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Highlight 

 We proposed an hourly thermal comfort dataset at 100m resolution for a high-density city

during the summer season by machine learning.

 The dataset, which includes air temperature and relative humidity indicators, maintains

satisfactory accuracy at different hours of the day, especially during nighttime.

 The dataset reveals that the core urban area cools more slowly at night than the fringes of

the urban area.

 The thermal comfort index reveals that people in built-up areas are exposed to more severe

thermal stress at night than the actual air temperature.
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Abstract 17 

Global warming causes new challenges for urban citizens and metropolitan governments 18 

in adapting to the changing thermal environment. However, fine-scale spatiotemporal mapping 19 

of urban thermal environments has been inadequate. Therefore, this study takes a typical high-20 

density city, Hong Kong, as an example and utilises a machine learning algorithm, the random 21 

forest (RF), to carry out 100m resolution hourly thermal environment mapping, including air 22 

temperature (Ta), relative humidity (RH) and the net effective temperature (NET), for the 23 

summer season (May to September) of 2008-2018, considering meteorological drivers, 24 

topography and local-climate-zone-based landscape drivers. The validation results show that 25 

the developed dataset achieves satisfactory accuracy. The mean values of R2, root mean square 26 

error (RMSE) and mean absolute error (MAE) for Ta achieve 0.8723, 1.1160°C and 0.8227°C, 27 

respectively, while those for RH reach 0.7970, 5.3816% and 3.8641%. In addition, the thermal 28 
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comfort index, NET, reveals that people in built-up areas feel hotter than measured by Ta 29 

during the night due to the urban heat island effect. We believe this newly developed thermal 30 

comfort dataset can provide novel, reliable and fine-grained data support for urban climate 31 

research areas such as urban heat islands, heat exposure, heat-related health risk assessment, 32 

and urban energy consumption estimation. 33 

 34 

Highlight 35 

 We proposed an hourly thermal comfort dataset at 100m resolution for a high-density city 36 

during the summer season by machine learning. 37 

 The dataset, which includes air temperature and relative humidity indicators, maintains 38 

satisfactory accuracy at different hours of the day, especially during nighttime. 39 

 The dataset reveals that the core urban area cools more slowly at night than the fringes of 40 

the urban area. 41 

 The thermal comfort index reveals that people in built-up areas are exposed to more severe 42 

thermal stress at night than the actual air temperature. 43 

Keywords 44 
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humidity; Thermal comfort 46 

 47 

1. Introduction 48 

With urbanisation1 and the frequent occurrence of extreme weather events due to climate 49 

change2, including hot extremes in summer 3,4, people living in high-density cities are 50 
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increasingly challenged. Thus, thermal comfort is one of the current hot topics of interest in 51 

urban climate research, which involves studying the links between the outdoor environment 52 

and human well-being 5. Typically, thermal comfort can be assessed and measured by 53 

combining vital meteorological indicators, such as air temperature (Ta) and relative humidity 54 

(RH) 6. Using these thermal comfort indicators, one can conduct research in areas such as urban 55 

heat islands 7-9, compound extreme weather 10,11, energy consumption 12,13, and heat-related 56 

health risks 14,15. However, due to technical limitations, thermal comfort datasets with high 57 

spatiotemporal resolutions are still scarce. Although meteorological observation networks can 58 

provide long-term observations of meteorological indicators with a high temporal resolution, 59 

it is still insufficient for high spatial resolution mapping. In addition, particularly in high-60 

density urban areas, the heterogeneity within cities may cause large variations in 61 

meteorological indicator values, which are difficult to reflect by data from observation 62 

networks 16. This study will focus on mapping the two thermal comfort indicators, Ta and RH. 63 

Ta is one of the most important indicators of what constitutes a measure of thermal 64 

comfort 17. Land surface temperature (LST) is often used as a proxy for the spatial distribution 65 

of air temperature 18, because satellite imagery can provide spatially continuous data for a large 66 

spatial extent. However, LST and air temperature still cannot be equated19. LST cannot directly 67 

reflect thermal comfort as well as Ta. The spatiotemporal changes of Ta on small scales are 68 

largely affected by the landscape pattern of land cover and land use (LULC), because the land 69 

surface changes the boundary layer climate condition 20. Therefore, obtaining accurate Ta 70 

spatial patterns with high spatiotemporal resolutions is not easy. 71 

Previous studies have carried out many attempts at Ta mapping. There are three broad 72 

categories of common Ta mapping methods. The first is traditional spatial interpolation 73 

methods, which include Kriging interpolation 21 and inverse distance weighted (IDW) 74 

interpolation 22. The interpolation methods follow "the first law of geography", which states 75 
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that the near things are more related to the distant things 23. They require that the sampling 76 

points be distributed as evenly as possible across the study area and that only the planar 77 

distances between them are considered 21. Therefore, the uneven distribution of sampling points 78 

in reality and the differences in geographical conditions can introduce errors. The second is 79 

climate models, which can be subdivided into macro-scale (i.e. global or regional scale), 80 

mesoscale and micro-scale climate models 24-26. Climate models are a class of mechanistic 81 

models that simulate the spatial and temporal variability of different elements through the 82 

action of physical mechanisms 27. Climate models can simulate the spatial pattern of Ta at the 83 

hourly or minute temporal resolution, while their spatial resolution varies from 50 km to 1 m 84 

as the scale of the model varies from large to small 24,25. Macro-scale climate models with 85 

coarse spatial resolution often require simplifying elements such as urban structure 24. 86 

Mesoscale climate models have a more complex structure, considering land surface-87 

atmosphere interactions, so they can only cover horizontal scales of tens to hundreds of 88 

kilometres with kilometre-level resolution 26. As the scale is further downscaled, micro-scale 89 

climate models with better spatial resolution make strict demands on computational resources, 90 

computational time, model complexity and fine historical input data 25. As a result, micro-scale 91 

climate models with high spatial resolutions are difficult to use for city-scale Ta simulations 28. 92 

In addition, the higher temporal resolution also means more demands on computing resources. 93 

Therefore, it is difficult to combine both high spatial resolution and high temporal resolution 94 

in urban-scale Ta mapping through climate models. The third is regression methods, which 95 

estimate the distribution of Ta in space and time by establishing quantitative relationships 96 

between Ta and the relevant elements. In addition to traditional simple or multiple linear 97 

regression 29,30 including geographically weighted regression (GWR) 22, machine learning (ML) 98 

is a popular approach. Typical ML include support vector regression (SVR) 31, artificial neural 99 

network (ANN) 32, random forest (RF) 33 and gradient boosting decision tree (GBDT) 34. 100 
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Machine learning can fit non-linear correlations, providing a higher estimation accuracy than 101 

traditional linear regression. Moreover, ML is more applicable to mining relationships with 102 

multiple variables and large data volumes. In general, satellite remote sensing imagery 103 

providing metrics such as reflectance, LST and Normalized Difference Vegetation Index 104 

(NDVI) are used as variables to predict the Ta pattern35,36. 105 

RH is another crucial indicator of thermal comfort. Similar to Ta, the spatial distribution 106 

of RH can be estimated by three routes: traditional spatial interpolation37,38, climate models28,39 107 

and regression40-42. Likewise, the advantages and disadvantages of each type of RH mapping 108 

are the same as those of Ta mapping before mentioned. We found fewer studies on RH mapping 109 

than Ta, especially RH mapping using machine learning. However, a recent study reported an 110 

increase in the temporal resolution of RH mapping by machine learning to the daily scale, while 111 

most RH mapping studies focus on the monthly scale41. This study only used historical RHs as 112 

the driving factors for estimating the current RH. 113 

Overall, previous studies of thermal comfort datasets have had a few limitations. First, the 114 

high spatial resolution of thermal comfort datasets is not well balanced with the high temporal 115 

resolution43. Second, the effect of LULC, which is a non-negligible factor influencing near-116 

surface local climatic conditions20, is rarely considered in Ta and RH mapping. Third, the 117 

thermal comfort dataset pays insufficient focus on high-density cities and summer seasons, 118 

which are closely related to the well-being of large populations in the context of a warming 119 

climate but require high spatial and temporal resolution. 120 

Therefore, in this study, we aimed to generate a spatiotemporal hourly thermal comfort 121 

dataset, including air temperature and relative humidity, at a 100m resolution for Hong Kong, 122 

a typical high-density city. This dataset covers the summer season (May to September) from 123 

2008 to 2018. To better depict the spatial pattern, we employed ML algorithms and 124 

simultaneously considered the effects of meteorological drivers, landscape drivers and 125 
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topography. Notably, the calculation of the landscape driver is based on a detailed LULC 126 

classification, local climate zone (LCZ), which subdivides the LULC types within the city. 127 

2. Data and method 128 

The workflow for generating the thermal comfort dataset in this study is shown in Fig.1. 129 

The detailed data preparation and implementation methods are illustrated in the subsequent 130 

subsections. 131 

  132 

Fig. 1  The workflow in this study 133 

2.1. Study area 134 

Hong Kong is located on the eastern side of the Pearl River estuary and is part of a 135 

transitional region with a tropical and subtropical monsoon climate. It is bordered to the north 136 
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by Shenzhen, one of the four first-tier cities in mainland China. Hong Kong is an international 137 

financial, shipping and trading centre with a developed economy, one of the core cities of the 138 

Guangdong-Hong Kong-Macao Greater Bay Area and one of China's windows to the outside 139 

world. Moreover, as Hong Kong is mainly hilly, with only about 20% of its land in the lowlands, 140 

it makes Hong Kong one of the world's most famous high-density cities. Meanwhile, the 141 

heterogeneity brought about by the complex topography also makes it an ideal study area for 142 

applying machine learning for Ta and RH mapping with high spatial and temporal resolution. 143 

2.2. Meteorological data (SY) 144 

Meteorological data are provided by the Hong Kong Observatory (HKO) weather stations. 145 

These weather stations are located throughout Hong Kong, providing hour-by-hour 146 

meteorological observations from 2008 to 2018. Due to the development and management of 147 

weather stations, the number of weather stations from 2008 to 2018 ranged from 36 to 46. Fig. 148 

2 shows the distribution of these weather stations in 2018. These weather stations cover various 149 

parts of Hong Kong well, with each station averaging 4005.1 metres from its nearest 150 

neighbouring station. 151 
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152 

Fig. 2  Study area and the distribution of weather stations in 2018. Each red dot represents one weather 153 

station of Hong Kong Observatory 154 

155 

The weather stations observed five meteorological metrics at hourly intervals, including 156 

air temperature (Ta), relative humidity (RH), precipitation (PRE), barometric pressure (PRS) 157 

and wind speed (VV2). Meanwhile, the latitude and longitude coordinates and elevation of the 158 

weather station were also provided. The observations were used as meteorological drivers in 159 

the subsequent machine-learning-based Ta and RH mapping. Of course, Ta was not used as a 160 

meteorological driver when estimating Ta to avoid circular arguments. The same was true for 161 

RH when estimating RH. 162 

To execute the well-trained machine learning model, we needed to input the spatial pattern 163 

of the meteorological drivers. Thus, we employed the Kriging interpolation to interpolate the 164 

observed meteorological drivers hour by hour into 100 m resolution maps. 165 
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2.3. LCZ data and landscape drivers 166 

In previous studies, the LCZ has been demonstrated to be closely related to the urban 167 

thermal environment, due to its unique definition of land cover types 44-48. The LCZ typically 168 

contains 17 land cover types 49, sometimes subdivided into an additional wetland type from the 169 

water 50,51 (Table 1). It includes both urban-type LCZs and natural-type LCZs. However, unlike 170 

traditional land cover classifications, LCZs subdivide urban-type land into ten categories based 171 

on physical properties. These physical properties include building density, height, material and 172 

area, which depict the urban morphology in detail and are closely linked to the near-surface 173 

environment 49. 174 

Table 1  LCZ types and simplified definitions in Chen et al. 50 175 

LCZ types Simplified definitions 

LCZ 1 Compact high-rise 

LCZ 2 Compact mid-rise 

LCZ 3 Compact low-rise 

LCZ 4 Open high-rise 

LCZ 5 Open mid-rise 

LCZ 6 Open low-rise 

LCZ 7 Lightweight low-rise 

LCZ 8 Large low-rise 

LCZ 9 Sparsely built 

LCZ 10 Heavy industry 

LCZ A Dense trees 

LCZ B Scattered trees 

LCZ C Bush, scrub 

LCZ D Low plants 

LCZ E Bare rock or paved 

LCZ F Bare soil or sand 

LCZ G Water 

LCZ H Wetlands# 

The generation of LCZ datasets is not easy, especially for multi-year, as it requires 176 

constructing multi-year sample sets for the numerous LCZ types. Therefore, in this study, we 177 

employed the 2008-2018 LCZ dataset with 100 m resolution produced by Chen et al. 50, which 178 

covers Hong Kong. This LCZ dataset is based on a multi-year comparable LCZ sample set. It 179 

performs classification employing the Google Earth Engine (GEE) platform, considering 180 

satellite remote sensing images such as Landsat 8, Landsat 5, Sentinel-1 SAR GRD, Sentinel-181 

2 MSI, VIIRS and DMSP OLS, as well as GMTED2010 (Global Multi-resolution Terrain 182 
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Elevation Data 2010) 50. The included remote sensing images are derived from different sensors, 183 

including spectral, radar, nighttime light and terrain, providing multi-dimensional information 184 

for the LCZ classification. As a result, this LCZ dataset achieves an overall accuracy of 61.61% 185 

over a multi-year span, which is a comparable and acceptable accuracy to most current LCZ 186 

classification products 50. 187 

Moreover, landscape metrics have been proven essential for mapping fine air temperature 188 

patterns 50,52. Landscape metrics are developed from the "patch-corridor-matrix" theory in 189 

landscape ecology 53. They provide pictures of the landscape's characteristics through three 190 

levels of metrics, including patch-, class- and landscape-level. As the names imply, the patch-191 

level metrics reflect the characteristics of a single patch of land covers, such as area, perimeter 192 

and shape. Class-level metrics capture the spatial pattern of the characteristics of all patches of 193 

a specific land cover type. While the landscape-level metrics provide the picture of how all 194 

land cover types are mixed in space. Of course, LCZ can also be combined with landscape 195 

metrics to reflect LCZ-based landscape characteristics. Using different search radii when being 196 

calculated, landscape metrics can reflect the landscape characteristics within different radii 197 

around a location. 198 

In this study, we employed Fragstats software (version 4.2), a well-established and widely 199 

used landscape metric software, to calculate LCZ-based landscape metrics for Hong Kong over 200 

the study period. Meanwhile, referencing previous studies, we calculated landscape metrics 201 

from 100 m to 1000 m search radius. That is, when traversing each grid to calculate the different 202 

landscape metrics, we took each grid as a reference point and calculated the different landscape 203 

metrics with different search radius from 100m to 1000m in 100m intervals. The selected 204 

landscape metrics are listed in Table S1. As there are 18 LCZ types, we finally generated a vast 205 

number of landscape drivers, 13550 in total. However, to reduce the computational burden of 206 

subsequent machine learning modelling and to select landscape indices of general interest, 207 
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those landscape indices that had valid values at less than 50% of the weather stations were 208 

excluded. Therefore, only 226 landscape metrics became our preliminary landscape drivers for 209 

the subsequent machine learning modelling. 210 

2.4. Mapping hourly air temperatures and relative humidity using machine learning 211 

In this study, we employed the random forest (RF) model 54, a well-performing, efficient 212 

and widely used machine learning algorithm, for hourly Ta and RH mapping in Hong Kong. 213 

The RF model consists of a number of decision trees that vote to determine the outcome of 214 

regression or classification 55. With these "weak" but varied decision trees, the RF model can 215 

integrate them into a powerful regressor or classifier. Because of this structure, RF models can 216 

be used to solve non-linear problems and effectively avoid overfitting 56. Moreover, the RF 217 

model can evaluate the importance of each driving factor 57, which is crucial for the subsequent 218 

selection of the key drivers and for improving the efficiency of our models. 219 

We used the Python-based "scikit-learn" extension package (Version 0.24.2) to construct 220 

annual RF models for estimating Ta and RH, respectively. In the case of the RF model for 221 

estimating Ta, the previously prepared meteorological and landscape drivers were fed into the 222 

RF model, as well as the current time (hour), longitude, latitude and elevation. The 223 

meteorological drivers include RH, PRE, PRS and VV2 for the previous 24 hours. Thus, a total 224 

of 326 preliminary driving factors were fed into the RF model. However, the large number of 225 

driving factors increases the training and prediction time of the model and takes up more 226 

computational resources. Moreover, most of these driving factors can not improve the model 227 

accuracy. Therefore, we trained the RF model using the 2018 data and selected key driving 228 

factors based on their importance. We employed the permutation importance provided by 229 

scikit-learn as a metric for importance assessment, which is suitable in cases where a feature 230 

has many unique values. The permutation importance of a feature is defined as the deviation 231 
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of the metric value from the baseline metric value after the permutation of this feature. We 232 

executed the training of the RF model 10 times, taking the mean value of permutation 233 

importance as the importance of driving factors. These driving factors were ranked in 234 

descending order of permutation importance, and we selected the top driving factors that 235 

contributed more than 98% in total importance as key driving factors. These key driving factors 236 

were then applied to the modelling of the other years. At the same time, we found the optimal 237 

number of decision trees by adjusting the n_tree parameter. The same process was followed in 238 

the RF modelling for estimating RH, but the only difference was that Ta replaced RH as a 239 

meteorological driver. 240 

In constructing an RF model, 70% of the samples were used as training samples, while 241 

the remaining 30% were used as test samples. Due to the characteristic of the RF model, 242 

approximately 30% of the training samples are not actually involved in the model training in 243 

each modelling process, which are called out-of-bag samples. The goodness-of-fit, R2, 244 

calculated using them is called the oob_score, which can be used to measure the model 245 

accuracy. Besides, we also calculated three accuracy metrics for the models using the test 246 

samples. They are R2, the root mean square error (RMSE) and the mean absolute error (MAE). 247 

These four accuracy metrics provide a comprehensive picture of the accuracy of the RF models. 248 

2.5. The thermal index - Net Effective Temperature (NET) 249 

Previous studies have developed different thermal indices to reflect the combined or 250 

certain aspects of the thermal environment 6,43,58. To reflect the thermal environment under the 251 

combined influence of Ta and RH, we employed a thermal index, Net Effective Temperature 252 

(NET)58. In addition, NET is adopted by the Hong Kong Observatory (HKO), so the NET 253 

evaluation result can directly serve the HKO 59. NET was first introduced in 1937 with the 254 

name Effective Temperature58. It was initially proposed to measure the effect of RH in hot 255 
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weather. Later it was improved to consider the effect of wind on human thermal comfort58. 256 

That is, the stressful feeling can be exacerbated by calm wind and humidity in hot weather and 257 

strong wind and humidity in cold weather59. Therefore, this improvement makes it applicable 258 

to human thermal comfort in both hot and cold weather60. NET is determined by Ta, RH and 259 

wind speed and can be described by the following equation58: 260 

𝑁𝐸𝑇 =  37 −
37−𝑇𝑎

0.68−0.0014×𝑅𝐻𝑈+
1

1.76+1.4𝑣0.75

− 0.29 × 𝑇𝑎 × (1 − 0.01 × 𝑅𝐻𝑈)   (Eq. 1)261 

where the unit of NET is °C, Ta represents the air temperature (in ℃), RH is the relative 262 

humidity (in %), and 𝑣 means the wind speed (in m/s). The setting of the constants in Eq. 1 263 

was applied in a previous study of Hong Kong59. Since this study only generates Ta and RH 264 

mapping, 𝑣 will be set to 0 when calculating NET. Hence, the NET calculated in this study 265 

reflects the most stressful thermal environment felt in the summer in a calm wind condition. 266 

3. Results267 

3.1. Validation of the hourly Ta maps 268 

By inputting 2018 data, we used the 326 preliminary driving factors to find the optimal 269 

n_tree from 20 to 500 for the RF model for estimating Ta, as shown in Fig. 3(a). The results 270 

show no significant improvement in the R2 value of the model after the n_tree exceeds 100. 271 

Therefore, we used the top 90 drivers that contributed the most in the importance assessment 272 

when n_tree was 100 as the key drivers. The importance assessment showed that the 273 

importance score of these 90 key drivers (0.717) contributed 98.3% of the total importance 274 

score of the preliminary driving factors (0.729). Further, we searched from 30 to 500 for the 275 

optimal n_tree when modelling the Ta estimation using these 90 key drivers (Fig. 3(b)). The 276 

results show that the R2 value of the model also reached the highest when the n_tree was 100. 277 
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Therefore, we set n_tree to 100 when using the 90 key drivers for RF modelling for Ta 278 

estimation for each year. 279 

 280 

Fig. 3  The relationship between n_tree and R2 in RF modelling for the Ta estimation by (a) modelling 281 

with all preliminary drivers and (b) modelling with the 90 key drivers. 282 

 283 

Among the 90 key drivers for estimating Ta, 78 were meteorological drivers, while 10 284 

were landscape drivers (see Table S2). Meanwhile, current time and elevation were also 285 

selected as key drivers. When estimating the Ta using these 90 drivers, the five most important 286 

drivers and their contributions were 38.0% for RH_1Hours_Before, 10.9% for Current_time 287 

(hour), 5.0% for mw03_ai (Aggregation Index at a radius of 300 m), 4.4% for elevation and 288 

3.8% for RH_22Hours_Before. In total, they contributed 62.1% of the importance. It is evident 289 

from this that meteorology, landscape, time and topography all play a non-negligible role in 290 

estimating the spatial distribution of Ta. 291 

We then conducted RF modelling to estimate Ta for each year using the determined key 292 

drivers and n_tree. The accuracy of the RF models and the number of weather stations for each 293 

year are shown in Table 2. The R2 and oob_score, calculated using the test samples and out-of-294 

bag samples, respectively, show similar accuracies, with mean values of 0.8723 and 0.8652. 295 

The values of the RMSE for each year range from 0.9648°C to 1.3028°C, with a mean value 296 
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of 1.1160°C. At the same time, MAE values ranged from 0.7147°C to 0.9838°C, with a mean 297 

value of 0.8227°C. Overall, the accuracy metrics show the RF models for estimating Ta 298 

achieved good accuracy. 299 

Table 2  The accuracy of the RF models for estimating Ta for each year 300 

Year R2 oob_score RMSE (℃) MAE (℃) 
Numbers of 

weather station 

2018 0.9156 0.9070 0.9676 0.7147 44 

2017 0.8528 0.8456 1.2028 0.8791 45 

2016 0.8635 0.8530 1.1379 0.8421 46 

2015 0.8854 0.8816 1.0088 0.7413 46 

2014 0.8926 0.8881 1.0522 0.7589 44 

2013 0.8602 0.8521 1.1589 0.8473 44 

2012 0.8916 0.8862 0.9648 0.7298 44 

2011 0.8672 0.8630 1.1475 0.8275 44 

2010 0.8363 0.8214 1.3028 0.9838 42 

2009 0.8815 0.8781 1.1205 0.8356 39 

2008 0.8490 0.8415 1.2125 0.8898 36 

Mean 0.8723 0.8652 1.1160 0.8227 — 

 301 

Further, we validated the accuracy of the RF models for estimating Ta at different hours. 302 

Fig. 4 shows the R2 values of the RF models for estimating Ta for different years at different 303 

hours. The RF models of different years showed similar performance. In general, the RF 304 

models achieved satisfactory R2 at different hours. Still, relatively, the models maintained a 305 

more stable and higher R2 during nighttime (i.e. 19:00 to 5:00). A decrease in R2 occurred 306 

during the sunrise period (i.e. 6:00 to 9:00), and a steady recovery followed. Scatter plots of 307 

observed versus predicted Ta values for each hour based on the test samples for each year are 308 

shown in Figures S1-S11. They all exhibit excellent linear relationships distributed around the 309 

1:1 diagonal. 310 
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 311 

Fig. 4  R2 of the RF models for estimating Ta for different years at different hours. 312 

 313 

Fig. 5 shows the RMSE of the RF models for estimating Ta for different years at different 314 

hours. Similar to R2, the RF model's RMSE performed relatively better at night. Moreover, 315 

from 6:00 to 9:00, RMSE showed an increase. However, the difference is that the RMSE 316 

remains steadily at relatively high values for most of the subsequent daytime hours. It was until 317 

dusk (i.e. 17:00 to 19:00) that the RMSE fell back to a lower value. An almost identical trend 318 

is seen in the MAE, shown in Figure S12. 319 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17 

 

 320 

Fig. 5  RMSE of the RF models for estimating Ta for different years at different hours. 321 

 322 

3.2. Validation of the hourly RH maps 323 

As with the modelling process for estimating Ta, in the RF modelling for estimating RH, 324 

we also conducted a key driver selection based on importance assessment and a search for the 325 

optimal n_tree using 2018 data. The modelling results for estimating RH using all preliminary 326 

driving factors showed that the R2 of the RF model no longer improved significantly when the 327 

n_tree exceeded 100 (Fig. 6(a)). Therefore, we selected the top 90 drivers in the importance 328 

assessment when n_tree was 100 as key drivers. The importance scores of these 90 key drivers 329 

(1.083) accounted for 98.4% of the scores of all preliminary drivers (1.100). Then, we found 330 

the optimal n_tree based on these 90 key drivers. Then, we find the optimal n_tree based on 331 

these 90 key drivers. Fig. 6(b) shows that after the n_tree exceeds 100, the R2 value of the 332 

model shows an oscillation without significant improvement. Therefore, we set the n_tree of 333 

the RF model to 100 and applied it to the modelling for estimating RH for other years using 334 

these 90 key drivers. 335 
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 336 

Fig. 6  The relationship between n_tree and R2 in RF modelling for the RH estimation by (a) modelling 337 

with all preliminary drivers and (b) modelling with the 90 key drivers. 338 

 339 

Of these 90 key drivers for RH modelling, 83 were meteorological drivers, and 6 were 340 

landscape drivers, while current time was also included (see Table S3). The top five most 341 

important drivers were Ta_1Hours_Before, Ta_2Hours_Before, Ta_22Hours_Before, 342 

Current_time(hour) and mw02_frac_mn (Mean of Fractal Dimension Index at a radius of 200 343 

m), which contributed 55.3%, 5.3%, 3.0%, 3.0% and 2.6% importance, respectively. The top 344 

five drivers show that temperature, time and landscape are critical for estimating RH, as they 345 

together contribute 69.3% importance. However, unlike the key drivers for Ta, elevation did 346 

not feature as a key driver for RH. 347 

The selected key drivers were used to estimate RHs for different years. Table 3 exhibits 348 

the accuracy of the models in different years. The R2 values calculated using the test samples 349 

ranged from 0.7660 to 0.8258 with a mean value of 0.7970, while the oob_score calculated 350 

using the out-of-bag samples was similar with a mean value of 0.7870. In addition, the RMSE 351 

values for these RF models ranged from 4.8207% to 5.7257%, with a mean value of 5.3816%. 352 

The MAE values ranged from 3.4239% to 4.1171%, with a mean value of 3.8641%. The 353 

accuracy validation results reflect the reliability of the RF models used to estimate RH across 354 

years. 355 
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Table 3  The accuracy of the RF models for estimating RH for each year 356 

Year R2 oob_score RMSE (%) MAE (%) 

2018 0.8258 0.8148 5.3915 3.8074 

2017 0.7937 0.7804 5.2699 3.7796 

2016 0.7749 0.7644 5.4954 4.0460 

2015 0.7910 0.7836 5.5663 3.9594 

2014 0.7660 0.7514 5.5258 3.8667 

2013 0.8011 0.7947 4.8690 3.5539 

2012 0.7994 0.7831 5.4583 4.0021 

2011 0.8048 0.7986 5.4245 3.9064 

2010 0.8155 0.811 4.8207 3.4239 

2009 0.7916 0.7837 5.6502 4.1171 

2008 0.8031 0.7915 5.7257 4.0428 

Mean 0.7970 0.7870 5.3816 3.8641 

357 

Furthermore, we validated the performance of the RF model for estimating RH at different 358 

hours. Fig. 7 shows the R2 of the RF models for estimating RH for different years at different 359 

hours. It can be seen that the R2 curves for the RH modelling show a consistent trend across 360 

the different years but with more fluctuations than Ta's. During the late night hours (i.e. 23:00 361 

to 6:00), R2 remained more stable at relatively high values, but during the sunrise period (i.e. 362 

7:00 to 8:00), R2 showed a decrease. However, the R2 values then climbed up to reach a 363 

maximum at 16:00 to 17:00, even higher than those during the nighttime. At dusk and in the 364 

subsequent period (i.e. 18:00 to 22:00), the R2 values again decreased and fluctuated. In 365 

addition, scatter plots of the hourly observed versus predicted RH values for each year of the 366 

test samples are shown in Figures S13-S23. They all exhibit a good linear relationship 367 

distributed around the 1:1 diagonal. 368 
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 369 

Fig. 7  R2 of the RF models for estimating RH for different years at different hours. 370 

 371 

Regarding error metrics, the RF models for estimating RH had similar RMSE and MAE 372 

values and trends at different hours. Fig. 8 presents the RMSE of the RF models for estimating 373 

RH for different years at different hours, while the performance of the MAE is shown in Figure 374 

S24. Here we take the performance of RMSE as an example. Similar to R2, the RMSE of the 375 

RF models for estimating RH performs better and keeps stable during the late night hours (i.e. 376 

23:00 to 6:00). However, during the sunrise period (i.e. 7:00 to 9:00), the RMSE value 377 

gradually increased. In addition, it remained high for most hours in the daytime (i.e. 9:00 to 378 

15:00). As dusk approaches and beyond(i.e. 16:00 to 22:00), the RMSE value gradually 379 

decreases and fluctuates somewhat. 380 
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 381 

Fig. 8  RMSE of the RF models for estimating RH for different years at different hours. 382 

3.3. Spatial performance of the hourly Ta maps 383 

In this study, we also explored the spatial performance of the RF model for estimating Ta. 384 

For presentation purposes, we aggregated all estimated hourly Ta maps by different hours at 385 

mean values. In addition, we compared the Ta pattern using the conventional Kriging 386 

interpolation, which is based on the mean Ta values of each weather station at different hours. 387 

For the 24 hours of the day, we chose three representative hours for the presentation: 4:00, 388 

which is the hour before sunrise, when temperatures and human activity drop to their lowest 389 

level after a night; 14:00, which is generally the hottest hour in a day; and 21:00, which is 390 

shortly into the night, when temperatures have dropped, but people are usually still active. 391 

Fig. 9 shows the difference between the Ta spatial patterns estimated by the RF model 392 

and the Kriging interpolation in the 2018 summer season at the representative hours. It can be 393 

seen that the Ta maps estimated by the RF model provide more spatial detail, whereas the Ta 394 

maps assessed by kriging interpolation do not. Furthermore, as the topography effect is not 395 

considered, the Ta spatial pattern with Kriging interpolation only correlates with the geospatial 396 
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distribution of weather stations, i.e. there is more Ta spatial detail where the weather stations 397 

are denser. Nevertheless, comparing the LCZ maps, we can see that the Ta spatial pattern 398 

estimated by the RF model shows a correlation out of topography. That is, Ta is lower in hilly 399 

areas covered by dense trees (LCZ A) and vegetation (LCZ D) than in lowlands. 400 

Fig. 9 also zooms in on the Kowloon Peninsula, one of the core urban areas of Hong Kong. 401 

Comparing the LCZ maps reveals that Ta is higher in the core urban area, with a mixture of 402 

different types of buildings. Furthermore, comparing the Ta spatial pattern at 21:00 and 4:00, 403 

it can be seen that the core urban area cools more slowly at night than the fringes of the urban 404 

area. 405 
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 406 

Fig. 9  The difference between the RF model and the Kriging interpolation in estimating the spatial pattern 407 

of Ta in the 2018 summer season. 408 

 409 

3.4. Spatial performance of the hourly RH maps 410 

We also explored the spatial performance of the hourly RH maps estimated by the RF 411 

model. As with the hourly Ta maps, we calculated the mean values of the RH maps at different 412 
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hours for presentation by aggregation. The RH maps evaluated with Kriging interpolation using 413 

the mean RH values for each weather station at different hours were still used as controls. 414 

Similarly, 21:00, 4:00 and 14:00 have been chosen as representative hours. 415 

Fig. 10 shows the difference between the RF model and the Kriging interpolation in 416 

estimating the spatial pattern of RH in the 2018 summer season. Overall, the RH maps ars not 417 

as spatially heterogeneous as the Ta maps. Also, the RH spatial patterns estimated by the RF 418 

model and the Kriging interpolation are generally similar. However, because it only considers 419 

RH values at weather station locations, the Kriging interpolation shows some linear transitional 420 

features in the spatial distribution of RH where weather stations are relatively sparse. In 421 

contrast, the RF model for estimating RH provides more spatial detail due to considering 422 

landscape drivers. Moreover, the north-western part of Hong Kong becomes the area where the 423 

daily variation in RH is more pronounced, i.e. it is wetter there at 4:00 and drier at 14:00. 424 

Furthermore, Fig. 10 zooms in on the central part of Hong Kong, where there are large 425 

areas of vegetation-covered mountains and densely populated towns. Comparing the RH map 426 

with the LCZ map shows that the RH values tend to be lower in the mountainous areas where 427 

the landscape patch pattern is simpler and where there are mainly continuous patches of dense 428 

trees (LCZ A) and low plants (LCZ D). 429 
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 430 

Fig. 10  The difference between the RF model and the Kriging interpolation in estimating the spatial 431 

pattern of RH in the 2018 summer season. 432 

3.5. The thermal index distribution in Hong Kong 433 

Ta and RH provide different dimensions to portray the thermal environment, but we still 434 

need a thermal index as a composite indicator of the thermal environment. In this study, we 435 

employed the NET as the thermal index. Furthermore, NET is adopted by the HKO 59, so the 436 
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NET-based thermal comfort map could be a useful reference to HKO. NET reflects the human 437 

thermal comfort considering the combined effect of Ta, RH and wind speed. As wind speed 438 

maps are not provided in this study, the NET map obtained here can be considered the most 439 

stressful level of human thermal comfort felt in a calm wind condition during the summer 440 

season. 441 

Fig. 11 shows the difference between NET and Ta in depicting the spatial pattern of the 442 

thermal environment in the 2018 summer season. As it considers the role of RH, NET shows a 443 

subtle difference from Ta at late night (4:00) and midday (14:00). In the north-western part of 444 

Hong Kong, for example, NET is higher than Ta at 4:00 and lower than Ta at 14:00 because it 445 

is more humid at late night and drier during the day there compared to other areas. It means 446 

that people there will feel hotter than the actual air temperature at night, while the thermal 447 

comfort will be relatively relieved during the daytime. 448 

Fig. 11 also zooms in on the Shatin District, which has a long, narrow built-up area 449 

surrounded by hills on three sides. Here, we can still find the pattern that the NET of the built-450 

up area is higher than Ta at night (Fig. 11 (a) and (b)), while the opposite is observed during 451 

the daytime (Fig. 11 (c) and (d)). Moreover, the difference between the NET of the hilly area 452 

and the built-up area is more significant than that of Ta at night (Fig. 11 (a) and (b)), while it 453 

is smaller than Ta during daytime (Fig. 11 (c) and (d)). In other words, at night, people feel the 454 

built-up area hotter than the hilly area more strongly than the difference in actual air 455 

temperature. In contrast, during the daytime, people perceive the difference in temperature 456 

between the built-up area and the hilly area to be smaller than it actually is. 457 
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 458 

Fig. 11  The difference between NET and Ta in depicting the spatial pattern of the thermal environment in 459 

the 2018 summer season. 460 

4. Discussion 461 

4.1. Differences in driving factors in estimating Ta vs RH 462 

As aforementioned, the meteorological drivers played the most important role in the RF 463 

model for estimating Ta, accounting for 78 of the 90 key drivers (Table S2). Of these 464 

meteorological drivers, RH, PRS and VV2 for the previous 24 hours were all included, while 465 

PRE was selected for only 6 hours. Regarding importance, RH, PRS, VV2 and PRE contributed 466 
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52.4%, 12.3%, 4.0% and 1.6%, respectively. Besides, the landscape drivers, current time (hour), 467 

and elevation contributed 14.4%, 10.9% and 4.4%, respectively. 468 

The meteorological drivers also played the most critical role in the RF model for 469 

estimating RH (Table S3). Ta, PRS and VV2 for the previous 24 hours were all included, while 470 

PRE was also included for 11 hours. In the importance assessment, Ta, PRS, VV2 and PRE 471 

contributed 70.8%, 9.7%, 6.4% and 2.4%, respectively. Simultaneously, the landscape drivers 472 

and current time contributed 7.7% and 3.0%, respectively. 473 

We can find that Ta and RH are the most critical drivers of each other, which reflects their 474 

clear correlation. However, Ta has a greater influence on RH than RH has on Ta. In addition, 475 

the landscape has different influence degrees on Ta and RH. Ta is more influenced by the 476 

landscape, including a non-negligible influence of Ta by altitude. This is reflected in the higher 477 

correlation of the hourly Ta distribution with the LCZ-based landscape and topography. 478 

4.2. The performance difference between daytime and nighttime of the models 479 

Overall, the RF models for estimating Ta and RH both perform better during nighttime, 480 

especially at late night (23:00 to 5:00). Then, they both show a decrease in accuracy during the 481 

sunrise period (6:00 to 9:00). Moreover, their estimation errors remain at a high level for most 482 

of the subsequent daytime period (10:00 to 15:00). However, the R2 of the model for estimating 483 

RH gradually increases during this period as RH differences between regions become larger 484 

during daytime. The models' errors decrease progressively until after the sun gradually sets 485 

(after 16:00). Similar better model performance during nighttime has been seen in previous 486 

studies of hourly Ta mapping 61. Thus, we infer that solar radiation is one of the main factors 487 

affecting Ta and RH mapping accuracy, as it is the most important source of energy driving 488 

weather variability. 489 
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4.3. Pattern variability of Ta and RH 490 

In general, the spatial pattern of Ta shows a higher correlation with the LCZ-based 491 

landscape. Ta is lower in hilly areas than in built-up areas in the lowlands. Whereas the spatial 492 

pattern of RH is less sensitive to the response of the landscape, only slightly tending to be 493 

wetter in hilly areas with simpler landscapes. In addition, the value range of RH is greater 494 

during daytime than nighttime. Nevertheless, both Ta and RH show the most remarkable 495 

influence by the landscape within a 200-300 m radius. This suggests that the scale effects 496 

affecting the thermal environment can be explored in depth in the future, facilitating more 497 

effective urban planning to improve the thermal environment. 498 

Furthermore, the NET index provides a good overview of the effects of Ta and RH on 499 

human thermal comfort. It reflects some subtle differences that are difficult to perceive when 500 

looking at Ta or RH alone. For example, people in built-up areas feel more stressful human 501 

thermal comfort than actual air temperature during nighttime in the summer season. This 502 

suggests that combining the hourly Ta and RH maps can provide additional information for 503 

assessing human thermal comfort in cities. 504 

4.4. Comparison to other Ta and RH mapping 505 

The accuracy of our hourly Ta and RH mapping is comparable to that of other products. 506 

For Ta mapping, the ML-based hourly Ta mapping was reported to achieve RMSE of 0.8-507 

1.9 °C and MAE of 0.6-1.5 °C 36,61, while on a daily scale, these two metrics were reported to 508 

be 2.0 °C and 1.5 °C 35. In contrast, our hourly Ta mapping has RMSE and MAE of 1.1160°C 509 

and 0.8227°C, respectively, which achieves comparable or even better performance. For RH 510 

mapping, on the other hand, an hourly RH mapping reported RMSEs of 11.3-19.7% 62; an ML-511 

based daily RH mapping could achieve an R2 of 0.71 41, while a summer RH mapping reported 512 

RMSE and MAE of 7.4% and 2.4%, respectively 42. In contrast, our hourly RH mapping has 513 
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R2, RMSE and MAE of 0.7970, 5.3816% and 3.8641%, respectively. Overall, both our Ta and 514 

RH mapping achieved comparable and satisfactory accuracy. 515 

4.5. Potential application 516 

The multi-year summer season hourly thermal comfort dataset proposed in this study 517 

contains Ta, RH and NET maps, which allows it to be applied to many relevant areas. For 518 

example, it can be used to explore the long-term relationship between urban morphology and 519 

the thermal environment and to capture the trend of urban heating 19. Moreover, this dataset 520 

has fine spatiotemporal resolution and focuses on high-density urban areas. Thus, it can be 521 

combined with big data on human activity trajectories to explore real-time heat exposure 63,64 522 

and heat-related health risk assessment 14,15 at a fine spatiotemporal scale. In addition, this 523 

dataset can be used for thermal comfort assessment, which can further guide urban planning, 524 

building design, and the assessment of cooling energy consumption 12,13. 525 

4.6. Limitations and future work 526 

Despite all our efforts, there are still some limitations in this study. First, the spatial pattern 527 

of meteorological drivers was obtained by Kriging interpolation. In the future, finer 528 

meteorological spatial data could reduce the estimation error due to interpolation. Second, the 529 

LCZ maps that calculated the landscape drivers introduced their errors. The increasing 530 

accuracy of LCZ classification in the future will reduce this part of the error. Third, the previous 531 

inferred that solar radiation might be an essential driver of hourly Ta and RH mapping, but this 532 

study did not consider the drivers directly related to solar radiation. Because Hong Kong is 533 

located in a monsoonal climate zone with clouds during most of the summer season, 534 

multispectral remote sensing images that observe the land surface at a near-hourly scale are 535 

difficult to obtain. In addition, the machine learning model for thermal comfort mapping could 536 
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be applied to the whole year and other regions in the future to explore the robustness and 537 

generalisation of the model. 538 

5. Conclusions539 

In this study, we present an hourly thermal comfort dataset for Hong Kong, including Ta 540 

and RH using a machine learning algorithm (RF regression model), which covers the summer 541 

season (May to September) from 2008-2018. Since considering the meteorological driver and 542 

the LCZ-based landscape driver, the thermal comfort dataset provides fine spatial details at 100 543 

m resolution, especially the spatial pattern of hourly Ta presents a closer relationship with the 544 

landscape. Moreover, the validation results show excellent accuracy of the thermal comfort 545 

dataset in both hourly Ta and RH estimations. The mean values of R2, RMSE and MAE for Ta 546 

estimation achieved 0.8723, 1.1160°C and 0.8227°C, respectively, while those for RH 547 

estimation reached 0.7970, 5.3816% and 3.8641%.  Further, the NET calculated by combining 548 

Ta and RH gives a more relevant picture of human thermal comfort. For example, it can reveal 549 

that people in built-up areas feel hotter than the actual temperature at night, thus presenting a 550 

more serious challenge to human thermal comfort. In the future, the hourly thermal comfort 551 

dataset can be combined in depth with studies on big data, health, energy consumption, urban 552 

planning and more to explore the socio-economic and human impact of the thermal 553 

environment. 554 
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