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related to closed-form expressions for the perception of the estimation of mean and variance is proposed 16 

in this paper. The new proposed method is proven effective because of its direct reflection on the 17 

prediction uncertainty of the output moments of metamodel to quantify the accuracy level. The estimation 18 

can be completed by directly using the redefined closed-form expressions of the model’s output mean 19 

and variance to avoid excess post-processing computational costs and errors. Furthermore, a novel 20 

framework of adaptive Kriging estimating mean (AKEM) is demonstrated for more efficiently reducing 21 

uncertainty in the estimation of output moment. In the adaptive strategy of AKEM, a new learning 22 

function based on the closed-form expression is proposed. Based on the closed-form expression which 23 

modifies the computational error caused by the metamodeling uncertainty, the proposed learning function 24 

enables the updating of metamodel to reduce prediction uncertainty efficiently and realize the decrease 25 

in computational costs. Several applications are introduced to prove the effectiveness and efficiency of 26 

the AKEM compared with a universal adaptive Kriging method. Through the good performance of 27 

AKEM, its potential in engineering applications can be spotted. 28 
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1. Introduction 31 

Uncertainty widely exists in many fields of science and engineering, which brings great challenges 32 

in the analysis or optimization problems. Refs. [1, 2] discussed the uncertainty description and definition, 33 

established the basic principle of uncertainty analysis, and pointed out that the modeling method directly 34 

affects the uncertainty degree. The epistemic uncertainty that we are trying to research is considered to 35 

be caused by a lack of knowledge, which can be reduced if more information is obtained. What’s more, 36 

the greatest importance of uncertainty analysis is to ensure the accuracy of the output results, thus 37 

consideration should be paid to the effects of uncertainty. With the development of engineering 38 

applications, uncertainties with increased complexity have been emphasized in recent decades. Most of 39 

the researches about uncertainty can be summarized by uncertainty quantification (UQ). The important 40 

steps of UQ contain uncertainty propagation (UP) and uncertainty analysis (UA) [3, 4]. Finding an 41 

efficient and practical UQ method is attractive to researchers in many fields. The study of the 42 

characteristics and consequences of uncertainties, as well as their mathematical modeling in reliability 43 

analysis, has been proven useful for reliability evaluation and decision-making [5-9].  44 

UP is aimed at the process of propagation from a set of uncertain inputs to the distribution of 45 

uncertain output. UP plays an important part in research areas such as reliability analysis, reliability 46 

design, optimization problems, and so on. Former researches have tested the practicability of UP in the 47 

analysis of mechanical properties of materials [10], risk and resilience analysis [11], or reliability 48 

optimization [12]. Some proposed UP methods, for example, the edge detection for multi-dimensional 49 

UP [13], UP based on the direct probability integral method and exponential convex model [14] or 50 

Bayesian probabilistic integration [15], and UP applied in the construction of response surfaces [16] or 51 

topological structures [17] are available for reference. UA, on the other hand, identifies and characterizes 52 

the variability of output due to uncertain input of a system or model. Traditional Monte Carlo (MC) and 53 

further developed Quasi-Monte Carlo (QMC) methods with satisfying robustness, are easy to understand 54 

and be applied to the UQ of complex structures [18-21]. QMC focuses on an efficient sampling approach, 55 

allowing a reliable estimation of the accuracy and the ability to facilitate the sequential addition of 56 

samples [22]. For parametric UA, there is a development based on probability boxes [23-27]. Some 57 

findings of research like non-intrusive reduced-order modeling were proposed to overcome the 58 

unaffordable computational burden in the analysis of high dimensional situation [28]. Other methods 59 

combining UA with neural networks and utilizing deep learning techniques are also provided [29, 30].  60 
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The accurate estimation of moments is greatly influential in the research about uncertainty. Except 61 

being preliminary for UP, predicting mean and variance is a fundamental task of UA and also crucial to 62 

the robust design optimization (RDO), a representative paragon for engineering design under uncertainty 63 

[31-33]. Although previous UA methods contributed to the evaluation of prediction and are proven to be 64 

suitable for engineering applications, it is noticed that the majority of existing methods to complete 65 

estimation require a number of simulations to ensure accuracy [34-36]. When it comes to complex 66 

models, huge computational costs are needed [37] since finite element (FE) simulation is commonly used 67 

to evaluate the output corresponding to a single input. These numerical simulation models can be 68 

computationally very expensive and may spend a few hours to days or even months to simulate a set of 69 

inputs [38, 39]. What’s more, paying attention to model characteristics, model dimension, and 70 

distribution of the input variables, and performing evaluation for higher-order moments like skewness 71 

and kurtosis, seems to be a consensus [40]. Therefore, the improvement of efficiency in the estimation 72 

of moments exists as a big challenge.  73 

 At present, surrogate model or metamodel methods have been widely used in engineering modeling 74 

[41], which is also appropriate for the mentioned requirement. These methods have been developed for 75 

the excessive computational costs existing in the simulations with high complexity. Relevant research 76 

and applications can be found in optimization problems [42], sensitivity or reliability analysis [43, 44], 77 

and so on [45, 46]. High dimensional model representation [47], state dependent parameter [48], 78 

polynomial chaos expansion [49], support vector regression [50], and Gaussian process regression [51] 79 

are surrogate models commonly used. As one kind of Gaussian process that uses a spatial covariance 80 

function as kernel, Kriging is another widely used surrogate model, which can be easily accomplished 81 

by the computer [52-54]. After taking several input samples of training sets with their corresponding 82 

output values to calculate the mapping relation, the Kriging model is able to provide output prediction 83 

for any possible inputs. Its advantage was explained by its tendency to find the best linear unbiased 84 

predictor while minimizing the mean square error of the prediction [55]. The rapid development of 85 

Kriging-based methods started from an active learning reliability analysis method combining Kriging 86 

and MCS [56], which makes full use of good convergence of the Kriging model and cooperation with 87 

adaptive strategies. After this new research area was explored, more strategies were proposed to eliminate 88 

the shortages of existing methods, such as AK-MCSi [57], AK-IS [58], AK-SS [59] and eAK-MCS [60]. 89 

As a versatile analysis tool, Kriging surrogate model is also used to approximate the dynamic system or 90 
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estimate the failure probability border of imprecise probability models [61, 62]. However, the majority 91 

of research on Kriging theory focuses on reliability analysis [63, 64], more concerned about the 92 

determination of the limit state and failure detection. Hence, the potential of the Kriging model in the 93 

task of moments estimation is underestimated. A few of former researches revealed the practicability of 94 

this work. In an adaptive Kriging method proposed by Song et al. [65], the concept of Kriging prediction 95 

covariance is introduced to describe the prediction responses of two points and further display the 96 

correspondence of the prediction uncertainty. Inspired by a similar design for probabilistic integration of 97 

the Gaussian process regression model with basic kernel function [66], it is noticed that the Kriging 98 

covariance can be expanded to the estimation with further closed-form expression, for the prediction 99 

covariance exposes the effect of prediction uncertainty on the output. What’s more, previous conclusions 100 

indicated that following a specific probability distribution, the moments of the first four orders can be 101 

calculated by using the parameters of Kriging [67]. 102 

In this paper, the closed-form expressions for the evaluation of Kriging output mean and variance 103 

are newly established with the metamodeling uncertainty additionally embedded inside. The prediction 104 

variance, or the so-called posterior variance in metamodeling, is also derived in closed-form expressions 105 

to identify the prediction uncertainty of the output mean, in the form of the integral of the Kriging 106 

covariance in the probability space. Considering the accuracy of output mean, the moment prediction 107 

variance can directly reflect the goodness level of metamodeling under this specific requirement, which 108 

has not been emphasized before in Kriging-based applications. What’s more, the effect of any certain 109 

point in the probability space on the metamodeling uncertainty is discovered in this process. Through the 110 

practicable analysis, the identified uncertainty can be exploited to develop estimation method. We 111 

propose a novel framework of adaptive Kriging estimating mean (AKEM) for the efficient estimation of 112 

the structural output mean and variance. With the new-proposed adaptive strategy, the method of AKEM 113 

successfully reaches the achievement of better efficiency of estimation and economization of 114 

computational costs in the application of adaptive Kriging to fill the gap in research. In AKEM, the 115 

estimation of outputs is completed by directly using the established closed-form expressions to approach 116 

output, instead of combining sampling methods with surrogate models, where the latter leads to excess 117 

post-processing computational costs and error. A new learning function is proposed as the core of the 118 

adaptive training framework of AKEM, which quantifies the contribution of possible inputs to the 119 

identified prediction uncertainty. The probability density and prediction variance of a single point are 120 
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also considered to test sampled points in the learning function to ensure better stability of AKEM. The 121 

adaptive strategy is able to better update the training set to reduce the uncertainty of estimation iteratively, 122 

and the improvement in the estimation efficiency and accuracy is achieved. Stopping criteria are set to 123 

make sure the iteration should end with satisfying computational accuracy. For the performance of 124 

AKEM, the considered uncertainty in constructed learning function is aimed at the mean, so this output 125 

turns out to approach real value efficiently. Furthermore, the output variance also converges well as a 126 

result of an influential advantage of the proposed strategy. For the dependability of AKEM is tested in 127 

several cases, as well as its numerical accuracy and computational efficiency are proven, AKEM is 128 

recognized as able to reach advanced prediction accuracy and operation efficiency on the prediction of 129 

the original function’s mean and variance value. In the future research, this method is considered eligible 130 

to be further developed and applied in RDO or more applications of engineering problems. 131 

The rest of this paper consists of the following parts: Section 2 reviews previous calculation methods 132 

of output mean and variance and introduces a brief explanation of the Kriging theory. Section 3 proposes 133 

novel closed-form expressions. Section 4 introduces the construction of adaptive strategy algorithms. 134 

Example tests are shown in Section 5. Conclusions are given in Section 6. 135 

2. Moments and Kriging model 136 

2.1. Mean and variance 137 

Assume that  
T

1 2, ,..., nX X XX =   is a vector of random variables with a probability density 138 

function (PDF) ( )f X . ( )y = g X  is a function of X . The mean and variance of y  are defined as 139 

Eq.(1) and Eq.(2) respectively. 140 

 ( ) ( ) ( )dE y g f=  X X X  (1) 141 

 ( )
2

( ) ( ) ( ( )) ( )dV y g E g f= − X X X X  (2) 142 

When the random vectors are one-dimensional, the integral is unquestioned. However, it should be 143 

noticed that X  can be multidimensional, which means ( )df X X  can be multiple integrals of each 144 

component over the probability space. In this paper, the single integral symbol is used to represent 145 

possible multiple integrations of a certain vector for convenience. Variance ( )V y   is generally the 146 

concept representing the dispersion degree of y . However, another characteristic of variance is worth 147 

attention in this paper: it can be used to describe the error involved with the prediction of metamodel as 148 
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a measure of uncertainty, which is known as the prediction variance. 149 

These two moments are concerned in this paper. Based on the assumption of engineering problems, 150 

there exists a functional relationship = ( )y g X   between input and output, where ( )g X   is the real 151 

performance function in application. However, direct integration for ( )E y   and ( )V y   is usually 152 

impossible for the probability density function ( )f X  is frequently hard to obtain or non-integrable. 153 

Generally, MC or QMC methods can be used to approximate the numerical integration. An origin data 154 

set  )

1

( ( )( , )
N

i i

i
S y

=
= X  of size N  is first considered. X  is a vector of input variables and y  is the 155 

corresponding output. In this term, samples with size N  is generated obeying the distribution of each 156 

component. Then the values of y  corresponding to each sample are calculated to obtain the mean and 157 

variance of output. These methods have good robustness, and the result is supposed to be accurate when 158 

N  is big enough due to the law of large numbers and its lemma. However, the disadvantage is also 159 

obvious, since a complex performance function makes N   sets of calculations unaffordable. 160 

Consequently, numerous alternative methods have been proposed to address the problem of excess 161 

computational costs, in which surrogate model method is included. 162 

2.2. Kriging surrogate model 163 

The surrogate model, also known as metamodel, can be understood as the model of model. The 164 

surrogate model method is used in engineering to improve the efficiency of calculation by emulating the 165 

behavior of the original simulation model whose exact output generally requires high computational costs 166 

to obtain. In this paper, we introduce the Kriging method to construct a surrogate model of the origin 167 

structural performance function ( )y = g X , and the surrogate model is written as ˆ( )g X . According to 168 

Kriging theory [52], the ordinary Kriging is comprised of a constant part and a Gaussian process part as  169 

 ˆ ( )( ) =g Z +X X  (3) 170 

, where   is the regression parameter vector and ( )Z X  is a steady-state Gaussian process with zero 171 

as mean and ( ) ( ) 2 ( ) ( )cov( , ) ( , )i j i jR=X X X X  as covariance, where 
( ) ( ),i j

X X  are two input samples 172 

of X  and 
2  is the process variance. R  is the correlation function given as:  173 

 
( ) ( ) ( )

1

( ) 2( , ) exp ( )i j i j

k k k

n

k

R X X
=

 
= − − 

 
X X  (4) 174 

in which k  is the k -th correlation scale parameter, which will be mentioned below with   and 
2 . 175 
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( ) ( ),i j

k kX X  are the k -th components of 
( ) ( ),i j

X X  respectively. n  is the dimension of inputs.  176 

Assuming a training set with * *(1) *(2) *( )( , ,... )m=X X X X  and (1) (2) ( ) T( , ,... )my y yy =  as inputs and 177 

outputs individually, for regression matrix F  and correlation matrix R . F  is a 1m  vector whose 178 

elements all equal to 1 and 
*( ) *( )( , )( , 1,2,... )i j

ijR R i j m= =X X   in R  . The regression parameter   179 

and the variance of the Gaussian process 2   can be obtained as T 1 1 T 1 T( ) − − −= yF RFR F  , and 180 

2 T 1) )
1

( (
m

  −= − −y yF R F . The correlation scale parameters  1 2, ,... n  =  could be obtained 181 

by maximum likelihood estimation, e.g., 
2 1

l
2

n
2

arg max ln
m


 

= − 
 

− R


 . 182 

For an unknown point X , the mean and variance of predicted response at point are obtained as: 183 

 
T 1

ˆ )( () ) (g  −= −+X X yr R F  (5) 184 

 2 2 T 1 T T 1 1

ˆ ( 1 ( ) )( ) ( ) ( )) (g  − − − − + =X X X X Xr r u FR FR u  (6) 185 

in which 
T

*(1) *(2) *( )( ) ( , ), ( , ),... ( , )mR R R =  X X X X X X Xr  , and T 1( ) ( ) 1−= −X XRu F r  . Eq.(6) can be 186 

expanded to the covariance of the predicted response at two points X  and X  as follows: 187 

 
2 T 1 T T 1 1Cov( ( ), ( )) ( , ) ( ) ( ) ( ) (ˆ ˆ ( ) )Rg g  − − −    − + = X XX X X X X XRr r u F FR u  (7) 188 

In the next section, the above parameters, matrixes, and equations based on Kriging surrogate model will 189 

be employed to establish closed-form expressions of structural output.  190 

3. Uncertainty analysis with closed-form expression 191 

3.1. Closed-form expression of output mean  192 

After the Kriging surrogate model of structural performance function is built, the mean of structural 193 

output can be obtained by numerical integration of combining sampling methods. However, this process 194 

leads to post-processing computational costs and error. An existing and efficient way of dealing with this 195 

issue is to establish the closed-form expression of output mean by directly using the information of the 196 

Kriging surrogate model. The closed-form expression of the output mean is expressed as follows [68]: 197 

 
1

ˆ( ( ) )()g dE   −= + =−yX  R F  (8) 198 

in which 
1 1 1

(1) (2) ( )
2 2 2, ,... mA S A S A S

 
=  
 

  , 
1 2

1 1 1
diag , ,...

2 2 2 n

A
  

 
=  

 
  ,199 
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1
( ) *( ) T 1 *( )

2
1

exp ( ) ( ) ( )
2

i i i

X X X XS A A
− − 

= + − − +


   − 


X X  . The premise of this conclusion is that the 200 

variables are normally distributed with mean vector X   and diagonal covariance matrix X  . 201 

Accordingly, it should be noticed that the preprocessing of data such as probability integral 202 

transformation is required. 203 

Eq.(8) outputs in constant, but the new proposed uncertainty analysis provides an additional 204 

explanation. For every definite input X , we consider the corresponding kriging prediction of structure 205 

output ˆ( ) =g yX   as a random variable following normal distribution 
2

ˆ ˆ), ))~ ( ( (g gy N   XX  . The 206 

prediction value and uncertainty are combined in the form of another normal probability space, differing 207 

from traditional methods which treat them individually. Consider the probability integration y in the 208 

space of the distribution of X : 209 

 )ˆ ˆ( ( ) ( ) ( dy E fg g== X
X X X) X  (9) 210 

As the integral of random variable, y  is still a normally distributed random variable. To obtain the 211 

numerical expectation as a constant, a further step should be made. Different from Eq.(9), 
gE  212 

represents the probability integral for the PDF of ˆ( )g X  in the probability space of prediction: 213 

 ˆ( ( )) = ( ) )ˆ ˆ ( )d = (g gE g g g g X XX  (10) 214 

where ( )g  is the PDF of ˆ( )g X , which corresponds to a normal distribution 
2

ˆ ˆ), ))( ( (g gN  X X  that 215 

ˆ( )g X  follows. Do one more integration, there is: 216 

 ˆ( ) = ( ( ( ))) ( ( ( )ˆ )) ( ( )ˆ )g g gE dEy g gE E E E = ==
X X X

X XX  (11) 217 

Therefore, the output mean from y  is the same as Eq.(8).  218 

The prediction variance of y  which characterizes the prediction uncertainty in the estimation of 219 

the output value of ( )E y   is also available. Through Cov( ( ) ))ˆ , ˆ(g g X X   mentioned in Eq.(7), the 220 

prediction variance ( )V y   can be obtained by double integrals of Cov( ( ) ))ˆ , ˆ(g g X X   over X   and 221 

X : 222 

 
2 T 1 T T 1 1

( ) = Cov( ( ), ( )) ( ) ( )d d

( , ) ( ) ( ) ( ) () ) ( ) ( )d

ˆ ˆ

( d

V f f

R f

y g g

f − − −

  

     −= + 

 

  X

X X X X X X

X X X X X XX X XR Rr r u F F u
 (12) 223 

To continue from Eq.(12), an already proved theorem is necessary to be introduced: the product of 224 
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two normal PDFs is equal to a new normal PDF multiplied by a constant [68]. Supposing that ( )if X  is 225 

a normal PDF of n-dimensional random variables X  with mean vector i  and covariance matrix i  226 

shown below, 227 

 T
1

12 2
1

( ) (2 exp ( ) )
2

) (i i i

n

i if 
− − − 

= − − − 
 

 X X X   (13) 228 

Then, 229 

 1
1

2 2 Tx)
1

( ) ( ) (2 e p ( ) ( ) ( ) ( )
2

n

i i jj ij i j i ijjf f f
− −

−
   


= + − − + − 

 
X X X     (14) 230 

( )ijf X   is normal PDF with mean vector 
1 1( )ij ij i i j j

− − = +     and covariance matrix 231 

1 1 1( )ij i j

− − −  = + . 232 

Notice ( , )R X X  in Eq.(12), a transformation can be made:  233 

 2

2

T

1

1

2
1

1
2 2

1
2 2

( , ) exp ( )

1
(2 (2 exp ( ) ( )

2

(2 ( )

) )

)

n

k

n n

k

n

k kR X X

A A A

A m



 



=

− − −

 
 = − − 

 

 
 = − − − 

 

=

X X

X X X X

X

 (15) 234 

in which ( )m X  is the PDF of a normal distribution with mean vector X  and covariance matrix A .  235 

In Eq.(12), the following integration is first considered: 236 

 T 1

T

1 1
2 22 2

1 1 1
2 2 2

12 2 2

( , ) ( )d

1
(2 (2 exp ( ) ( ) ( ) ( )d

2

1
(2 (2 exp ( ) ( ) ( ) (2 ( )

)

2

)

) ) )

n n

n n

X X X X f

X

n

X X X

R f

A A A m

A A A A m

 

  

−
− −

− − −

 =

 
 = + − − + − 

 

 
   = + −





 − + − =




 





X X X X

X X X X

X X X

 

 

 (16) 237 

1
1

2
T2

1
( ) (2 exp ( ) ( ) ( ))

2
X X X

n

Xm A A
− − − 

  


  = + − − + − 


X X X    is a normal PDF following 238 

normal distribution ( , )X XN A+  . ( )fm X  is also a normal PDF and ( )d 1fm = X X . Then, 239 

 
1

1
2 2

1
2 2

T

( ) ( )d

1
(2 2 exp ( ) ( ) ( ) (

2

) d

)

)
2

( 2

X X X X X X

n

f

X

n

m f

A A m

A





−
−−

− −

 

   

 
  = + − − + − 

 

= + 





X X X

X X     (17) 240 

 Thus,  241 
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 2

1

1

2

1 11
2 22 22

1

( , ) ( ) ( )d d

(2 ( ) ( )d

(

)

) )2 (2 2 2

n

X

n

X

n

R f f

A m f

A A A I



 
−−

−
−

−−

  

   =

=+ = +

 



X X X X X X

X X X  (18) 242 

Similarly, for *( )( , )iR X X  in ( )Xr  can be transformed into 
1

2 2( ))2 (
n

iA m X , where ( )im X  is the 243 

PDF of a normal distribution with mean vector *( )i
X  and covariance matrix A , 244 

 *( ) 1 *( ) T 1 *( )
1

2
1

( , ) ( )d 2 exp ( ) ( ) ( )
2

i i i

X X X XR f A I A −
−

−  
= + − − + − 

 
  X X X XX X    (19) 245 

Therefore, considering T ( )Xr , a row vector whose i -th element is exactly *( )( , )iR X X , 246 

 T ( ) ( )df = XX X r  (20) 247 

  is the same as in Eq.(8).  248 

X   and X   are obviously symmetrical in Eq.(12), so based on Eq.(19) and Eq.(20) , 249 

T( ) ( )df   = X X X r . In addition, notice T 1( ) ( ) 1−= −X XRu F r ,  250 

 T T 1( ) ( )d ( ) ( )d 1f f −  = = − X X XX X X F Ru u  (21) 251 

Combining all results, the following closed-form expression is obtained: 252 

 
2 1 1 T T 1 T T 1 T

1
12 1( )( ) = 2 ( 1) ( 1)XV y A I R − − − − − −

− 
+ − + − − 

 
    F F R FR RF  (22) 253 

( )V y , as the moment prediction variance of y , is the statistical concept in surrogate model method that 254 

measures the uncertainty when ( )E y  is predicted. As ( )V y  decreases and converges closely to 0 in 255 

the iterations of adaptive Kriging model, the estimated output mean is considered more credible.  256 

3.2. Closed-form expression of output variance 257 

Similar to the last section, a new closed-form expression of output variance is proposed. Considering 258 

ˆ( )g X  as a random variable, the variance can be calculated by: 259 

 2 2ˆ(( ( ) ) ( ( ) ) )) ( dˆD g y g yE f= − = −X
X X X X  (23) 260 

Similarly being a normal random variable, D  in Eq.(23) can be transformed into: 261 

 2 2 2 2 2(( ( ) ) ( ( ) 2 ( ) ) ( ( ) ) 2 ( ( ) ( )ˆ ˆ ˆ ˆ ˆ) )g y g g y yE g gE yE E E y− = −  = ++ −
X X X X X

X X X X X  (24) 262 

, in which ( )E y y=
X  because y  itself is already an integral in the probability space of X . And, 263 
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 2 2 2 2( ( ) ) 2 ( ( )) ( ) ( ( ) )ˆ ˆ ˆD g g y y g yE E E E= −  = −+
X X X X

X X X  (25) 264 

 E
X  and 

gE are having different meanings as before. Because D  is a random variable similar to y , 265 

the variance of structural output should be further derived and established. Notice that 266 

2 2( ( ) ) ( ) ( )ˆ ˆ dE gg f= X
X X X X  and 

2 2 2

ˆ ˆ
ˆ ) )( ( ) ) ( (g g gE g  = +X X X , then 267 

 
2 2 2 2( ) ( ( ( ) ) ) ( )ˆ ˆ( ( ) )) (g g gE Eg y g yD E E E E= − = −

X X
X X  (26) 268 

in which d   and ( )V y   have been introduced before and 
2 2( ) ( )gE yd Vy = +   because of the 269 

definition of variance. So,  270 

 
2 2 2 2 2 2

ˆ ˆ ˆ ˆ( ) ( ( ( ( ( )) ( ( ) ( ( ( )) )) ) ))g g g gE D E d V y yE E d V   = + − + + −= −
X X X

X X X X  (27) 271 

Based on Eq.(5), firstly there is: 272 

 ( )
2

2 T 1

ˆ () ) )( ( ) ( ( )dgE f  −= −+X
X y XX XRr F  (28) 273 

Let the 1m  vector 1( ) B− − =yR F . Because T ( )BXr  is 1 1  parameter, T T( ) ( )B B=X Xr r . It 274 

is already known that ( )T

ˆ ) ))( ( ( ( )dg B dE B f  + = += = X XX X r  , so 275 

 T ( ) ( )d Bf dB  = = − X XX r  (29) 276 

In addition, T 2 2 T T T( ( ) ) ( ) ) ( )2 (B B B B  =+ + +X X X Xr r r r , so 277 

 
( )2 2 T T T

ˆ

2 T T

( ( ) ( ) ( ) ( ) ( )d

( ( ) ()

)

)2 (

2

) d

gE B B B f

d B f B

  

  

=

=

+

+ −

+

+  





X
XX X

X

X X X

X X X

r r r

r r
 (30) 278 

in which T( ) ( )X Xr r   is a m m   matrix with whose element in i  -th row and j  -th column being 279 

*( ) *( )( , ) ( , )i jR RX X X X .  280 

We have concluded that *( )( , )iR X X  can be transformed into 
1

2 2( ))2 (
n

iA m X , where ( )im X  is 281 

the PDF of a normal distribution with mean vector *( )i
X  and covariance matrix A , so 282 

 

1
*( )

1
1 *( ) T 1 *( )2

2 2( , ) ( ) = (2 ( ) ( )

1
exp ( ) ( ) ( ) ( )

2

( )

)i

i

i i

n

X X X X i

i i

R f A m f

A A f

f

I



−
− −



 
= − − + − 

 

=

 + 

X X

X X

X X X

X

X

 



 (31) 283 

i  is the i -th element of  . ( )if X  is a normal PDF with mean vector 1 *( ) 1( )i

i i X XA− −= + X   284 

and covariance matrix 1 1 1( )i XA− − −= +  . Using the conclusion of Eq.(14), it can be obtained that: 285 
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 ( )*( ) *( ) *( ) *( ) *( )( , ) ( , ) ( ) = ( , ) ( ) ( , ) ( ) ( , )i j i j j

i iR R f R f R f R    =X X X X X X X X X XX X X  (32) 286 

Because *(
1

2 2
)( , ) (2 ( ))j

n

jR A m=X XX , 287 

 

*( )

1
1 *( ) T 1 *( )2

1
2 2( ) ( , ) (2 ( ) ( )

1
exp ( ) ( ) ( ) ( )

2

( )

)j

i i i i

j j

i i i i i ij

ij i

n

j

j

f R A m f

A I A f

G f



−
− −

=

 
= + − − + − 

 

=

 

X X

X

X

X

X

X

X X 

    (33) 288 

( )ijf X   is a normal PDF with mean vector 
1 *( ) 1( )i

ij ij i iA− − = +X    and covariance matrix 289 

1 1 1( )ij iA− − −= +   . 
1

1 *( ) T 1 *( )2
1

exp ( ) ( ) ( )
2

j j

ij i i i i iG A I A
−

− − 
= + − − + − 

 
 X X     is the element in 290 

i -th row and j -th column of G . Therefore, 291 

 *( ) *( )( , ) ( , ) ( )d ( )di j

ij ij ijR R f G f G = = X X XX X X X X  (34) 292 

 T( ) ( ) ( )df = X XX X Gr r  (35) 293 

Then, 294 

 
2 2 T

ˆ ) 2( ( )( )gE d B B    += + −
X

X G  (36) 295 

For 
2

ˆ ))( (gE 
X

X  in Eq.(27), the following deformation is firstly given: 296 
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2 2 T 1 T 1
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( ( ) 1 ( ) ( ) ( ) ( ) ( )d

( ) ( ) ( )d

) ( )

( ) 1 ( )d
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−
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X
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X X

X X X XR
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F

R R

R

F F u

r
R

r F r
F

 (37) 297 

It is noticed that T 1( ) ( )−
X XRr r  is the sum of a m m  matrix whose element in i -th row and j -th 298 

column being 
*( ) *( ) 1( , ) ( , ) ( )i j

ijR R − X X X X R . Therefore,  299 

 *( ) *( ) 1 1( , ) ( , ) ( ) ( )d ( )i j

ij ij ijR R f G− −  =  X X XX X X R R  (38) 300 

Then 301 

 1 1

2

1

T

1

( ) ( ) ( )d ( )ij ij

m m

i j

s f G
= =

− −= =  X XX XR Rr r  (39) 302 

For the last term in Eq.(37), for T 1 ( )−
XrRF  is 1 1  parameter,  303 

 T 1 T 1 T T 1 T( ) ( ( )) ( )( )− − −= =X X XF r rR Rr FR F  (40) 304 

Then, 305 
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 (41) 306 

Thus, 307 

 

T 1 2 T 1 1 T

3

T 1 T

T 1 T 1

( ( ) 1) ( 2)d ( ) 1f
s

− − − −

− −

− +
= =

− XX X F r F F F

F F F F

R R G R R

R R
 (42) 308 

Three parts of Eq.(37) are all derived, so 
2

ˆ ))( (gE 
X

X  can be calculated by using the following closed-309 

form expression. 310 

 
2

3

2

ˆ 2( ( (1)) )gE s s = − +
X

X  (43) 311 

Referring to Eqs.(27)-(43), the closed-form expression of output variance 312 

2 2 2

ˆ ˆ( ) ( ( ) ( ( ( )) ))g gE D E d yE V = + − −
X X

X X  established in AKEM can be obtained as  313 

 2 T 2 2

2 32( ) ( (1 ) () )E D d B B s s d V y   = + − + − − −+ +G  (44) 314 

For comparison, previous output variance is expressed as: 315 

 

2 2 2

ˆ ˆ

2 T 2

)(( ( ) ) )

2

(

(

)

)

(g gtV E d E d

d B B d

 

   +

= = −

= +

−

− −

X XX X

G
 (45) 316 

Obviously, the probability integral in the prediction space is not included in Eq.(45). The output variance 317 

of ( )E D  has extra terms 
2

ˆ )( ( ( ))gE V y −
X

X . The extra terms exist as a complement of the uncertainty 318 

which is not concerned in tV . The result of tV  turns out to be almost the same as the result by combing 319 

the surrogate model with sampling method. However, a differential exists between ( )E D   and tV  , 320 

unlike ( )E y d=  . It is found that as the prediction accuracy improves, both ( )E D   and tV   will 321 

approach the true value of the structural output. Tests prove that ( )E D  is usually closer to the true value 322 

than tV   in Kriging output. For this reason, the advance of using ( )E D  as output instead of tV  is 323 

credible. 324 

3.3. Adaptive strategy 325 

Sec 3.1 and 3.2 have introduced two mainly concerned indicators. In the design of AKEM, the 326 

adaptive Kriging framework must be aiming at reducing the estimation error efficiently to ensure the 327 

accuracy of the indicators. For a Kriging surrogate model, each point in the probability space can be 328 

analyzed as contributing to the prediction uncertainty ( )V y  and making effect on output inaccuracy. 329 
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Eq.(12) clarifies the expression of ( )V y  , which is the integral of X   and X   over the entire 330 

probability space. Considering a definite point tX   replacing X   in Cov( ( ) ))ˆ , ˆ(g g X X  , ( )tH X  331 

represents its contribution to ( )V y : 332 

 
( )2 T 1 T T 1 1

( ) = Cov( ( ), ( )) ( )d

( , ) ( ) ( ) ( ) (

ˆ ˆ

( d) ( ) )

t t

t t t

H f

R

g g

f − − −

  

    − +=





X X X X X

X X x X x X X Xr R r u F F uR
 (46) 333 

Since 
1

121 T1
( , ) ( )d exp ( ) ( ) ( )

2
t X t X X t XR f A I A

−
− − 

   = + −


 − + − 


 X X X X X X    and 334 

T ( ) ( )df = XX X r  are already proven, ( )tH X  can be expressed by 335 

 2

1 2 3( ) ( ( ) ( ) ( ))t t t tH H H H= − +X X X X  (47) 336 

in which 337 

 
1

1 T 12
1

1
( ) exp ( ) ( ) ( )

2
t X t X X t XH A I A−

−
− 

= + − −


 + − 


X X X   (48) 338 

 T

2

T 1( ) ( )t tH −=X X Rr  (49) 339 

 T 1 T T 1 1 T 1 T

3 ( ) ( ) 1) 1)( ( ) (t tH − − − −= − −X X R R RF r F F F  (50) 340 

The larger value of ( )tH X  identifies the more important contribution of uncertainty in tX  that 341 

eventually affects the posterior variance of the estimated output mean. On the other hand, a sample point 342 

with a large value of ( )tH X  is well worth adding to the design set, and the accuracy of model can be 343 

increased as well as the uncertainty of prediction being reduced efficiently in this way. In addition, other 344 

features of training points should also be included. In this work, two representative features, point 345 

prediction variance 
2

ˆ )(g t X  and the PDF ( )tf X  of samples are considered. These two indexes are 346 

introduced to guarantee the general reliability of AKEM. 347 

Therefore, we define the learning function in AKEM as follows:  348 

 
2

ˆ( ) ( ) ( ( ))t t g t tL H f=X X X X  (51) 349 

( )tL X   theoretically contains both uncertainty and density information of sample points. During the 350 

updating of adaptive Kriging, the sample point with the maximum value of ( )tL X   is added to the 351 

training set in one certain iteration. Therefore, the best point to be added in the design point is chosen by:  352 

 
( 1

1

* ) arg max ( )m i

ne
i

w

N

L
=

+ =X X  (52) 353 
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4. Implementation of the AKEM framework 354 

Based on the established closed-form expressions and learning function proposed above, the 355 

algorithm framework of AKEM is introduced in this section. In the program, a sample set MCS  356 

consisting of MCn  DoE points is first generated. Generally, though the MCn  can be defined flexibly, it 357 

is recommended to be large enough (depending on the complexity of the original function) to make sure 358 

the inaccurate points of small probability density are included. To start the iteration, an original training 359 

set DoES  of 0n  points is obtained to build the initial model. Points of DoES  are sampled following 360 

uniform distribution, because they are expected to spread out as much as possible. 361 

The stopping criteria consists of two sub-conditions separately in order to guarantee the accuracy 362 

of both output mean and variance to their true values. Two thresholds 1t  and 2t  are established. The 363 

first sub-condition is aiming at y , based on the coefficient of variation (C.O.V) that 
V( )

. .
( )

yC
y

OV
E y

= , 364 

as 
1. . yC OV t  . The second sub-condition is aiming at ( )E D  . The changing rate is defined as 365 

( ) ( )

( )

E D E D

E D

−
 = , in which ( )E D  and ( )E D  respectively represent two consecutive outputs of 366 

previous and subsequent iterations. 2t    is defined as the second one. Sometimes the model 367 

mistakenly stops and provides a definite output which deviates from the true value obviously. To avoid 368 

this situation, delayed judgment is introduced. The stopping condition is passed only if two sub-369 

conditions are both satisfied in 2 times of consecutive iterations. Therefore, the stopping criteria can be 370 

summarized into the two sub-conditions of the main condition and the delayed judgment. Only if  371 

1. . yC OV t   and 2t    are both true in two consecutive iterations, the program passes the main 372 

stopping criteria and makes output. Basically, the design is made for perfecting the model with fewer 373 

original function callings. However, the relatively complex situation makes the program iterate too much 374 

even if the output has been acceptable. According to test conditions, 1t  and 2t  will be renewed as the 375 

doubled ones between the 100th and 150th iterations, or tripled ones in the iterations after the 150th. The 376 

specific process of the program can refer to Fig. 1. 377 



16 

 

0Obtain origin  of  points.DoES n

.Computation of Kriging model by DoES

Computation of ( ), ( ) and ( ) in

closed-form expression framework.

E y V y DE

Check stopping criteria.

Select the best next point 

maximizing ( ), add it into .
new MC

DoE

S

L S

X

X

0 0Let 1. Renew the

thresholds when necessary

n n= +

Evaluation of the learning function ( ).L X

Initialize parameters and generate

sample set 
MC

S

End.

Yes

No

Iteration of adaptive Kriging

Learning strategy

based on UP

 378 

Fig. 1. Flowchart of AKEM framework 379 

Each iteration is done along with a new point being added into dataS , and the original function is 380 

called once. The eventual output 0n  in this algorithm records the calling times of original function and 381 

the difference between initial 0n  and the output 0n  is the times of iteration. The output mean and 382 

variance is directly calculated based on the closed-form expressions in Sec 3.1 and 3.2. 383 

It should be noted that some of the parameters in this algorithm are customizable to adapt to different 384 

situations, such as 0n  , 1t  , 2t  , and the times of delayed judgment or iterations limit. In the later 385 

application examples, it is defined as  0 min 2 1,12n n= +  for a n -dimensional performance function 386 

and 1 0.01t = , 2 0.001t = . 387 

5. Applications 388 

5.1.  A highly-nonlinear function 389 

Ishigami function [69] is widely used to test uncertainty analysis methods. This function has a 390 

highly nonlinear characteristic. Respond is formulated as: 391 

 4

3

2

1 2 1( ) sin( ) sin( ) sin( )g X a X bX X= + +X  (53) 392 

where a  and b  are constant that can be freely defined. In this example, they are set as 7a =  and 393 
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0.25b =  . 1X  , 2X   and 3X   are components of X   and independently follow the same uniform 394 

distribution ,( )U  − . 
2

ˆ( ) ( ) ( ( ))t t g t tL H f=X X X X  395 

For reference to AKEM, one basic function should be introduced. 396 

 
2

ˆ( ) )(t t g tL =X X  (54) 397 

For reference, ( )t tL X  is used to replace the learning function of AKEM to construct a comparative 398 

adaptive Kriging framework to compare with AKEM. In the following examples, this reference method 399 

will be demonstrated in the following figures marked as Simple Kriging. The reference value of output 400 

is obtained by an extremely large number of calls of the original function and displayed in the figures as 401 

the true value.  402 

Two graphs in Fig. 2 visualize the convergence progress of output mean and variance estimated by 403 

the AKEM method. Fig. 2 (a) shows that the output mean estimated by AKEM converges quickly and 404 

settles in an interval around the true value. Additionally, the confidence interval 405 

 ) 1.96 ( ), ) 1.96 ( )( (E y V y E y V y− +  is also presented as a solid color area. Fig. 2 (b) shows the change 406 

of output variance estimated by AKEM. From Fig. 2 (b), one can see that the advantage of AKEM rather 407 

than the previous expression of output variance is quite clear, for its proximity to reference. It can also 408 

be seen that Simple Kriging takes far more iterations to converge, which means the computational costs 409 

are significantly reduced through AKEM. The learning function ( )tL X  have been defined in Sec 3.3 to 410 

test the points of sample set. The maximum value of learning function is considered as maxL . Fig. 3 411 

confirms the view that the changing trend of maxL  with iteration theoretically should be decreasing as 412 

the result of the improvement of model accuracy. 136 times of original function calling are used for 413 

AKEM in total. Other simulation methods including simple MC, the Latin hypercube sampling (LHS) 414 

and the Sobol sequence are tested under the limit of the same number of function calls. These methods 415 

provide close results sometimes, but relatively inaccurate ones within a wide interval more often, see Fig. 416 

4. The three methods are individually simulated 100 times. Each point in Fig. 4 corresponds to a single 417 

result of simulation. For Simple Kriging obviously provides worse output than AKEM as shown in Fig. 418 

2, it is not listed in the scatter plots. The probability of the result is expressed by the transparency of color. 419 

The distribution of these points is very dispersed, which means there is a higher probability for the output 420 

of MC or QMC lying in a more inaccurate interval of value. This deficiency exists at both output mean 421 
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and output variance. This situation illustrates the instability of sampling methods under the limit of 422 

computational costs. These three sampling methods perform differently but are all unable to overcome 423 

this disadvantage. However, the only result provided by AKEM is a relatively more reliable output. 424 

Table 1 shows the outputs of different methods to make a straight comparison with AKEM, with 425 

mean and variance's relative error written as M  and V  additionally. The truth can be acquired from 426 

M  and V  that the prediction of AKEM is significantly more accurate than the others. All indications 427 

point out that AKEM is a significantly advanced method because of its stability and accuracy with 428 

evidently cheap computational costs. 429 

  430 

Fig. 2. Output mean and variance for example 5.1: (a) Output mean; (b) Output variance 431 

 432 

Fig. 3. max(L )log  through iterations for example 5.1 433 
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 434 

 435 

Fig. 4. Output variations of different methods for example 5.1: (a) Output mean; (b) Output variance 436 

Table 1 Estimations of Ishigami function 437 

Methods Means 
M  Variance 

V  0n  

AKEM 3.39 3.21% 43.51 2.22% 

136 

MCS 3.29 5.95% 47.72 7.23% 

LHS 3.36 4.09% 51.96 16.75% 

Sobol 3.41 2.67% 47.01 5.65% 

Simple Kriging 4.03 15.08% 50.07 11.27% 294 

Reference 3.5 0.00% 44.5 0.00% 106 

5.2. Dynamic response of a non-linear oscillator 438 

This example introduces a common undamped single-degree-of-freedom oscillating system shown 439 

in Fig. 5, which is widely used in the test of metamodel [56]. The performance function of the oscillator 440 

is defined as: 441 
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 0 11

1 2 1 1 2

0

2
( , , , , , ) 3 sin( )

2

tF
g c c m r F t r

m




= −  (55) 442 

where 1 2

0

c c

m


+
=  . The distribution parameters of these variables are listed in Table 2. The 6-443 

dimensional application is tested and compared with other methods the same as the last section.  444 

In this example, AKEM completes iteration by calling the original function only 36 times in total. 445 

The convergence process of outputs and comparison of Simple Kriging can be seen in Fig. 6. Decreasing 446 

of maxL   is presented in Fig. 7. Fig. 8 contains two scatterplots of different methods’ outputs. The 447 

original function calling for MC and QMC is still limited. Numeral outputs are shown in Table 3. 448 

Corresponding outputs are obviously highly variable, but the only output that AKEM provides is close 449 

to the reference value. Therefore, AKEM has been convinced with excellent stability and ability of 450 

efficient estimation in this example.  451 

 452 

Fig. 5. A non-linear oscillator 453 

  454 

Fig. 6. Output mean and variance for example 5.2: (a) Output mean; (b) Output variance 455 

Z(t)

F(t)

F

t
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 456 

Fig. 7. max(L )log  through iterations for example 5.2 457 

  458 

 459 

Fig. 8. Output variations of different methods for example 5.2: (a) Output mean; (b) Output variance 460 

 461 

 462 

 463 
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Table 2 Distribution of variables of non-linear oscillator 464 

Variable Distribution Mean Standard deviation 

1c  Normal 1 0.1 

2c  Normal 0.1 0.01 

m  Normal 1 0.05 

r  Normal 0.5 0.05 

1F  Normal 1 0.2 

1t  Normal 1 0.2 

Table 3 Estimations of non-linear oscillator’s response 465 

Methods Means 
M  Variance 

V  0n  

AKEM 0.5934 0.42% 0.0857 1.38% 

36 

MCS 0.4970 15.89% 0.1007 15.88% 

LHS 0.5845 1.08% 0.0929 6.90% 

Sobol 0.5725 3.11% 0.0973 11.97% 

Simple Kriging 0.5827 1.39% 0.0908 4.49% 107 

Reference 0.5909 0.00% 0.0869 0.00% 106 

5.3. Borehole function 466 

This function describes the water flow through a borehole in one year (m3/year) [45]: 467 

 

2

2 ( )
( )

2
ln( )(1 )

ln( )

u u l

u u

w l
w w

w

H H
g

T LTr

rr T
r K

T

r

 −
=

+ +

X  (56) 468 

( , , , , , , , )w u u l l wr r H T H LT K=X  is input. Inputs , , , , , , ,w u u l l wH T HTr r L K  respectively represent radius 469 

of the borehole, radius of influence, the transmissivity of the upper aquifer, the potentiometric head of 470 

the upper aquifer, the transmissivity of the lower aquifer, the potentiometric head of the lower aquifer, 471 

the length of the borehole and the hydraulic conductivity of the soil. Their distributions are listed in Table 472 

4. 473 

The convergence process of AKEM and comparison are displayed in Fig. 9. maxL  in this case can 474 

be found in Fig. 10 and seem to have larger value than previous ones, as a result of the larger original 475 
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function value. Relatively, maxL  is still enough to guarantee the confidence of prediction. What’s more, 476 

the change of output indicators reveals a law of the adaptive learning strategy of Kriging: the value of 477 

Kriging output fluctuates in a few iterations, but it eventually ends up being close to the true value in 478 

multiple iterations. The dispersion of sampling methods’ results is also plotted in Fig. 11 and details of 479 

outputs are given in Table 5. The prediction of AKEM is apparently more accurate than the others. In 480 

summary, the results of this example illustrate the advantages of AKEM well. 481 

Table 4 Distribution of variables in borehole-function 482 

Variable (unit) Distribution Parameter 1 Parameter 2 

wr  (m) Uniform 0.05 0.15 

r  (m) Lognormal 7.71 1.0056 

uT  (m2/year) Uniform 63070 115600 

uH  (m) Uniform 990 1110 

lT  (m2/year) Uniform 63.1 116 

lH  (m) Uniform 700 820 

L  (m) Uniform 1120 1680 

wK  (m2/year) Uniform 9855 12045 

Note: Parameter 1 and parameter 2 are minimum and maximum for uniform distribution, mean and 483 

standard deviation for the natural logarithm for lognormal distribution. Variables are independent to each 484 

other. 485 

Table 5 Estimations of Borehole function 486 

Methods Means 
M  Variance 

V  0n  

AKEM 78.05 0.03% 2023 4.10% 

76 

MCS 74.94 3.95% 1872 11.28% 

LHS 76.96 1.36% 1846 12.51% 

Sobol 80.11 2.68% 2394 13.48% 

Simple Kriging 76.44 2.02% 2231 5.73% 169 

Reference 78.02 0.00% 2110 0.00% 106 
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  487 

Fig. 9. Output mean and variance for example 5.3: (a) Output mean; (b) Output variance 488 

 489 

Fig. 10. max(L )log  through iterations for example 5.3 490 

  491 
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 492 

Fig. 11. Output variations of different methods for example 5.3: (a) Output mean; (b) Output variance 493 

5.4. A front wing reinforcing rib 494 

 495 

Fig. 12. Front wing reinforcing rib used for civil aircraft 496 

(a)                     (b) 497 

  498 

Fig. 13. (a): Structure diagram of the reinforcing rib and (b): Force diagram of the reinforcing rib 499 
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 500 

Fig. 14. Finite element model of the reinforcing rib 501 

Fig. 12 shows one kind of front wing reinforcing rib from Ref. [69], which will be used to test 502 

AKEM. Fig. 13 (a) is the simplified structure diagram of the reinforcing rib, where the upper edge and 503 

lower edge are respectively approximated as arc segment and line segment. Six round holes are set in the 504 

middle of the rib. The largest one of them is employed to fix the engine that generates the torque to retract 505 

the slat, the one at the top is used to insert pipes and cables, and the four remaining are for supporting 506 

the slide rails for retracting the slat. The material of this reinforcing rib is aluminum alloy 7075-T7451 507 

whose Poisson ratio is 0.3 = . It refers to Fig. 13 (b) for the loads uploading on the reinforcing rib. Ten 508 

random inputs are included. They are web thickness d  , elastic modulus E  , aerodynamic loads 509 

1 2 5000GPaP P= = , and concentrated loads 1F  to 6F . These random variables can be referred from 510 

Table 6. The structure fails when the maximum longitudinal displacement exceeds 0.068 mm. Therefore, 511 

denoting the displacement as  , the performance function of the reinforcing rib is concluded by 512 

 ( ) 0.068g = −X  (57) 513 

  of the reinforcing rib can be simulated by finite element model of Ansys 15.0 as Fig. 14. Due to 514 

the requirement of accuracy in this example, the first threshold is set as 1 0.0025t = . Applying AKEM, 515 

the original model is used 167 times. According to AKEM output, there are mean ( ) 0.0093E y =  , 516 

moment prediction variance of mean 9( ) 2.3247 10V y −=   and output variance 5( ) 1.2419 10E D −=  . 517 

It can be concluded that the expectation of displacement ( ) 0.0587E  = . Output mean and variance 518 

converge as Fig. 15. In addition, 500 points are randomly sampled to make a reference to its output values 519 
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can also be seen in the figure. Fig. 16 expresses the value of maxL  in iterations. The visualized iterative 520 

process has the same trend of convergence as the three examples above. AKEM provides a result close 521 

to the reference one but spends less computational costs. In practical applications, relative parameters 522 

can be set according to the real situation, in order to further refine the model and guarantee better accuracy. 523 

Table 6 Distribution of variables in front wing reinforcing rib 524 

Variable (unit) Distribution Mean Variation 

coefficient 

d (mm) Lognormal 0.05 

0.05 

E (GPa) Lognormal 100 

1P (GPa) Lognormal 5000 

2P (GPa) Lognormal 5000 

1F  (N) Lognormal 32539 

2F  (N) Lognormal 23758 

3F (N) Lognormal 5949 

4F (N) Lognormal 16245 

5F  (N) Lognormal 10140 

6F  (N) Lognormal 19185 

  525 

Fig. 15. Output mean and variance for example 5.4: (a) output mean; (b) output variance 526 
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 527 

Fig. 16. max(L )log  through iterations for example 5.4 528 

6. Conclusions 529 

In the numerical analysis of complex systems or functions in probability space, uncertainty always 530 

brings challenges to our work. Surrogate model methods are popularly researched and used in reliability 531 

analysis, optimization, or other fields to make a simpler and sufficiently accurate substitute for the 532 

simulations difficult to complete. This paper focuses on the UA of Kriging, one kind of surrogate model. 533 

Our work is based on the characteristics of Kriging models, such as the ability to be easily combined 534 

with adaptive learning strategies to design algorithms. We solve the problem when estimating two main 535 

indicators: the mean and variance of a function under uncertainty. For statistical significance, closed-536 

form expressions of outputs consisting of uncertainty are redefined. Traditionally, the Kriging prediction 537 

is only analyzed at a certain point as a value with prediction variance signifying confidence level. In the 538 

proposed UA, the prediction is considered as a random variable rather than a simple value, by combining 539 

the predicted value with the prediction variance. It is also noticed that uncertainty interacts in the whole 540 

space, which between two points is expressed as prediction covariance when expanded to the probability 541 

space rather than a certain point. Therefore, the prediction variance of mean, which enables the direct 542 

reflection of the uncertainty of the concerned estimation, whose effect on the accuracy of output 543 

prediction was more deeply discovered and analyzed.  544 

Based on the above inference, the adaptive framework of AKEM is designed in order to best 545 

efficiently reduce the uncertainty in prediction and minimize computational costs for computer 546 

simulation. The key to the adaptive Kriging algorithm is a learning function based on the evaluation of 547 

uncertainty. The contribution to posterior variance can be quantified as a certain value for each generated 548 
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point. Subsequently, the point with more potential to improve accuracy can be selected to update the 549 

Kriging model. Four examples are used to test AKEM. Results reveal its accuracy of output and stability 550 

of working, as well as its advantage over MC, QMC and the Simple Kriging methods. By presenting 551 

visualized data in the figures, the adaptive strategy is proved to be feasible and effective for the 552 

improvement of adaptive Kriging model. Therefore, this method is considered qualified to be applied to 553 

a variety of problems with different situations. The biggest advantage of AKEM is its efficient prediction 554 

of output mean and variance. Thus, the prospect of applying AKEM in other applications like RDO is 555 

well worth attention. In addition, it has been noticed that this method can further improve the accuracy 556 

by virtue of results in some cases, and the exploration of the prediction uncertainty of variance estimation 557 

can be pursued. Related researches will be carried out in the future. 558 
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