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Abstract
Spiking neural networks (SNNs) have immense potential due to their utilization of synaptic plasticity and ability to
take advantage of temporal correlation and low power consumption. The leaky integration and firing (LIF) model
and spike-timing-dependent plasticity (STDP) are the fundamental components of SNNs. Here, a neural device is
first demonstrated by zeolitic imidazolate frameworks (ZIFs) as an essential part of the synaptic transistor to
simulate SNNs. Significantly, three kinds of typical functions between neurons, the memory function achieved
through the hippocampus, synaptic weight regulation and membrane potential triggered by ion migration, are
effectively described through short-term memory/long-term memory (STM/LTM), long-term depression/long-term
potentiation (LTD/LTP) and LIF, respectively. Furthermore, the update rule of iteration weight in the
backpropagation based on the time interval between presynaptic and postsynaptic pulses is extracted and fitted
from the STDP. In addition, the postsynaptic currents of the channel directly connect to the very large scale
integration (VLSI) implementation of the LIF mode that can convert high-frequency information into spare pulses
based on the threshold of membrane potential. The leaky integrator block, firing/detector block and frequency
adaptation block instantaneously release the accumulated voltage to form pulses. Finally, we recode the steady-
state visual evoked potentials (SSVEPs) belonging to the electroencephalogram (EEG) with filter characteristics of
LIF. SNNs deeply fused by synaptic transistors are designed to recognize the 40 different frequencies of EEG and
improve accuracy to 95.1%. This work represents an advanced contribution to brain-like chips and promotes the
systematization and diversification of artificial intelligence.

Introduction
Compared with traditional chips, nonvolatile neural

devices have competitive advantages which includes low
energy consumption and high-speed parallel operation.
Computing in memory (CIM) has the same protocols and

standards for storage and memory, which is the top
research for neuromorphic computing1. In recent years,
resistive random access memories (RRAMs) as memris-
tors have been integrated with microprocessors and per-
ipheral circuits to realize the artificial intelligence (AI)
functionalities of neural networks2,3. The NeuRRAM-a
chip is an advanced RRAM-based CIM chip that offers
comparable inference accuracy to software models with
four-bit weights for various AI tasks. It also boasts energy
efficiency that is twice as good as previous state-of-the-art
RRAM-CIM chips across different computational bit-
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precisions. Additionally, the NeuRRAM-a chip allows for
flexible reconfiguration of CIM cores to accommodate
diverse model architectures4,5. From the perspective of
energy consumption, three-terminal neural devices have
more potential to approach the power of the human brain
(25W) in large-scale computing6. However, due to the
limitations and deficiencies of array fabrication technol-
ogy for three-terminal neural devices, synaptic transistors
as cross-bar weights combined with functional circuits are
rarely explored to completely simulate the neural net-
work7. Many studies have focused on the synaptic plas-
ticity of a single device and the nonvolatile regulation
mechanism3,8. Consequently, the bionic performance of
the synaptic transistor is utilized to expand the fusion
circuit and match the high-performance network, which
has a great contribution to accelerating the improvement
of the brain-like computing system9,10.
The essence of brain-like computing is learning from the

information processing method or structure of biological
neural systems and then developing matching computer
theory, chip architecture, and application models and
algorithms11. Brain-like computing is considered to be a
significant research avenue in the post-Moore era, which
has the potential to break through a technological bottle-
neck in future intelligent computing12. At present, spiking
neural networks, which closely replicate biological nervous
systems, are a promising technology due to their low-
overhead online learning and energy-efficient information
encoding, stemming from their intrinsic local training
principles. Thus, the comprehensive deepening innovation
of spiking neural networks (SNNs) must be explored in all
related fields, including model algorithms, software, chips,
and data13. Several multiterminal synaptic devices, includ-
ing floating-gate synaptic transistors (STs), ferroelectric-
gate STs, electrolyte-gate STs, and optoelectronic STs, have
been developed for producing synaptic plasticity. This
plasticity is classified based on factors such as the retention
time and the number of pulses. These devices effectively
provide the ability to manipulate synaptic strength14,15. The
working principles of the above STs, including thermal
emission or quantum tunneling, promote electrons into the
floating gate. The interaction between the carriers in the
channel and the polarization of the ferroelectric insulator is
known as the Coulomb interaction, electrostatic modula-
tion and electrochemical doping and interfacial charge
trapping through photogenerated electron pairs. Moreover,
the functional layer, comprising a variety of materials
(metal oxides, organic materials, two-dimensional, quan-
tum dots and perovskite), can enhance or expand the
synaptic properties of a system with regard to energy
consumption, computing speed, and compatibility16.
However, to date, AI applications of metal-organic frame-
works (MOFs) in nonvolatile neural devices have rarely
been reported. MOFs are a type of crystalline porous

material that are created by combining polytopic organic
ligands with metal centers. These MOFs possess several
advantageous characteristics, such as highly ordered pores,
a substantial surface area, and a modifiable structure, which
conveniently makes designing controlled and multi-
functional biological spiking neural devices uncomplicated.
Furthermore, by deeply introducing the core unit of SNNs,
SNNs commonly adopt leaky integration and firing (LIF)
neurons as the fundamental building blocks for con-
structing neural networks17,18. The LIF neuron model is a
well-known type of neuron that offers a combination of the
user-friendliness and simplicity of the integrate-and-fire
(IF) model, along with the capability to simulate various
physiological properties of biological neurons, similar to
the Hodgkin-Huxley (H-H) neuron model19. For synaptic
devices, the LIF model is computationally efficient due to
its simplicity, making it suitable for large-scale simulations.
Moreover, the LIF model is biologically plausible and can
simulate a wide range of physiological properties of biolo-
gical neurons, such as action potential generation, synaptic
integration, and adaptation20. For the AI application, the
LIF model is compatible with a range of learning rules
(long-term potentiation/long-term depression (LTP/LTD)
and spiking-timing-dependent plasticity (STDP)) and
can be used to train SNNs for various tasks, such as
classification, pattern recognition, and control. In par-
ticular, studies on constructing LIF neuron circuits and
composing the forward propagation process of SNNs
with output signals from synaptic weight cross-bars have
been rarely reported21. Therefore, to overcome the bar-
rier from the extraction of single device characteristics to
the building of an integral neural network system, more
resources are needed to form the complete neuro-
morphic system22. In terms of operation speed, the
appropriate data type is conducive to improving the
working efficiency of the neural network23. In addition,
the advantage of SNNs is to process complex temporal
information that has obvious differences in the fre-
quency domain6. The steady-state visually evoked
potential (SSVEP) is a neural reaction that occurs in
response to visual stimuli24. When the eyes receive
periodic flashes of light, the brain generates a stable
electrical signal that oscillates at the same frequency as
the stimulus. This response can be recorded via elec-
troencephalography (EEG) and is typically observed as a
periodic waveform at a specific frequency. SSVEP has
been widely used in the development of brain-computer
interfaces (BCIs); these systems enable individuals to
control external devices by monitoring their brain
activity25. For instance, in an SSVEP-based BCI system,
users can select different commands or controllers by
fixating on visual stimuli that flash at distinct frequencies
on a computer screen. The system identifies the choice of
the user by analyzing their EEG and executes the

Wang et al. Microsystems & Nanoengineering            (2023) 9:96 Page 2 of 12



corresponding operation. SSVEP-based BCIs have
diverse applications in fields such as virtual reality, game
control, and medical diagnosis24,26.
In this work, we have proposed a new type of spiking

neural network that utilizes a ZIF-67 synaptic transistor,
LIF neuron circuits, and SSVEPs to achieve efficient and
accurate neural computations. Forward propagation in
our network relies on time sequence coding, accumula-
tion of postsynaptic current, and the membrane potential
threshold voltage of LIF neurons. Backpropagation in the
proposed SNNs involves determining the iteration update
rules and integrating the STDP curve to adjust the
synaptic weights between neurons. The functional diver-
sity of the prepared artificial neurons can be clearly
observed through the results of STM/LTM, paired-pulse
facilitation (PPF), STDP, and LTP/LTD. More impor-
tantly, an LIF circuit capable of producing a matching
array output has been simulated, allowing the SNNs to
efficiently convert high-frequency information into sparse
signals using the four blocks. Ultimately, the task of
recognizing EEG signals was achieved using the modified
SNN, with the final recognition rate stabilizing at 95.2%.

Results and discussion
Physical and electrical characterization
Neuromorphic computing research has been pursued to

approach the computational power of the human brain
(Fig. 1a). The human brain receives a vast amount of
information every day and can quickly process and
identify the features of things27. This information can be a
vast information parameter obtained through human
sensory organs such as sound, mechanical, visual, and
touch. Low-energy processing is because the scale of
information received by the brain is filtered. High-
frequency information is transformed into high-
precision sparse low-frequency information after passing
through neurons (Fig. 1b). These pieces of information
can strongly stimulate the synaptic function of the brain,
enabling it to quickly activate connections between neu-
rons for the next input of the same information. Neurons
that trigger the same event are connected by multiple
synapses with different weights4,28. The weight values and
the number of synapses connecting each node to the next
node are different. Thus, a neural network composed of
approximately 80 billion neurons can handle heavy par-
allel data (Fig. 1c). To promote the systematization of
three-terminal neuromorphic devices, we constructed a
modifiable synaptic device with MOFs as the main func-
tional layer (Fig. 1d). Compared with two-dimensional
materials, organic materials and metal oxide materials as
the partial structure of synaptic transistors, MOF mate-
rials have the advantages of high porosity, excellent light-
stimulated synaptic plasticity properties, good stability in
the atmosphere, and synthetic tunability. The device is

composed of the following layers, from top to bottom:
source/drain, InOx, ZIF-67, ZrOx, substrate, and gate. The
ZIF-67 layer, acting as the trapping layer, can capture and
release carriers to change the conductance in the channel
when a positive/negative voltage is applied to the gate. To
provide a vivid explanation of the relationship between
biological synapses and electronic synapses, we liken the
process of converting chemical signals into electrical
signals from the presynaptic terminal to the postsynaptic
terminal (neurotransmitters released by synaptic vesicles
are accepted by receptors on the membrane) to applying a
pulse to the gate of the device and receiving a corre-
sponding pulse between the source/drain (excitatory
postsynaptic current (EPSC)) (Fig. 1e). The synaptic
structure and neurons in the human brain are the main
basis for brain-like devices (Fig. 1f). To clearly display the
MOF structure of ZIF-67, we analyzed scanning electron
microscopy (SEM) images at four different resolutions
(Fig. 1g). These results provide valuable insights into the
design of neuromorphic computing devices and the
potential for energy-efficient processing. The SEM images
of the as-prepared ZIF-67 sample reveal a uniform size
distribution with a well-defined cubic morphology,
demonstrating excellent dispersion and a solid interior.
These observations provide valuable insights into the
structural characteristics of the MOF material and its
potential for use in neural applications, including neuro-
morphic computing devices. The uniform size and cubic
morphology of the ZIF-67 particles suggest that they
could offer excellent stability and reproducibility in device
fabrication processes. Additionally, the well-defined
morphology and solid interior of the particles suggest
that they could provide a high surface area-to-volume
ratio, potentially enhancing their performance in various
applications. Overall, the SEM images provide important
information about the structural properties of ZIF-67 and
its potential for use in a wide range of AI and neuro-
morphic applications. The crystalline structure of the ZIF-
67 sample was analyzed using X-ray diffraction (XRD),
which revealed that the main characteristic peaks of the
bare ZIF-67 matched well with those reported in the lit-
erature (Fig. 1h). These results indicated the successful
synthesis of the MOF material on the ZrOx substrate5,9.
The XRD analysis was further supported by the SEM
characterization, which demonstrated that the ZIF-67
particles exhibited a uniform size and cubic morphology
with good dispersion and a solid interior. The successful
synthesis of ZIF-67 on the ZrOx substrate was confirmed
by both SEM and XRD characterizations. Figure 1i illus-
trates the transfer characteristics of synaptic devices,
where the channel current increases as the applied voltage
increases from −1 V to 5 V (VDS= 2 V), exhibiting typical
n-type transfer behavior29. The application of a higher
positive gate voltage results in the migration of more
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cations from the electrolyte into the porous MOF chan-
nel, leading to n-type doping of the MOF channel and an
increase in its conductivity16. The porous nature of MOFs
allows for easy penetration of cations into the channel
under low gate voltage, thereby enabling the ZIF-67
synaptic device to operate as a low-voltage transistor with
low power consumption.

Electrical measurement of synaptic plasticity
To demonstrate the three typical neuronal functions of

the proposed synaptic transistor, standard electrical tests
are performed for validation (Fig. 2a). First, the short-term
memory/long-term memory (STM/LTM) of the human

brain primarily originates from the hippocampus, which is
the foundation of memory and the basis of all intelligent
life30. The hippocampus also promotes frequent associa-
tion of events and forgetting unimportant information.
Second, synaptic weight and plasticity refer to the strength
or amplitude of the connection between two nodes, which
in biology corresponds to the amount of influence that one
neuron has on another node through its discharge7,12.
Third, biological neurons only transmit stimuli to other
neurons they are connected to when they receive external
stimuli that exceed a certain threshold, thereby facilitating
information exchange through membrane potential. The
occurrence of paired pulse facilitation (PPF) is associated
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with the release of neurotransmitters by presynaptic neu-
rons and is typically believed to be regulated by calcium. By
examining the paired pulse facilitation (PPF) index, we
investigated the synaptic plasticity features of the iono-
tronic synaptic transistor, which play a crucial role in
recognizing visual signal information in biological neural
systems. Paired input spikes with various time intervals (Δt)
are used to trigger the PPF index (A2/A1), and the resulting
secondary EPSC peak (A2) is compared to the first peak
(A1) to determine the presence of facilitation behavior. In
Fig. 2b, the generated A2 is 301% higher than A1 when the
time interval is 20ms with 1.5 V. The PPF index reflects the
extent of synaptic connection enhancement between

neurons and can be simulated using the double-
exponential function.

PPF ¼ C0 þ C1 e
�Δt

τ1ð Þ þ C2 e
�Δt

τ2ð Þ ð1Þ

The initial constants of the rapid and slow phases C0,
C1, and C2 are 1, 15%, and 33%. The relaxation times are
τ1 (15 ms) and τ2 (20ms). In addition, the PPF curve
under other different voltages (1 V and 2 V) shows con-
trollable biological characteristics under different external
environments (Fig. S1). To accurately assess the impact of
a single pulse on synaptic plasticity, we analyzed the

a

c d e

hgf

b

Hippocampus

Abstract

0 1.00.5
Time (s)

45
10 LTP
10 LTD
20 LTP
20 LTD
40 LTP
40 LTD
100 LTP
100 LTD
200 LTP
200 LTD

5

4

3

2
Threshold

E
P

S
C

 (
μμA

)

1.5
Pre>post
Pre<post

1.0

0.5

0.0

-0.5

-1.0

-1.5

-1000 -500

Δt (ms)

Δw

0 500 1000

1

0

0 1 2

Time (s)

3 4
-1

40

35

30

25

C
o

n
d

u
ct

an
ce

 (
μS

)

20

15

10

5

0
0 50 100 150

Number of pulse

200 250 300 350 400

Width

LTP

50 ms
150 ms
250 ms
350 ms
450 ms

400 ms
300 ms
200 ms
100 ms

15.0 1.2

0.8

0.4E
P

S
C

 (
μA

)

E
P

S
C

 (
μA

)

60

0
1.8 2.0

Time(s)

E
P

S
C

 (
μA

)

0.0
0 1

Time (s)

2

8

3 V
4 V
5 V
6 V
7 V

6 25 ms
33 ms
50 ms
80 ms
100 ms4

2

0

0.0 0.5

Time(s)

1.0

0.4

0.0
1.25 1.50

Time(s)

E
P

S
C

(μ
A

)

1.5

7.5

0 C
o

n
d

u
ct

an
ce

 (
μS

)

STP

1.5

0

3

+
+

+
+

++
–

–
–
–

A1

A2

6

4

2

0

0 0.5

Time (s)

1.0 1.5

P
P

F
 in

d
ex

E
P

S
C

 (
μA

)

2

1

1000
Concrete

W
eig

h
t

M
em

b
ran

e p
o

ten
tial

PPF index
Fitting line

2000
Time (ms)

3000

Synaptic plasticity
Mem

eory
STMLTM

Fig. 2 Three biological functions and corresponding synaptic characteristics. a The device simulates three typical functions of synapses:
forming memory, synaptic plasticity, and stimulating membrane potential. b The PPF index is a measure of synaptic facilitation defined as the ratio of
the amplitudes of the first (A1) and second (A2) EPSCs plotted against the pulse interval (Δt). c EPSC behaviors activated and modified by electric
pulses with 9 different widths (50 ms, 100 ms, 150 ms, 200 ms, 250 ms, 300 ms, 350 ms, 400 ms, and 450 ms) at VDS= 0.5 V. d EPSC triggered by 5
single electric pulses with different amplitudes (3 V, 4 V, 5 V, 6 V, and 7 V). e Low-pass filtering characteristics are shown by 10 continuous pulses of
different frequencies (10 Hz, 12.5 Hz, 20 Hz, 30 Hz, and 40 Hz) applied to the presynaptic terminal. f The LTP/LTD characteristics demonstrate the
controllable range and level of conductance. g Threshold effect of the synaptic device as biological neurons. h Trend of the STDP curve as the weight
update rule transforms the temporal information

Wang et al. Microsystems & Nanoengineering            (2023) 9:96 Page 5 of 12



effects of electric pulses with different widths and
amplitudes on EPSC excitation. We measure the dynamic
current behaviors responsive to gate voltage pulses with
different widths (50ms to 450ms) and the same ampli-
tude of 1.5 V (Fig. 2c). To demonstrate the conductance
retention characteristics of the synaptic device, Fig. S2
shows the fluctuation of the currents within 30min and
90min. After reaching a peak value, the EPSC returns to
its original current state, indicating that the peak values
are proportional to the amplitude of the voltage pulses15.
Nevertheless, it has been observed that pulses with a
width greater than 50ms do not fully return to their
original state, indicating significant nonvolatile properties.
This behavior is similar to that seen in biological excita-
tory synapses. Additionally, low power consumption is
crucial for developing an energy-efficient neuromorphic
chip. By multiplying the peak value of the EPSC, the drain
voltage, and the pulse duration, it is estimated that the
power of a single spike generated by the gate voltage of
−1 V is 1.8 nJ31. To further discuss the effect of temporal
properties on synaptic plasticity, we demonstrate the
EPSCs responsive to gate voltage pulses with different
amplitudes (3 to 7 V) and the same duration of 50 ms (Fig.
2d). Because the mechanism of the proposed synaptic
transistor is ion migration, the pulse width applied at the
gate can enhance the synaptic plasticity of the device
more than the pulse amplitude. To further verify the effect
of ion migration on synaptic plasticity, Fig. S3 shows the
EPSC when the doping concentration is 5%. Ion doping
into the ZrOx layer plays an important role in lowering
the range of the pulse width. Curiously, the ZIF-67
synaptic transistor has the characteristic of filtering high-
frequency information, which is similar to the LIF neuron
(Fig. 2e). Furthermore, this high-frequency filtering phe-
nomenon is closer to the function of the human brain.
The human brain can process massive amounts of infor-
mation at very low power every day. This is attributed to
the fact that high-frequency information does not cause
neurons to generate high-frequency pulses. In short,
having the characteristics of high-frequency filtering bet-
ter matches the algorithm strategy in the SNN. Detailed
investigations have been carried out on the characteristics
of LTP/D, which are essential features for synaptic
operation in neuromorphic computing. The various
conductance states of synaptic devices are demonstrated
in Fig. 2f, where a sequence of excitatory spikes
(VDS=+1 V, td= 50ms, Δt= 100 ms) and inhibitory
spikes (VDS=−1 V, td= 50ms, Δt= 100 ms) were
applied. The peak current increased gradually from 8.9 μA
to 42.5 μA as the quantity of pulses rose from 20 to 100
and recovered to the initial level under application of the
excitatory and inhibitory spikes, respectively17. The LTP/
LTD curves show the conductance margins (Gmax/Gmin)
between the maximum and minimum conductance values

as a function of the number of spike pulses. Different
ratios (3.809, 14.481, 22.905, 52.620, and 53.36) indicate
the resolution between synaptic weight updates and the
corresponding learning step size (Fig. S4). Compared with
other neural devices, the larger Gmax/Gmin ratio of this
work can make the update range of synaptic weights
wider. In neuromorphic computing, the iterative update
rule between neurons is constrained by weights repre-
sented by the conductance of the synaptic device20. To
further verify the membrane potential threshold of
synaptic transistors, we applied continuous pulses
(VDS=+0.5 V, td= 50 ms, Δt= 200 ms) that avoid the
potentiation of conductance (Fig. 2g). As observed from
the red line, the transient accumulation of ion migration
in MOFs can result in the release of an instantaneous
pulse exceeding the threshold (1 μA). The measured
alteration in synaptic weight following each neuron
spiking event is depicted in Fig. 2h using the synaptic
device structure. An increase (decrease) in synaptic
weight occurs when the preneuron spikes before (after)
the postneuron32. Moreover, the synaptic weight change
with respect to the spike timing difference (Δt) can be
accurately described by exponential decay functions,
confirming that the STDP properties are similar to those
observed in biological synaptic systems. It is apparent that
upon approaching Δt= 0 from Δt= 0.1 s, the synaptic
weight is potentiated. For Δt < 0, the synaptic weight is
depressed. This behavior is known as the asymmetric
Hebbian learning rule. Furthermore, we measured the
extreme conditions that trigger STDP to ensure that the
neural device can be efficiently and continuously updated
(Fig. S5).

LIF as SNN neurons
The desire to replicate the remarkable energy efficiency

of biological systems has been a significant driving force
behind the advancement of spiking neural networks
(SNNs) (Fig. 3a). One main theory for the superior energy
efficiency of SNNs is their significantly higher information
capacity when compared to other neural network models,
such as the multilayer perceptron, which is based on firing
rates8. In contrast to SNNs, training firing-rate networks
often involves the use of backpropagation algorithms,
which can be challenging to implement efficiently due to
the centralized method for computing weight updates and
the need for large amounts of high-precision memory32.
In SNNs, the LIF neuron model is commonly used to
simulate the behavior of neurons. The LIF model can
simulate how neurons receive and process signals from
other neurons and fire a spike when a certain threshold is
reached. Additionally, the leaky integration mechanism in
the LIF model can mimic the gradual decrease in mem-
brane potential in biological neurons over time. STDP is a
key mechanism in SNNs that describes how the strength
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of synapses between neurons changes over time based on
the timing of their spike activities. Fig. S6 shows the LIF
model of standard SNNs with random input spikes (50%
firing probability). Synaptic weights are updated through
the STDP mechanism to simulate learning and adaptation

between neurons. Together, the LIF neuron model and
STDP mechanism play crucial roles in SNNs, enabling the
simulation of neuronal activity and plasticity. Fig. S7
demonstrates the 3-layer improved spiking neural net-
work based on the STDP of the synaptic transistor. The
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block, fire and detector block, buffer block, and frequency adaptation block are combined with the output of ZIT-67 synaptic devices to form the
complete LIF system. d Operation of the VLSI circuit with input pulses of the synaptic device (ton= 100 ns, trise= tfall= 1 ns, period= 2 μs,
Iin= 2.0 mA and 3.3 mA)
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LIF neuron model simulates the changes in membrane
potential (Vm) of a neuron over time (Fig. 3b). The Vm

changes are determined by the flow of ions through var-
ious channels in the neuron’s membrane12,19. Initially, the
neuron is at rest with a resting membrane potential.
When a presynaptic neuron sends a signal to the post-
synaptic neuron, it causes a small increase in Vm, known
as the postsynaptic potential (PSP). If enough PSPs are
received, Vm reaches a threshold voltage, at which point
an action potential or spike is generated and sent down
the axon of the neuron. After a spike is generated, the
neuron enters a refractory period where it cannot gen-
erate another spike, known as the absolute refractory
period33. The reason for the lack of spike generation is the
deactivation of ion channels. To address this issue, a
highly compact electronic circuit has been developed that
can implement the leaky integrate-and-fire model of
artificial neurons (Fig. 3c). The leaky and integrated
characteristics of the model are implemented through the
use of an RC pair. The capacitor (C) integrates the
incoming current spikes, while the resistor (R= R1+ R2)
allows the charge to leak out during the time intervals
between spikes. The crucial firing feature of the model is
achieved by setting the voltage threshold of the SCR
through its anode-cathode tension, which is adjusted by
the gate via resistors R1 and R2. Once the voltage
threshold is reached, the SCR switches to the on-state,
and the capacitor discharges rapidly through the small R3,
producing a spike of current. The SCR remains in the on-
state until the current decreases to the value of Ihold,
which occurs when the capacitor is nearly fully dis-
charged21. The observed process can be correlated with
the relaxation or refractory period of the artificial neuron.
To ensure that the spike can activate a downstream
neuron, the strength of the signal must be enhanced.
Therefore, we propose a design for an ultracompact (UC)
neuron that uses only one SCR and two transistors, in
addition to a "membrane" capacitor and several resistors.
This construction has a minimal number of components.
Specifically, we assigned each of the three features of the
LIF model to three respective devices: a resistor, a capa-
citor, and an SCR. These components enable the non-
linear process of threshold spike generation in the "soma"
of the artificial neuron. The change in membrane poten-
tial under a limiting input pulse is given in Fig. S8. Figure
3d illustrates the simulation outcomes of the very large
scale integration (VLSI) circuit when subjected to differ-
ent types of excitatory inputs, namely, a train of synaptic
transistor pulses34. Consistent with LIF neuron behavior,
increasing the pulse amplitude results in a decrease in the
number of pulses required to trigger a response. The three
curves (red, green, and blue) demonstrate that the circuit
necessitates 10 pulses of 1 μA and 8 pulses of 1.25 μA to
reach the threshold.

Adaptation between dataset and SNN
SSVEP (steady-state visual evoked potential) is a type of

brain activity that occurs in response to repetitive visual
stimuli with a fixed frequency (Fig. 4a)33. One main
advantage of SSVEP-based brain-computer interfaces
(BCIs) is their high information transfer rate (ITR) (Fig.
S9), which refers to the amount of information that can be
transmitted per unit of time. In terms of data character-
istics, SSVEP signals are typically characterized by a
strong response at the stimulus frequency and its har-
monics, which can be easily detected and separated from
background EEG activity. SSVEP signals are also highly
reproducible across trials and participants, which allows
for reliable classification and decoding34. Furthermore,
SNNs are biologically inspired models that mimic the
behavior of neurons in the brain and have been shown to
be particularly well suited for processing spatiotemporal
data such as EEG signals. Figure 4b directly demonstrates
the 11 EEG curves within 400ms under different stro-
boscopic stimuli (8 Hz–14.0 Hz). Further analysis of dif-
ferent samples reveals that SSVEPs possess the following
advantages for neural computation: wide frequency
selectivity range, high amplitude response, sensitivity to
stimulus brightness and contrast factors, high stability
across different experimental repetitions, and modulation
by various cognitive tasks. These above characteristics
make SSVEPs a valuable tool for applications in human-
computer interaction, brain-machine interfaces, and bio-
feedback35. Temporal coding is a neural coding scheme
that encodes information through the precise timing and
pattern of action potentials, or spikes, in individual neu-
rons or groups of neurons (Fig. 4c). SSVEPs are processed
into a visualized two-dimensional matrix through tem-
porary coding. The temporal coding for SSVEPs with
different gains (0.25 and 1) and the distribution of neu-
rons in the input layer combined with synaptic char-
acteristics are analyzed in Figs. S10 and S11. Temporal
coding plays a significant role in neural information
processing and is thought to be particularly important for
encoding information such as sound, visual stimuli, and
motor commands36. One adopted method is rate coding,
where the frequency of spikes within a given time window
is used to convey information about the intensity or
duration of a stimulus. Another improved method is
phase coding, where the timing of spikes relative to a
particular phase of a periodic stimulus is used to encode
information37,38. We conducted an experimental
demonstration of hardware-in-the-loop training using a
prototype synaptic device-based simulation environment.
This environment includes a tested array of ZIF-67
synaptic transistors with a conductance response. The
purpose of our experiment was to verify the efficacy of our
proposed training approach. The results of our study
provide evidence of the successful implementation of our
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hardware-in-the-loop training method, which can be a
promising approach for developing more efficient and
effective neuromorphic computing systems. The full input
layer with different SSVEP frequencies is shown in Fig.
S12. The conductances of the synaptic devices are itera-
tively adjusted during training by the framework through
STDP update rules, with communication established
between the LIF neurons (Fig. 4d). The synaptic weights
of the SNNs are implemented using a double differential
configuration with two devices, where G+ and G−

represent the synaptic weight in proportion to the dif-
ference in their conductances (w=G+−G−). To increase
the weight w, the conductance of G+ is increased, while to

decrease the weight w, the conductance of G− is
increased. The conductance of the device increases gra-
dually through ion migration in the ZrOx layer by
applying low-power pulses, which allows for gradual
weight updates (Δw) during training. The preprocessed
sample is subsequently transmitted to the network,
causing the input neurons to spike, as illustrated in Fig.
4e. The resulting spike rasters for the output layer neu-
rons during the speech recognition procedure are dis-
played in Fig. 4f. The inner state value of neurons for layer
1 with different LTP/LTD curves and the inner state value
of neurons for layer 0 with different STDPs are both
demonstrated in Figs. S13 and Figs. S14. To evaluate the
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feasibility of the proposed network, the difference
between the recognition rate of the standard network and
the enhanced network is compared (Fig. 4g). The best
recognition rate is still our proposed structure according
to the relationship between accuracy and number of layers
(Fig. S15). The ultimate arrangements of synapses proved
to be effective and showed that the method can be utilized
for creating an analog core that serves as a very efficient
in-memory inference engine without relying on the von
Neumann architecture. Furthermore, to verify the low
energy consumption of the synaptic device, the energy
consumption per spike of the synaptic transistor is cal-
culated by the Equation E= Ipeak × t × V= 4.05 pJ (Fig.
S16). Ipeak is the maximum value (2.65 nA) of the gener-
ated EPSC curve, t is the spike duration (30 ms), and V is
the voltage applied to the drain electrode (0.05 V).

Conclusion
The novel concepts put forward have opened up

numerous opportunities for combining synaptic devices
with neuron circuits to serve as the core components of
SNNs. This improved SNN, based on the LIF model,
offers advanced biologically inspired neural models with
low computational complexity and simplicity, enabling
exploration of their capabilities from a deep learning
perspective. Furthermore, the ZIF-67 SNN system pro-
vides a new framework for modeling and understanding
neural dynamics, which can benefit from memory,
synaptic plasticity, and membrane potential, from a neu-
roscientific perspective. The in-memory accelerators,
combined with the SNN-based STDP weight update rule,
offer the potential for high adoption rates of spiking
neural networks for SSVEP recognition applications (with
a rate of 95.1%) and enable power-efficient neuromorphic
hardware implementations from a neuromorphic com-
puting perspective. Finally, the integration of multi-
functional synaptic transistors into the improved SNNs
expands the use of existing or forthcoming network
accelerators for the entire SNN implementation and
deployment.

Methods
Synthesis of transistors
The solution of ZrOx precursor was prepared by dis-

solving 1.5M aluminum nitrate hydrate (Zr(NO3)2·xH2O)
in 20mL of 2-methoxy ethanol (2-Me). To obtain the
ZrOx-Li precursor solution, 1.5M aluminum nitrate
hydrate (Zr(NO3)2·xH2O) and 0.15M indium nitrate
hydrate were mixed in 20 mL of deionized water. The
InOx precursor solution was prepared by dissolving
indium nitrate hydrate (In(NO3)3·xH2O) in 20mL of
deionized water. All solutions were vigorously stirred for
5 h under atmospheric conditions and then filtered using
0.25 μm PTFE syringe filters before spin coating. In a

typical process, 1.0 mmol of cobalt nitrate hexahydrate
and 4.0 mmol of 2-methylimidazole were dissolved in
15.0 mL of methanol. The 2-methylimidazole solution was
then slowly poured into the cobalt nitrate hexahydrate
solution under stirring for 6 h. The mixture was aged at
room temperature for 16 h, and the purple precipitate
obtained was collected by centrifugation, washed with
methanol, and dried at 70 °C for 12 h. The ZIF-76 (purple
powder) obtained was characterized by XRD3. Finally, the
obtained mixture was centrifuged at 3500 rpm for 3 min
to obtain a black‒brown few-layer dispersion of approxi-
mately 5 mg/mL, which was stored in an argon atmo-
sphere for up to 14 days.

Fabrication of synaptic transistors
First, a heavily doped Si (n++) substrate was cleaned by

deionized water and dried under N2 flow. Afterward, the
processed substrate was further treated by plasma for
15min to allow the film surface hydrophilic treatment.
The ZrOx and ZrOx-Li films were spin-cast with pre-
cursor solution at 4500 rpm for 30 s and then annealed for
80min at 250 °C in an air atmosphere. Then, the ZIF-67
solution was diluted to 1 mg/mL and spin-coated at
3000 rpm for 20 s on the surfaces of ZrOx and ZrOx-Li
films.6 Substrates with solution film were then oxidized at
80 °C for 1 min on a hotplate in air. The InOx film was
spin-cast with precursor solution at 3500 rpm for 30 s and
then annealed for 1 h at 200 °C in an air atmosphere. The
30 nm thick Al source/drain (S/D) electrodes were fabri-
cated by thermal evaporation through the shadow mask38.
First, a heavily doped silicon (n++) substrate underwent

a cleaning process using deionized water and was subse-
quently dried under a flow of nitrogen gas. The substrate
then received an additional plasma treatment lasting for
15min, which allowed for hydrophilic treatment of the
film surface. Next, ZrOx and ZrOx-Li films were applied
to the substrate via spin-casting a precursor solution at
4500 rpm for 30 s, followed by an 80-minute annealing
process at 250 °C in an air atmosphere. Next, a ZIF-67
solution was diluted to a concentration of 1 mg/mL and
spin-coated at 3000 rpm for 20 s onto the surfaces of the
ZrOx and ZrOx-Li films. The substrate with the solution
film was then oxidized at 80 °C for 1 min on a hotplate in
an air atmosphere. Additionally, an InOx film was applied
to the substrate via spin-casting a precursor solution at
3500 rpm for 30 s, which was subsequently annealed for
1 h at 200 °C in an air atmosphere. Finally, 30 nm thick
aluminum source/drain (S/D) electrodes were created
through thermal evaporation using a shadow mask39.

Characterization of synaptic plasticity
The electrical properties of the Al/InOx/MXenes/ZrOx-Li/

Si/Al synaptic transistor were tested using a semiconductor
parameter analyzer with transistor characterization software
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under atmospheric conditions. To measure the EPSC and
LTD/LTP current flowing between the source/drain (S/D)
electrodes, a 0.1 V steady voltage bias was applied to the
postsynaptic terminal (Vpost). The chemical compositions of
the dielectric and semiconductor layers were determined
using X-ray photoelectric spectroscopy (XPS)4. The crys-
tallization and structural information of the thin films were
obtained using X-ray diffraction (XRD) with Cu Kα radia-
tion (λ= 1.542 Å).

SNN simulation
Before implementing the SNN, we need to transform

signals in the time domain into time encoding forms with
different time intervals. One commonly used time
encoding methodology is time-to-first spike coding. This
encoding method represents information as the release
time of the first pulse of a neuron. Assuming that the
neuron only generates one pulse, the neuron is in a sup-
pressed state until the next stimulus arrives. The time of
generating the pulse is proportional to the value of the
analog quantity, indicating that the time of the first pulse
generated after receiving the stimulus contains all the
information of the stimulus.
We use SNNs as the base model, which is a compact and

efficient neural network. After we converted the SSVEP data
into two-dimensional matrix data, we could directly pass it
into the block. The LIF block is the main component of
SNNs. Compared with the ordinary neural network struc-
ture, the LIF and STDP block can not only perform weighted
operations through the convolution layer and activation
function mechanism to extract features but also retain the
initial information of the input data and fuse it with the
obtained feature information11. Two blocks and one linear
layer are used in our model. The input image data are passed
through two residual blocks to complete the feature
extraction and then passed to the linear layer to complete
the final classification task. Usually, this is a complete SNN
workflow, and we use a standard learning rate in the training
step. After each training of the network, different learning
steps are used to update the network parameters according
to the change direction of the loss. Our simulation process is
based on the SSVEP Database. An SSVEP database is a
collection of SSVEP signals recorded from different subjects
under different experimental conditions. This SSVEP data-
base contains a database of 8-channel EEG data from
30 subjects performing a 4-target SSVEP-BCI task.
In the cross-bar array of synaptic transistors, the cal-

culated conductance was used to apply a positive synaptic
weight value. However, in the measurement of neuro-
computing in SNNs, negative values are also included.
Therefore, the synaptic weight (W=G+−G−) was
defined as the difference between the states of two
synaptic devices (represented by G+ and G−) for each
conductance value. The initial weights were set to random

fluctuations near 0, and the values between Gmin and Gmax

were normalized to (−1, 1). The actual updated weight
value depended on the difference between the con-
ductance states of the two synaptic devices (G+ and G−)
extracted from the LTP/LTD curve. The synaptic weight
was defined as the difference in conductance between two
synaptic transistors representing a single neuron. If
sgn(ΔW) > 0, then the Formula W ↑=G+ ↑-G− ↓ was
used, while if sgn(ΔW) < 0, then the Formula W ↓=G+

↓-G− ↑ was used. The reference circuit is based on the
TSMC 65 nm CMOS process40.
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