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Abstract—Low-inertia power grids could suffer from large fre-
quency excursions under even small power disturbances. When
a voltage source converter-based high voltage direct current
(VSC-HVDC) system is used to integrate a low-inertia grid into
a main grid, an ancillary frequency support service can be
provided to the low-inertia grid by the VSC-HVDC system. This
paper proposes a perturbation observer-based fast frequency
support controller (POFFS) of VSC-HVDC systems to improve
the frequency stability of low-inertia power grids. According to
the feedback linearization and the high gain observer technique,
the perturbation observer of the inverter station is designed to
estimate the comprehensive impact of multiple perturbations,
including the power disturbances in low-inertia grids, the un-
certainty of grid inertia, and unknown nonlinear dynamics. The
estimate of the perturbations are further compensated by the
feedback control loop to achieve robust frequency regulation.
Compared with the conventional frequency controller, the pro-
posed POFFS can provide better frequency support to low-inertia
power grids, without requiring an accurate system model and
parameters. Two test systems are used to verify the effectiveness
of the proposed POFFS.

Index Terms—VSC-HVDC, low-inertia grid, frequency sup-
port, feedback linearization, perturbation observer.

I. INTRODUCTION

VOLTAGE Source Converter based High Voltage Direct
Current System (VSC-HVDC) is considered to be a

flexible and economic solution to transmit bulk power over
long distances [1]. Owing to the decoupling interconnection
capability, asynchronous ac grids can be connected via VSC-
HVDC systems without the concern of synchronization issues.

Although the asynchronous interconnection through VSC-
HVDC can prevent the spread of faults between ac grids, it
also raises new challenges in frequency regulation from three
aspects. The first aspect is that the grid inertia could be reduced
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since the proportion of power generation from synchronous
generators (SG) decreases. Another reason is that VSC-HVDC
systems hinder the inherent power support between ac grids.
The disturbed ac grid can only rely on its power reserve to
regulate frequency. Moreover, the uncertainties introduced by
renewable energies would place much burden on maintaining
the supply-demand balance. Hence, for low inertia power
systems, the power deficiency would result in a large frequency
deviation [2]. For example, in 2019, the UK suffered from a
widespread blackout due to the severe frequency deviation,
which was caused by the sudden outage of gas generators and
wind generators under a low inertia operating state [3].

To improve frequency stability, ancillary frequency service
can be designed for VSC-HVDC systems, which have several
superior advantages in power regulation [4], including the
independent control of active and reactive power, fast reference
tracking, and flexible power reversal ability. Thus, the power
deficiency of ac grids could be compensated promptly by
regulating the active power output of VSC stations to restrain
the frequency excursion.

In the past decade, many researchers have investigated the
design of ancillary frequency support controllers of VSC-
HVDC systems. The basic idea of frequency support via
HVDC links is imitating the droop characteristic of the speed-
governor of SGs, i.e., the primary frequency regulation (PFR)
or P − ω droop control, which changes the active power
reference of converters with the grid frequency deviation [5]–
[11]. The advantage of PFR is that the power deficiency in
ac grids can be proportionately shared between VSC stations
and SGs by setting the droop gain. In [5], [6], communication-
free control strategies are proposed to coordinate wind farms
and HVDC-links to provide primary frequency support to ac
grids. The grid frequency fluctuation signal is converted into
the dc voltage variation, which could be captured by wind
farms and further activate the inertia response function. To
deal with the second frequency drop issue caused by the inertia
response of wind farms, an adaptive droop control strategy is
investigated in [7], which can dynamically change the droop
gains at different frequency recovery stages.

Considering multiple asynchronous ac grids connected by
multi-terminal HVDC systems, Ye et al. [8] proposed a cross-
regional power flow control method to provide frequency
support by sharing the power reserves among asynchronous
ac grids, and Wang et al. [9] proposed a consensus protocol-
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based control strategy to improve the frequency stability and
minimize the dc voltage deviation. To find the most suitable
converter to provide inertia and frequency support, a selective
power routing method and model predictive controller are de-
veloped in [10]. In [11], the inertia and PFR are synthesized to
improve the frequency stability through VSC-HVDC systems.
However, PFR is essentially a proportional controller, which
cannot eliminate the steady-state frequency deviation even if
the converter station has available head room.

In recent years, grid-forming control (GFC) has drawn much
attention in the field of frequency regulation. GFCs can pro-
vide inertia support and PFR through inverters by emulating
the dynamics of synchronous generators (SG) [12]. Multiple
types of GFCs have been developed and have achieved the
satisfying performance on inertia and frequency support [13],
e.g., virtual synchronous generator (VSG), frequency-power
droop control with low-pass filter, power-synchronization
control, etc. Owing to similar dynamic characteristics with
SGs, GFCs could interact with SGs in a low-frequency and
subsynchronous-frequency range [14]–[16]. Consequently, the
dynamics of hybrid ac/dc systems become more complicated
when GFCs are adopted, and the controller parameters must
be carefully tuned to avoid transient instability issues [17].

To achieve zero frequency error and to fully utilize the
capability of the inverter station, a natural idea is to use the
integral controller or the proportional-integral (PI) controller
to continually adjust the power output of inverters to restore
the frequency to the nominal value. In [18] and [19], the con-
ventional PI controller is used to regulate the grid frequency
in VSC-HVDC systems and LCC-VSC hybrid systems. Since
the frequency measurement is often obtained from the trans-
mission system operator (TSO), the impact of communication
delay on system stability must be considered during frequency
regulation. A delay margin estimate method is proposed in
[20] to guide the setting of controller parameters. With the
inspiration of this approach, more advanced control techniques
are used to design the delay-dependent PI-based frequency
controller to attenuate the negative effect of the communi-
cation delay, e.g., Linear matrix inequality (LMI), Lyapunov
theory and event-triggering techniques [21]–[23]. However, the
tuning process of PI-based controllers rely on the knowledge
of the control plant whilst the model errors and parameter
uncertainties are inevitable in real applications, which could
deteriorate the performance of PI-based controllers [24].

To obtain reliable frequency support performance with
disturbances, two types of robust control techniques can be
adopted. One type is based on the robust control theory, e.g.,
H∞ and µ synthesis control techniques, which can mitigate
the impact of uncertainties on system dynamics by limiting
the gain from input disturbance to measured output [25]–[27].
The other one is based on the concept of active disturbance
rejection control (ADRC) or perturbation observer-based con-
trol (POC). Multiple disturbances can be regarded as a lumped
perturbation term, which can be estimated by observers and
be compensated through feedback controllers [24], [28]–[30].
Hence, better robustness and tracking accuracy can be obtained
by POC.

Originating from the concept of POC, this paper proposes

a perturbation observer-based fast frequency support (POFFS)
controller for VSC-HVDC systems, which is composed of a
perturbation observer and an output feedback controller. The
perturbation observer aims at estimating the comprehensive
effect of multiple disturbances on grid frequency, and the
feedback controller is designed to compensate the impact of
disturbances on system dynamics in real-time and to achieve
the optimal frequency regulation. The performance of the
proposed controller is verified by two case studies in DIgSI-
LENT/PowerFactory. The contributions of this paper can be
summarized as follows:

1) The inverter station of the VSC-HVDC system and the
adjacent ac grid are treated as a whole control plant, and
the nonlinear relationship between the power reference
of the inverter station and the grid frequency is derived.
The original nonlinear model is transformed into an
equivalent input-output linear system, which is further
used for the design of the perturbation observer.

2) A lumped perturbation term is defined to represent
multiple disturbances, including the power disturbances
in low-inertia grids, the uncertainty of grid inertia, and
unknown nonlinear dynamics. The extended high gain
observer is used to estimate the lumped perturbation and
the states of the equivalent linear system, which can
be further used for the design of the robust feedback
controller.

3) The linear quadratic regulator (LQR) is utilized to design
the feedback controller. The parameter tuning process is
only related to the equivalent linear system, so the con-
troller parameters can be readily tuned and the accurate
system models and parameters are not required.

The rest of the paper is organized as follows. In Section
II, the nonlinear model of VSC-HVDC systems with the
surrounding ac grids. In Section III, the design of the proposed
POFFS is elaborated. In Section IV, the stability and robustness
of the system with POFFS are elaborated. In Sections V and
VI, two case studies are given to verify the effectiveness of
the proposed controller. Section VII discusses the influence
frequency-dependent dynamics of networks on controller per-
formance. Section VIII concludes the findings of this paper.

II. SYSTEM MODELING

The simplified diagram of a VSC-HVDC system connecting
a low-inertia grid with the main grid is shown in Fig. 1. AC
power drawn from the main grid is converted to dc power by
the rectifier station, and is transmitted to the inverter station,
which converts the dc power back to ac power to supply the
low-inertia grid.

The main grid at the rectifier side is assumed to be an
infinite system whose power capacity is far larger than the
low-inertia ac grid. The low-inertia ac grid is composed of an
aggregated SG, an equivalent load, and a wind farm consists
of several doubly fed induction generator (DFIG). Since the
frequency stability of the low-inertia grid is mainly determined
by the power supply-demand balance, the detailed dynamic
models of the renewable energy generator and the load are not
required, and the low-inertia grid is simplified as an SG model
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Fig. 1. VSC-HVDC system with low-inertia grid.

Fig. 2. The diagram of the AVM of the inverter station.

with random power balance. For the VSC-HVDC system, the
rectifier station maintains the stability of dc voltage and the
inverter station regulates the power injection into the low-
inertia grid. Assuming that the performance of the dc voltage
controller is good enough, the rectifier stations are simplified
as a constant dc voltage source. Consequently, the control plant
in this paper is the inverter station with the adjacent ac grid.

A. Modeling of The Inverter Station

The inverter model is composed of the control system
and the VSC model. For the converter model, the average-
value model (AVM) is widely used in the analysis of the
electromechanical dynamics of VSCs due to the high accuracy
and the low calculation burden [31]. The AVM of an inverter
station can be modeled by a controlled current source at the
dc-side and as a controlled voltage source at the ac-side, as
shown in Fig. 2.

Neglecting the switching-losses of VSC-stations, the active
power output of VSC-stations P is assumed to be equal to the
injected power from the dc network. Thus, the dc dynamics
of the inverter station can be represented as

V̇dc =
1

Cdc
(Idc − Idco)

İdc =
1

Ldc
(Vdcg − Vdc −RdcIdc)

Idco =
P

Vdc

(1)

where Cdc denotes the equivalent dc-link capacitor of the
inverter station; Vdc is the dc voltage of the inverter station;
Rdc and Ldc represent the equivalent resistance and inductance
of dc transmission lines; Idc is the dc current on the dc cable;
Idco are the dc current injected into the converter; P is the
active power output of the inverter station.

The ac-side dynamics of the inverter station are modeled in
dq−reference frame, which are described as

İd = −Rg

Lg
Id + ωIq +

1

Lg
(Vtd − Vgd)

İq = −Rg

Lg
Iq − ωId +

1

Lg
(Vtq − Vgq)

Vtd = mdVdc

Vtq = mqVdc

P = VtdId

Q = −VtdIq

(2)

where Vtd,tq and Id,q are the d− and q−axis components of
ac voltage and current of the inverter station; Vgd and Vgq are
the d− and q−axis components of ac voltage at the PCC; Rg

and Lg represent the equivalent resistance and inductance of
multiple apparatus, including filters, transformers, and trans-
mission lines; ω is the angular speed; md and mq are the d−
and q−axis components of duty cycles.

For the control system of the inverter station, the outer-inner
controller and the phase-locked loop (PLL) are often adopted.
Fig. 3 shows the structure of the outer-inner controller. The
outer controller aims at regulating the power output of convert-
ers by generating the d− and q−axis current references, which
will be tracked by the inner controller rapidly. The dynamics
of the outer-inner controller are given as

Ṗf =
1

Tp
(P − Pf )

Q̇f =
1

Tp
(Q−Qf )

ϕ̇P = Pref + Pu − Pf

ϕ̇Q = Qref −Qf

Idref = KP1(Pref + Pu − Pf ) +KI1ϕP

Iqref = KP1(Qref −Qf ) +KI1ϕQ

γ̇d = Idref − Id

γ̇q = Iqref − Iq

md =
1

Vdc
[−ωIqLg +KP2(Idref − Id) +KI2γd]

mq =
1

Vdc
[ωIdLg +KP2(Iqref − Iq) +KI2γq]

(3)

where Pf and Qf denote the measured active and reactive
power of the inverter station; Pu is the additional active power
control signal which needs to be designed; ϕP , ϕQ, γd and
γq are the internal state variables of the proportional-integral
(PI) controllers; KP1, KP2, KI1 and KI2 are the proportional
and integral gains of the PI controllers; Pref and Qref are the
references of power output of VSCs; Idref and Iqref are the
dq− axis current references.

The PLL is an essential component for the inverter station to
synchronize with ac grids. The PLL ensures that the d−axis is
always aligned with the ac-terminal voltage, i.e., Vt. The block
diagram of the PLL is shown in Fig. 4 and the dynamics is
given as {

ẋpll = Vtq

θ̇ = ω0 +KP3Vtq +KI3xpll

(4)
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Fig. 3. The block diagram of the double-loop controller.

Fig. 4. The block diagram of the PLL.

Fig. 5. The signle line diagram of the test system.

where KP3 and KI3 are the proportional and integral gains
of the PI controller; ω0 is the nominal grid frequency in p.u.;
xpll is the internal state variable of the PLL; θ denotes the
phase angle of Vt.

B. Modeling of The Low-Inertia Grid

Fig. 5 shows the simplified ac grid model, which consists
of an aggregated synchronous generator (SG), an aggregated
load, and a wind generator. The ac grid has the following
power balance relationship

Pe + Pr + P − Pl = 0 (5)

where Pe is the electrical power output of the SG; Pr is the
renewable energy generation; P is the power injected by the
VSC-HVDC system, and Pl is the power demand.

Eq. (5) indicates that the electrical power output of the
generator Pe is reflected instantaneously by the load change
of the ac grid, which can lead to the variation of the electrical
torque Te on the rotor and the grid frequency is further
influenced because of the torque mismatch on the rotor. The
dynamics of grid frequency can be described by a three-order
generator model.

ω̇g =
1

2Hg
[Tm − Te −Dg(ωg − ω0)]

δ̇ = ωn(ωg − ω0)

Ė′
q =

1

T ′
d0

(−Eq + Efds + uf )

(6)

where Hg and Dg denote the inertia constant and damping
coefficient of SGs; Tm and Te are the mechanical and electrical
torque on the SG rotor; ωg is the grid frequency in p.u.; ωn

represents the nominal angular speed in rad/s; Eq is the electric
potential of SG; δ is the phase angle of Eq; E′

q is the electric

potential behind the transient reactance X ′
d. Tm, Te, Pe and

Eq are given by Tm = Pm

ωg
, Te = Pe

ωg
, Pe =

EqVg

Xd
sin δ, Eq =

Xd

X′
d
E′

q −
Xd−X′

d

X′
d

Vg cos δ.
The aggregated load of the ac grid is represented by the

frequency-voltage dependent load model{
Pl =P0[p1V

2
g + p2Vg + p3][1 +Kpf (ωg − ω0)] + Pld

Ql =Q0[q1V
2
g + q2Vg + q3][1 +Kqf (ωg − ω0)] +Qld

(7)
where P0 and Q0 are the initial load power; p1−p3 and q1−q3
are proportion coefficients of active and reactive power; Kpf

and Kqf are the frequency dependent coefficients of active
and reactive power; Pld and Qld are the random active and
reactive power disturbance. This paper mainly focuses on the
impact of active power disturbance on system frequency.

SGs are typically required to provide the primary frequency
regulation service. The speed governor with a non-reheat
turbine is also taken into account.

Ṫm =
1

TCH
(G− Tm)

Ġ =
1

TG
(G0 +Kf (ω0 − ωg)−G)

(8)

where G is the valve position; Kf is the droop coefficient of
the governor; TG and TCH denote the time constant of the
governor and the steam turbine.

Moreover, a low-pass filter is used to describe the dynamics
of the frequency measurement device.

ω̇m =
1

Tm
(ωg − ωm) (9)

where ωm is the measured frequency; Tm is the time constant.

C. Completed Nonlinear Model of The Control Plant

The inverter station with the adjacent ac grid is selected
to be the completed control plant. The control target is
to minimize the frequency deviation of the low-inertia grid
by regulating the power output of the inverter station. The
disturbances that could lead to frequency excursion include the
stochastic load disturbance Pld and the random wind power
generation Pr, which can be merged into one disturbance
term, i.e. ud = Pd = Pld − Pr, and can be regarded as
the disturbance input signal. According to the regulation of
the power output of the inverter station, the power deficiency
of the low-inertia grid and the frequency deviation can be
mitigated. Hence the additional power reference of the inverter
station is selected as the control input signal, i.e., u = Pu, and
the output signal is the deviation of the frequency measurement
from the nominal value, i.e., y = ωm−ω0 = eω . The nonlinear
model of the control plant can be derived from (1)−(9), which
are given as 

ẋ = f(x) + d(x)ud + g(x)u

= F(x) + g(x)u

y = h(x)

(10)
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where f(x), g(x), and F(x) are the vector fields, and F(x) =
f(x) + d(x)ud. h(x) is a scalar function. x denotes the state
vector, which is given by

x =[Vdc, Idc, Id, Iq, Pf , Qf , ϕP , ϕQ, γd, γq, xpll, θ, ωg, δ,

E′
q, Tm, G, ωm]T

III. DESIGN OF PERTURBATION OBSERVER-BASED FAST
FREQUENCY SUPPORT CONTROLLER OF VSC-HVDC

The design of the proposed POFFS controller contains three
steps. First, the nonlinear relationship between the frequency
excursion eω and the additional power reference of the inverter
station Pu is revealed by the input-output feedback lineariza-
tion technique. Then an exactly input-output linearized model
is derived by this relationship and a lumped perturbation is
defined to represent the impact of the power disturbances Pd

and the unknown system dynamics. Finally, a perturbation ob-
server is designed to estimate the lumped perturbation, and the
feedback controller is designed to compensate for the lumped
perturbation and to achieve robust frequency regulation.

A. Feedback Linearization of the Control Plant

The feedback linearization technique is a mature nonlin-
ear control technique. The original nonlinear system can be
transformed into the equivalent linear system by state trans-
formation. Hence the linear control techniques can be adopted
to design the feedback controller.

Consider the single-input and single-output (SISO) nonlin-
ear system given in (10), the nonlinear relationship between
the output signal y and the control input signal u can be
obtained by the Lie derivative of the scalar function h(x) with
respect to F(x) and g(x), which is defined as follows:

LFh(x) =
∂h(x)

∂x
F(x)

Lk
Fh(x) = LF(L

k−1
F h(x)), k = 1, 2, ...

Lgh(x) =
∂h(x)

∂x
g(x)

LgLFh(x) =
∂LFh(x)

∂x
g(x)

(11)

Differentiating the output signal y with respect to time until
the following conditions are met, i.e.,{

LgL
k
Fh(x) = 0, k = 1, 2, 3, ..., r − 2

LgL
r−1
F h(x) ̸= 0

(12)

where r is the relative degree between the output and the input
signal, which indicates that the input signal u will explicitly
appear in the r-th derivative of the output signal y. Hence, the
nonlinear relationship between u and y can be described as

y(r) = Lr
Fh(x) + LgL

r−1
F h(x)u (13)

The Lr
Fh(x) and LgL

r−1
F h(x) in (13) are complicated

nonlinear terms, which could be eliminated by the feedback
control signal u:

u =
v − Lr

Fh(x)

LgL
r−1
F h(x)

(14)

where v is an additional control input signal.

Substituting (14) into (13) yields

y(r) = v (15)

As can be observed from (10)−(15), the original system
(10) can be simplified as a linear system (15) by the nonlinear
feedback controller (14). The dynamic relationship between
the output signal y and the additional input signal v is a linear
integrator chain. Subsequently, linear control techniques can
be utilized to design the additional control input signal v to
achieve the reference tracking.

Applying the feedback linearization technique to the inverter
station with ac grid described in (10), the first-order Lie
derivatives of the frequency deviation eω with respect to F(x)
and g(x) are given as

LFh(x) =
ωg

Tm
− ωm

Tm
, Lgh(x) = 0 (16)

Hence, the first derivative of ωm is given by

ẏ = ėω = LFh(x) =
ωg

Tm
− ωm

Tm
(17)

Since the additional power reference Pu does not appear in
(17), the second order derivative of eω needs to be derived.

ëω =
ω̇g

Tm
− ω̇m

Tm
= L2

Fh(x) + LgLFh(x)Pu (18)

where L2
Fh(x) and LgLFh(x) are given as

L2
Fh(x) =

Pm

2HgTmωg
− Pd

2HgTmωg
− Dg(ωg − ω0)

2HgTm

− ωIqLgId
2HgTmωg

+
KI2γdId
2HgTmωg

− KP2I
2
d

2HgTmωg

+
KP2KP1PrefId

2HgTmωg
− KP2KP1PfId

2HgTmωg

+
KP2KI1ϕP Id
2HgTmωg

+
IdVgd

2HgTmωg

−
P0(p1V

2
g + p2Vg + p3)

2HgTmωg

−
P0Kpf [p1V

2
g + p2Vg + p3](ωg − ω0)

2HgTmωg

− P0Kpf (ωg − ω0)

2HgTmωg
− ωg − ωm

T 2
m

LgLFh(x) =
KP2KP1Id
2HgTmωg

(19)
To cancel the impact of the nonlinear terms on grid fre-

quency, the additional power reference of the inverter station
can be designed as

Pu =
v − L2

Fh(x)

LgLFh(x)
(20)

Substituting (20) into (18) yields

ëω = v (21)

Eq. (21) indicates that the original nonlinear system (10)
is transformed into an equivalent linear system (21). Defining
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the new state variables i.e., z1 = eω and z2 = ż1, (21) can be
rewritten as the state-space format[

ż1
ż2

]
︸︷︷︸

ż

=

[
0 1
0 0

]
︸ ︷︷ ︸

A

[
z1
z2

]
︸︷︷︸

z

+

[
0
1

]
︸︷︷︸
B

v (22)

where z is the state vector, i.e., z = [z1, z2]
T ; A and B are

the state and input matrices.
According to the manipulation of the additional input signal

v, the grid frequency can be regulated. However, as can be
observed in (19), L2

Fh(x) and LgLFh(x) require many sys-
tem measurements and parameters, which make the controller
(20) hard to be applied in real applications. Some of the
measurements even can not be measured in real-time, e.g.,
the accurate random power disturbance Pd occurring in ac
grids, the internal state variables of the controller ϕP and γd.
Moreover, some of the system parameters could vary with the
operation states, e.g., the inertia time constant Hg and damping
coefficient Dg of ac grids. These factors, including unknown
system dynamics, parameter uncertainties, and external distur-
bances, can be treated as system perturbations, which could
weaken the controller performance or even threaten the system
stability.

B. Perturbation Observer-Based Feedback Controller
In this part, a perturbation observer is designed to esti-

mate the impact of the aforementioned disturbances on grid
frequency. Since the disturbances mainly influence the terms
L2
Fh(x) and LgLFh(x) in (18), a lumped perturbation term

Ψ is defined to represent the impact of these disturbances on
system dynamics:

Ψ = L2
Fh(x) + (LgLFh− β0)Pu (23)

where β0 denotes the nominal value of LgLFh.
Substituting (23) into (18), (22) can be written as

ż = Az+B(Ψ + β0Pu) (24)

Similar with (20), the additional power reference is given
as

Pu =
v −Ψ

β0
(25)

The lumped perturbation term Ψ is assumed to be unknown.
To estimate Ψ, a new state variable z3 is introduced into the
linear system (24) to represent Ψ, i.e., z3 = Ψ and

ż1 = z2

ż2 = z3 + β0Pu

ż3 = Ψ̇

(26)

For the extended state system (26), the perturbation observer
can be designed on the basis of high gain observer technique.
The frequency deviation eω can be obtained from the ac grid.
Other state variables, i.e., z2 and z3, are estimated by the
perturbation observer, which is described as

˙̂z1 = ẑ2 +
α1

ϵ
(z1 − ẑ1)

˙̂z2 = ẑ3 + β0Pu +
α2

ϵ2
(z1 − ẑ1)

˙̂z3 =
α3

ϵ3
(z1 − ẑ1)

(27)

where the superscript ‘ˆ’ denotes the estimate of states; ϵ is a
small positive constant; α1−α3 are the observer gains, which
could be chosen by pole placement technique such that the
polynomials s3+α1s

2+α2s+α3 = 0 is Hurwitz and the poles
of the observer are 10 times faster than the equivalent linear
system dynamics. The constant ϵ is often chosen small enough
to ensure the dynamics of the estimation errors converge to
zeros quickly. Consequently, the perturbation observer can
estimate the dynamics of equivalent linear system and the
lumped perturbation in real-time.

With the estimates of state variables z1, z2 and the lumped
perturbation Ψ, the impact of perturbations and system nonlin-
earities can be canceled through the feedback control loop. By
designing the additional input signal v, i.e., v = −k1ẑ1−k2ẑ2,
the grid frequency can be stabilized. Consequently, the pro-
posed frequency support controller is given as

Pu =
1

β0
(−Kẑ− ẑ3) (28)

where ẑ = [ẑ1, ẑ2]
T ; K is the feedback gain matrix, i.e., K =

[k1, k2], which can be obtained by several control techniques,
e.g., optimal linear quadratic regulator (LQR), pole placement,
etc. In this paper, the LQR is adopted to design K.

To minimize the grid frequency excursion, the following
cost function is defined for the equivalent linear system (22):

J =

∫ ∞

0

(zTQz+ vTRv)dt (29)

where Q and R are the positive-definite weighting matrices.
The matrix Q determines the variation of the state variables,
i.e., the frequency deviation and ROCOF, and the matrix R
determines the expenditure of the control energy.

The cost function of the equivalent linear system could be
minimized by choosing the appropriate feedback gain matrix
K, which can be solved by the Riccati equation

ATP+PA+Q−PBR−1BTP = 0 (30)

where P is a symmetric positive definite matrix, which is the
solution of the Riccati equation.

Then the feedback gain matrix can be obtianed by

K = R−1BTP (31)

Considering that the inverter station should not operate in
overload state, let Pu0 = 1

β0
(−Kẑ − ẑ3) and the following

constraints should be considered.

Pu =


Pu,min, if Pu0 ≤ Pu,min

Pu0, if Pu,min ≤ Pu0 ≤ Pu,max

Pu,max, if Pu0 ≥ Pu,max

(32)

where Pu,max and Pu,min are the maximum and minimum
power adjustment of the inverter station, which could be
determined by the system operator.

The completed diagram of the proposed POFFS controller is
shown in Fig. 6, which consists of the perturbation observer
(27) and the feedback control law (32). To applied in real
power systems, the speed of the center of inertia (COI) is
used as the grid frequency, which can be described as

ω̇g =

∑
Hgiωi∑
Hgi

(33)
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Fig. 6. The block diagram of the propsoed controller.

where Hgi and ωi are the inertia constant and rotor speed of
the i-th SG.

After receiving the frequency measurement ωm, the fre-
quency excursion eω is calculated and the observer estimates
the impact of the perturbations and the state variables of
the equivalent linear system (22), i.e., ẑ1 − ẑ3. Subsequently,
the feedback controller utilizes the estimates to calculate the
appropriate additional power reference of the inverter station
Pu to provide frequency support.

C. Controller Design Process

The controller design process can be summarized as follows:
1) Use the system nominal parameters to calculate β0;
2) Choose the LQR weighting matrices Q and R, and

calculate the optimal feedback gain matrix K by solving
the Riccati equation (30), i.e., k1 − k2;

3) Calculate the eigenvalues of the closed-loop equivalent
linear system Ac = A−BK;

4) Select the eigenvalues of the observer gain matrix such
that the dynamics of perturbation observer is 5−10 times
faster than that of the equivalent linear system;

5) Use the pole placement technique to determine the
observer gain matrix, i.e., α1 − α3;

6) Construct the controller shown in Fig. 6.

IV. STABILITY AND ROBUSTNESS ANALYSIS

The stability of the closed-loop system with POFFS is
investigated in this section. Define scaled estimation errors

η1 =
z1 − ẑ1

ϵ2
, η2 =

z2 − ẑ2
ϵ

, η3 = z3 − ẑ3 (34)

The observer error can be represented by a singularly
perturbed form as

ϵ ·

η̇1η̇2
η̇3


︸ ︷︷ ︸

η̇

=

−α1 1 0
−α2 0 1
−α3 0 0


︸ ︷︷ ︸

Aη

·

η1η2
η3


︸ ︷︷ ︸

η

+ϵ ·

00
1


︸︷︷︸
Bη

·Ψ̇ (35)

The positive constants α1 − α3 are chosen such that Aη is
a Hurwitzian matrix, and ϵ is a small constant to be specified
in the domain of (0, 1]. Eq. (35) shows that if ϵ is small
enough, the impact of the disturbance Ψ̇ could be diminished.

Moreover, the dynamics of the estimation error are much faster
than that of z.

For the closed-loop system, substituting (28) into (24), the
closed-loop system can be obtained as

ż = Az+B(Ψ + β0Pu)

= Az+B(Ψ−Kẑ− ẑ3)
(36)

With the consideration of (34), ẑ can be rewritten as[
ẑ1
ẑ2

]
︸︷︷︸

ẑ

=

[
z1
z2

]
︸︷︷︸

z

−
[
ϵ2 0
0 ϵ

]
︸ ︷︷ ︸

E

·
[
η1
η2

]
︸︷︷︸
η′

(37)

Subtituting (37) into (36) yields

ż = Az+B(Ψ−Kẑ− ẑ3)

= Acz+BKEη′ +Bη3

= Acz+BK′E′η

(38)

where Ac = A−BK; K′ = [K, 1]; E′ = diag(E, 1). Com-
bined with (35), the closed-loop system can be represented
by

η̇ =
1

ϵ
Aηη +BηΨ̇ (39)

ż = Acz+BK′E′η (40)

Assumption 1: The lumped perturbation Ψ and its deriva-
tives Ψ̇ in (24) are Lipschitz in their arguments and bounded
over the domain of interest.

Assumption 2: The zero dynamics of (24) are exponentially
stable and the original operating point is a stable equilibrium
point.

A Lyapunov function candidate of the subsystem (39) and
(40) is defined as

V (z, η) = Vz +Wη (41)

where Vz = zTPzz , for some o > 0, and Pz is the positive
definite solution of Lyapunov equation PzAc + Ac

TPz =
−Iz; and Wη = ηTPηη, where Pη is the positive definite
solution of Lyapunov equation PηAη +Aη

TPη = −Iη .
Choose ξ < o; then, given Assumption 1, we have, ∀(z, η) ∈

B(0, ξ)× {(∥η∥ ≤ ξ)} = Λ,

|Ψ̇| ≤ γ

where γ is the upper bound of Ψ̇. It can be shown that
∀(z, η) ∈ Λ, then, we have

V̇ (z, η) =
∂Vz

∂z
ż+

∂Wη

∂η
η̇

=
∂Vz

∂z
(Acz+BK′E′η) +

∂Wη

∂η
(
1

ϵ
Aηη +BηΨ̇)

≤ −∥z∥2 − 1

ε
∥η∥2 + 2∥z∥∥Pz∥∥BK′∥∥E′∥∥η∥

+ 2∥η∥∥Pη∥γ
≤ −∥z∥(∥z∥ − 2∥Pz∥∥η∥)

− ∥η∥(1
ϵ
∥η∥ − 2γ∥Pη∥)

(42)
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Defining ξ2 = 2ϵγ∥Pη∥ and ξ1 = 2ϵ∥Pz∥ξ2 =
4ϵγ∥Pη∥∥Pz∥; Then, for any given ξ < o, we can choose

ϵ∗ = min { ξ

8γ∥Pη∥∥Pz∥
,

ξ

4γ∥Pη∥
}

Then ∀ϵ, 0 < ϵ < ϵ∗, we have ∥z∥ ≤ ξ/2, ∥η∥ ≤ ξ/2,
∥z∥ ≥ ξ1, and ∥η∥ ≥ ξ2, such that

V̇ (z, η) ≤ −∥z∥(∥z∥ − ξ1)− ∥η∥(∥η∥ − ξ2) ≤ 0 (43)

Thus, there is T (ξ) and T > 0, it can be shown that

∥z∥+ ∥η∥ ≤ ξ ∀ ≥ T (44)

The above analysis indicates that the closed-loop systems
(39) and estimation error (40) are bounded as long as the As-
sumptions hold. The lumped perturbation term Ψ considered
in this paper includes the impact of the inertia error, model
uncertainty, and load demand variation. The grid frequency
would not change sharply under these perturbations, because
the power system considered in this paper always has inertia.
Hence the Ψ and Ψ̇ are bounded, continuous, and smooth.
According to the perturbation estimation and output feedback
control, the proposed POFFS can improve the robustness of
the grid frequency to multiple perturbations.

V. CASE STUDY I

To test the performance of POFFS, the test system with
detailed models is developed in DIgSILENT/PowerFactory.
The system topology has shown in Fig. 5. The low-inertia
grid is composed of a SG, a nonlinear aggregated load, and a
wind farm. The SG is represented by the 6-order model with
IEEE G1 steam turbine [32] and IEEE type 1 excitation system
[33]. The wind farm consists of 25 DFIGs, which are modeled
by the built-in 5-MW DFIG model of DIgSILENT. The wind
generators are assumed to operate in maximum power point
tracking mode, and the inertia or frequency support ability of
wind generators is not provided. The nonlinear load is modeled
by (7). The parameters of SG and DFIG can be referred to
[16]. Other parameters of the test system are given in Table I.

The total load of the ac grid is Pl = 650MW, which is sup-
plied by the HVDC (P = 250MW), the SG (Pg = 300MW),
and the wind farm (Pr = 100MW). The control performance
of POFFS is compared with other five controllers, i.e., P −ω
droop controller, PI-based controller, feedback linearization
controller (FLC), VSG, and the extended state observer with
linear quadratic regulator (ESOLQR). Three events are con-
sidered to test the frequency support performance of these
controllers: a)

1) 100MW step load change with parameter uncertainties;
2) Random power generation of the wind farm;
3) 100MW step load change with different grid strength.

A. Design of POFFS

To minimize the frequency excursion and ROCOF, the
LQR weighting matrices Q and R are chosen as Q =
[1000, 0; 0, 50] and R = [1]. According to (30) and
(31), the feedback gain matrix can be calculated as K =

TABLE I
PARAMETERS OF THE TEST SYSTEM

Inverter station
Rated power: 500MVA, Rated ac voltage: 220kV
Rated dc voltage: ± 250kV, short circuit impedance: 15%
copper losses: 400kW, no-load losses: 3000kW
Rdc = 2.546Ω, Ldc = 186.74mH, Cdc = 0.0005F
KP1 = 2, KI1 = 10, KP2 = 1, KI2 = 500, Tm = 50ms

SG model
Rated power: 600MVA, Hg = 4s, Dg = 1p.u., Kf = 5p.u.,
TG = 0.2s, TCH = 0.3s Rg = 0.52Ω, Lg = 26.42mH

Load
p1 = 0.4, p2 = 0.3, p3 = 0.3, Kpf = Kqf = 0.5p.u.
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Fig. 7. The grid frequency : (a) complete plot, and (b) enlarged plot.

[31.62, 0; 0, 10.64]. The eigenvalues of the closed-loop linear
system (A − BK) is −5.32 ± j1.82. To ensure the estimate
errors converge to zero quickly, the poles of the perturbation
observer are placed at [−1000,−50 ± j50]. According to
pole placement technique, the observer gains are calculated
as α1 = 1100, α2 = 105002 and α3 = 5001510. The
small constant ϵ is chosen as 0.05. The β0 calculated with
the nominal parameters is β0 = 0.166.

For other five controllers, since the P−ω droop controller is
similar to the primary-frequency regulation of SGs, the droop
gain is set to 5 p.u., which is equal to Kf of the SG for
identical power sharing. The proportional and integral gains of
the PI-based controller are obtained by the Matlab-PI Tunner,
which are set to 969 p.u. and 3727 p.u. to achieve a balance
between response speed and robustness. The FLC is composed
by the (20) and v = −k1eω − k2z1, where k1 and k2 are
the same with POFFS. The important parameters of VSG are
virtual inertia and virtual damping coefficient, which are set
to 4 s and 5 p.u. The ESOLQR is designed on the basis of
the state-space model of (10). The design procedure can refer
to [34].

B. Step Load Change With Parameter Error

A 100MW step load change event occurs at t = 2s. To test
the robustness of POFFS, an error of the inertia constant of the
low-inertia grid is considered, i.e., ∆Hg = 2s, which means
that the Hg is assumed to be 6s when designing the controller
but the real inertia of the grid is only 4s. The frequency of the
low-inertia gird with different controllers are shown in Figs.
7 − 9.

It can be observed from the black curve in Fig. 7(a) that
the sudden change of load demand can lead to large frequency
excursion when only the SG provides frequency support. P−ω
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Fig. 8. The power output of the inverter station: (a) complete plot, and (b)
enlarged plot.
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Fig. 9. Derivatives of grid frequency estimated by different controllers: (a)
first derivative of grid frequency, and (b) second derivative of grid frequency.

droop controller can somewhat provide frequency support, but
the frequency deviation cannot be eliminated [see the orange
curve]. VSG has similar steady-state performance with P −ω
droop controller whereas the ROCOF is much lower due to
the provision of virtual inertia [see the purple curve]. Both
POFFS, FLC, PI, and ESOLQR have satisfying frequency
support performance compared with P − ω droop controller
and VSG. It can be observed from 7(b) that POFFS has
the best frequency regulation ability among these controllers
[see the red curve]. Both the ROCOF and frequency nadir
are restrained rapidly, and the frequency can return to the
nominal value within 1s. Although FLC can also mitigate the
frequency deviation, it could lead to steady-state error due to
the inaccurate Hg and the unknown dynamics, e.g., PLL and
detailed SG. The PI controller has larger frequency nadir than
POFFS [see the blue curve]. ESOLQR can also achieve the
satisfying frequency support performance whereas the linear
observer will results in steady-state frequency error [see a
brown curve in Fig. 7(a)].

The power output of the inverter station with different con-
trollers is shown in Fig. 8, which indicates that the POFFS and
FLC can rapidly increase the power output to compensate for
the power deficiency of the low-inertia grid. Whilst the other
four controllers has relatively slow responses for frequency
support.

The estimates of the frequency dynamics are shown in
Fig. 9, which indicates that the POFFS can estimate the first
and second derivative of frequency measurement accurately,
whereas the calculation of the second derivative of frequency
by FLC has a greater error due to the unmodeled system dy-
namics, so the steady-state frequency deviation exists whereas
POFFS can recover the frequency to the nominal value.
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Fig. 10. Grid frequency under the random wind speed: (a) complete plot, (b)
enlarged plot, and (c) enlarged plot.

C. Random Wind Power Generation

The power generation of the wind farm in the ac grid
could fluctuate due to the variation in wind speed. To test the
robustness of the POFFS, the wind power generation changes
within the range of 80−125MW. The frequency responses of
the ac gird are shown in Fig. 10.

Since the DFIG dynamics are not taken into account when
designing the FLC, FLC will lead to instability due to the
unknown system dynamics [see the green curve in Fig. 10(a)].
Fig. 10(b) is the enlarged drawing of Fig. 10(a), which
indicates that, except for FLC, both controllers can restrain the
frequency variation to some extent. Among these controllers,
the proposed POFFS has the best frequency support perfor-
mance, as shown by the red curve in Fig. 10(c). The grid
frequency is very close to its nominal value when POFFS is
applied.

D. Step Load Change With Different Grid-Strength

To test the performance of POFFS under different grid
strength, the 100MW-load change event occurs in the ac grid
with different short-circuit ratios (SCR), which is often used
to describe the grid strength [35]

SCR =
Sac

Pdn
=

1

Xg
(45)

where Sac is the short-circuit capacity of the ac grid; Pdn is
the rated power of the VSC-HVDC system; Xg is per-unit
grid impedance based on Pdn.

An ac grid whose SCR value is lower than 2 can be
considered a weak grid. In this section, the POFFS is tested in
the ac grid whose SCR value is changed from 1.5 to 4.5. The
corresponding Xg is set to 21.51−64.53 Ω. The simulation
results are shown in Fig. 11.
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Fig. 11. Grid frequency under the different SCR: (a) POFFS, (b) FLC, and
(c) PI.

It can be observed from Fig. 11(a) that the grid-strength has
little impact on the frequency support performance of POFFS.
Fig. 11(b) indicates that when FLC is applied in the inverter
station, the frequency deviation is increased with the reduction
of grid strength. The FLC will lead to instability when the
VSC-HVDC connects to the very weak grid [SCR = 1.5], as
shown by Fig. 11(b). The PI controller also has good frequency
support performance whereas the frequency deviation in the
supporting process is larger than that when POFFS is applied,
as shown by Fig. 11(c). Consequently, the POFFS can achieve
the satisfying frequency support under different grid strength.

VI. CASE STUDY II
To test the robustness control performance of POFFS in

multi-machine power systems, the VSC-HVDC system is
connected with the IEEE 39-bus system via Bus 39. The
rated capacity of the inverter station is modified to 800MVA.
The outage of G10 at t = 2s is used as the disturbance
event with different penetration of wind power. G3−G6 are
replaced by wind farms, as shown in Table II. To quantify the
overall system equivalent inertia level, the following equation
is adopted [36]

Hg =

∑m
i=1 HgiSgi∑m

i=1 Sgi +
∑n

j=1 Srj
(46)

where m is the number of SGs and n is the number of
renewable generators; Hgi is the inertia constant of the i-th
SG; Sgi and Sri are the rated power capacity of the i-th SG
and the j-th renewable generator, respectively.

A. Generator Outage Event With Different Penetration of Wind
Generation

In this subsection, the ESOLQR and FLC can not work
properly due to the significant modeling error, which can

Fig. 12. The single line diagram of the test system.

TABLE II
PENETRATION OF WIND GENERATION

SGs to be replaced - G3, G4 G3−G5 G3−G6
Percentage of wind power 0% 24% 33% 45%

System inertia 4.577s 4.200s 4.048s 3.845s
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Fig. 13. The grid frequency with 24% wind generation: (a) complete plot,
and (b) enlarged plot.
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Fig. 14. The grid frequency with 33% wind generation: (a) complete plot,
and (b) enlarged plot.

lead to the instability of the whole power system. Hence, the
performance of the proposed POFFS is only compared with the
P −ω, PI, and VSG controllers. The proportional and integral
gains of the PI-based controller are set to 152 p.u. and 812
p.u. The parameters of POFFS and other controllers are the
same as that in Section IV. The grid frequency responses under
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Fig. 15. The grid frequency with 45% wind generation: (a) complete plot,
and (b) enlarged plot.

the outage event are shown in Figs. 13 − 15, and the power
output of the inverter station is shown in Figs. 16 − 18.

As can be observed from Figs. 13 − 15, the proposed
POFFS has the best frequency support performance under the
different percentages of wind generation [see the red curves in
these figures]. The grid frequency is slightly influenced by the
outage of generator G10. The PI controller can also achieve a
satisfying frequency support performance, but the oscillation
period is longer than POFFS. The P −ω droop controller and
VSG has large steady-state frequency error.
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Fig. 16. The power output of the inverter with 24% wind generation: (a)
complete plot, and (b) enlarged plot.
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Fig. 17. The power output of the inverter with 33% wind generation: (a)
complete plot, and (b) enlarged plot.

The red curves in Figs. 16 − 18 illustrates that POFFS
can adjust the power output of the inverter station rapidly to
compensate for the power deficiency caused by the outage
of G10. At the beginning of the support process, the power
oscillations can be observed because the outage of G10 not
only triggers the frequency deviation but also the frequency
oscillation, which results in the power output oscillation of
the inverter station. The PI controller can also provide active
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Fig. 18. The power output of the inverter with 45% wind generation: (a)
complete plot, and (b) enlarged plot.
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Fig. 19. The grid frequency response: (a) complete plot, and (b) enlarged
plot.

power support to the ac grid [see the green curves in Figs.
16 − 18]. However, the regulation speed of the PI controller
is relatively slower than POFFS and the oscillations could
last for a long time. The blue and yellow curves in Figs.
16 − 18 indicate that the power adjustment of P − ω droop
controller and VSG is proportional to the frequency deviation
to realize a certain power-sharing ratio between the inverter
station and SGs. Hence POFFS has the best frequency support
performance among these controllers.

B. Generator Outage Event with the Frequency-Dependent
Dynamics of Networks

In this subsection, the proposed POFFS is tested with the
consideration of frequency-dependent dynamics of networks.
The outage of G10 at t = 20s is used as the disturbance
event with 24% penetration of wind generation. The distributed
parameter model is used to modeling the transmission lines
and the EMT simulation is performed in PowerFactory [37].
The ESOLQR and FLC still can not work properly in this
scenario, and the performance of the proposed POFFS is only
compared with the P − ω, PI, and VSG controllers. The
grid frequency responses and the power output of the inverter
station are shown in Figs. 19 and 20.

As can be observed from Figs. 19 and 20, an interesting
phenomenon can be observed when the frequency-dependent
transmission line model is considered. As shown by the black
dashed curve in Fig. 19, the initial operation point is not a
balanced point anymore. If the frequency support controllers of
the inverter station are not activated, the grid frequency would
soar at the beginning of the simulation and would decrease
when G10 is out of service at t = 20s.
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Fig. 20. The power output of the inverter.

If the VSG or P − ω controller is activated, as shown by
the blue and yellow curves in Fig. 19, the frequency deviation
could be slightly mitigated due to the weak power regulation
capability [see the blue and yellow curves in Fig. 20].

Both the POFFS and the PI controllers can provide satisfied
frequency capability, as shown by the red and green curves in
Fig. 19. The frequency slightly fluctuates around the nominal
value. It can be observed that the proposed POFFS has the best
frequency regulation performance. The frequency deviation at
the beginning of the simulation and after the outage of G10 is
limited in a very narrow range, and converge to zero quickly,
since the rapid power regulation of the active power output of
the inverter station [see the red curve in Fig. 20].

Consequently, although the distributed parameter model
of the transmission lines could affect the dynamics of the
network, the proposed POFFS still can achieve a satisfying
control performance.

VII. DISCUSSION

The frequency-dependent dynamics of networks can lead to
the variation of the system damping because the frequency-
dependent dynamics could change the transfer functions of
the system. However, the unknown dynamics of networks
can also be regarded as a sort of disturbance, which can be
integrated into the lumped perturbation and be estimated by the
proposed POFFS. Consequently, the proposed POFFS can also
provide a satisfied frequency regulation performance when the
frequency-dependent dynamics of networks are considered.

VIII. CONCLUSION

This paper has proposed a perturbation observer-based fast
frequency support (POFFS) control to improve the frequency
stability of low-inertia grids via VSC-HVDC systems. The
effectiveness of POFFS is validated by the time-domain sim-
ulations. The main conclusions are summarized as follows:

1) The active power reference of the inverter station and
the grid frequency has a second-order differential rela-
tionship, which helps to simplify the original nonlinear
system into an equivalent linear system by feedback lin-
earization technique and facilitates the controller design.

2) Based on the equivalent linear system, the perturba-
tion observer can accurately estimate the comprehensive
impact of multiple perturbations on grid frequency,
including the power disturbances in low-inertia grids,

the uncertainty of grid inertia, and unknown frequency-
dependent dynamics of the network. Consequently,
POFFS can provide a better robust frequency support
performance compared with the conventional FLC, PI-
based controller, VSG, and the linear extended state
observer-based controller.

3) The structure and parameters of POFFS are determined
by the equivalent linear system and the control target,
which have little relationship with the internal state vari-
ables of the original plant model. Hence the design of the
controller and the tuning process are much easier than
the classical FLC, PI-based controller, linear extended
state observer-based controller, and so on.
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