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Abstract

A novel Bayesian Augmented-Learning framework, quantifying the uncertainty of spectral representations of stochas-
tic processes in the presence of missing data, is developed. The approach combines additional information (prior do-
main knowledge) of the physical processes with real, yet incomplete, observations. Bayesian deep learning models are
trained to learn the underlying stochastic process, probabilistically capturing temporal dynamics, from the physics-
based pre-simulated data. An ensemble of time domain reconstructions are provided through recurrent computations
using the learned Bayesian models. Models are characterized by the posterior distribution of model parameters,
whereby uncertainties over learned models, reconstructions and spectral representations are all quantified. In partic-
ular, three recurrent neural network architectures, (namely long short-term memory, or LSTM, LSTM-Autoencoder,
LSTM-Autoencoder with teacher forcing mechanism), which are implemented in a Bayesian framework through
stochastic variational inference, are investigated and compared under many missing data scenarios. An example from
stochastic dynamics pertaining to the characterization of earthquake-induced stochastic excitations even when the
source load data records are incomplete is used to illustrate the framework. Results highlight the superiority of the
proposed approach, which adopts additional information, and the versatility of outputting many forms of results in a
probabilistic manner.

Keywords: Missing data, Evolutionary power spectrum, Bayesian Deep Learning, AutoEncoder, Stochastic
variational inference

1. Introduction1

Stochastic processes are widely adopted in many domains to deal with problems which are random in nature2

and involve strong nonlinearities, non-stationary processes, and uncertain system parameters [1, 2]. For instance,3

stochastic dynamics involves analyses of engineering systems subject to random environmental processes, such as4

earthquake motions or winds, requiring realistic characterization and simulation of these stochastic excitations to5

ensure robust design [3, 4]. Spectral representations of stochastic processes, notably evolutionary power spectral6

density function (EPSD), play a central role in the characterization and modelling of these environmental processes,7

capturing key inherent properties (e.g. nonstationarity) and empowering probabilistic engineering simulations for8

stochastic dynamic analyses and safety assessment of engineering facilities [5, 6, 7].9

However, in practice, the uncertainties of spectral representations due to some data problems are not typically10

acknowledged: (i) limited data: a large number of data samples are needed for a predefined degree of accuracy in11

power spectral estimation [8]; (ii) incomplete or non-uniformly sampled data: a ubiquitous problem in virtually any12

discipline where in situ measurements are collected and transferred [8, 9]; (iii) uncertain data: inherent statistical dif-13

ferences that exist across multiple source datasets [10]. Specifically, this study focuses on the incomplete data problem14

as it is deemed both universal and consequential in various fields, e.g. geophysical [11, 12], meteorological [13], as-15

tronomical [14, 15] and seismological [16, 17], in which missing data in measurements is frequently an unavoidable16

issue, with various reasons causing intermittent failure, including equipment failure (e.g. temporary sensor in harsh17



conditions), equipment incompetence (old mechanical instrument for high-velocity vibration, broadband sensors vul-18

nerable to clipping in strong motions), temporary transmission loss for real-time data, plus numerous other reasons19

including sensor maintenance, usage, data acquisition restrictions and or data-corruption [8, 17, 18]. This problem20

also turns out to have significant consequences, as incompleteness may lead to false interpretations (e.g. artefacts) if21

not properly dealt with [16], or render the data unusable, hence breaking existing work pipelines, as re-observe the22

considered physical/environmental phenomenon is generally not possible.23

In many studies and applications, data records contain considerable information towards the understanding of24

the physical phenomenon/event/scenario (e.g. spectral structure), and towards the development and calibration of25

empirical models of the physical processes (e.g. spectral models for characterizing seismic stochastic excitations),26

possibly for a certain condition or scenario, or a specific region. A frequent dilemma is that available observed data are27

scarce and limited in the first place to justify the formulation and calibration of models accordingly developed [19]. As28

such, in response to limited data, a method to harness the most of existing data (even if incomplete or nonequidisantly-29

sampled) is considered essential for a variety of practical applications. Facilitating such uses would then ensure the30

user to continue with the ensuing analyses, enrich the database, and progressively obtain better informed models,31

which is of great importance to ensuring robust analyses against data problems in practice.32

With varying assumptions, many attempts in tackling incomplete data have been proposed over the years. Var-33

ious parametric models, assuming certain structures of the underlying process, e.g. AR (autoregressive) or ARMA34

(autoregressive moving-average) models (see [20, 21, 22] for details), involve fitting a parameterized formulation of35

the spectral density to the available observation using specific estimators. In [17], a domain specific parameterized36

formulation, based on the physics-driven earthquake source spectrum of ground motion, is fitted with a maximum37

likelihood estimator. Sparse methods [23, 24, 25, 26] (e.g. compressive sensing), with additional assumption of the38

sparsity, for instance, in frequency domain, have been proposed for spectral density estimation where multiple records39

compatible with a stochastic process are available [9]. Furthermore, a number of nonparametric spectral estimators40

that worked in an iterative manner to progressively approximate the target spectral density, see e.g. [16, 27, 28] among41

others. However, there exists an additional barrier that many these spectral estimators are only valid for stationary42

processes and cannot be straightforwardly extended to nonstationary data [29]. Alternatively, a number of approaches43

explicitly or implicitly convert the spectral analysis involving missing data into a process of iterative imputation, fol-44

lowed by well-established full-data spectral analysis techniques. Beyond simple interpolation methods (see e.g. [30]45

for a review), more sophisticated models stand out by utilizing temporal dependency. Notably, neural network models,46

known for learning complex and nonlinear relations, are seen prospects in learning the underlying process [18, 31, 19]47

and thereby imputing the missing values [32].48

However, despite recent progress, there still exist three main challenges in the spectral analysis of non-stationary49

process with missing observations: (i) mostly current approaches fail to properly address the uncertainties related50

to the missing data [33, 8]. Inaccuracies of an imperfect time-history reconstruction will be propagated to spectral51

estimates. Similarly, for parametric modelling approaches, parameter uncertainties due to the incomplete data are52

not adequately captured. (ii) many current approaches are developed on the stationary assumption hence inadequate53

to reflect the spectral nonstationarity; (iii) More importantly, in spite of approaches that handle uncertainties (e.g.54

Bayesian spectral analyses [34, 35] or interval discrete Fourier transform [36]), most of current approaches are still55

significantly bounded by a ceiling in performance since they merely base on the very limited information contained56

in the incomplete data (i.e. available observations).57

Therefore, in relation to these challenges, we propose an Augmented-Learning framework that (i) takes advan-58

tage of a-priori knowledge of the underlying process, enabling to incorporate additional information (physics-based59

knowledge) into the modelling. (ii) accounts for uncertainty throughout the framework, allowing to provide a host of60

outputs in a probabilistic manner (e.g. reconstructions, spectral representations, and stochastic-process sample gener-61

ations). (iii) applicable to nonstationary processes. The present study builds upon a previous work [19] which merely62

addresses missing data in a stationary setting, whereas this study provides a robust solution to the more general and63

complex case of arbitrary missing pattern anywhere in a non-stationary setting with significant incompleteness. Such64

versatility therefore enables its domain-independent feasibility. This paper is structured as follows: in section 2, we65

begin with a concise review of the theoretical context on which we build our framework. Section 3 then elaborates66

the main procedures of our proposed framework, followed by a discussion regarding one key component (Bayesian67

modelling of sequential data) in Section 4. An example application from stochastic dynamics is used to illustrate the68

framework in section 5, where we present a comprehensive performance comparison of three Bayesian deep learning69

2



models, under a range of missing data scenarios, using quantitative uncertainty metrics.70

2. Spectral representations of stochastic processes71

In this section, a brief review of the theory of the spectral representation of stochastic processes (stationary and72

non-stationary) is outlined, providing a basis for the proposed framework. In particular, focus is on power spectral73

estimation and simulation of the corresponding processes. A general non-stationary random process, with respect to74

a family of oscillatory functions, can be represented in the form [37]:75

Xt =

∫ ∞
−∞

A(ω, t)eiωtdZ(ω) (1)

where ϕt(ω) = A(ω, t)eiωt represent the oscillatory functions, of which A(ω, t) suggests a slowly varying and76

frequency-dependent modulating function and Z(ω) is an orthogonal process; {Xt} is termed as oscillatory processes77

whose (two-sided) evolutionary power spectral density is further given as:78

S (ω, t) = |A(ω, t)|2S (ω) (2)

where S (ω) represents the power spectral density function in the case of a stationary process with a family of com-79

plex exponentials, i.e., ϕt(ω) = eiωt. The semi-stationary property [2] due to the slowly-changing spectra premise facil-80

itates the practical estimation of the evolutionary spectra given a realization record via non-stationary time-frequency81

methods, e.g. wavelet transforms [7, 38, 39]. Inversely, a versatile formula for generating sample realizations com-82

patible with the stochastic process is given by spectral representation method (SRM) [39]:83

x(i)(t) =
√

2
N−1∑
n=0

√
2S (ωn, t)∆ω cos(ωnt + Φ(i)

n ) (3)

where x(i)(t) is a sample simulation, Φ(i) is the set of independent random phase angles, distributed uniformly over84

the interval [0, 2π], for the ith sample realizations; N and ∆ω relate to the discretization of the frequency domain.85

3. Augmented Bayesian learning framework86

A large ensemble of complete data samples are often required for stochastic-process spectral density estimation87

for attaining a predefined adequate degree of accuracy, while we often only have one observed realization in practice88

[40]. The estimation becomes even more challenging when only partial data is available. Limited information in89

the partially observed data imposes a ceiling in performance for those accordingly developed methods. To robustly90

exploit additional information into modelling and break the performance ceiling, a Bayesian Augmented-Learning91

framework is established. Fig. 1 shows a flowchart of the key procedures of the proposed framework.92

We build on the premise that a priori knowledge could provide general yet insightful prior expectations of the93

observation (with variaibility) of the physical process. The a-priori information is addressed by generating simulations94

based on the domain knowledge represented by θg.95

S = g(θg) (4)

specifically, θg = (θ1, . . . , θn) represents a random vector of relevant physical parameters, each component of96

which stands for a random variable. g(·) represents a generator function, which may just be a model with physics as-97

pects capable of generating stochastic simulations accordingly. Collectively the corresponding probability distribution98

p(θg) would reflect the variability of the simulations embedded in our prior belief.99

Given the data represented by those physics-informed simulations, Bayesian recurrent neural network models100

M are trained as probabilistic model representations of the underlying process, whereby the imputation of missing101

data is conducted as predictions in a recursive manner. Importantly, the epistemic uncertainties of the learned model102

representations are addressed by putting probability distributions over the model parameters ω of neural nets, thus103

giving rise to the posterior distribution p(ω|S,M) through the Bayesian inference, as given below:104

3



Learned model representation 
with posterior distribution

Ensemble reconstructions 
with missing pattern m

Data generator 
with variability

Spectral representation 
of underlying stochastic 

process 
with uncertainty

Sample generations 
compatible with the 
stochastic process

Figure 1: Flowchart of the Augmented Bayesian Learning framework. Main components of the framework include a. generating simulations of the
physical process with a-priori knowledge; b. learning model representations of the underlying process with Bayesian recurrent models; c. imputing
probabilistically the missing values with the learned Bayesian models; d. quantifying the uncertainty on spectral representations (e.g. evolutionary
spectrum) of the underlying stochastic process e. simulating sample realizations of stochastic process as inputs to subsequent problems of random
nature (e.g. stochastic dynamics)

p(ω|S,M) =
p(S|ω,M)p(ω|M)

p(S|M)
∝ p(S|ω,M)p(ω|M) (5)

This marks a key step of the proposed framework, where a probabilistic representation of the underlying processes105

is learned by recurrent neural network models and further used to reconstruct the incomplete observations. Besides,106

in this study we also present investigations and comparisons of a few neural network architectures in this regard. With107

the posterior distribution, an ensemble of recurrent imputations can be obtained by marginalizing out the parameter108

space, as follows:109

R =

∫
p(ỹ|x̃,ω)p(ω|S)dω (6)

where x̃ represents the missing samples in a specific recording; R denotes the reconstructed process, practically110

through an ensemble of reconstructions, which contain both the recurrent imputations ỹ and existing observations.111

Subsequently, uncertainties over spectral representations of the underlying stochastic process (e.g. evolutionary power112

spectral density) can further be quantified, using any established spectral estimators, non-parametric or parametric,113

stationary or non-stationary. Importantly, the evolutionary spectral density with respect to a certain time and frequency114

S f t is represented by a probability distribution, as opposed to a deterministic value.115

Closely related to the notion of evolutionary power spectrum is the application of Monte Carlo simulations of116

compatible sample functions for numerical engineering analyses of stochastic nature [1, 2, 6, 7], for instance con-117

ducting stochastic response and reliability assessment for engineering structures subject to stochastic excitations.118

Corresponding to Eq. (3), our framework maintains the ability to characterise the underlying stochastic process and119

generate associated sample realizations, even with the source data record is incomplete.120
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4. Bayesian modelling of sequential data121

Bayesian recurrent neural network (BRNN) models are utilized to probabilistically learn the temporal dependency122

and provide recurrent imputations for the missing data in the measurements. Specifically, three network architectures123

(namely long short-term memory, or LSTM, LSTM-Autoencoder, LSTM-Autoencoder with teaching forcing mecha-124

nism) are investigated. For completeness, we first provide a concise review of the sequential modeling strategies using125

RNNs and extend these models into Bayesian counterparts to further consider epistemic uncertainty.126

4.1. Sequential modelling with LSTM127

RNNs are specialized dynamic models that capture temporal patterns in the sequential data (e.g. time series), by128

maintaining hidden states at each time step [41, 42], see Eq. (7). They feature the recursive structure that consumes129

the time ordered data one at a time. Its structure is deemed as a deep network once unfolded in time.130

ht = H(ht−1, xt;ω) (7)

where ht and xt represent, respectively, the hidden states vector and the input sequence xt ∈ RD, at time stamp t;H131

denotes a hidden layer function, which could represent any sophisticated RNN variant (e.g. long short-term memory,132

LSTM) parameterized by weights and biases ω. Notably, the LSTM architecture [43], acknowledged for alleviating133

vanishing or exploding gradients and learning long range temporal dependencies, are found to give state-of-the-art134

results for a variety of prediction problems of sequential nature [41, 42, 32]. Fig. 2 depicts the diagram of a LSTM135

unit, which encapsulates the flow of states through three gate functions (namely: forget gate f , input gate i, output136

gate o) plus a cell update c̃, controlling the flow of information, as shown by following equation [44]:137

ft = σ(Wx f xt +Wh f ht−1 + b f )
it = σ(Wxixt +Whiht−1 + bi)
ot = σ(Wxoxt +Whoht−1 + bo)
c̃ = tanh(Wcxxt +Wchht−1 + bc)

ct = ft ∗ ct−1 + it ∗ c̃t−1 (8)

whereσ stands for the sigmoid function, tanh denotes the hyperbolic function, ∗ is the element-wise multiplication.138

ω collectively represent the weight matrices (including biases terms) aforementioned asω = {Wx f ,Wh f ,b f , . . . ,Wy,by},139

which represent the input-to-hidden connections, hidden-to-hidden recurrent connections, and also hidden-to-output140

connections. With the hidden states at time t sequentially updated as ht = ot ∗ tanh(ct), the associated prediction is141

given by [45]:142

yt = fy(ht) = htWy + by (9)

4.2. LSTM-based AutoEncoder143

LSTM-based AutoEncoder stands for a specified architecture that concerns a sequence-to-sequence inference144

problem where a variable length of predictions are desired (often referred as horizon), using an encoder-decoder145

structure. It consists of an encoder LSTM network that encodes the input data sequence into a context vector ν,146

whereby a decoder LSTM network is conditioned upon to iteratively generate the output sequence of arbitrary length147

given the hidden states, as suggested by Eq. (9). Fig. 3 provides a simplified diagram illustrating the encoder-decoder148

network structure. The context vector, in the latent space, is deemed to have summarized the hidden states sequentially149

learned from the input data.150

From a probabilistic perspective [47] which deems the model as the probabilistic procedure generating the ob-151

served data, the autoencoder architecture formulates the conditional distribution of an output sequence given the input152

sequence, p(y1, . . . , yH |x1, . . . , xL), as given below:153

p(yH |xL) =
H∏

t=1

p(yt |ν, y1, . . . , yt−1) (10)
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Figure 2: Diagram of a LSTM unit. Three gate functions f , i, o control
information passage
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Figure 3: A simplified diagram of the LSTM Autoencoder architecture
where a univariate case is illustrated (modified from [46]). The dashed
arrow indicate the optional information employed by the teacher forc-
ing mechanism

In the predictive setting of a univariate time series, these sequence pairs (L,H) correspond to a past lagged window154

as input and future horizon steps as the output, under an autoregressive manner [48]. Note that a univariate case,155

characterised as yt = xL+t is shown herein, but note that such architecture is not limited to univariate cases but156

also excel in modelling input sequences of high dimensions [46] (i.e. xt ∈ RD where covariates are available), or157

even sequences of different domains (such as statistical machine translation [42]). We omit the covariates herein for158

notation simplicity, but it applies to a multi time-series setting as well when there exist extra features (e.g. relevant159

physical or geological factors) contributing to the modelling of the physical processes.160

During training, the encoder-decoder networks are jointly optimized (e.g. by stochastic gradient descent) to max-161

imize the likelihood of seeing the observed data.162

ωMLE = arg max
ω

1
N

N∑
i=1

log p(y(i)
H |x

(i)
L ,ω) (11)

where MLE stands for the maximum likelihood estimation procedure. ω collectively represents the model param-163

eters and (x(i)
L , y

(i)
H ) denotes the window-horizon pairs for the ith data point. Fig. 3 illustrates the architecture of the164

LSTM Autoencoder for illustration, where the encoder and decoder can be composed of stack of LSTM layers. In165

particular, Fig. 3 also depicts a variant of the LSTM Autoencoder which characterises the teacher forcing mechanism166

[42], (i.e. besides conditioning on the context vector, the decoder additionally takes in target sequence but offset by167

one time-step yH[t − 1]). Effectively, it reinforces the learning of the data generating process by feeding more infor-168

mation (ground-truth information) where available. It should be thus noted the decoding procedures would differ at169

inference stage due to the lack of this additional information, while the prediction from the last time step will instead170

be used.171

Fundamentally, LSTM-based models are specialized structures trained to learn temporal patterns. Once learned,172

disregard of the model architecture, it can be exploited for sequence generation [41], time series forecasting [48],173

stochastic signal simulation [18], and also missing data imputation [32].174

4.3. Bayesian Deep Learning175

Implicit in the above MLE procedure is the ignorance of model uncertainties. Significant uncertainties may exist176

on the model configurations that could have generated the data. Especially in the context of limited data, deterministic177

models, unless properly regularized, are prone to learn too much noise (overfitting) and become overconfident due178

to the unawareness of model uncertainties [49, 50]. Therefore, in accounting for the model uncertainty (epistemic179

uncertainty) in neural network models, probability distributions are assigned to model parametersω [47]. Particularly,180

by formulating the uncertainty, Bayesian models achieves a regularizing effect against overfitting [49], which may181

otherwise be a serious problem in terms of limited and noisy data.182
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4.3.1. Variational Bayesian Learning183

To efficiently approximate the true posterior distribution, under the condition of the huge dimensions of a deep184

neural network model, stochastic variational inference (see e.g. [51, 52, 53]) involves in optimizing an approximate185

to the intractable true posterior. It optimizes the parameters of a proposed variational distribution q(w|θ) so that the186

Kullback-Leibler (KL) divergence between the approximate distribution and the true posterior after seeing data D is187

minimised: θ∗ = arg minθ KL[q(w|θ) ∥ p(w|D)]. It thus leads to the minimization of a general stochastic objective188

function for neural network models in the Bayesian supervised learning setting [49]:189

J(D, θ) = KL[q(w|θ) ∥ p(w)] − Eq(w|θ) log p(D|w) (12)

which stands for the negative lower bound of the evidence term log p(D), i.e. negative ELBO (see Appendix B190

for details). The formulation of Eq. (12) is interpreted as a tradeoff between the two composing terms: the variational191

distribution needs to both explain the observed data well, while be close to the prior.192

4.3.2. Variational Bayesian inference in RNNs with stochastic regularisation techniques193

Evaluation of the stochastic objective and further gradients is challenging and several Monte Carlo estimators are194

adopted as approximate solutions [53]. Additional difficulty comes with the complexity of the architectures of deep195

learning models (e.g. LSTM in this analysis) than the regular fully-connected networks. With the recurrent network196

architecture (as in Eq. (7)), correspondingly, the negative ELBO in the case of RNN, can be written as [45]:197

JR = Eq(ω) log p
(
y| fωy ( fωh (xT , fωh (. . . fωh (x1,h0) . . . )))

)
+ KL[q(ω) ∥ p(ω)] (13)

where ω collectively represents all the parameters in a LSTM model. Corresponding to Eq. (8) these parameters198

are modelled as random variables. Specifically, a Bernoulli variational distribution for each matrix rowωk is proposed199

on the basis of a mixture of Gaussians with small variance σ2 [45]:200

q(wk) = pN(wk; 0, σ2I) + (1 − p)N(wk; ϕk, σ
2I) (14)

where the random weight matrix is factorized over the rows as ωk = g(ϕk, ϵ) = ϕk · diag(ϵk); ϕk represent the201

variational parameters; diag means the diagonal matrix operation. Following the idea of Monte Carlo estimator to202

approximate expectation and reparameterization to remove the dependence of q(·) in the integral (see a Gaussian case203

in [52] for details), a further approximation of the stochastic objective function [45]:204

JR ≈ −

N∑
l=1

log
(
y| fω

(l)

y ( fω
(l)

h (xT , fω
(l)

h (. . . fω
(l)

h (x1,h0) . . . )))
)
+ λ||ϕ||22 (15)

ω(l) = g(ϕ, ϵ(l)) with ϵ(l) ∼ p(ϵ) (16)

where p(ϵ) denotes a Bernoulli distribution with parameter p given in advance as hyperparameters; λ||ϕ||22 suggests205

a further approximation of the second term in Eq. (13) by L2 regularisation with weight decay λ and variational206

parameters ϕ to be solved, see [50] for more details. In minimizing Eq. (15), for efficiency a new realization ω(l) is207

sampled for each input xi data point. In particular, note that the weight sharing mechanism in RNN requires the same208

weight realizations being used at each time step, suggesting the same (but random) masking given by the Bernoulli209

distribution is passed throughout time steps. Particularly, the above variational Bayesian optimization procedures210

suggest a large deal of conceptual similarity (but distinct implementation differences) with the dropout mechanism211

[54], which approximates model averaging of exponentially many different neural nets efficiently.212

Correspoding to Eq. (6), substituting the Bernoulli variational distribution for the true posterior then approximates213

the predictive distribution for each missing point, as given below:214 ∫
p(ỹ|x̃,ω)q(ω)dω ≈

1
T

T∑
t=1

p(ỹ|x̃,ω(t)) (17)

where x̃ represents the missing samples and ỹ the recurrent imputations. It yields a predictive distribution for each215

missing time point. Effectively, it amounts to implement T stochastic forward passes {ω(t)}Tt=1 ∼ q(ω), obtained from216
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T realizations of the variational Bernoulli distribution parameterized by the parameter p, through the network model217

and average the results. Iteratively sampling from the model’s predictive distribution at each step, coupled with the218

accordingly updated hidden states, produces an ensemble of reconstructions.219

5. Application example220

In this paper we demonstrate the procedures and advantage of the proposed framework with an application ex-221

ample. We extend the analysis of characterizing earthquake-induced stochastic excitations based on records subject222

to missing data [4] by specifically using a real accelerogram from the European Engineering Strong Motion (ESM)223

database [55], illustrating how physics-based a-priori knowledge can be harnessed to facilitate the estimation (and224

also uncertainty quantification) of the evolutionary power spectral density (EPSD) of the underlying stochastic pro-225

cess. It’s of great importance to stochastic dynamic response and reliability analyses when the associated earthquake226

scenario is of interests to the seismic hazard/risk assessment of the engineering facility, especially in a data scarce227

region.228

Compared with previous studies (e.g. [18, 9, 4]) which jointly employ multiple incomplete realizations artificially229

created towards the spectral density estimation of a single process, this study, however, tackles with the empirical230

recording. It should be noted that when working with empirical recordings, there is generally a single observed231

seismic recording available as a realization of a stochastic process, plus the true power spectrum of the underlying232

process being unknown [56]. As such, it increases the difficulty in obtaining accurate spectral representation and233

motivates the uncertainty to be appropriately accounted for. A seismic record of magnitude Mw = 6.5, normal234

faulting, epicentral distance R = 18.6km, recorded at a class A site in Italy is adopted in this analysis, whereby a235

range of missing scenarios upon this target recording will be created and investigated. The spectral estimates from236

the otherwise full recording would then serve as the reference or target for comparison. In computing the uncertainty237

of the stochastic process spectral estimates, this study further considers three Bayesian recurrent model architectures238

with various windowing settings.239

5.1. Data generation based on a-priori information240

Physics-based simulations for training the Bayesian neural network models are generated from a nonstationary241

stochastic ground-motion model [57, 58], which contains a-priori seismological knowledge well-calibrated for the re-242

gion compatible with the target recording. Importantly, these nonstationary simulations are produced through a model243

formulation that encapsulates physical components (discretized finite-fault comprised of Brune’s earthquake point-244

source model, realistic time envelope function, non-stationarity in frequency, ground-motion variability) [59, 60],245

using parameters with physical meanings, θg = [Ia,Dv, Fc, Fb], which represent Arias intensity, significant dura-246

tion, central frequency and frequency bandwidth respectively. These parameters are empirically related to earthquake247

characteristics, namely [Mw,Repi,Vs30, Fs], which respectively represent magnitude, epicentral distance, 30m average248

shear wave velocity and fault type, via a regressive relationship that entails the contribution of the source, path, and site249

effects. This model has been validated with the strong motion data of the region of interest to reflect the seismological250

knowledge of the given region [61].251

5.2. Missing data at random locations252

For generality, we consider missing data of arbitrary patterns, which are commonly referred to as irregularly-253

sampled records and widely studied in the literature [14, 15, 13, 11, 12]. Missing data are created following the254

setting of MCAR (missing completely at random) [62]. We denote the occurrence of missing samples by a binary255

masking vector mt ∈ {0, 1} where mt = 1 represents the missing observation at random time index t, drawn from a256

uniform distribution [18]. We deem this strategy to have simulated well an unevenly sampling pattern. In fact, as257

with the increase of missing percentage, missing values are more likely to group together, transitioning into a gapped258

missing pattern.259
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Figure 4: Uncertainty over estimated power spectral density (PSD) with 70% missing data (ϵMP = 0.7) based on the Bayesian Autoencoder model
with teacher forcing

5.3. Detailed results for one missing scenario by one Bayesian recurrent model260

In this section, detailed results are demonstrated for the performance regarding the Bayesian Autoencoder model261

with teacher-forcing mechanism (abbreviated as BtfAutoencoder), under a serious scenario of 70% randomly missing262

data (see Fig. 4 - Fig. 8). Note that only one Bayesian recurrent neural network model with respect to one missing263

scenario is shown herein for conciseness, whereas a comprehensive comparison of various model settings and missing264

scenarios will follow shortly in Section 5.4.265

In this study, 100 physics-based simulations are generated to train the Bayesian recurrent models, which all consist266

of 4 layers of 128 LSTM units followed by a fully connected layer for prediction purpose. In the case of the two models267

with Autoencoder architecture, each encoder/decoder model will then be composed of half of these layers, with the268

final fully-connected layer appended to the decoder model. An ensemble of time domain reconstructions are provided269

through recursive predictions of the BtfAutoencoder model. Fig. A.15 shows the example incomplete recording with270

70% missing data (i.e. missing percentage ϵMP = 70%), while Fig. A.16 displays the ensemble of reconstructed time-271

history (ensemble size as 500). Collectively it can be observed that those imputations closely match the target values272

from the otherwise complete record and well contained by the 95% credible intervals.273

Estimation of the spectral representation of the underlying stochastic excitation plays a central role in stochastic274

dynamic analyses to accurately capture the system behaviour [2, 3, 7, 63]. Importantly, Fig. 4a displays the uncertainty275

over the power spectral density estimated from the ensemble reconstructions, with each frequency component corre-276

sponding to a probability distribution. These distributions can better be seen in Fig. 4b, which illustratively shows277

the distribution shape of spectral density values as well as the target PSD (as marked) from the otherwise complete278

recording at selected frequencies. Despite 70% of data being missing, the ensemble-averaged PSD estimate agrees279

well with the target PSD from the complete recording, whose spectral peaks follow closely with the ensemble aver-280

age. Also, the target spectral values across the whole frequency range are well captured by the 95% credible interval281

bounds, except only for the range higher than 15Hz. But it should be noted that by plotting in decibel scale, which282

implicitly reflects results in log scale, the differences in the higher frequency ranges are indeed very small (i.e. in the283

range of 10−3 in linear scale). Therefore, the target PSD is well approximated across whole frequency range by the284

ensemble average. The cutoff at 20Hz is due to the little contribution to the signal power thereafter. By comparison,285

a baseline approach that simply fills in zeros for missing points suffers a significant power loss, especially in the peak286

ranges (e.g. 0-5Hz).287

The stationary (global) PSD estimates are inadequate in reflecting the nonstationary characteristics of seismic288

motions for giving spectral decomposition in an average sense. These time-varying properties are of particular im-289

portance to nonlinear response analysis of engineering structures due to the evolving resonant effect [64]. Therefore,290
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Figure 5: Ensemble-averaged evolutionary spectrum (EPSD) by Morlet wavelet transform with 70% missing data (ϵMP = 0.7) based on the
Bayesian Autoencoder model with teacher forcing

an ensemble of estimates of the evolutionary power spectrum are computed by wavelet transform (Morlet wavelet)291

[38] in this analysis, with the averaged EPSD shown in Fig. 5. In terms of uncertainty, the probability distribution292

of EPSD values, S ( f , t), at selected time instants and frequency bin are displayed in Fig. 6 for illustration, where 3293

representative time instants are selected to show the evolution of spectral estimates. Vertical lines in purple indicate294

the target spectral values without missing data, which are well captured by the corresponding distribution.295

Relying on the Monte Carlo simulation approach [2] powered by the spectral representation method [6] (see296

Eq. (3)), sample realizations compatible with the underlying stochastic process characterized by the evolutionary297

spectra are simulated. These synthetic generations could further be employed for stochastic nonlinear dynamic anal-298

yses (see e.g. [65, 3, 66, 67]). Seismic excitations are also frequently characterized by response spectra. Fig. 7 shows299

the pseudo-acceleration response spectra (5% damped) of these sample realizations in light gray, compared to the300

target response spectrum of the seismic record as highlighted by the thick line in red. It can be seen that, even with a301

missing rate as high as 70%, the target response spectrum is largely captured by the range of those from our sample302

realizations, except for longer periods higher than 3 seconds where a bias can be spotted. Notice that such bias is303

systematically less significant with less missing data, as indicated by Fig. 11 where response spectra associated with304

missing percentage of 10%, 30%, 50% are shown. Also, it has been found with other stochastic simulation models305

(see e.g. [64]) in situations where no missing data exist and can be sufficiently mitigated by a high frequency filter. In306

addition, Fig. 8 shows, side by side, one of the sample realization based on the ensemble-averaged EPSD estimate (at307

the bottom), along with one of the ensemble reconstructions directly from our BtfAutoencoder model (in the middle),308

compared with the otherwise full target recording (top).309

In summary, it has been shown the applicability of the proposed method in characterizing the stochastic excitations310

and spectral uncertainty quantification based on incomplete record with 70% of missing data. It allows to provide a311
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host of probabilistic representations, e.g. reconstructed time-history, evolutionary spectral estimates, response spectra,312

and additionally Monte Carlo sample simulations of the underlying stochastic process.313

5.4. Comprehensive performance comparison of considered models and missing scenarios314

Bayesian recurrent models play a central role in learning the temporal dependency and probabilistically represent315

the data generating process. This study further investigates the performance of spectral estimation and uncertainty316

quantification regarding the three specialized recurrent architectures. Besides this, a range of missing percentages317

(ϵMP) are additionally experimented to encompass various situations with different missing data patterns and missing318

degrees (up to 70%). Higher ϵMP will naturally lead to gaps in the data.319

Fig. 10 shows the comparison of PSD estimates, by the BtfAutoencoder model, under 3 different missing levels. It320

can be seen that the ensemble-averaged estimation closely follows the target in all 3 scenarios, especially in identifying321

spectral peaks. It has previously been noted in Fig. 4 that the discrepancies after 15Hz are exponentially exaggerated322

by the implicitly suggested log scale. These discrepancies are indeed very small (i.e. in the range of 10−3 in linear323

scale). With more missing data, the uncertainties of PSD estimates are accordingly increasing as indicated by the 95%324

credible interval, and the power loss by the zero-filled method is even stronger, making it an insufficient choice when325

a significant amount of data missing. In Fig.11, the response spectra of sample generations contain the target response326

spectrum fairly well, with some amount of variability desired around the target, in order for characterising random327

excitations for further stochastic response analyses.328

In comparing the spectral estimation based on different Bayesian recurrent models, as an example, Fig. 9 shows329

a comparison of probability distribution between the three Bayesian models, namely Bayesian LSTM, Bayesian Au-330

toEncoder, and Bayesian AutoEncoder with teacher-forcing mechanism, with respect to the scenario of ϵMP = 0.2331

and f = 1.4Hz. Importantly, it indicates that uncertainty on the spectral estimate with respect to any frequency or332

time stamp, under a certain missing scenario, across the Bayesian models of choice, can be accounted for within our333

framework.334

In order to facilitate the quantitative comparison of the performance with respect to missing scenarios and neural335

network model settings, several measures of uncertainty are designed and reported in both time domain and frequency336

domain, reflecting the effects on the characterization for both the excitation process and engineering responses. In337

particular, the spectral dissimilarity is computed by the Wasserstein distance (WF , see Eq. (18)) between (normalized)338

power spectral densities [68], reflecting the differences of spectral energy distribution. P95 corresponds to an interval339

coverage probability measure [69] that reflects the percentage of the target values (eg. PSD) being captured by the340
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Figure 6: Probability density of estimated evolutionary spectrum
(EPSD) shown at selected time instants based on the Bayesian Autoen-
coder model with teacher forcing (ϵMP = 0.7). Vertical lines suggest
the target spectral value without missing data.
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Figure 9: Probability distributions of power spectral density (PSD) for three Bayesian recurrent network models with respect to the scenario
f=1.4Hz, ϵMP = 0.2

estimated 95% credible intervals. In addition, δ95 denotes the width between the lower bound yU and upper bound yL341

of the credible intervals, which illustrates the magnitude of uncertainty levels in the estimates. It should be noted that342

these two measures P95 and δ95 should be evaluated together as a desired high quality interval will be narrow while343

capturing a certain portion of data. An extremely wide interval, despite capturing all the ground truth, will instead344

be of little practical use. Furthermore, e denotes the mean absolute error of time domain reconstructions, which345

evaluates the accuracy of the imputation. Note that the uncertainty measures, P95 and δ95, are reported both in time346

domain and frequency domain, whereas WF and e are responsible for denoting the discrepancy in spectral estimates347

and imputations respectively.348

Wp(µ, ν) =
( ∫ 1

0
|F−1
µ (q) − F−1

ν (q)|pdq
)1/p

(18)
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Figure 10: Comparison of estimated PSD under varying missing level based on the Bayesian Autoencoder model with teacher forcing
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Figure 11: Comparison of elastic response spectra from sample realizations of the underlying stochastic process based on the Bayesian Autoencoder
model with teacher forcing under varying missing level

where F−1 denote the inverse cumulative distribution (also known as quantile function of q) of two probability349

measures of interest µ, ν, as in the normalized power spectral density [68].350
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P95 = c f /n f , with c f =

n∑
i=1

ci (19)

ci =

0, yi ∈ [yUi , yLi ]
1, yi < [yUi , yLi ]

(20)

δ95 =
1
n

n∑
i=1

(yUi − yLi ) (21)

e =
1
n

n∑
n=1

|yi − ŷi| (22)

where c f is defined by a vector of length n f (total number of frequency bins), whose element ci indexes a frequency351

value captured by the estimated credible interval.352
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Figure 12: Mean absolute error (e) of the time domain imputations by the Bayesian recurrent neural network models with various windowing
choices under a range of missing levels

As a result, Fig. 12 shows the accuracy of time-history reconstructions across the Bayesian recurrent models in353

the time domain. The shaded region specifically reflects the effects of varying windowing choices considered for each354

Bayesian model as suggested by Eq. (10). Note that, in working with univariate time series data, the LSTM based355

models are implemented in an autoregressive fashion. In comparison with an ordinary AR model with linear fixed356

coefficients, LSTM-based models manifest as dynamic models that can additionally model complex and nonlinear357

relations. The choices of window pairs, which could be considered as hyperparameters, are specifically tuned and358

compared in this analysis, as partly shown in Table 1, where the uncertainty evaluations under various missing per-359

centages, by metrics developed in Eq. (18)-Eq. (22), on both spectral density estimates and time domain imputations360

is listed. Note that abundant windowing settings in terms of (L,H) (in total 250) according to a grid search scheme361

are tested within the framework, but only a few of them are tabulated in Table 1 due to the limit of space. Their effects362

are displayed in Fig.12 - Fig.13, where the size of shading suggests the variance of performances between the same363

model but with varying windowing choices. These shading are shown as 95% credible interval encompassing all the364

windowing choices considered.365

In the frequency domain, Fig. 13a shows the dissimilarity of spectral estimates using the Wasserstein distance,366

while Fig. 13b shows the degree of spectral uncertainty for the three Bayesian models with respect to each missing367

percentage. The markers (eg. e in Fig.12, W f in Fig. 13a, δ95 in Fig. 13b) then indicate the mean results in three368

aspects: (i) the metric is a global measure across the frequency domain or time domain (ii) it is computed as ensemble-369

average for the ensemble of reconstructions by a certain Bayesian model under a missing scenario; (iii) it is the370

14



0.1 0.2 0.3 0.4 0.5 0.6 0.7

εMP

2

4

6

8

10

12

sp
ec

tr
a
l
W
f

BACDER

BLSTM

B tfACDER

(a) Wasserstein distance W f

0.1 0.2 0.3 0.4 0.5 0.6 0.7

εMP

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

sp
ec

tr
a
l
δ 9

5

BACDER

BLSTM

B tfACDER

(b) Width between lower and upper bounds of credible interval δ95

Figure 13: Spectral power density estimates across a range of missing percentages and three Bayesian recurrent models with varying windowing
choices
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Figure 14: Prediction interval probability coverage (P95) results for both recurrent imputations in the time domain and spectral power density
estimates in the frequency domain across a range of missing percentages and three Bayesian recurrent models with varying windowing choices

mean of a Bayesian model with abundant windowing choices. In terms of the accuracy of imputation and spectral371

estimates (see Fig.12 and Fig. 13a), The Bayesian Autoencoder model with teacher forcing outperforms the other two372

by achieving the lowest discrepancy, while the Bayesian LSTM and Bayesian Autoencoder model have very similar373

performance. The variability increases as with the missing percentage for all three models, but BtfACDER still has374

the least variance regarding the windowing settings. In terms of spectral uncertainty (Fig. 13b), all three models have375

small differences at each missing percentage. But BACDER has the largest the variability.376

Fig. 14 displays the prediction interval coverage for both imputations and spectral estimates (PSD). As discussed377

earlier, when we associate P95 with the δ95 metric, it is observed that the coverage probability for imputations for all378

the missing percentages have high coverage probability (over 80%), though at the cost of wider interval bounds for379

large percentage of missing data. The error bar suggests the variance of varying windowing choices for each Bayesian380

model. While BtfACDER achieves the highest coverage probability for spectral estimates, it has the lowest coverage381

probability in imputation compared to the other two models, though the difference is fairly small.382
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Table 1: Results of uncertainty metrics for a range of missing scenarios with respect to Bayesian models of varying windowing settings. A subset
of results are listed here due to the limit of space

Bayesian LSTM Bayesian Autoencoder Bayesian tfAutoencoder

L L,H L,H

ϵMP 5 10 15 20 30 (5, 3) (10, 3) (15, 3) (20, 3) (30, 3) (5, 3) (10, 3) (15, 3) (20, 3) (30, 3)

0.1 e 0.015 0.014 0.015 0.015 0.015 0.014 0.013 0.013 0.013 0.013 0.010 0.011 0.011 0.011 0.011
Pt

95 0.848 0.904 0.888 0.888 0.880 0.888 0.944 0.936 0.912 0.904 0.808 0.824 0.816 0.824 0.840
W f 1.010 0.989 1.033 0.984 1.036 0.963 0.949 0.961 0.934 1.003 0.732 0.757 0.804 0.793 0.788
δ95 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.008 0.007 0.007 0.008 0.008
P f

95 0.845 0.893 0.864 0.845 0.864 0.903 0.961 0.932 0.913 0.932 0.913 0.903 0.864 0.922 0.913

0.2 e 0.035 0.034 0.035 0.036 0.037 0.033 0.032 0.031 0.032 0.032 0.025 0.025 0.026 0.026 0.025
Pt

95 0.860 0.936 0.916 0.908 0.892 0.900 0.956 0.948 0.952 0.940 0.844 0.816 0.836 0.848 0.868
W f 1.873 1.869 1.892 1.980 2.069 1.832 1.967 1.926 1.977 2.095 1.316 1.376 1.362 1.385 1.377
δ95 0.015 0.016 0.015 0.016 0.017 0.016 0.018 0.017 0.018 0.018 0.013 0.012 0.013 0.013 0.013
P f

95 0.806 0.854 0.835 0.816 0.835 0.854 0.864 0.854 0.854 0.854 0.845 0.845 0.845 0.864 0.854

0.3 e 0.063 0.061 0.062 0.063 0.065 0.059 0.057 0.056 0.057 0.056 0.045 0.045 0.046 0.047 0.045
Pt

95 0.88 0.936 0.901 0.907 0.888 0.904 0.944 0.944 0.939 0.944 0.853 0.861 0.856 0.893 0.888
W f 3.222 3.35 3.384 3.589 3.748 3.186 3.619 3.723 3.798 3.883 2.144 2.144 2.189 2.253 2.221
δ95 0.023 0.025 0.024 0.025 0.026 0.023 0.028 0.029 0.028 0.03 0.021 0.021 0.023 0.023 0.023
P f

95 0.777 0.845 0.825 0.786 0.767 0.816 0.835 0.825 0.835 0.864 0.874 0.854 0.864 0.854 0.854

0.4 e 0.091 0.09 0.091 0.093 0.096 0.088 0.087 0.085 0.088 0.087 0.071 0.07 0.072 0.072 0.069
Pt

95 0.878 0.936 0.918 0.928 0.918 0.914 0.946 0.948 0.952 0.956 0.868 0.888 0.87 0.908 0.918
W f 4.807 5.142 5.204 5.505 5.851 4.886 5.836 6.048 6.031 6.115 3.392 3.45 3.476 3.421 3.366
δ95 0.031 0.036 0.032 0.033 0.034 0.033 0.04 0.041 0.04 0.041 0.032 0.032 0.033 0.034 0.036
P f

95 0.786 0.835 0.777 0.777 0.757 0.777 0.806 0.777 0.777 0.777 0.835 0.854 0.845 0.874 0.864

0.5 e 0.124 0.124 0.128 0.128 0.135 0.119 0.122 0.121 0.120 0.121 0.096 0.097 0.099 0.099 0.095
Pt

95 0.891 0.941 0.930 0.939 0.930 0.915 0.954 0.960 0.954 0.965 0.877 0.904 0.894 0.931 0.938
W f 6.660 7.242 7.381 7.799 8.261 6.676 8.182 8.472 8.430 8.629 4.259 4.675 4.592 4.590 4.646
δ95 0.037 0.044 0.039 0.041 0.043 0.039 0.050 0.051 0.050 0.054 0.040 0.041 0.043 0.044 0.046
P f

95 0.748 0.767 0.738 0.728 0.699 0.738 0.757 0.738 0.728 0.718 0.825 0.825 0.825 0.854 0.806

0.6 e 0.163 0.163 0.167 0.169 0.176 0.157 0.164 0.164 0.159 0.162 0.131 0.130 0.136 0.137 0.131
Pt

95 0.911 0.947 0.928 0.945 0.924 0.923 0.957 0.963 0.961 0.964 0.903 0.928 0.932 0.937 0.959
W f 8.323 9.126 9.200 9.641 10.082 8.463 10.188 10.360 10.220 10.317 5.935 6.330 6.019 6.191 6.029
δ95 0.045 0.054 0.049 0.049 0.052 0.047 0.063 0.066 0.061 0.068 0.052 0.054 0.055 0.059 0.061
P f

95 0.709 0.689 0.680 0.680 0.650 0.689 0.738 0.718 0.709 0.718 0.757 0.738 0.767 0.757 0.777

0.7 e 0.207 0.203 0.208 0.211 0.216 0.203 0.205 0.212 0.203 0.201 0.175 0.174 0.180 0.176 0.172
Pt

95 0.907 0.950 0.938 0.937 0.933 0.918 0.949 0.966 0.957 0.968 0.909 0.927 0.925 0.954 0.954
W f 9.853 10.672 10.934 10.966 11.360 10.204 11.542 11.453 11.450 11.188 7.657 8.198 7.597 7.581 7.626
δ95 0.049 0.062 0.054 0.058 0.059 0.052 0.072 0.079 0.072 0.081 0.060 0.063 0.064 0.071 0.075
P f

95 0.650 0.728 0.689 0.660 0.621 0.689 0.650 0.660 0.660 0.670 0.757 0.728 0.728 0.728 0.699

ϵMP missing percentage, e mean absolute error, Pt
95 interval coverage probability for time domain reconstructions, W f Wasserstein distance for

PSD estimates, δ95 credible interval bounds width for PSD estimates, P f
95 interval coverage probability for PSD estimates

6. Conclusion383

Missing data is a ubiquitous problem in various disciplines, where data observations are crucial for the understand-384

ing and model development of the underlying physical process. In this paper, a novel Bayesian Augmented-Learning385

framework for quantifying the uncertainty in spectral density estimation of stochastic process in the presence of386

missing data is developed. Many existing spectral estimators accounting for missing data are driven merely from the387

limited available observations and ignore the uncertainty, hence imposing a ceiling in performance and reliability. This388

paper, therefore, presents a framework that (i) accounts for uncertainty throughout the framework (ii) takes advantage389

of prior domain knowledge (iii) applicable to nonstationary processes. It allows to recover the spectral representation390

of the underlying stochastic process by probabilistically reconstructing the incomplete recording with additional in-391

formation available (though imperfect) about the underlying physical phenomenon. The proposed method provides392

a host of characterizations in a probabilistic manner (e.g. reconstructed time-histories, spectral representations, and393

compatible Monte Carlo sample generations), facilitating the uses in various applications, either spectral-based or394

waveform-based.395

Within the proposed framework, this paper presents a comprehensive performance comparison of three Bayesian396
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deep recurrent models with various model settings, under a range of missing data scenarios, using quantitative uncer-397

tainty metrics. While the results suggest efficacious of all the models even with a significant amount of data missing,398

the LSTM Autoencoder with teacher forcing provides the most accurate power spectral density estimates. Particularly399

noteworthy, is the ability of the proposed framework to remain effective even when 70% of data are missing. This400

robustness under significant incompleteness is largely attributed to the capacity of long-range memory (modelling401

long-range temporal dependency) and the mechanism of dynamic hidden states benefited from the LSTM architec-402

ture. In addition, the combination of teacher-forcing mechanism of the Autoencoder improves information extraction403

in learning complex temporal relations. By contrast, a classic dense architecture neglects the temporal relation and404

thus can be unstable (yielding huge spikes) in long-range predictions under a nonstationary setting.405

This framework provides a robust solution to the general arbitrary missing data pattern in a non-stationary setting,406

even under significant incompleteness. Of particular note is the versatility of the framework enabling potential uses407

in other domains and independence of domain-parameters. While we show a successful example in characterizing408

stochastic excitation in engineering dynamics, the framework can be adopted in other fields of processes or statistical409

signals, where some a priori knowledge about the underlying process is available, which may typically be in the forms410

of theories on the governing PDE (partial differential equation), numerical models of complex physical systems, or411

parameterized stochastic model formulation involving physical variables or parameters.412

Importantly, such knowledge provides considerable information regarding the data generating mechanism than413

merely the remaining incomplete observation. The similar issue of missing observation in the data series of physical414

processes, and the typical existence of prior studies (i.e. physical models) of relevant physical processes, as well as415

the versatility of the proposed framework in modelling arbitrary missing data in a nonstationary setting, suggest the416

generalized feasibility of the proposed framework.417

Another noteworthy aspect in accounting for uncertainty within the framework is that we focused on the epistemic418

uncertainty in learning model representations of the underlying process. But still, the aleatoric uncertainty led by the419

data noise, which may be more concerning for a less strong motion from long distance, contributes to the uncertainty420

of reconstruction. However, the estimation of heteroscedastic aleatoric uncertainty in the recurrent prediction during421

temporal propagation is a nontrivial task, which we will address in the future study.422
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Appendix A. Time domain reconstructed time-history430

Appendix B. Stochastic variational inference431

Bayesian inference in Deep Learning concerns learning the posterior distribution after seen the data. However,432

the true posterior is generally intractable due to the complexity of the model (eg. huge dimensions of parameters433

space). Consider a regression task of learning a model with parameters w of the conditional distribution p(y|x,w)434

from a dataset D : (xi, yi)N
i=1, stochastic variational inference finds a variational distribution, parameterised by θ, that435

minimizes the Kullback-Leibler divergence between the proposed variational distribution and the true posterior:436
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Figure A.15: Example incomplete recording with 70% data randomly missing (ϵMP = 70%)
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Figure A.16: Uncertainty over the recurrent imputations in the time domain with an ensemble size of 500 based on the Bayesian Autoencoder
model with teacher-forcing (ϵMP = 70%)

DKL[q(w|θ)∥p(w|D)] = Eq(w|θ) log
q(w|θ)

p(D|w)p(w)
p(D)

= Eq(w|θ)[log q(w|θ) − log p(D|w) − log p(w)] + log p(D)
= DKL[q(w|θ)∥p(w)] − Eq(w|θ) log p(D|w) + log p(D) (B.1)

Rearranging terms could further obtain the evidence lower bound L(D, θ) as suggested by Eq. (B.2). Importantly,437

as the marginal log likelihood log p(D) is constant with respect to θ, maximizing the ELBO will equivalently minimize438

the original KL divergence.439

L(D, θ) = Eq(w|θ) log p(D|w) − KL[q(w|θ) ∥ p(w)]
L(D, θ) = log p(D) − KL[q(w|θ)∥p(w|D)] ⩽ log p(D) (B.2)
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Appendix C. List of symbols440

ω Angular frequency
A(ω, t) Time and frequency dependent modulating function
Z(ω) Orthogonal process
S (ω, t) Evolutionary power spectral density function
S A priori data
θg Physical parameters characterised with a priori knowledge
M Bayesian recurrent neural network models
R Ensemble of reconstructions
ω Weights and bias of a neural network model
x̃ Missing data
ỹ Recurrent imputations by the Bayesian recurrent models
ht Hidden states at time t
H Hidden layer function of a recurrent network
f Forget gate
o Output gate
i Input gate
c̃ Cell update
ν latent vector from encoder
ϵ Bernoulli sample vector
Ia Arias intensity
Dv Significant duration
Fc Central frequency
Fb Frequency bandwidth
Mw Earthquake magnitude
Repi Epicentral distance
Vs30 Shear wave velocity
Fs Fault type
m Masking vector for missing data
L Lagged window size
H Horizon size
e Mean absolute error
P95 Interval coverage probability measure
W f Wasserstein Fourier distance
δ95 Width between the upper bound and lower bound
F−1 Inverse cumulative distribution
J Loss objective
yL Lower bound of the credible interval
yU Upper bound of the credible interval

441
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