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Abstract  

 

Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) 

supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of 

natural photosynthetic systems and for underpinning the development of artificial photosynthesis. Here we 

examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using 

transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral 

transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results 

show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution 

due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the 

absence of PufY leads to the conformational shift of several LH1 subunits towards the RC, it does not result in 

a marked change in the excitation energy transfer lifetime.  
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Introduction 

Strategies that harness solar energy to produce high-energy fuels are being urgently sought to provide 

alternatives to fossil fuels, which have a significant negative impact on the environment.1 Since the dawn of 

life, photosynthesis has been used by nature to convert solar energy into chemical energy, which is essential for 

the survival and sustenance of life on Earth.2,3 The photosynthetic systems of purple bacteria provide a model 

for exploring the photodynamic steps required for trapping sunlight and converting it to a useful fuel. In purple 

phototropic bacteria, the essential photosynthetic unit is composed of a reaction center (RC) encircled by light-

harvesting complex 1 (LH1) forming the RC-LH1 core supercomplex, which utilizes energy from sunlight to 

drive the primary redox reactions of anoxygenic photosynthesis.4 Understanding the structures and energy 

transfer of natural RC-LH1 complexes is paramount in uncovering the mechanisms of anoxygenic 

photosynthesis and underpinning the development of artificial photosynthesis. 

High-resolution cryo-electron microscopy (cryo-EM) structures of the RC-LH1 supercomplexes of the model 

purple bacterium, Rhodobacter (Rba.) sphaeroides 2.4.1 have been recently obtained.5 The wild-type (WT) 

Rba. sphaeroides RC-LH1 complexes form both monomers and dimers in cells, comprising LH1 α and β-

subunits, RC H, L, and M subunits, as well as the PufX and PufY (the latter was also named protein-Y or 

protein-U) transmembrane (TM) polypeptides. The monomeric RC-LH1 consists of one RC surrounded by a 

LH1 ring of 14 αβ-heterodimers with a large gap adjacent to PufX and PufY (Figure 1a); the RC–LH1 dimer 

contains a continuous S-shaped array of LH1 αβ-subunits surrounding two RCs, with two copies of PufX located 

in the center, mediating the dimerization of two C-shaped monomers (Figure S1a, 1b). The PufX peptide is 

made up of 80 amino acids and has three parts: a short N-terminal tail, a central transmembrane helix, and a C-

terminal loop. The C-terminal loop links to the RC-L subunit on the periplasmic side of RC-LH1, while the N-

terminal tail is near the first LH1 subunit on the cytoplasmic side; the transmembrane helix is positioned 

diagonally to the membrane plane. This unique arrangement of PufX results in a gap within the LH1 ring that 

prevents LH1 subunits from fully encircling the RC, which is important for rapid quinone exchange.5–9 Deletion 

of PufX (denoted ΔpufX) led to only monomeric RC-LH1 supercomplexes to be formed, which consist of fully 

closed LH1 ring of 17 αβ-subunits around the RC, thereby resulting in a loss of efficient phototrophic growth 

of the cells.9–12 The PufY peptide is located between the RC and the LH1-13 and LH1-14 subunits near the 

opening on the opposite side of PufX (Figure 1a). Deleting PufY (denoted ΔpufY) resulted in the production of 

both monomeric and dimeric RC-LH1 complexes, in which the final LH1 αβ-pair(s) are lost, forming a larger 

gap within the LH1 ring (Figure 1b, Figure S1c, S1d),5,13 indicating the role of PufY in stabilizing LH1 ring 

which has potential implications for quinone diffusion to the RC. These RC-LH1 variants provide a paradigm 

for exploring the assembly and functional principles of the RC-LH1 core supercomplex. 

Each LH1 αβ-heterodimer of Rba. sphaeroides sandwiches two carotenoids and two bacteriochlorophyll (BChl) 

a chromophores (referred to as LH1BChl), which are responsible for the ~880 nm absorption assigned to the S1 

← S0 electronic transition,13 denoted LH1BChl(Qy). The RC contains a special pair of BChl a (RCP), a single 

carotenoid, and two branches (A and B) with a pseudo two-fold symmetry, each containing one BChl a 

monomer, (RCBChl), one bacteriopheophytin (RCBPhe), and one quinone (Q). Upon absorption of ~880 nm light 

by LH1BChls, energy is transferred to RCP through excitation energy transfer (EET) with a typical lifetime of ~40 

ps.13–17 Subsequent rapid (~3 ps) electron transfer (ET) forms a charge-separated P+BChlA
- singlet state, which 

undergoes further ultrafast (< 1 ps) ET to produce P+BPheA
-.17 Initial charge separation occurs with near unity 

yield via the A-branch. Slower ET processes involve reducing QA (τ ~ 200 ps) and finally QB (τ ~ 100 µs).18,19 

The photoxidized P+ is reduced by cytochrome (Cyt) c2+, and the process repeats, resulting in the formation of 

a doubly reduced QB ligand (QH2, quinol), which leaves the RC-LH1 supercomplex and is then oxidised by 

neighbouring Cyt bc1.10,20,21  

Despite the advances in understanding the structure of Rba. sphaeroides RC-LH1, how the integral TM proteins, 

PufX and PufY, determine the EET process of the RC-LH1 core complex, which is crucial for initial energy 
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conversion, remains unclear. In this work, we probe the picosecond-nanosecond (ps-ns) photodynamics of the 

WT, ΔpufY, ΔpufX, and ΔpufXY (in which both pufX and pufY genes were deleted, and like the ΔpufX 

supercomplex, exists in only monomeric form, Figure S2) RC-LH1 supercomplexes from Rba. sphaeroides 

using transient absorption (TA) spectroscopy.  

Figure 1. Cryo-EM structures of the RC-LH1 monomers from Rba. sphaeroides viewed from the cytoplasmic 

side. a) WT monomer (PDB ID: 7VNY), b) ΔpufY monomer (PDB ID: 7VNM), c) ΔpufX monomer (PDB ID: 

7VOY). The yellow circles highlight the structural differences of ΔpufY monomer and ΔpufX monomer 

compared to that of the WT RC-LH1 monomer.  

Methods 

Genomic deletions of pufX were constructed in WT Rba. sphaeroides using the allelic exchange suicide vector 

pk18mobsacB using the previously described method 5,22. Deletion of pufX (rsp_0255) was performed as 

follows: primer pairs XupF and XupR (AGTCTCTAGAGCACCTATCTCCGCGCTCAG and 

CTGCCCCGAGACTTGTCTCAGTGTGATCGCTCCTCAGTTCAG) and XdownF and XdownR 

(CTGAACTGAGGAGCGATCACACTGAGACAAGTCTCGGGGCAG and 

ATGCAAGCTTGTCGTAGGCGGATTCCGAGC) were used to amplify the regions flanking rsp_0255, fused 

via PCR, digested and cloned into the BamHI and HindIII sites of pk18mobsacB. Regions flanking pufY 

(rsp_7571) could not be fused via the same method, so a 1-kbp synthesized DNA fragment (Genewiz, Germany), 

comprised of two 500-bp regions identical to the up- and downstream DNA sequences flanking rsp_7571, was 

digested and cloned into the same sites of the pK18mobsacB vector. 

The resulting plasmids were transferred from Escherichia (E.) coli S17 cells to Rba. sphaeroides WT (both for 

creating ΔpufX and ΔpufY mutants) and Rba. sphaeroides ΔpufX (using the ΔpufY plasmid; for creating ΔpufXY 

mutants) by conjugation. Selection of transconjugants was performed on M22 agar containing 30 μg·mL-1 

kanamycin, and second recombinants were isolated on M22 medium containing 10% (w/v) sucrose. Successful 

generation of ΔpufX, ΔpufY, ΔpufXY strains was confirmed using PCR using Q5 High-Fidelity DNA Polymerase 

(New England Biolabs, UK) and DNA sequencing (Eurofins). 

Rba. sphaeroides wild-type (DSM 158) and the ∆pufY mutant were grown phototrophically under anoxic 

conditions in liquid M22+ medium23 supplemented with vitamins (0.08 M nicotinic acid, 0.01 M thiamine, 

7.3 mM 4-aminobenzoic acid, 0.4 mM d-biotin) and 0.1% casamino acids, at 29°C in sealed glass bottles under 

a light intensity of 70 μmol photons s−1 m−2 provided by Bellight 70 W halogen bulbs. The non-phototrophic 
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Rba. sphaeroides ∆pufX and ∆pufXY mutant were grown at 29°C in the dark in the same medium under 

microoxic conditions in an orbital shaker set at 150 rpm. 

The cells were harvested via centrifugation at 5,000 g for 10 min at 4°C, washed twice with Tris-HCl (pH 8) 

and resuspended in working buffer (20 mM HEPES-Na, pH 8.0). Cells were disrupted by passage through a 

French press three times at 16,000 psi. Cell debris was removed by centrifugation at 20,000 g for 30 min. 

Membranes were collected by centrifuging the resulting supernatant at 125,000 g for 90 minutes and were 

solubilized by the addition of DDM (n-dodecyl β-D-maltoside) to a final concentration of 3% (w/v) for 15 min 

in the dark at 4°C with gentle stirring. After the insolubilized material was removed by centrifugation at 21,000 

g for 30 min, the clarified supernatant containing solubilized photosynthetic complexes was applied onto the 

10–25% (w/v) continuous sucrose gradients made with working buffer containing 0.01% (w/v) DDM. Gradients 

were centrifuged at 230,000 g for 19 h. For the WT dimers, the RC−LH1 complexes were collected and further 

purified by a Superose 6 gel filtration column (GE). For the WT monomers and mutants, the RC–LH1 

complexes were collected and concentrated using Vivaspin 6 100,000 MWCO columns (Cytiva) for heavy 

complexes (dimers) and Vivaspin 6 50,000 MWCO columns for light complexes (monomers). Simultaneously, 

the buffer containing sucrose was exchanged to working buffer containing 0.01% (w/v) β-DDM. 

TA spectroscopy was performed using a Harpia-TA spectrometer (Light Conversion). The probe and pump are 

generated using a Pharos-SP-10W (Light Conversion) with a 1028nm at 10kHz and FWHM of approximately 

170fs. The pump beam is tuned to the desired wavelength using an OPA (Orpheus, Light Conversion) equipped 

with a 2nd harmonic generation stage (Lyra, Light Conversion) and with a beam diameter of ca. 600 μm (1/e2 

diameter) at the sample. The pump beam is chopped, resulting in an effective pump rate of 5 kHz. The white 

light probe is generated by focusing the 1028nm beam onto a sapphire crystal and is focussed to ca. 400 μm 

beam at the sample. The pump polarisation was altered to ensure that the pump and probe beam interacts with 

the sample at the magic angle of 54.7˚ to eliminate the effect of anisotropy and rotational diffusion on the 

spectra.24 The spectra are measured using a NMOS detector (S3901, Hamamatsu), following dispersion by a 

spectrograph (Kymera 193i, Andor). This configuration enables us to probe between 530-950nm. A pump 

power of 50 µW (effective pumping rate of 5 kHz) was employed for all samples which reduced exciton-exciton 

annihilation (EEA) effects whilst maintaining a good signal to noise ratio required for data analysis.  

The experiments were performed using a 2 mm pathlength quartz cuvette; the solution was not agitated for the 

duration of each experiment (1 hour 20 minutes) and the signal remained stable. Samples were diluted to OD 

of ~0.1 in IMAC buffer containing 50 mM sodium ascorbate and 0.4 mM terbutryn. As reported for previous 

TA experiments on similar complexes the acts as a sacrificial electron donor, whereas the terbutryn acts as QB 

inhibitor, ensuring QA remains reduced throughout the experiments.25,26 The pump wavelength was chosen to 

match the absorption maximum of the LH1BChl(Qy) band observed in the steady-state UV/Vis spectrum for each 

RC-LH1 supercomplex. Before each experiment, the sample was irradiated by the pump beam for 60 seconds 

to ensure that the RC QA was photochemically reduced to ensure that QA inactivation in the charge transfer 

relaxation process was probed within the RC.  

The data were initially processed using Carpetview (Light Conversion) to account for chirp correction 

(performed using the response from a silicon wafer). Due to the experimental configuration scattered pump is 

detected. Owing to this, 15 nm either side of the pump wavelength is removed before performing subsequent 

analysis. The processed data were fitted with Global Lifetime Analysis (GLA) and following pre-smoothing in 

the time axis with a 5 nearest neighbour smoothing function, Lifetime density analysis (LDA), using 

OPTIMUS.27 Only the 750 – 950 nm spectral region, which contains the dominating TA features, was included 

in the LDA fit; this considerably reduced computational resources required and prevented over smoothing owing 

to the introduction of low signal:noise data (as a result of the weak TA features observed < 750 nm) see section 

4. In all cases the data were fitted employing 3 Gaussian coherent artefact signals. 
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Results and Discussion  

The UV/Vis and TA spectra obtained for the WT monomer are shown in Figure 2; those obtained for the WT 

dimer, ΔpufY monomer and dimer, ΔpufX and ΔpufXY monomers are shown in Figure S3-S7 and show very 

similar features. The TA spectral features can be readily assigned based on those observed in the ground-state 

UV/Vis spectra and those reported in TA spectra of other RC-LH1 complexes or isolated RCs.17,25,28,29 Briefly, 

at early times (1 and 10 ps, Figure 2, lower panel), all features are assigned to the LH1 chromophores. A feature 

with a derivative line shape at ~877 nm is assigned to LH1BChl(Qy). The negative band at ~895 nm is attributed 

to the overlapping ground-state bleach (GSB) of LH1BChl(Qy) and stimulated emission (SE) of LH1BChl(Qy)*, 

while the positive feature, with a peak at ~860 nm, is assigned to the photo-induced absorption (PIA) of 
LH1BChl(Qy)*.25 A broad PIA was observed at wavelengths < 750 nm, onto which a narrow, negative going 

feature at 590 nm is superimposed, assigned to the GSB of LH1BChl(Qx).29,30  

 

Figure 2. Spectral analysis of the WT RC-LH1 monomer. Top, UV/Vis spectrum. Bottom, TA spectra at selected 

times, obtained for the WT RC-LH1 monomer at a pump wavelength 877 nm, coinciding with the of peak 

absorbance of the LH1BChl(Qy) band. The 862-892 nm spectral region highlighted by the grey box is excluded 

from subsiquent analysis owing to detection of scattered pump light. Bottom (Inset). TA spectra over the 525-

775 nm spectral region magnifided x 12.  

At later times (50 and 500 ps, Figure 2, lower panel), spectral features corresponding to RC chromophores 

appeared contemporaneously as the LH1 bands decayed, indicating that LH1 → RC EET has occurred. A 

derivative line shape feature centred at ~800 nm was observed, coinciding with the absorption maximum of the 
RCBChl(Qy) band in the ground-state UV/Vis spectrum. Although RCBChl chromophores are involved in the 

initial charge separation which occurs following LH1 → RC EET, RCBChl is expected to remain reduced for < 

1 ps.31,32 This contrasts with the observation of the distinct feature with a point of inflection at 800 nm at later 
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times (500 ps spectrum (Figure 2, lower panel). We conclude that this change can be attributed to the shift of 

the RCBChl(Qy) band to shorter wavelengths than in the ground-state spectrum owing to a difference in the local 

environment as a result of charge transfer and subsequent localisation within the RC.33 Superimposed on the 

broad PIA, the two negative bands at ~545 and ~760 nm were assigned to GSB of the Qx and Qy RCBPhe bands, 

respectively, while the broad PIA at ~665 nm was assigned to the formation of RCBPhe-.13,34 The PIA at ~860 

nm observed at early times (1 and 10 ps, Figure 2) became a negative feature at later times, as observed in the 

500 ps spectrum (Figure 2), and was assigned to GSB of RCP(Qy).13 Finally, the negatively going band at ~600 

nm, which partially overlaps with the GSB band of LH1BChl(Qx), was assigned to GSB of RCBChl(Qx).17 

We employed lifetime density analysis (LDA) and generated three-dimensional lifetime density maps, x(τ,λ), 

to examine the kinetics observed within the TA spectra of the RC-LH1 complexes (Figure S8). LDA enables us 

to monitor dispersive kinetics in a way which is not possible with global lifetime analysis (see SI discussion 

section 8).27,35,36 However, comparing lifetime density maps is complicated owing to the difficulty in accurately 

representing the pre-exponential factor magnitude with contour/colour maps.37 Hence, we reduced the three-

dimensional lifetime density map to two-dimensional kinetic traces by integrating the modulus of the pre-

exponential factor between 750 – 950 nm for each lifetime. This generated what we term a “lifetime density 

kinetic trace”, LDKT.  

By calculating the wavelength-dependent average pre-exponential factor of lifetimes associated with each band 

observed in the LDKT, we can plot the spectral change of each kinetic process in two dimensions, which we 

term “lifetime averaged difference spectra” (LADS). Figure 3 shows the LDKT and LADS obtained from LDA 

of a typical TA spectrum of the WT monomer RC-LH1 supercomplex. LADS indicate the change that occurs 

in the TA spectra throughout the distribution of lifetimes included within the average. Owing to this, a positive 

feature in the LADS indicates the decay of a positive TA band or the growth of a negative TA band, while a 

negative feature indicates the decay of a negative TA band or the growth of a positive TA band. 
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Figure 3. Lifetime density kinetic trace, LDKT, (left panel), UV/Vis spectrum (top right) and lifetime averaged 

difference spectra (right panel 2 to 6) associated with the peaks observed in the LDKT, obtained for the WT 

RC-LH1 monomer. The lifetime averaged difference spectra panels show the wavelength dependent average 

pre-exponential factor of lifetimes within the shaded area of same colour. 

For each RC-LH1 complex studied, a dominant process with a peak at ~40 - 60 ps,  has an associated LADS 

which describes a loss of LH1 TA bands (loss of LH1BChl(Qy) GSB and LH1BChl(Qy)* SE signal at wavelengths 

longer than ~890 nm and LH1BChl(Qy)* PIA at ~860 nm) contemporaneously with the growth of RC features 

(RCBChl(Qy) derivative line shape band at ~800 nm and RCBPhe(Qy) GSB at ~760 nm), indicative of LH1 → 

RC EET. The LADS associated with the process at ~4 ps show the decay of LH1 chromophore TA bands, 

consistent with exciton-exciton annihilation (EEA), as reported on similar timescales in the TA spectra of other 

RC-LH1 complexes,13,25 and LH1BChl(Qy)* → LH1BChl(Qy) relaxation. It is important to avoid excessive analysis 

of the weaker features observed within the LDKT, which may arise from residual noise in the analysis, as well 

as the blurring of kinetic processes within the broad baseline. The LADS associated with other highlighted 

peaks in the LDKT are very weak, which did not allow us to assign these peaks to specific photophysical 

processes. 

The LDKT and associated LADS obtained for the RC-LH1 supercomplex of WT monomer are broadly 

representative of those obtained for the other supercomplexes studied, as shown in Figures S10-S14. LDKTs 

are shown in Figure 4a obtained from typical TA spectra of the WT and ΔpufY RC-LH1 monomers and dimers, 
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which are dominated by LH1 → RC EET, with peak lifetimes, τEET, of ~40 ps.  The τEET of the ΔpufXY RC-LH1 

is longer than that of the ΔpufX RC-LH1 supercomplex, which is longer than that of the WT RC-LH1 monomer 

(Figure 4b). The average peak lifetime τEET and FWHM from the analysis of TA spectra for all RC-LH1 

supercomplexes is summarised in Table S1. 

 

Figure 4. Comparison of the lifetime density kinetic traces and distance between LH1 and RC special pair Bchl 

a of the RC-LH1 complexes studied. a) Comparison of the lifetime density kinetic traces WT monomer, WT 

dimer, ΔpufY monomer and ΔpufY dimer. b) Comparison of the lifetime density kinetic traces WT monomer, 

ΔpufX and ΔpufXY. c) Average distances (measured between Mg ions) between each LH1 BChl a to the closest 

BChl a of the special pair for each of the monomeric RC-LH1 supercomplexes. The measurement for each BChl 

in the LH1 subunit are shown in Figure S23. 

The distribution of lifetimes associated with each kinetic process observed in the LDKT can provide important 

insight,38 with the τEET band notably broader for the ΔpufX and ΔpufXY RC-LH1 supercomplexes compared to 

that of the monomeric WT RC-LH1 supercomplex (Figure 4b). It is important to note that lifetime distributions 

obtained from LDA are particularly sensitive to noise within the dataset and the regularisation applied within 

the fit.27,37 We performed Global Lifetime Analysis of the TA spectra, in which the EET process is well described 

by a single lifetime compartment for the monomeric and dimeric WT and ΔpufY RC-LH1, (Figure S15, S17) 

whereas two EET lifetime compartments are required to adequately describe the TA data obtained from the 

ΔpufX and ΔpufXY RC-LH1 monomers (Figure S16, S17). Such behaviour is consistent with the increased 

kinetics distribution of LH1 → RC EET for the ΔpufX and ΔpufXY RC-LH1 supercomplexes,36 as identified by 

LDKT.  

Although the structure of the ΔpufXY monomer remains unreported, an analysis of the structures of the other 

RC-LH1 supercomplexes has been previously reported.5 We performed additional detailed analysis of these 

reported structures (Figures 4c, S21-26, Table S2). This identified that in addition to the loss of one LH1 subunit, 
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the BChl chromophores of three LH1 subunits in the ΔpufY monomer (LH1-11, LH1-12 and LH1-13) shift 

inward towards RCP by between 3.3 and 7.6 Å compared to those in the WT monomer, whereas there is no 

significant difference for other LH1BChls (Figure 4c). This might be expected to result in a decrease in the EET 

lifetime for ΔpufY monomer.4,39–43 However, the TA analysis reveals that τEET and distributions remain 

remarkably similar (Figure 4a), and tentatively, may even display a small increase in lifetime (Table S1). The 

shift towards the RC is even larger for several LH1 chromophores of the ΔpufY dimer, with a shift of over 10 Å 

observed in LH1-13 and LH1-14 subunits (Figure 4c). Despite this, the EET lifetime and distribution obtained 

is indistinguishable from that of the WT dimer (Figure 4a), despite two very differing structures being obtained 

for the ΔpufY dimer (Figure S1). Based on these observations, we found that there is no clear correlation between 

the changing number of LH1BChl chromophores and LH1BChl–RCP distances that occur upon removal of the PufY 

TM protein determined from cryo-EM (88 K) on the EET lifetime or distribution obtained at 294 K, consistent 

with the finding of Rhodopseudomonas palustris RC3-LH114-W and RC3-LH116 complexes.25 Even though there 

are differences in τEET between the WT and ΔpufX supercomplexes (Figure 4b), only very small increases in 
LH1BChl–RCP distances occur upon removal of the PufX TM protein (Figure 4c).  

The average inter- and intramolecular distances between LH1BChl chromophores in the monomeric ΔpufY and 

ΔpufX RC-LH1 are remarkably similar, but differ from those in the WT supercomplex (Figure S21, Table S2). 

Such difference may influence the degree of delocalisation/localisation of both initially formed and thermalized 

excitonic states between the RC-LH1 supercomplexes,5,44 which in turn could account for the observed 

differences in EET kinetics. Notably, the LH1BChl(Qy) peak absorptions of the monomeric WT, ΔpufY and 

ΔpufXY RC-LH1 are remarkably similar (Figure S18), whereas a notable spectral change occurred at the 

wavelength of 480-550 nm owing to the conversion of the carotenoid spheroidene to spheroidenone in the ΔpufX 

and ΔpufXY strains grown under the microoxic culture conditions, consistent with previous findings.5,29,45 

Although a small shift (~1 nm) to shorter wavelengths was observed for the LH1BChl(Qy) absorption maximum 

of the ΔpufX RC-LH1 monomer, this brings the LH1BChl(Qy) peak closer in wavelength to the RCP(Qy) 

absorption, which may be expected to decrease τEET.4,41,46 The 900 nm kinetic traces for all monomeric RC-LH1 

complexes are shown in Figure S20; the increased decay observed between 1 – 10 ps for the ΔpufX and ΔpufXY 

complexes is a result of the greater EEA observed for these samples (Figure 4b, Figure S6 and S7), which arises 

owing to the increased probability of absorbing a second photon ascribed to the increased number of BChl a 

chromophores within LH1 of these supercomplexes. Although we cannot exclude the possibility that differing 

initial kinetic processes occur within our instrument response function (~350 fs) for the RC-LH1 complexes 

studied, the positions and shapes of the TA spectra at 250 fs and 10 ps were remarkably similar (within a spectral 

resolution of ~3.5 nm and precision of ~1.7 nm) for all monomeric supercomplexes (Figure S19). These results 

suggest that the initially formed exciton and subsequent relaxation processes are comparable across all RC-LH1 

variants and are likely not the cause of the observed differences in EET kinetics.  

The EET lifetime within RC-LH1 supercomplexes has been suggested to be dependent on the orientation of the 

RC with the LH1 ring.47 Only a relatively lower-resolution cryo-EM structure (> 4.2 Å) was obtained for the 

ΔpufX RC-LH1, in which, notably, the RC exhibited weak density, indicating the role of PufX in constraining 

the RC association and orientation resulting in a less defined RC orientation within the LH1 ring in ΔpufX RC-

LH1.5 We propose that the increased EET lifetime and distribution observed in our TA results obtained for the 

ΔpufX RC-LH1 complex is due to this less defined orientation of the RC within the LH1 ring of this complex. 

By contrast, the τEET and distribution remains very similar upon removal of only PufY, suggesting that PufY has 

a minor role in constraining the RC orientation within LH1. Removal of both PufX and PufY resulting in a 

further increase in the EET lifetime and distribution (Figures 4a, 4b and Table S1) further confirms that the RC 

is considerably less constrained within the LH1 ring in the ΔpufXY RC-LH1 complex. Despite the longer EET 

lifetime for both ΔpufX and ΔpufXY RC-LH1 complexes, it is still able to outcompete LH1* radiative relaxation 

which has been reported to take longer than 500 ps,48–51 hence we conclude the observed differences in the initial 

LH1 → RC energy transfer is not responsible for the inability of the ΔpufX and ΔpufXY strains to grow 

photosynthetically. 
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Conclusion 

In summary, our results show that the structural changes caused by the absence of PufX resulted in a marked 

increase in LH1 → RC EET lifetime and distribution of the Rba. sphaeroides RC-LH1; the absence of both 

PufX and PufY further increases EET lifetime and distribution. Additionally, despite some LH1BChl 

chromophores moving closer to the RC upon removal of PufY alone, we observed little effect on the EET 

lifetime and distribution. Our findings indicate that both the integral components play roles in EET of the RC-

LH1 supercomplex. It also suggests that PufX, and to a lesser extent, PufY, could represent natural engineering 

targets for fine-tuning EET of the photosynthetic RC-LH1 core supercomplex. 

 

Supporting Information: Additional structural analysis; Results of Global Lifetime Analysis; Additional 

Lifetime Density Analysis results of WT dimer, ΔpufY monomer and dimer, ΔpufX and ΔpufXY monomers. 

(PDF) 
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