1	MISARA:	Matlab	Interface for	· Seismo-A	Acoustic aRray	y Analy	yss
---	---------	--------	---------------	------------	----------------	---------	-----

2 Minio, V.¹, Zuccarello^{2,3}, L., De Angelis^{2,3}, S., Di Grazia, G.⁴, Saccorotti, G.³

³ ¹Dipartimento di Scienze Biologiche, Geologiche ed Ambientali - Sezione di Scienze della Terra,

4 Università degli Studi di Catania, Catania, Italy.

⁵ ²School of Environmental Sciences, University of Liverpool, Liverpool, UK.

⁶ ³Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy.

⁴Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo, Catania,
Italy.

9 Corresponding authors: Vittorio Minio (<u>vittorio.minio@phd.unict.it</u>), Luciano Zuccarello
 10 (<u>luciano.zuccarello@ingv.it</u>)

11

12 ABSTRACT

Volcanic activity produces a broad spectrum of seismic and acoustic signals, whose characteristics 13 often provide important clues on the underlying magmatic processes. Seismic and acoustic 14 networks and arrays are the backbone of many modern volcano monitoring programmes. The 15 16 investigation of the signals gathered by these instruments requires ad-hoc data analysis techniques. Continuous monitoring of the seismo-acoustic signals recorded by multi-station networks with 17 high sampling rate leads to rapid accumulation of large volumes of data, making the 18 19 implementation of fast and automated workflows for the extraction of monitoring parameters a crucial task for effective volcano surveillance. Here, we present an open-source Matlab GUI 20 (Graphical User Interface), MISARA (Matlab Interface for Seismo-Acoustic aRray Analysis), 21 designed to provide an efficient and user-friendly workflow for the analysis of seismo-acoustic 22

data in volcanic environments. MISARA includes efficient algorithm implementations of wellestablished techniques of data analysis. It is designed to support visualization, characterization, detection and localization of volcano seismo-acoustic signals. Its intuitive, modular, structure facilitates rapid, semi-automated, inspection of data and results, thus reducing user effort. MISARA was tested using seismic data recorded at Etna Volcano (Italy) in 2010 and 2011 and is intended for use in education and research, and to support routine data analysis at volcano observatories.

30

31 INTRODUCTION

Volcano seismology deals with a large variety of seismic and acoustic signals (e.g., McNutt et al., 32 2015). Monitoring these waveforms plays a key role in the surveillance of volcanoes and has the 33 potential to provide important insights on magmatic and hydrothermal processes in the plumbing 34 35 system of a volcano (e.g., Sparks et al., 2012; Chouet and Matoza, 2013; McNutt et al., 2015). One of the major challenges is the investigation of the wavefield properties of these signals, in 36 particular their source location. The application of traditional travel-time inversion methods to data 37 from sparse networks, in particular when dealing with emergent or sustained signals such as Long 38 Period (LP) or Very Long Period (VLP) events and volcanic tremor, is challenging. Due to the 39 nature of these signals, other localization methods have been used in recent years including 40 amplitude-based techniques (Di Grazia et al., 2006; Carbone et al., 2008; Cannata et al., 2013; 41 Morioka et al., 2017) and array methods (e.g., Rost and Thomas, 2002). 42

43 Seismic and acoustic arrays consist of multiple sensors arranged according to a spatial scale
44 significantly shorter than the wavelength of interest. In array analysis, all waveforms recorded by

each sensor are processed together on the basis of the common waveform model of the signal (Aki 45 and Richards, 1980). Depending on the specific propagation model (i.e., plane vs spherical 46 wavefronts), the source location can be inferred directly or from back-propagation of the wave-47 vectors determined from the coherent wavefield propagation across the array (Havskov and 48 Alguacil, 2016). Several studies have employed array techniques to investigate the evolution of 49 50 seismic and acoustic sources during periods of volcanic unrest (Saccorotti et al., 2004; Di Lieto et al., 2007; Inza et al., 2014; Eibl et al., 2017; De Angelis et al., 2020), although their use as a 51 52 monitoring tool still remains limited (e.g., Coombs et al., 2018).

Over the past decade, the amount of monitoring data from active volcanoes has grown 53 tremendously, making the analysis of such large amounts of information a challenging task. At the 54 55 same time, a plethora of software packages and algorithms for signal processing were developed in different programming environments, including the Python and Matlab platforms. Most of these 56 packages are command-line toolboxes designed to provide a broad range of functionalities for 57 management and handling of waveform data and related metadata, such as ObsPy (Beyreuther et 58 59 al., 2010), SEIZMO (Euler, 2014) and GISMO (Thompson and Reyes., 2018). Other software toolboxes were designed with a narrower focus on signal processing, including spectral analyses, 60 and event detection and classification (e.g., Lesage, 2009; Messina and Langer, 2011; Bueno et 61 al., 2020; Cortés et al., 2021). Finally, other software packages were developed to specifically 62 perform seismic array data analyses (e.g., Pignatelli et al., 2008; Smith and Bean, 2020). 63

Here, we present MISARA (Matlab Interface for the Seismo-Acoustic aRary Analysis), a Matlab
GUI that supports visualisation, detection and localization of volcano seismic and acoustic signals,
with a focus on array techniques. In this manuscript, we will introduce the main features and

functionalities of MISARA. We will demonstrate its use with two case studies to showcase the
capabilities of the software in analysing volcano seismic waveforms, and discuss its suitability for
both research and monitoring purposes.

70

71 OVERVIEW OF MISARA

MISARA is an open-source Matlab Interface that was developed to support users with the application of array techniques to seismic and acoustic signals. It is characterised by an intuitive and modular structure. MISARA is organised into different classes and modules, and its functionalities are accessed through a number of GUI windows (Fig. 1).

76 Home window

The Home window (Fig. 2) is the control panel of MISARA, which allows to manage all aspects of data processing, including data source configuration, Input/Output options and the parametrization of all analyses that can be performed on the selected data. The Home panel includes four dynamic menus to independently manage saving and importing the settings of the last analysis performed, or to load a suite of default analysis parameters. It allows access to all modules of MISARA, each dedicated to specific routines or algorithms for seismic and acoustic data processing.

84

85 Data preparation window

MISARA includes a module dedicated to the creation of appropriate data structures, that is the Create Dataset module (Fig. 3), which is accessed via the Data preparation window. MISARA works with seismic and acoustic waveforms archived, as Matlab structure arrays, in a dedicated folder/file structure. These files contain the raw data and some relevant metadata (e.g., station name, sampling rate, timing of records, etc.). MISARA modules require two additional files, which contain Matlab structures providing the station coordinates and information on the instrument response, respectively.

93 The software can operate in two modes, depending on whether the data source is an off-line archive or a web-based data server. In the off-line mode, the user can read and convert common file formats 94 into MISARA structures; these formats include Seismic Analysis Code (SAC; Goldstein et al., 95 96 2003; Goldstein and Snoke, 2005), the Standard for the Exchange of Earthquake Data (SEED/miniSEED) and DSS-Cube/Data-Cube3 file format (see DATA AND RESOURCES). In 97 the other mode, the user can access data stored at the Incorporated Research Institutions for 98 Seismology-Data Management Center (IRIS-DMC) via International Federation of Digital 99 Seismograph Networks (FDSN) services (see DATA AND RESOURCES), to retrieve waveforms 100 and station/channel metadata. The off-line mode allows 101 to recover information from XML files (eXtensible Markup Language). However, if the XML file are not available, it is possible to 102 103 manually input station coordinates and instrument response parameters. MISARA modules 104

All modules of MISARA share a similar design and workflow. All analysis parameters can be dynamically managed during data processing, including calculation, visualization and saving of the results (Fig. 4).

The Data Pre-processing modules (Fig. 1) are designed to perform data quality checks, and to deconvolve the instrument response from the raw seismograms as well as performed by other Matlab codes (e.g., Haney et al., 2012; Thompson and Reyes., 2018). In the case of seismic and acoustic array analyses, the Data Pre-processing modules also allow evaluation of the array response function by a Beam Pattern algorithm (Capon, 1969).

The Signal Features modules (Fig. 1) are based on well-established routines and algorithms used in seismic and acoustic signal processing, such as spectrograms (Schlindwein et al., 1995) and coherograms (Welch, 1967), Root Mean Square (RMS; Kenney and Keeping, 1962), polarization analysis (Jurkevics, 1988), Short Term Average/Long Term Average (STA/LTA; Allen, 1978) and the Sub-band Automatic LP Events Detection (SALPED; Garcia et al., 2017).

The Array modules (Fig. 1) implement the most used array processing algorithms for source localization of seismic and acoustic signals. This tool includes the Zero Lag Cross correlation analysis (ZLC; Frankel et al., 1991), MUltiple SIgnal Classification (MUSIC; Schmidt, 1986) algorithm, Semblance and Radial Semblance methods (Almendros et al., 2002). For the evaluation of the uncertainties in the estimate of the source position, we have implemented the JackKnife method (Efron, 1982). Additional details on all MISARA utilities are available in the help section of the software (https://doi.org/10.5281/zenodo.4642026).

125 EXAMPLES OF USE OF MISARA

We demonstrate the performances of MISARA through application to three cases studies, under different propagation models. First, we show the analysis of volcanic tremor recorded by a seismic array deployed at Mt. Etna (Italy) in 2011, when the volcano produced intense lava fountain activity from its New South East Crater (NSEC). Second, we demonstrate analyses of LP and VLP earthquakes recorded by Mt. Etna permanent seismic network in 2010, accompanying explosive activity at the Bocca Nuova crater (BN). Finally, we show the analysis the infrasound data acquired by an infrasound array deployed at Mt. Etna in 2019, when the NSEC crater was affected by intense Strombolian activity. Additional instructions on how to use of MISARA on these three case studies are available in the help section of the software by consulting the user manual and/or the video tutorials.

136

137 Case study 1: Mt. Etna, 2011-seismic array configuration

138 MISARA was tested using off-line data from a small-aperture seismic array in Etna volcano, Italy. 139 The software configuration and its performances are summarized in Table A1. For this test, we used the Beam Pattern module to display the location of the array (Fig. 5a), its detailed geometry 140 141 (Fig. 5b), and to evaluate its response function at a selected target frequency (Fig. 5c). The array consisted of five single-component seismometers with an aperture of approximately 200 m, 142 deployed at a distance of about 1 km from NSEC. Figure 5c, suggests that the configuration of the 143 array allows reliable array analyses in the frequency band 1 -3 .0 Hz, which coincides with the 144 highest energy of volcanic tremor at Etna Volcano (e.g., Cannata et al., 2010). Indeed, the array 145 showed a poor resolution at low frequency (0.5 Hz) because of the signal wavelength larger than 146 the array aperture. Instead, it had a coherent response up to frequency of 3.0 Hz, while the influence 147 of the spatial aliasing was more prevalent for increased frequencies. 148

149 The spectral energy and source location of volcanic tremor were retrieved by using the 150 Spectrogram and ZLC modules, respectively. An example of analysis of volcanic tremor, recorded

during the lava fountaining episode of 30 July, 2011 at NSEC, is shown in Figure 6. The results 151 include time series of back-azimuth, ray parameter, tremor amplitude (RMS) and spectrogram 152 linked to changes in eruptive activity. Significant variations in amplitude, frequency content and 153 source location of tremor preceded and accompanied the onset of paroxysm, which corresponded 154 to changes in the style and location of activity across different craters in the summit area of Mt. 155 156 Etna (e.g., Patané et al., 2013; Moschella et al., 2018). Fig. 6a shows back-azimuths dominantly between -15°N and 5°N until about 7:00 am (UTC) on 30 July, pointing towards the NNE sector 157 between 7:00 and 8:00 am (UTC), which is twelve hours before the of Mt. Etna (Fig. 6f); 158 lava fountaining activity, the back-azimuth gradually migrated to 30-50°N (Fig. 6a), 159 corresponding to arrivals from the NSEC direction (Fig. 160 6f).

161

162 Case study 2: Mt. Etna, 2010- seismic permanent network configuration

163 We also show the results of using MISARA with data from the permanent monitoring seismic network operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). We used only 164 signals recorded by seven stations deployed in the summit area of Mt. Etna (see Fig. 8 for station 165 locations). These stations consisted of broadband three-component Trillium 40-s seismometers 166 (NanometricsTM) recording at a sampling rate of 100 Hz. An overview of the configuration and 167 performance of this second test is shown in Table A2. By using the STA/LTA and SALPED 168 modules, we automatically detected LP and VLP events on the 23 October, 2010 (Fig. 7), when 169 the BN crater produced moderate-to-intense Strombolian activity. We selected events on the basis 170 171 of their features, such as frequency content (Fig. 7a), characteristic waveform (Fig. 7b) and particle motion of the signals (Fig. 7c). 172

173	Under the assumption of a homogeneous and isotropic propagation medium (waves velocity of 1.6
174	km/s), and thus of spherical wavefronts, we used the Semblance and Radial Semblance methods
175	to track the source location of LP and VLP events, respectively. These two methods are similar to
176	the backprojection one (Haney et al., 2014), that it is based on stacking of waveforms. However,
177	unlike backprojection, Semblance returns the best performance for radial components of the
178	wavefield, while Radial Semblance cannot be applied to non-radial components of the wavefield
179	(Almendros et al., 2002). We employed a grid search approach by using only signals recorded
180	by the seven INGV stations deployed in the summit area of Mt. Etna (see Fig. 8 for station
181	locations). The results of this analysis are shown in Fig. 8. LP (Fig. 8a) and VLP (Fig. 8b) events
182	were located below the BN crater at shallow depths, a common occurrence at Mt. Etna (e.g.,
183	Saccorotti et al., 2007; Cannata et al., 2009; Patanè et al., 2013; Zuccarello et al., 2013).

185

186

187 Case study 3: Mt. Etna, 2019- Infrasound array configuration

MISARA was also tested by using data from a small-aperture infrasound array in Etna volcano, Italy. These data have been already analysed in De Angelis et al. (2020), in which it is possible to retrieve additional information on the array and the results obtained by these authors. In particular, we focused on the infrasound signals recorded on 19th July, 2019, when the NSEC was affected by intense explosion activity. Trying to follow the same workflow, we configurated the software with the same parameters used in De Angelis et al. (2020). A brief summary on the parameters configuration and the analysis performances is shown in Table A3.

195	An example of analysis of these data by using MISARA is shown in Figure 9. In this case, we used
196	Spectrogram and ZLC modules to determine the main features and the source position of
197	infrasound signal, respectively. The results of the analysis in Figure 9 show that the software can
198	reproduce those of De Angelis et al. (2020), especially in terms of amplitude, frequency content
199	and source position of the infrasound signal. In particular, Fig. 9a shows back-azimuths focused
200	on 60°N, pointing towards the NSEC (Fig. 9f), as well as the increase of the infrasound amplitude
201	during the intensification of explosive activity (Figs. 9c,d, and e).
202	

204

205

206

207 CONCLUSIONS

MISARA is a open-source Matlab-based GUI designed to perform analyses of seismic and acoustic waveform data. A suite of well-established algorithms for volcano seismic and acoustic signal processing have been integrated into our GUI interface, with a special focus on array techniques. We note that although MISARA was developed to facilitate the analysis of seismic and acoustic signals in volcanic environments, it can be used for other research purposes. Furthermore, owing to its modular structure (Fig. 1), it is possible to easily integrate additional functionalities.

The different data analysis modules of MISARA are independent of each other. The modules were 215 designed to easily manage every step of the data processing and to quickly inspect the results (Fig. 216 217 4). Most of the processes are automated, reducing user's errors and efforts. One advantage consists of the possibility to reset some parameters directly from the module itself (Fig. 4), allowing to 218 repeat the analysis many times. Other fundamental aspects of this modular structure are the 219 220 possibility to deal with different formats of input traces, the systematic saving of the results and the optional activation of many subroutines (Fig. 4). In addition, most of the methods of source 221 222 localization have implemented the JackKnife method, allowing an evaluation of the reliability of the results (e.g., Li et al, 2017; Moschella et al., 2018; Lehr et al., 2019, Sugimura et al., 2021). 223

The computational time for any type of analysis is crucially important, especially when there is 224 225 the necessity to rapidly analyse real-time or quasi real-time recordings and/or a great amount of 226 data. Although MISARA does not support real-time data processing, it may easily meet these 227 requirements (e.g., Chao et al., 2017; Smith and Bean, 2020). By using a laptop with intermediate-228 high specifications (8 cores 2.90 GHz Intel(R) Core (TM) i7-10700 CPU, 16GB RAM), the processing times retrieved from the test cases (Tables A1 and A2; Fig. A1) are much shorter (a 229 230 few seconds/minutes) than the duration of the analyzed time interval (1 day), speeding up the assessment of the parameters of interest and permitting in principle for real-time data analyses. 231

Successfully tested on the seismic data recorded during 2010-2011 period, the software demonstrates it suitability for different applications, such as academic/research uses, temporary surveys and operational purposes. Considering that tremor has long been considered as an important and reliable precursor of eruptive activity (e.g., McNutt et al., 2013; Zuccarello et al., 2013, 2022; Eibl et al., 2017), the results (Fig. 6) and the processing time (Table A1; Fig. A1) obtained for the analysis of volcanic tremor showed that seismic array data "have the potential to

allow development of new strategies for early warning systems of eruptive activity at active 238 volcanoes (e.g., Ripepe et al., 2018; Spina et al., 2020; Evita et al., 2021). The analysis of LP and 239 VLP events has provided important information about the magma movement and the physical 240 processes acting in the plumbing system of volcanoes (e.g., Chouet and Matoza, 2013 and 241 references therein). Therefore, the analysis performed in the Case study 2 (Figs. 7 and 8) through 242 243 MISARA modules could be useful to improve knowledge of the transport mechanisms of magma and eruption processes (e.g., Almendros et al., 2002; Zuccarello et al., 2013; Jousset et al., 2013; 244 Giudicepietro et al., 2020; Sciotto et al., 2022). By reproducing the analysis shown in De Angelis 245 et al. (2020), , methods included in MISARA are compatible with acoustic signal processing, as 246 other recent works (e.g., McKee et al., 2017; Allstadt et al., 2018; Diaz-Moreno shown also in 247 et al., 2020; De Angelis et al., 2021). In addition, thanks to the user-friendly and simple interface, 248 MISARA could be suitable to quickly inspect seismo-acoustic traces during data collection. 249

250 Although MISARA has several advantages, it does not yet provide comprehensive solutions for 251 all signal analyses. In addition, although most of MISARA processes are automated, some routines still include manual or semi-automatic phases. These features improve the data quality control and 252 253 the robustness of the results compared to exclusively automatic ones, but they may sometimes 254 represent an obstacle to fast analysis of the data.Pre-formatting routines in MISARA represent a possible alternative to the Python-based input and pre-processing procedures described in ObsPy 255 (Beyreuther et al., 2010). In its current configuration, MISARA allows uploading data in a fast and 256 clear manner, avoiding the repetition of any pre-processing routine in different modules of the 257 software, or overloading the working memory. However, these routines could lead to duplication 258 of data to the detriment of the storage space in contrast to ObsPy ones. 259

In order to improve the capabilities of MISARA toward a comprehensive assessment of volcano 260 signals, future works should be aimed at: (i) simplifying the design and the structure of the 261 software, providing an even more user-friendly GUI; (ii) implementing the existing algorithms by 262 automating every phase of the data processing as much as possible (e.g., Álvarez et al., 2013; 263 Bueno et al., 2019); (iii) adding further methods for more complete investigation of volcanic or 264 265 seismological phenomena (e.g., De Barros et al., 2011; Zuccarello et al., 2016; Montesinos et al., 2021); (iii) adapting the GUI for real-time data processing and the exploitation of data streams 266 provided by web services (e.g., Smith and Bean, 2020); (iv) integrating the GUI with well-267 established python libraries, such as ObsPy (Beyreuther et al., 2010), especially in terms of 268 management of data and related metadata. 269

270

271

272 DATA AND RESOURCES

MISARA, its user's manual, and test/demonstration data can be downloaded at the URL: 273 https://doi.org/10.5281/zenodo.4642026. The seismic and infrasound data used in this article were 274 obtained from Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo-Sezione di 275 Catania (https://www.ct.ingv.it/). . The commercial platform, MATLAB, is from Mathworks, 276 available at http://www.mathworks.com. A MATLAB script to download the Incorporated 277 Research Institutions for Seismology (IRIS) seismic data archive can be found at 278 https://ds.iris.edu/ds/nodes/dmc/manuals/irisfetchm/. For the management of the DSS-Cube/Data-279 Cube3 files, gipptools package is available at https://www.gfz-potsdam.de/en/section/geophysical-280

281 <u>imaging/infrastructure/geophysical-instrument-pool-potsdam-gipp/software/gipptools/</u>.

Additional details on SAC and SEED formats are available at <u>http://www.iris.edu/manuals/</u>.

284 ACKNOWLEDGEMENTS

L. Zuccarello is supported by the project SINFONIA, progetto Bando Ricerca Libera 2021 Delibera 214/2021-INGV. S. De Angelis is supported by NERC grant NE/W004771/1. The authors thank the seismological technical staff of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo-Sezione di Catania, , for their support in the acquisition of seismic data.

290

291

292 **REFERENCES**

- Aki K. and P. G. Richards (1980). Quantitative seismology, *WH Freeman*, San Francisco,
 doi: 10.1002/gj.3350160110.
- Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces,
 Bulletin of the seismological society of America, 68(5), 1521-1532, doi:
 10.1785/BSSA0680051521.
- Allstadt, K. E., R. S. Matoza, A. B. Lockhart, S. C. Moran, J. Caplan-Auerbach, M. M.
 Haney, A. T. Thelen and S. D. Malone (2018). Seismic and acoustic signatures of surficial

301

mass movements at volcanoes, *Journal of Volcanology and Geothermal Research*, 364, 76-106, doi: 10.1016/j.jvolgeores.2018.09.007.

- Almendros, J., B. Chouet, P. Dawson, and T. Bond (2002). Identifying elements of the plumbing system beneath Kilauea Volcano, Hawaii, from the source locations of very-long-period signals, *Geophysical Journal International*, 148(2), 303-312, doi: 10.1046/j.1365-246X.2002.01629.x.
- Almendros, J. and B. Chouet (2003). Performance of the radial semblance method for the location of very long period volcanic signals, *Bulletin of the Seismological Society of America*, 93(5), 1890-1903, doi: 10.1785/0120020143.
- Álvarez, I., L. García, S. Mota, G. Cortés, C. Benítez, and Á. De la Torre (2013). An automatic P-phase picking algorithm based on adaptive multiband processing, *IEEE Geoscience and remote sensing letters*, 10(6), 1488-1492, doi:10.1109/LGRS.2013.2260720.
- Beyreuther, M., R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wassermann (2010).
 ObsPy: A Python toolbox for seismology, *Seismological Research Letters*, 81(3), 530-533,
 doi: 10.1785/gssrl.81.3.530.
- Bueno, A., C. Benitez, S. De Angelis, A. D. Moreno, and J. M. Ibáñez (2019). Volcano seismic transfer learning and uncertainty quantification with Bayesian neural networks,
 IEEE Transactions on Geoscience and Remote Sensing, 58(2), 892-902. doi:
 10.1109/TGRS.2019.2941494.

320	• Bueno, A., L. Zuccarello, A. D. Moreno, J. Woollam, M. Titos, C. Benítez, I. Álvarez, J
321	Prudencio and S. De Angelis (2020). PICOSS: Python interface for the classification o
322	seismic signals, Computers & geosciences, 142, doi: 10.1016/j.cageo.2020.104531.
323	• Cannata, A., M. Hellweg, G. Di Grazia, S. Ford, S. Alparone, S. Gresta, P. Montalto and
324	D. Patanè (2009). Long period and very long period events at Mt. Etna volcano
325	Characteristics, variability and causality, and implications for their sources, Journal of
326	Volcanology and Geothermal Research, 187(3-4), 227-249
327	doi:10.1016/j.jvolgeores.2009.09.007.
328	• Cannata, A., G. Di Grazia, P. Montalto, F. Ferrari, G. Nunnari, D. Patanè, D., and E
329	Privitera (2010). New insights into banded tremor from the 2008-2009 Mount Etna
330	eruption, Journal of Geophysical Research: Solid Earth, 115(B12)
331	doi:10.1029/2009JB007120.
332	• Cannata, A., G. Di Grazia, M. Aliotta, C. Cassisi, P. Montalto, and D. Patanè (2013)
333	Monitoring seismo-volcanic and infrasonic signals at volcanoes: Mt. Etna case study, Pure
334	and Applied Geophysics, 170(11), 1751-1771, doi:10.1007/s00024-012-0634 x.
335	• Carbone, D., L. Zuccarello, and G. Saccorotti (2008). Geophysical indications of magma
336	uprising at Mt Etna during the December 2005 to January 2006 non-eruptive period
337	Geophysical Research Letters, 35(6), doi: 10.1029/2008GL033212.
338	• Chao, W. A., Y. M. Wu, L. Zhao, H. Chen, Y. G. Chen, J. M. Chang, and C. M. Lin (2017)
339	A first near real-time seismology-based landquake monitoring system, Scientific reports
340	7(1), 1-12, doi: 10.1038/srep43510.

341	•	Chouet, B. A., and R. S. Matoza (2013). A multi-decadal view of seismic methods for
342		detecting precursors of magma movement and eruption, Journal of Volcanology and
343		Geothermal Research, 252, 108-175, doi: 10.1016/j.jvolgeores.2012.11.013.
344	•	Coombs, M. L., A. G. Wech, M. M. Haney, J. J. Lyons, D. J. Schneider, H. F. Schwaiger,
345		K. L. Wallace, D. Fee, J. T. Freymueller, J. R. Schaefer, and G. Tepp (2018). Short-term
346		forecasting and detection of explosions during the 2016-2017 eruption of Bogoslof
347		volcano, Alaska, Frontiers in Earth Science, 6, 122, doi:10.3389/feart.2018.00122.
348	•	Cortés, G., R. Carniel, P. Lesage, M. Á. Mendoza, and I. Della Lucia (2021). Practical
349		volcano-independent recognition of seismic events: VULCAN. ears project, Frontiers in
350		Earth Science, 8, 616676, doi:10.3389/feart.2020.616676.
351	•	De Angelis, S., M. M. Haney, J. J. Lyons, A. Wech, D. Fee, A. Diaz-Moreno, and L.
352		Zuccarello (2020). Uncertainty in detection of volcanic activity using infrasound arrays:
353		examples from Mt. Etna, Italy, Frontiers in Earth Science, 8, 169, doi:
354		10.3389/feart.2020.00169.
355	•	De Angelis, S., L. Zuccarello, S. Rapisarda and V. Minio (2021). Introduction to a
356		community dataset from an infrasound array experiment at Mt. Etna, Italy, Scientific Data,
357		8(1), 1-9, doi: 10.1038/s41597-021-01030-6.
358	•	De Barros, L., I. Lokmer, C. J. Bean, G. S. O'Brien, G. Saccorotti, J. P. Métaxian, L.
359		Zuccarello, and D. Patanè (2011). Source mechanism of long-period events recorded by a
360		high-density seismic network during the 2008 eruption on Mount Etna, Journal of
361		Geophysical Research: Solid Earth, 116(B1), doi: 10.1029/2010JB007629.

362	•	Diaz-Moreno, A., A. Roca, A. Lamur, B. H. Munkli, T. Ilanko, T. D. Pering, A. Pineda,
363		and S. De Angelis (2020). Characterization of acoustic infrasound signals at Volcán de
364		Fuego, Guatemala: a baseline for volcano monitoring, Frontiers in Earth Science, 8,
365		549774, doi: 10.3389/feart.2020.549774.
366	•	Di Grazia, G., S. Falsaperla, and H. Langer (2006). Volcanic tremor location during the
367		2004 Mount Etna lava effusion, Geophysical research letters, 33(4),
368		doi:10.1029/2005GL025177.
369	•	Di Lieto, B., G. Saccorotti, L. Zuccarello, M. L. Rocca, and R. Scarpa (2007). Continuous
370		tracking of volcanic tremor at Mount Etna, Italy, Geophysical Journal International,
371		169(2), 699-705, doi: 10.1111/j.1365-246X.2007.03316.x.
372	•	Efron, B. (1982). The jackknife, the bootstrap and other resampling plans, Society for
373		industrial and applied mathematics, doi: 10.1137/1.9781611970319.
374	•	Eibl, E. P., C. J. Bean, K. S. Vogfjörd, Y. Ying, I. Lokmer, M. Möllhoff, G. S. O'Brien,
375		and F. Pálsson (2017). Tremor-rich shallow dyke formation followed by silent magma flow
376		at Bárðarbunga in Iceland, Nature Geoscience, 10(4), 299-304, doi:10.1038/ngeo2906.
377	•	Euler, G. (2014). Project SEIZMO, Available at:
378		http://epsc.wustl.edu/~ggeuler/codes/m/seizmo/.
379	•	Evita, M., A. Zakiyyatuddin, S. Seno, N. S. Aminah, W. Srigutomo, I. Meilano, A.
380		Setiawan, H. Darmawan, I. Suyanto, Irzaman, M. Yasin, Perdinan, R. Apsari, Wahyudi,
381		W. Suryanto, and M. Djamal (2021). Development of Volcano Warning System for Kelud
382		Volcano, Journal of Engineering and Technological Sciences, 53(2), 210202, doi:
383		10.5614/j.eng.technol.sci.2021.53.2.2.

384	•	Frankel, A., S. Hough, P. Friberg, and R. Busby (1991). Observations of Loma Prieta
385		aftershocks from a dense array in Sunnyvale, California, Bulletin of the seismological
386		Society of America, 81(5), 1900-1922, doi: 10.1785/BSSA0810051900.
387	•	Garcia, L., I. Alvarez, M. Titos, A. D. Moreno, M. C. Benitez, and A. de la Torre (2017).
388		Automatic detection of long period events based on subband-envelope processing, IEEE
389		Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(11),
390		5134-5142, doi: 10.1109/jstars.2017.2739690.
391	٠	Giudicepietro, F., C. López, G. Macedonio, S. Alparone, F. Bianco, S. Calvari, W. De
392		Cesare, D. Delle Donne, B. Di Lieto, A. M. Esposito, M. Orazi, R. Peluso, E. Privitera, P.
393		Romano, G. Scarpato and A. Tramelli (2020). Geophysical precursors of the July-August
394		2019 paroxysmal eruptive phase and their implications for Stromboli volcano (Italy)
395		monitoring, Scientific reports, 10(1), 1-16, doi: https://doi.org/10.1038/s41598-020-
396		67220-1.
397	•	Goldstein, P., D. Dodge, M. Firpo, L. Minner, W. Lee, H. Kanamori, P. Jennings,
398		and C. Kisslinger (2003). SAC2000: Signal processing and analysis tools for seismologists
399		and engineers, invited contribution to The IASPEI International Handbook of Earthquake
400		and Engineering Seismology, Edited by WHK Lee, H. Kanamori, P.C. Jennings, and C.
401		Kisslinger, Academic Press, London.
402	٠	Goldstein, P., and A. Snoke, (2005), SAC Availability for the IRIS Community,
403		Incorporated Research Institutions for Seismology Newsletter, 7(UCRL-JRNL-211140),
404		doi: https://www.osti.gov/servlets/purl/875360i

405	•	Haney, M. M., J. Power, M. West, P. Michaels (2012). Causal Instrument Corrections for
406		Short-Period and Broadband Seismometers, Seismological Research Letters; 83 (5): 834-
407		845, doi: 10.1785/0220120031.
408	•	Haney, M. M. (2014). Backprojection of volcanic tremor, Geophysical Research Letters,
409		41, 1923- 1928, doi:10.1002/2013GL058836.
410	•	Havskov, J., and G. Alguacil (2016). Seismic Arrays, In Instrumentation in Earthquake
411		Seismology (pp. 309-329), Springer, Cham, doi: 10.1007/978-3-319-21314-9_9.
412	•	Inza, L. A., J. P. Métaxian, J. I. Mars, C. J. Bean, G. S. O'Brien, O. Macedo, and D.
413		Zandomeneghi (2014). Analysis of dynamics of vulcanian activity of Ubinas volcano,
414		using multicomponent seismic antennas, Journal of Volcanology and Geothermal
415		Research, 270, 35-52., doi: 10.1016/j.jvolgeores.2013.11.008.
416	•	Jousset, P., A. Budi-Santoso, A. D. Jolly, M. Boichu, Surono, S. Dwiyono, S. Dwiyono,
417		S.Sumarti, S. Hidayati, and P. Thierry (2013). Signs of magma ascent in LP and VLP
418		seismic events and link to degassing: an example from the 2010 explosive eruption at
419		Merapi volcano, Indonesia, Journal of Volcanology and Geothermal Research, 261, 171-
420		192, doi: 10.1016/j.jvolgeores.2013.03.014.
421	•	Jurkevics, A. (1988). Polarization analysis of three-component array data, Bulletin of the
422		seismological society of America, 78(5), 1725-1743, doi: 10.1785/BSSA0780051725.
423	•	Kenney, J. F., and E. S. Keeping (1962). Root Mean Square, in Mathematics of Statistics,
424		Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 59-60, 1962.

425	Lehr, J., F. Eckel, M. Thorwart, W. and Rabbel (2019). Low-Frequency Seismicity a
426	Villarrica Volcano: Source Location and Seismic Velocities, Journal of Geophysica
427	Research: Solid Earth, 124(11), 11505-11530, doi: 10.1029/2018JB017023.
428	Lesage, P. (2009). Interactive Matlab software for the analysis of seismic volcanic signals
429	Computers & Geosciences, 35(10), 2137-2144, doi: 10.1016/j.cageo.2009.01.010.
430	Li, L., D. Becker, H. Chen, X. Wang, and D. Gajewski (2018). A systematic analysis of
431	correlation-based seismic location methods, Geophysical Journal International, 212(1)
432	659-678, doi: 10.1093/gji/ggx436.
433	McKee, K., D. Fee, A. Yokoo, R. S. Matoza, and K. Kim (2017). Analysis of gas jettin
434	and fumarole acoustics at Aso Volcano, Japan, Journal of Volcanology and Geotherma
435	Research, 340, 16-29, doi: 10.1016/j.jvolgeores.2017.03.029.
436	McNutt, S. R., G. Thompson, M. E. West, D. Fee, S. Stihler, and E. Clark, (2013). Loca
437	seismic and infrasound observations of the 2009 explosive eruptions of Redoubt Volcano
438	Alaska, Journal of Volcanology and Geothermal Research, 259, 63-76., do
439	10.1016/j.jvolgeores.2013.03.016.
440	McNutt, S. R., G. Thompson, J. Johnson, S. De Angelis, and D. Fee (2015). Seismic an
441	infrasonic monitoring, In The encyclopedia of volcanoes (pp. 1071-1099), Academi
442	Press., doi: 10.1016/B978-0-12-385938-9.00063-8.
443	Messina, A., and H. Langer (2011). Pattern recognition of volcanic tremor data on Mt. Etn
444	(Italy) with KKAnalysis—A software program for unsupervised classification, Computer
445	& Geosciences, 37(7), 953-961, doi: 10.1016/j.cageo.2011.03.015.

446	• Montesinos, B. M., C. J. Bean, and I. Lokmer (2021). Quantifying strong seismic
447	propagation effects in the upper volcanic edifice using sensitivity kernels, Earth and
448	Planetary Science Letters, 554, doi: 10.1016/j.epsl.2020.116683.
449	• Morioka, H., H. Kumagai, and T. Maeda (2017). Theoretical basis of the amplitude source
450	location method for volcano-seismic signals, Journal of Geophysical Research: Solid
451	Earth, 122(8), 6538-6551, doi:10.1002/2017JB013997.
452	• Moschella, S., A. Cannata, G. Di Grazia, and S. Gresta (2018). Insights into lava fountain
453	eruptions at Mt. Etna by improved source location of the volcanic tremor, Annals of
454	Geophysics, doi: 10.4401/ag-7552.
455	• Patanè, D., A. Aiuppa, M. Aloisi, B. Behncke, A. Cannata, M. Coltelli, G. Di Grazia, S.
456	Gambino, S. Gurrieri, M. Mattia, and G. Salerno (2013). Insights into magma and fluid
457	transfer at Mount Etna by a multiparametric approach: A model of the events leading to
458	the 2011 eruptive cycle, Journal of Geophysical Research: Solid Earth, 118(7), 3519-3539,
459	doi: 10.1002/jgrb.50248.
460	• Pignatelli, A., A. Giuntini, and R. Console (2008). Matlab software for the analysis of
461	seismic waves recorded by three-element arrays, Computers & geosciences, 34(7), 792-
462	801, doi: 10.1016/j.cageo.2007.10.003.
463	• Ripepe, M., E. Marchetti, D. Delle Donne, R. Genco, L. Innocenti, G. Lacanna, and S.
464	Valade (2018). Infrasonic early warning system for explosive eruptions, Journal of
465	Geophysical Research: Solid Earth, 123(11), 9570-9585, doi: 10.1029/2018JB015561.

466	•	Saccorotti, G., I. Lokmer, C. J. Bean, G. Di Grazia, and D. Patanè (2007). Analysis of
467		sustained long-period activity at Etna Volcano, Italy, Journal of volcanology and
468		geothermal research, 160(3-4), 340-354, doi: 10.1016/j.jvolgeores.2006.10.008.
469	•	Schlindwein, V., J. Wassermann, and F. Scherbaum (1995). Spectral analysis of harmonic
470		tremor signals at Mt. Semeru volcano, Indonesia, Geophysical research letters, 22(13),
471		1685-1688, doi: 10.1029/95GL01433.
472	٠	Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation, IEEE
473		Transactions on Antennas and Propagation, 34, 276–280, doi:
474		10.1109/TAP.1986.1143830.
475	•	Sciotto, M., A. Cannata, G. Di Grazia, and P. Montalto (2022). Volcanic tremor and long
476		period events at Mt. Etna: Same mechanism at different rates or not?, Physics of the Earth
477		and Planetary Interiors, 324, 106850, doi: 10.1016/j.pepi.2022.106850.
478	•	Smith, P. J., and C. J. Bean (2020). RETREAT: A REal-Time TREmor Analysis Tool for
479		Seismic Arrays, With Applications for Volcano Monitoring, Frontiers in Earth Science, 8,
480		doi: 10.3389/feart.2020.586955.
481	•	Sparks, R. S. J., J. Biggs, and J. W. Neuberg (2012). Monitoring volcanoes, Science,
482		335(6074), 1310-1311, doi:10.1126/science.1219485.
483	•	Spina, R., A. Fornaia, and E. Tramontana (2020). VSEW: an early warning system for
484		volcanic and seismic events, In 2020 IEEE International Conference on Smart Computing
485		(SMARTCOMP), 398-403, doi: 10.1109/SMARTCOMP50058.2020.00084.

486	•	Sugimura, S., T. Nishimura, G. Lacanna, D. Legrand, S. Valade, and M. Ripepe (2021).
487		Seismic Source Migration During Strombolian Eruptions Inferred by Very-Near-Field
488		Broadband Seismic Network, Journal of Geophysical Research: Solid Earth, 126(12), doi:
489		10.1029/2021JB022623.
490	•	Thompson, G., and C. Reyes (2018). GISMO-A Seismic Data Analysis Toolbox for
491		MATLAB [software package], available at http:// geoscience community
492		codes.github.io/GISMO/.
493	•	Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: a
494		method based on time averaging over short, modified periodograms, IEEE Transactions
495		on audio and electroacoustics, 15(2), 70-73, doi: 10.1109/TAU.1967.1161901.
496	•	Zuccarello, L., M. R. Burton, G. Saccorotti, C. J. Bean, and D. Patanè (2013). The
497		coupling between very long period seismic events, volcanic tremor, and degassing rates at
498		Mount Etna volcano, Journal of Geophysical Research: Solid Earth, 118(9), 4910-4921,
499		doi: 10.1002/jgrb.50363.
500	•	Zuccarello, L., M. Paratore, M. La Rocca, F. Ferrari, A. Messina, S. Branca, D. Contrafatto,
501		D. Galluzzo and S. Rapisarda (2016). Shallow velocity model in the area of Pozzo
502		Pitarrone, Mt. Etna, from single station, array methods and borehole data, Annals of
503		Geophysics, doi: 10.4401/ag-7086.
504		Zuccarello, L., S. De Angelis, V. Minio, G. Saccorotti, C. J. Bean, M. Paratore, and J.
505		Ibáñez (2022). Volcanic tremor tracks changes in m ulti-v ent activity at MountEtna,
506		Italy: E vidence from analyses of s eismic array data, Geophysical Research Letters,
507		49, e2022GL100056, doi: 10.1029/2022GL100056 .

509	FULL MAILING ADDRESS FOR EACH AUTHOR
510	Minio Vittorio- <u>vittorio.minio@phd.unict.it</u>
511	Zuccarello Luciano-, luciano.zuccarello@ingv.it
512	De Angelis Silvio- silvioda@liverpool.ac.uk
513	Di Grazia Giuseppe- giuseppe.digrazia@ingv.it
514	Saccorotti Gilberto- gilberto.saccorotti@ingv.it
515	
516	LIST OF FIGURE CAPTIONS

Figure 1. Schematic overview of MISARA. a) Data preparation window, for formatting the Input
data. b) Home window, the main panel for the management of all the utilities of MISARA. c) Data
Pre-processing modules, for the data quality control. d) Signal features modules, for those routines
that support the array techniques, such as spectral, amplitude, polarization and detection analysis.
e) Array analysis modules, for the source localization methods based on the multichannel
techniques.

Figure 2. Example screenshot of the Home window, showing some of the configurable input parameters, the buttons for their management and the buttons to access to modules used for data formatting or analysis. Figure 3. Example screenshot of Create Dataset module, showing the configurable parameters for the conversion of the Input files, the creation of the main data structures of the software and to retrieve waveforms and channel metadata.

Figure 4. Example of generic structure of MISARA modules. a) Axes figure, showing the main 529 results. b) Reading files buttons, for the reading of the seismo-acoustic traces. c) Supplementary 530 routines, for the management of additional analysis (for example, the calculation of the analysis 531 error, the selection of the output results, the type of picking, etc...). d) Setting temporary 532 533 parameters, for the management of those parameters that affects the analysis and the graphic 534 elements. e) Command buttons, to control any process in the module, such as the calculation and visualization of the results, the saving of the Output data and figures and the calculation and 535 536 visualization of secondary results. f) Text window, showing any information about the data processing through error, warning or command messages. 537

Figure 5. Examples of Output from Beam Pattern module by using a seismic array deployed at Mt. Etna during 2011. a) Array location (red triangle) on the Digital Elevation Model of the Eastern Sicily. b) Station locations showing the five-sensor array geometry with 200 m aperture, with vertical component Lennartz LE-3D/20s seismometers. c) Array response functions at 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 Hz; the colorbar on the right-hand side refers to the values of the Beam Pattern function.

Figure 6. Examples of output from Signal viewer, Spectrogram and ZLC modules by analysing volcanic tremor recorded on 30th July 2011. a) Temporal histogram of back-azimuth. It ranges between -15°N and 5°N, during quiescent periods of volcano activity, and between 30°N and 50°N, during eruptive activity. b) Temporal histogram of ray parameter. It increases with the onset

of eruptive activity from 0.6-1.0 s/km to 0.7-1.2 s/km, thus indicating a shallowing of the source. 548 In (a) and (b), the results refer to the 1.0-1.5 Hz analysis range and they are filtered for cross 549 550 correlation coefficients greater than 0.75; the colorbars on the right-hand side refer to the histogram probability. c) 1-hour long moving average of RMS amplitudes in 1.0-1.5 Hz frequency range at 551 central station of the array. d) Seismic signal at the central station of the array. e) Spectrogram at 552 the central station of the array; the colorbar indicates the power spectral density of the signal 553 (PSD). f) Polar histogram of back-azimuth shown in (a) and plotted on the Digital Elevation Model 554 of the summit area of Mt. Etna with the main craters (white circles; Bocca Nuova: BN; Voragine: 555 VOR; North-East Crater: NEC; South-East Crater: SEC; New South-East Crater: NSEC). g) Bi-556 variate distribution (2D histogram) of ray parameter and back-azimuth shown in (a) and (b), 557 respectively; the colorbar on the right-hand side refers to the histogram probability. 558 Figure 7. Examples of output from SALPED and STA/LTA modules by analysing LP and VLP events 559 recorded on 23rd October 2010 at ECPN station. a) Spectrograms of the LP and VLP events; most 560 561 of the seismic radiation is focused around 1 and 0.05 Hz, respectively; the colorbar on the rightside refers to the normalized values of the spectral amplitude. b) Waveforms of LP/VLP events 562 expressed in displacement. c) Particle motion of LP/VLP families on the summit portion of the 563 564 Digital Elevation Model of Mt. Etna. In the analysis shown in (a), (b) and (c), the LP and VLP events were filtered between 0.5-1.2 Hz and 0.01-0.15 Hz, respectively. 565

Figure 8. Examples of output from Semblance and Radial Semblance modules by analysing LP and VLP events recorded on 23rd October 2010. Three sections of (a) Semblance and (b) Radial Semblance grids passing through the largest value node; the results represent the average distributions calculated on 38 LPs (a) and 51 VLP (b), respectively; the grid of 5x5x2 km³ (E-W, N-S and vertical directions) is interpolated to the Digital Elevation Model of Mt. Etna; the

571 colorbars on the right-hand side refer to the normalized values of the Semblance/Radial572 Semblance.

573 Figure 9. Examples of output from Signal viewer, Spectrogram and ZLC modules by analysing infrasound signal recorded on 19th July 2019. a) Temporal histogram of back-azimuth. It ranges 574 between 50N and 65°N during. b) Temporal histogram of ray parameter. The values range around 575 3 s/km. In (a) and (b), the results refer to the 0.7-15.0 Hz analysis range and they are filtered for 576 cross correlation coefficients greater than 0.75; the colorbars on the right-hand side refer to the 577 histogram probability. c) 1-hour long moving average of RMS amplitudes in 0.7-15.0 Hz 578 579 frequency range at central station of the array. d) Infrasound signal at the central station of the array. e) Spectrogram at the central station of the array; the colorbar indicates the power spectral 580 581 density of the signal (PSD). f) Polar histogram of back-azimuth shown in (a) and plotted on the 582 Digital Elevation Model of the summit area of Mt. Etna with the main craters (white circles; Bocca 583 Nuova: BN; Voragine: VOR; North-East Crater: NEC; South-East Crater: SEC; New South-East 584 Crater: NSEC). g) Bi-variate distribution (2D histogram) of ray parameter and back-azimuth shown in (a) and (b), respectively; the colorbar on the right-hand side refers to the histogram 585 probability. 586

587

Figure A1. Performance of the results showed in the sections Case study 1, Case study 2 and Case study 3. Each bar refers to the overall time required to perform the analyses summarised in the Tables A1, A2 and A3. The legend to the right-hand side of the diagram refers to the types of routines/subroutines activated during the processing of the data. This diagram does not take

- into account the differences in terms of the setting of input parameters or waveform data given in
- 593 the Tables A1, A2 and A3.
- 594
- 595
- 596

597 FIGURES

Figure 1. Schematic overview of MISARA. a) Data preparation window, for formatting the Input
data. b) Home window, the main panel for the management of all the utilities of MISARA. c) Data
Pre-processing, for the data quality control. d) Signal features modules, for those routines that

support the array techniques, such as spectral, amplitude, polarization and detection analysis. e)
 Array analysis modules, for the source localization methods based on the multichannel techniques.

Menus	Data preparation	MISARA modules	Management _ of parameters
MISARA 1.0.1 - Home			- 0 X
General Management Data Pre-processing Signal features analysis Array analysis Create Dataset	General Info Coordinate file Map file Station reference ECPN		
ZLCC	Component/Channel	Z ON OE F Comp OChan	
MUSIC	Data file		
Semblance	Output Folder Output Format	.mat 🔿 .txt	
Radial Semblance			
Signal Viewer	Default	Latest	Save
Beam Pattern	Spectrogram Spectral coheren	ce Polarization	STA/LTA Salped

Figure 2. Example screenshot of the Home window, showing some of the configurable input parameters, the buttons for their management and the buttons to access to modules used for data formatting or analysis.

B	Prexisting file	Automatic v	
at	Output		
7	Station stats		
N.	XML file		
Ξ.	Staz	ECPN Lat (') Lon (') Ele(m) k (rad/s) C2V (Vicounts) S (V s)	s/m)
arc	Comp/Chan	O Comp⊖ Chan O Z N E F O Sac Seed Cube Poles (radis)	
		Open tiles Open tolder Save	
	IRIS file		
J.	IRIS file Output		
ver	IRIS file Output Net		
erver	IRIS file Output Not Staz		
I Server	IRIS file Output Net Staz Loc		
ila server	IRIS file Output Net Staz Loc Chan	IU III ANMO III 00 Save BHZ Save	
aata server	IRIS file Output Net Staz Loc Chan t1	IU III ANMO III 00 IIII BHZ Save 2010.42.27 06:00.00 Save	
data server	IRIS file Output Net Staz Loc Chan t1 12	U ANMO 00 BHZ 2010-02-27 06:00:00 2010-02-27 06:00:00	

608

609 Figure 3. Example screenshot of Create Dataset module, showing the configurable parameters for

610 the conversion of the Input files, the creation of the main data structures of the software and to

611 retrieve waveforms and channel metadata.

Figure 4. Example of generic structure of MISARA modules. a) Axes figure, showing the main 614 results. b) Reading files buttons, for the reading of the seismo-acoustic traces. c) Supplementary 615 routines, for the management of additional analysis (for example, the calculation of the analysis 616 error, the selection of the output results, the type of picking, etc...). d) Setting temporary 617 parameters, for the management of those parameters that affects the analysis and the graphic 618 elements. e) Command buttons, to control any process in the module, such as the calculation and 619 visualization of the results, the saving of the Output data and figures and the calculation and 620 visualization of secondary results. f) Text window, showing any information about the data 621 processing through error, warning or command messages. 622

Figure 5. Examples of Output from Beam Pattern module by using a seismic array deployed at Mt. Etna during 2011. a) Array location (red triangle) on the Digital Elevation Model of the Eastern Sicily. b) Station locations showing the five-sensor array geometry with 200 m aperture, with vertical component Lennartz LE-3D/20s seismometers. c) Array response functions at 0.5, 1.0,

629 2.0, 3.0, 4.0 and 5.0 Hz; the colorbar on the right-hand side refers to the values of the Beam Pattern
630 function.

Figure 6. Examples of output from Signal viewer, Spectrogram and ZLC modules by analysing volcanic tremor recorded on 30th July 2011. a) Temporal histogram of back-azimuth. It ranges between -15°N and 5°N, during quiescent periods of volcano activity, and between 30°N and 50°N, during eruptive activity. b) Temporal histogram of ray parameter. It increases with the onset of eruptive activity from 0.6-1.0 s/km to 0.7-1.2 s/km, thus indicating a shallowing of the source.

In (a) and (b), the results refer to the 1.0-1.5 Hz analysis range and they are filtered for cross 638 correlation coefficients greater than 0.75; the colorbars on the right-hand side refer to the histogram 639 probability. c) 1-hour long moving average of RMS amplitudes in 1.0-1.5 Hz frequency range 640 at central station of the array. d) Seismic signal at the central station of the array. e) Spectrogram 641 at the central station of the array; the colorbar indicates the power spectral density of the signal 642 f) Polar histogram of back-azimuth shown in (a) and plotted on the Digital Elevation 643 (PSD). Model of the summit area of Mt. Etna with the main craters (white circles; Bocca Nuova: BN; 644 Voragine: VOR; North-East Crater: NEC; South-East Crater: SEC; New South-East Crater: 645 g) Bi-variate distribution (2D histogram) of ray parameter and back-azimuth shown in NSEC). 646 (a) and (b), respectively; the colorbar on the right-hand side refers to the histogram probability. 647

649

Figure 7. Examples of output from SALPED and STA/LTA modules by analysing LP and VLP events recorded on 23rd October 2010 at ECPN station. a) Spectrograms of the LP and VLP events; most of the seismic radiation is focused around 1 and 0.05 Hz, respectively; the colorbar on the right-side refers to the normalized values of the spectral amplitude. b) Waveforms of LP/VLP events expressed in displacement. c) Particle motion of LP/VLP families on the summit portion of the Digital Elevation Model of Mt. Etna. In the analysis shown in (a), (b) and (c), the LP and VLP events were filtered between 0.5-1.2 Hz and 0.01-0.15 Hz, respectively.

Figure 8. Examples of output from Semblance and Radial Semblance modules by analysing LP and VLP events recorded on 23rd October 2010. Three sections of (a) Semblance and (b) Radial Semblance grids passing through the largest value node; the results represent the average distributions calculated on 38 LPs (a) and 51 VLP (b), respectively; the grid of 5x5x2 km³ (E-W, N-S and vertical directions) is interpolated to the Digital Elevation Model of Mt. Etna; the colorbars on the right-hand side refer to the normalized values of the Semblance/Radial Semblance.

Figure 9. Examples of output from Signal viewer, Spectrogram and ZLC modules by analysing 667 infrasound signal recorded on 19th July 2019. a) Temporal histogram of back-azimuth. It ranges 668 between 50N and 65°N during. b) Temporal histogram of ray parameter. The values range around 669 3 s/km. In (a) and (b), the results refer to the 0.7-15.0 Hz analysis range and they are filtered for 670 cross correlation coefficients greater than 0.75; the colorbars on the right-hand side refer to the 671 672 histogram probability. c) 1-hour long moving average of RMS amplitudes in 0.7-15.0 Hz frequency range at central station of the array. d) Infrasound signal at the central station of the 673 array. e) Spectrogram at the central station of the array; the colorbar indicates the power spectral 674 density of the signal (PSD). f) Polar histogram of back-azimuth shown in (a) and plotted on the 675 Digital Elevation Model of the summit area of Mt. Etna with the main craters (white circles; Bocca 676 Nuova: BN; Voragine: VOR; North-East Crater: NEC; South-East Crater: SEC; New South-East 677 Crater: NSEC). g) Bi-variate distribution (2D histogram) of ray parameter and back-azimuth 678 shown in (a) and (b), respectively; the colorbar on the right-hand side refers to the histogram 679 680 probability.

681 APPENDICES

Table A1. Summary of the analysis of volcanic tremor recorded on 30th July 2011 by using
Beam Pattern, Spectrogram and ZLC modules.

Method	Settings	Waveform data	Output size	Timing
	Frequency (Hz): 0.5-5.0			
Beam	Frequency step (Hz): 0.5			\mathbf{D} () 0.20
Pattern	Grid size (s^2/km^2) : 2x2			Data processing (s): ~0.30
	Grid step (s/km): 0.05			

	Window (s): 60	Sample rate (Hz): 100		
Snectrogram	N° samples spectra: 8192	Sample count: 8460000	~2.41 MB	Data processing (s): ~1.07
Speed ogram	High pass filter (Hz): 0.01	N° sensors: 1 vertical	2.41 MD	Data saving (s): ~0.52
	Averaging factor (min): 30	component		
	Window (s): 10	Sample rate (Hz): 100		
PMS	Frequency band (Hz): 0.5-1.5	Sample count: 8460000	~117 KB	Data processing (s): ~0.83
KIVI5		N° sensors: 1 vertical	~11/ KB	Data saving (s): ~0.15
	Averaging factor (min): 60	component		
	Window (s): 10			
	Frequency band (Hz): 0.5-1.5	Sample rate (Hz): 100 Sample count: 8460000 N° sensors: 5 vertical	~579 KB	Data processing (s):
	Velocity waves (km/s): 1.6 km			~23.83
ZLC	Max delay time (s): 4			Data processing with
	Spline interpolation: True			jackkinfe (s): ~88.09
	Histogram bin (min): 60	component		Data saving (s): ~0.25
	Correlation threshold: 0.75			

Table A2. Summary of the analysis of LP and VLP events recorded on 23rd October 2010 by
using STA/LTA, SALPED, Semblance and Radial Semblance modules.

Method	Settings	Waveform data	Output size	Timing
STA/LTA	Frequency band (Hz): 0.01-0.15 STA window (s): 6 LTA window (s): 60 Detection threshold: 2.5 Window spectrogram (s): 5.28 Overlap window spectrogram (s): 5.20 N° samples spectra: 1024 Window polarization (s): 5	Sample rate (Hz): 100 Sample count: 8460000 N° sensors: 1 three components	~86.50 MB	Data processing (s): ~1.97 Spectral data processing (s): ~24.99 (~0.49 per event) Polarization data processing (s): ~19.38 (~0.38 per event) Data saving (s): ~51.29 (~1.01 per event)
SALPED	Central frequency brand (Hz): 0.5-1.2 Lower frequency band (Hz): 0.1-0.4 Upper frequency band (Hz): 3-10 Windows (s): ± 5 Detection threshold: 1.0 Window spectrogram (s): 1.28 Overlap window spectrogram (s): 1.20 N° samples spectra: 128 Window polarization (s): 2.5	Sample rate (Hz): 100 Sample count: 8460000 N° sensors: 1 three components	~11.70 MB	Data processing (s): ~2.24 Spectral data processing (s): ~17.10 (~0.45 per event) Polarization data processing (s): ~13.68 (~0.36 per event) Data saving (s): ~38.22 (~1.01 per event)

	Window (s): 2.5			Data processing (s):
	Frequency band (Hz): 0.5-1.2	Sample rate (Hz): 100		Data processing (s).
	Central frequency (Hz): 1	Sample count: 1000		~28.72 (~0.75 per
	Grid size (km ³): 5x5x2	N° sensors: 7 three		event)
Semblance	Ond size (kiii). 5x5x2	iv sensors. / unce	~12.10 MB	Data processing with
	Grid step (km): 0.1	components		jackkinfe (s): ~230
	Quality factor: 40	N° events: 38		j () f i i i i i i i i i i
	Velocity waves (km/s): 1.6 km			(~6.05 per event)
	Attenuation factor: 1			Data saving (s): ~1.30
	Attenuation factor. 1			
				Data processing (s):
				~211.76 (~4.15 per
	Window (s): 5	Sample rate (Hz): 100		event)
Padial	Frequency band (Hz): 0.01-0.15	Sample count: 12000		Data processing with
Kaulai	Grid size (km ³): 5x5x2	N° sensors: 7 three	~15. 30 MB	Data processing with
Semblance	Grid step (km): 0.1	components		jackkinfe (s): ~1
		1 NIO 51		694.08 (~33.22 per
	Velocity waves (km/s): 1.6 km	N° events: 51		event)
				Data saving (s): ~1.75

688

Table A3. Summary of the analysis of infrasound signal recorded on 19th July 2019 by using

690 Spectrogram and ZLC modules.

Method	Settings	Waveform data	Output size	Timing
Spectrogram	Window (s): 60 N° samples spectra: 8192 High pass filter (Hz): 0.01	Sample rate (Hz): 100 Sample count: 8460000 N° sensors: 1 vertical	~1.86 MB	Data processing (s): ~0.98 Data saving (s): ~0.37
	Averaging factor (min): 30	component		

RMS	Window (s): 10 Frequency band (Hz): 0.7-15 Averaging factor (min): 60	Sample rate (Hz): 100 Sample count: 8460000 N° sensors: 1 vertical component	~192 KB	Data processing (s): ~0.81 Data saving (s): ~0.35
ZLC	Window (s): 10 Frequency band (Hz): 0.7-15 Velocity waves (km/s): 0.354 km Max delay time (s): 4 Spline interpolation: True Histogram bin (min): 60 Correlation threshold: 0.75	Sample rate (Hz): 100 Sample count: 8460000 N° sensors: 6 vertical component	~460 KB	Data processing (s): ~24.01 Data processing with jackkinfe (s): ~87.54 Data saving (s): ~0.31

Figure A1. Performance of the results shown in the sections Test Case study 1, Case study 2 and Case study 3. Each bar refers to the overall time required to perform the analyses summarised in the Tables A1, A2 and A3. The legend to the right-hand side of the diagram refers to the types of routines/subroutines activated during the processing of the data. This diagram does not take into account the differences in terms of the setting of input parameters or waveform data given in the Tables A1, A2 and A3.