 �1 +
𝑏𝑏12

𝑑𝑑22(sin𝛽𝛽3)2 𝑚𝑚6 𝑐𝑐𝑢𝑢,12������ cot𝛼𝛼3 + 2𝑐𝑐𝑢𝑢,25������(𝛼𝛼3 + 𝛽𝛽3) + 𝑐𝑐𝑢𝑢,11������ cot𝛽𝛽3 

𝑚𝑚7 𝑐𝑐𝑢𝑢,16������ cot𝛼𝛼1 + 2𝑐𝑐𝑢𝑢,28������(𝛼𝛼1 + 𝛽𝛽1) + 𝑐𝑐𝑢𝑢,14������ cot𝛽𝛽1 
𝑛𝑛5 �1 +

𝑑𝑑12

𝑏𝑏12(sin𝛽𝛽1)2 
𝑚𝑚8 𝑐𝑐𝑢𝑢,15������ cot𝛼𝛼1 + 2𝑐𝑐𝑢𝑢,27������(𝛼𝛼1 + 𝛽𝛽1) + 𝑐𝑐𝑢𝑢,13������ cot𝛽𝛽1 

𝑚𝑚9 𝑐𝑐𝑢𝑢,20������ cot𝛼𝛼4 + 2𝑐𝑐𝑢𝑢,30������(𝛼𝛼4 + 𝛽𝛽4) + 𝑐𝑐𝑢𝑢,19������ cot𝛽𝛽4 𝑛𝑛6 �1 +
𝑑𝑑12

𝑏𝑏22(sin𝛽𝛽1)2 

𝑚𝑚10 𝑐𝑐𝑢𝑢,18������ cot𝛼𝛼4 + 2𝑐𝑐𝑢𝑢,29������(𝛼𝛼4 + 𝛽𝛽4) + 𝑐𝑐𝑢𝑢,17������ cot𝛽𝛽4 𝑛𝑛7 �1 +
𝑑𝑑22

𝑏𝑏12(sin𝛽𝛽4)2 

𝑛𝑛1 �1 +
𝑏𝑏22

𝑑𝑑12(sin𝛽𝛽2)2 𝑛𝑛8 �1 +
𝑑𝑑22

𝑏𝑏22(sin𝛽𝛽4)2 

 559 

Appendix B. Algorithm for estimating the mean value and standard deviation of the bearing capacity  560 

Step 1: Transform the covariance matrix [𝐶𝐶]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹  to the corresponding correlation matrix [𝑟𝑟]𝑛𝑛𝐵𝐵

𝑛𝑛𝐹𝐹  as  561 



33 
 

[𝑟𝑟(𝑖𝑖, 𝑗𝑗)]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹 =

[𝐶𝐶(𝑖𝑖, 𝑗𝑗)]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹

�𝐶𝐶(𝑖𝑖, 𝑖𝑖)𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹𝐶𝐶(𝑗𝑗, 𝑗𝑗)𝑛𝑛𝐵𝐵

𝑛𝑛𝐹𝐹
, 𝑖𝑖, 𝑗𝑗 = 1, 2, … , 30𝑛𝑛𝐹𝐹 + 𝑛𝑛𝐵𝐵 (21) 562 

Step 2: Transform the correlation matrix [𝑟𝑟(𝑖𝑖, 𝑗𝑗)]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹  to the correlation matrix expressed for a normal 563 

underlying distribution of 𝐶𝐶𝑢𝑢 as  564 

[𝑟𝑟𝑌𝑌(𝑖𝑖, 𝑗𝑗)]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹 =

ln�1 + [𝑟𝑟(𝑖𝑖, 𝑗𝑗)]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹�𝑣𝑣𝐶𝐶𝑢𝑢,𝑖𝑖𝑣𝑣𝐶𝐶𝑢𝑢,𝑗𝑗

�ln �1 + 𝑣𝑣𝐶𝐶𝑢𝑢,𝑖𝑖
2 � ln �1 + 𝑣𝑣𝐶𝐶𝑢𝑢,𝑗𝑗

2 �
,    𝑣𝑣𝑋𝑋𝑖𝑖 =

�𝐶𝐶(𝑖𝑖, 𝑖𝑖)𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹

𝜇𝜇𝐶𝐶𝑢𝑢
(22) 565 

Step 3: Calculate the covariance matrix [𝐶𝐶𝑌𝑌]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹  corresponding to the correlation matrix [𝑟𝑟𝑌𝑌]𝑛𝑛𝐵𝐵

𝑛𝑛𝐹𝐹  as 566 

[𝐶𝐶𝑌𝑌(𝑖𝑖, 𝑗𝑗)]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹 = [𝑟𝑟𝑌𝑌(𝑖𝑖, 𝑗𝑗)]𝑛𝑛𝐵𝐵

𝑛𝑛𝐹𝐹�Var(𝑌𝑌𝑖𝑖)Var�𝑌𝑌𝑗𝑗�,     Var(𝑌𝑌𝑖𝑖) = ln�1 +
𝐶𝐶(𝑖𝑖, 𝑗𝑗)𝑛𝑛𝐵𝐵

𝑛𝑛𝐹𝐹

𝜇𝜇𝐶𝐶𝑢𝑢
2 � (23) 567 

Step 4: Calculate the Cholesky decomposition of [𝐶𝐶𝑌𝑌]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹 , which is given by 568 

[𝐶𝐶𝑌𝑌]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹 = [𝐿𝐿][𝐿𝐿]𝑇𝑇 (24) 569 

where [L] is a lower triangular matrix. Set ℎ = 1. The positiveness of [𝐶𝐶𝑌𝑌]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹  can be ensured by applying 570 

the method proposed by Rebonato and Jäckel (1999). 571 

Step 5: If ℎ ≤ 𝑁𝑁MCS go to step 6; otherwise go to step 10.  572 

Step 6: Generate 30𝑛𝑛𝐹𝐹 independent components of the normal vector 𝑐𝑐𝑢𝑢1,𝑌𝑌, …, 𝑐𝑐𝑢𝑢30𝑛𝑛𝐹𝐹,𝑌𝑌 and 𝑛𝑛𝐵𝐵 573 

components 𝑐𝑐𝑚𝑚1,𝑌𝑌, …, 𝑐𝑐𝑚𝑚𝑛𝑛𝐵𝐵,𝑌𝑌 (the assumed average 𝑐𝑐𝑢𝑢 on boreholes). The probabilistic characteristics 574 

of the underlying normal distribution are calculated once for each scenario and are given by 575 

𝜎𝜎𝑐𝑐𝑢𝑢,𝑌𝑌 = ln�1 +
𝜎𝜎𝑐𝑐𝑢𝑢
2

𝜇𝜇𝑐𝑐𝑢𝑢
2 � (25) 576 

𝜇𝜇𝑐𝑐𝑢𝑢,𝑌𝑌 = ln�𝜇𝜇𝑐𝑐𝑢𝑢� −
1
2
𝜎𝜎𝑐𝑐𝑢𝑢,𝑌𝑌
2 (26) 577 

to calculate 𝜇𝜇𝑚𝑚,𝑌𝑌 and 𝜎𝜎𝑚𝑚,𝑌𝑌, 𝜎𝜎𝑐𝑐𝑢𝑢 need to be replaced by 𝑠𝑠𝜎𝜎𝑐𝑐𝑢𝑢 in the above formulas, where 𝑠𝑠 = 0.01 is 578 

assumed in this work (this value is interpreted as the measurement accuracy). 579 
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Step 7: Calculate the standardized vector 𝒁𝒁𝒄𝒄𝒖𝒖 obtained from components generated in step 6.  580 

Step 8: Use the following theorem (Fenton and Griffiths, 2008): if [𝐶𝐶𝑌𝑌]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹  is a positively definite matrix, 581 

𝒁𝒁𝒄𝒄𝒖𝒖 is a vector whose components are independent Gaussian standard random variables, and [L] is a 582 

lower triangular matrix that satisfies Eq.(B.4), then the random vector defined as 𝑷𝑷𝒄𝒄𝒖𝒖 = [𝐿𝐿]𝒁𝒁𝒄𝒄𝒖𝒖  is the 583 

Gaussian vector with the covariance matrix [𝐶𝐶𝑌𝑌]𝑛𝑛𝐵𝐵
𝑛𝑛𝐹𝐹 .  584 

The expected value of the resulting vector 𝑷𝑷𝒄𝒄𝒖𝒖 is zero; therefore the mean values expressed in underlying 585 

normal distribution are added to 𝑷𝑷𝒄𝒄𝒖𝒖 and a new vector 𝑻𝑻𝒄𝒄𝒖𝒖 is obtained. Next, the components of 𝑻𝑻𝒄𝒄𝒖𝒖 are 586 

transformed to the lognormal distribution according to 587 

𝑊𝑊𝑐𝑐𝑢𝑢,𝑖𝑖 = exp�𝑇𝑇𝑐𝑐𝑢𝑢,𝑖𝑖�,       𝑖𝑖 = 1, … 30𝑛𝑛𝐹𝐹 + 𝑛𝑛𝐵𝐵 (27) 588 

The averaged values of 𝑐𝑐𝑢𝑢 on each dissipation region, i.e. (𝑐𝑐𝑢𝑢1,1������, … , 𝑐𝑐𝑢𝑢30,1�������), …, (𝑐𝑐𝑢𝑢1,𝑛𝑛𝐹𝐹��������, … , 𝑐𝑐𝑢𝑢30,𝑛𝑛𝐹𝐹���������) are 589 

read from the components of vector 𝑾𝑾𝒄𝒄𝒖𝒖. The obtained undrained shear strengths contain information 590 

about the mutual correlation between dissipation regions of each foundation and the borehole locations. 591 

Step 9: Use (𝑐𝑐𝑢𝑢1,1������, … , 𝑐𝑐𝑢𝑢30,1�������), …, (𝑐𝑐𝑢𝑢1,𝑛𝑛𝐹𝐹��������, … , 𝑐𝑐𝑢𝑢30,𝑛𝑛𝐹𝐹���������) to estimate the corresponding bearing capacities 592 

𝑝𝑝ℎ,𝑘𝑘, 𝑘𝑘 = 1, … ,𝑛𝑛𝐹𝐹 (see Appendix A). Set ℎ = ℎ + 1 and go to step 5. 593 

Step 10: Estimate the mean values 𝜇𝜇𝑝𝑝,𝑘𝑘 and standard deviations 𝜎𝜎𝑝𝑝,𝑘𝑘, 𝑘𝑘 = 1, … ,𝑛𝑛𝐹𝐹, of the bearing 594 

capacities. End of algorithm. 595 
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 596 

Fig. B.1. Flowchart of the algorithm. 597 
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