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Survival probability determination of nonlinear oscillators with fractional
derivative elements under evolutionary stochastic excitation

V.C. Fragkoulis ∗, I.A. Kougioumtzoglou †

Abstract

An approximate analytical technique based on a combination of statistical linearization and stochastic av-
eraging is developed for determining the survival probability of stochastically excited nonlinear/hysteretic
oscillators with fractional derivative elements. Specifically, approximate closed form expressions are
derived for the oscillator non-stationary marginal, transition, and joint response amplitude probability
density functions (PDF) and, ultimately, for the time-dependent oscillator survival probability. Notably,
the technique can treat a wide range of nonlinear/hysteretic response behaviors and can account even for
excitation evolutionary power spectra with time-dependent frequency content. Further, the corresponding
computational cost is kept at a minimum level since it relates, in essence, only to the numerical integration
of a deterministic nonlinear differential equation governing approximately the evolution in time of the
oscillator response variance. Overall, the developed technique can be construed as an extension of earlier
efforts in the literature to account for fractional derivative terms in the equation of motion. The numerical
examples include a hardening Duffing and a bilinear hysteretic nonlinear oscillators with fractional
derivative terms. The accuracy degree of the technique is assessed by comparisons with pertinent Monte
Carlo simulation data.

Keywords: Fractional derivative - Nonlinear System - Survival probability - First-passage time -
Stochastic dynamics

1 Introduction

The first-passage time problem has been a persistent challenge in the field of stochastic en-
gineering dynamics (e.g., [26, 28, 23]). It relates to the evaluation of the probability that the
system response crosses a predetermined threshold for the first time over a given time interval.
An alternative definition relates to determining the corresponding survival probability; that is,
the probability that the system response stays below a prescribed barrier level over a given
time interval. Clearly, knowledge of the time-dependent survival probability can be used for
further development of reliability assessment and risk analysis procedures pertaining to diverse
engineering systems.

Further, a large number of techniques have been developed over the last six decades for
addressing the first-passage time problem. These range from semi-analytical approaches, valid
for linear systems only and relying on Poisson distribution-based approximations (e.g., [49, 3]),
to purely numerical Monte Carlo simulation (MCS) schemes (e.g., [18, 40, 2]). Furthermore,
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it has been shown that alternative methodologies based, indicatively, on stochastic averaging
(e.g., [45, 50]), on probability density evolution equations (e.g., [23]), and on discrete versions
of the Chapman-Kolmogorov equation (e.g., [19, 29, 21, 22, 6, 13, 5]) are capable of treating
dynamic systems exhibiting diverse nonlinear/hysteretic behaviors, even when subjected to
complex non-stationary and non-white/non-Gaussian stochastic excitations.

Nevertheless, in the aforementioned techniques the system equations of motion are modeled
based on classical continuum (or discretized) mechanics theories. In this regard, generalizing
standard stochastic dynamics methodologies to treat systems exhibiting time- and space-localized
behaviors, described by operators based on wavelets and/or non-integer order derivatives, can
be a quite challenging task (e.g., [44, 33, 32]). To elaborate further, the need for more accurate
media behavior modeling has led recently to advanced mathematical tools such as fractional
calculus (e.g., [31, 39, 38]). Fractional calculus can be construed as a generalization of ordinary
calculus, and as such provides with enhanced modeling capabilities. In this context, it has been
successfully employed in theoretical and applied mechanics for developing non-local continuum
mechanics theories (e.g., [14, 48]), as well as for modeling viscoelastic materials (e.g., [15]).

In general, stochastic averaging relates to a Markovian approximation of an appropriately
chosen amplitude of the system response, and to a dimension reduction of the original 2n-
dimensional problem to an n-dimensional problem; see [36, 51] for a broad perspective. Notably,
various techniques relying on a stochastic averaging treatment of the governing equations of
motion have been proposed for treating nonlinear/hysteretic systems endowed with fractional
derivative elements, and for determining first-passage time statistics. Typically, these relate to
semi-analytical or numerical schemes for solving the Backward-Kolmogorov (BK) equation
for the survival probability of the oscillator response, or the associated Pontryagin equations
for the first-passage time statistical moments (e.g., [8, 9, 24]). Indicatively, the derived BK
equation was solved in [43, 12] by relying on a Galerkin scheme that utilizes a convenient set of
confluent hypergeometric functions as orthogonal basis. Further, the Galerkin solution scheme
was enhanced in [16] by resorting to a novel stochastic averaging treatment. It was shown that
a Hilbert transform based definition of the oscillator response amplitude can circumvent the
requirement of a priori determination of an equivalent natural frequency; thus, yielding flexibility
in the ensuing analysis and potentially higher accuracy compared to a standard stochastic
averaging treatment.

In this paper, an approximate analytical technique based on a combination of statistical
linearization and stochastic averaging is developed for determining the survival probability
of stochastically excited nonlinear/hysteretic oscillators with fractional derivative elements.
Specifically, approximate closed form expressions are derived for the oscillator non-stationary
marginal, transition, and joint response amplitude PDFs and, ultimately, for the time-dependent
oscillator survival probability. Notably, the technique can treat a wide range of non-stationary
excitations and can account even for evolutionary power spectra (EPS) with time-dependent
frequency content. Further, the corresponding computational cost is kept to a minimum level since
it relates, in essence, only to the numerical integration of a deterministic nonlinear differential
equation governing approximately the evolution in time of the oscillator response variance. The
numerical examples include a hardening Duffing and a bilinear hysteretic nonlinear oscillators
with fractional derivative terms. The accuracy degree of the technique is assessed by comparisons
with pertinent MCS data. Overall, the developed technique can be construed as an extension of
the concepts and the results in [45] to account for fractional derivative terms in the equation of
motion.
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2 Mathematical formulation

2.1 Equivalent linear oscillator time-dependent elements and
non-stationary marginal response amplitude PDF: A
stochastic averaging solution treatment

In this section, the basic aspects of a recently developed approximate technique [17] for deter-
mining the stochastic response of nonlinear oscillators with fractional derivative elements are
presented for completeness. The technique relies on a statistical linearization treatment [37]
of the nonlinear oscillator equation of motion and yields an equivalent linear system (ELS)
with time-dependent stiffness and damping elements. Next, resorting to stochastic averaging
yields a deterministic nonlinear differential equation to be solved numerically for determining
approximately the oscillator non-stationary response variance, and ultimately, the oscillator
non-stationary marginal response amplitude PDF.

In this regard, consider a stochastically excited nonlinear oscillator with fractional derivative
elements. Its equation of motion is given by

ẍ(t) + βDα
0,tx(t) + z(t, x, ẋ) = w(t), (1)

where β is a constant coefficient, and Dα
0,tx(t) represents the Caputo fractional derivative of

order α (0 < α < 1) defined as

Dα
0,tx(t) =

1

Γ(1− α)

∫ t

0

ẋ(τ)

(t− τ)α
dτ. (2)

Further, z(t, x, ẋ) is an an arbitrary nonlinear function that can also account for hysteretic
behaviors, w(t) denotes a Gaussian, zero-mean non-stationary stochastic process with a broad-
band EPS S(ω, t).

Next, considering relatively light damping, it can be argued that the oscillator response
exhibits a pseudo-harmonic behavior described by [17, 36]

x(t) = A(t) cos (ω(A)t+ ψ(t)) (3)

and
ẋ(t) = −ω(A)A(t) sin(ω(A)t+ ψ(t)), (4)

where the response amplitude A(t) and phase ψ(t) are considered to be slowly-varying quantities
with respect to time, and thus, approximately constant over one cycle of oscillation. Next,
manipulating Eqs. (3) and (4) yields

A2(t) = x2(t) +

(
ẋ(t)

ω(A)

)2

. (5)

Further, considering that

h(t, x,Dα
0,tx, ẋ) = βDα

0,tx(t) + z(t, x, ẋ)− β0ẋ, (6)

Eq. (1) is recast into [17, 12]

ẍ(t) + β0ẋ(t) + h(t, x,Dα
0,tx, ẋ) = w(t), (7)
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where β0 = 2ζ0ω0 represents a damping coefficient, with ω0 and ζ0 denoting, respectively, the nat-
ural frequency and damping ratio of the corresponding linear oscillator (i.e., h(t, x,Dα

0,tx, ẋ) =
ω2
0x(t)). Furthermore, an ELS for the oscillator in Eq. (7) is defined as [17]

ẍ(t) + (β0 + β(A)) ẋ(t) + ω2(A)x(t) = w(t). (8)

Next, applying a mean-square minimization between Eqs. (7) and (8), and approximating
the involved fractional derivatives according to [24, 43], yields the ELS response amplitude-
dependent damping and stiffness coefficients in the form [17]

β(A) =
1

Aω(A)
S(A) +

β

ω1−α(A)
sin
(απ

2

)
− β0 (9)

and
ω2(A) =

1

A
F (A) + βωα(A) cos

(απ
2

)
, (10)

where

S(A) = − 1

π

∫ 2π

0

z (A cosϕ,−Aω(A) sinϕ) sinϕdϕ, (11)

F (A) =
1

π

∫ 2π

0

z (A cosϕ,−Aω(A) sinϕ) cosϕdϕ (12)

and ϕ(t) = ω(A)t+ ψ(t).
Note that the equivalent elements ω(A) and β(A) depend on the response non-stationary

amplitude A to account for the nonlinearities and the fractional derivative terms of the original
system. Thus, ω(A) and β(A) can be construed as non-stationary stochastic processes, whose
time-varying mean values are given by applying the expectation operator on Eqs. (9) and (10).
This yields

βeq(t) =

∫ ∞

0

β(A)p(A, t)dA (13)

and
ω2
eq(t) =

∫ ∞

0

ω2(A)p(A, t)dA, (14)

respectively. Further, Eqs. (13-14) can be associated with an alternative to Eq. (8) ELS of the
form

ẍ(t) + (β0 + βeq(t))ẋ(t) + ω2
eq(t)x(t) = w(t). (15)

Next, it is readily seen that the evaluation of the ELS time-dependent damping βeq(t) and stiffness
ωeq(t) elements via Eqs. (13-14) requires knowledge of the non-stationary response amplitude
PDF p(A, t). In this regard, the stationary response amplitude PDF corresponding to a linear
oscillator with fractional derivative terms and subjected to Gaussian white noise was obtained
in closed-form in [46] based on stochastic averaging. Motivated by this analytical solution, a
generalized form of this PDF was considered in [17] for modeling the non-stationary response
amplitude PDF of the nonlinear oscillator governed by Eq. (1), or equivalently, by Eq. (7). This
takes the form

p(A, t) = G
A

c(t)
exp

(
−G A2

2c(t)

)
, (16)

where

G =
sin
(
απ
2

)
ω1−α
0

(17)
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and c(t) is a time-dependent coefficient to be determined. Further, based on a stochastic
averaging solution treatment of Eq. (15), it was shown in [17] that substituting Eq. (16) for
p(A2, t2|A1 = 0, t1 = 0) = p(A, t) into the associated Fokker-Planck partial differential equation
governing the evolution in time of the response amplitude PDF, i.e.,

∂p(A2, t2|A1, t1)

∂t2
= − ∂

∂A2

{(
−1

2
(β0 + βeq(t1, t2))A2 +

πS(ωeq(t1, t2), t2)

2ω2
eq(t1, t2)A2

)
× p(A2, t2|A1, t1)

}
+

1

4

∂

∂A2

{
πS(ωeq(t1, t2), t2)

ω2
eq(t1, t2)

∂p(A2, t2|A1, t1)

∂A2

+
∂

∂A2

[
πS(ωeq(t1, t2), t2)

ω2
eq(t1, t2)

p(A2, t2|A1, t1)

]}
, (18)

and manipulating, leads to

ċ(t) = − (β0 + βeq(t)) c(t) + πG
S(ωeq(t), t)

ω2
eq(t)

. (19)

Eq. (19) constitutes a deterministic first-order nonlinear ordinary differential equation. This can
be solved readily by any standard numerical integration scheme, such as the Runge–Kutta, for
determining the time-dependent coefficient c(t). Furthermore, c(t) can be used for evaluating the
ELS time-dependent damping and stiffness elements by employing Eqs. (13) and (14). Notably,
it was shown in [17] that the scaled by G−1 time-dependent coefficient c(t), where G is defined
in Eq. (17), can approximate the oscillator non-stationary response variance, i.e.,

E[x2] = G−1c(t). (20)

2.2 Approximate closed form expressions for the oscillator
non-stationary transition and joint response amplitude PDFs

In this section, novel approximate closed form expressions are derived for the oscillator non-
stationary transition and joint response amplitude PDFs. They can be construed as generalizations
of the results in [45] to account for fractional derivative elements in the governing equation of
motion. The interested reader is also directed to [47, 42] for relevant earlier research efforts.

In this regard, following a similar analysis as in [45, 47] and motivated by the closed form
expressions derived in [45] pertaining to oscillators with integer order derivative elements, the
transition response amplitude PDF p(A2, t2|A1, t1) corresponding to the oscillator governed by
Eq. (1) is sought in the form

p(A2, t2|A1, t1) = G
A2

c(t1, t2)
exp

(
−GA

2
2 + h2(t1, t2)

2c(t1, t2)

)
I0

(
G
A2h(t1, t2)

c(t1, t2)

)
, (21)

where c(t1, t2) and h(t1, t2) denote time-dependent functions to be determined, and I0(·) is the
modified Bessel function of the first kind and of zero order.

Next, Eq. (21) is substituted into the Fokker-Planck Eq. (18). Specifically, denoting for
simplicity p = p(A2, t2|A1, t1), c = c(t1, t2) and h = h(t1, t2), Eq. (21) is differentiated first
with respect to time. This yields

∂p

∂t2
= Gp

[
−G−1 ċ

c
− 2chḣ− (A2

2 + h2)ċ

2c2
+
I1
(
GA2h

c

)
I0
(
GA2h

c

)A2ḣc− A2hċ

c2

]
, (22)
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whereas differentiating with respect to the response amplitude leads to

∂p

∂A2

= Gp

[
−G−1 ċ

A2

− A2

c
+
I1
(
GA2h

c

)
I0
(
GA2h

c

) h
c

]
. (23)

In Eqs. (22-23), I1(·) denotes the Bessel function of the first kind and of order one. Note that the
derivative of the Bessel function can be expressed as [1]

∂I1
(
GA2h

c

)
∂A2

= G
h

c
I0

(
G
A2h

c

)
− 1

A2

I1

(
G
A2h

c

)
. (24)

Further, differentiating Eq. (23) with respect to A2 and considering Eq. (24) yields

∂2p

∂A2
2

=
∂

∂A2

(
p

A2

)
+G2p

c

[
−2G−1 +

A2
2 + h2

c
− 2

I1
(
GA2h

c

)
I0
(
GA2h

c

)A2h

c

]
. (25)

Lastly, substituting Eqs. (21-23) and Eq. (25) into the Fokker-Planck Eq. (18), and manipulating,
yields (

ċ+ (β0 + βeq(t1, t2))c−G
πS(ωeq(t1, t2), t2)

ω2
eq(t1, t2)

)
×

(
−1 +G

A2
2 + h2

2c
−G

I1
(
GA2h

c

)
I0
(
GA2h

c

)A2h

c

)

+G

(
ḣ+

1

2
(β0 + βeq(t1, t2))h

)(
−h+

I1
(
GA2h

c

)
I0
(
GA2h

c

)A2

)
= 0. (26)

Eq. (26) is satisfied if

dc(t1, t2)

dt2
+ (β0 + βeq(t1, t2)) c(t1, t2)− πG

S(ωeq(t1, t2), t2)

ω2
eq(t1, t2)

= 0 (27)

and
dh(t1, t2)

dt2
+

1

2
(β0 + βeq(t1, t2))h(t1, t2) = 0. (28)

Note that Eqs. (27-28) are subject to the initial condition p(A2, t1|A1, t1) = δ(A2 −A1). Further,
relying on the Markovian response assumption for the process A, the joint response amplitude
PDF is given by

p(A1, t1;A2, t2) = p(A1, t1)p(A2, t2|A1, t1), (29)

which, considering Eqs. (16) and (21), becomes

p(A1, t1;A2, t2) = G2 A1A2

c(t1)c(t1, t2)
I0

(
G
A2h(t1, t2)

c(t1, t2)

)
× exp

(
−GA

2
2c(t1) + A2

1c(t1, t2) + h2(t1, t2)c(t1)

2c(t1, t2)

)
. (30)
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2.3 Oscillator survival probability determination

In this section, the technique developed in [45] for determining approximately the survival
probability of nonlinear oscillators subject to evolutionary stochastic excitation is extended to
account for fractional derivative elements in the governing equation of motion.

In this regard, the survival probability PB(T ) of the oscillator in Eq. (1) is defined as the
probability that the response amplitude A stays below a given threshold B over the time interval
[t0, T ]. Next, following [45] and taking into account that the response amplitude A varies slowly
with respect to time, the time-domain is discretized into intervals of the form

[ti−1, ti], i = 1, 2, . . . ,M, t0 = 0, tM = T and ti = ti−1 + qTeq(ti−1) (31)

over which A is considered constant. Thus, PB(T ) is also considered constant over [ti−1, ti].
In Eq. (31), the time intervals are defined by setting t0 = 0, tM = T and using a time-step
∆t = ti − ti−1 = qTeq(ti−1) for i = 1, 2, . . . ,M , where q ∈ (0, 1] and Teq(t) denotes the
time-dependent equivalent natural period of the oscillator response given by Teq(t) = 2π

ωeq(t)
.

Note that the condition q ∈ (0, 1] is consistent with the assumption adopted in section 2.1 that
the response amplitude is approximately constant over one cycle of oscillation, i.e., over the
instantaneous natural period Teq(t), and thus, over qTeq(t) as well.

Further, considering the discretization of the time domain shown in Eq. (31), the oscillator
survival probability can be approximated by

PB(T = tM) =
M∏
i=1

{1− Fi} , (32)

where Fi is defined as the probability that A will cross the barrier B in the time interval [ti−1, ti],
given that no crossings have occurred prior to time ti−1. Next, invoking the Markovian property
for the process A and utilizing the definition of conditional probability yields

Fi =
Prob {(A(ti) ≥ B) ∩ (A(ti−1) < B)}

Prob {A(ti−1) < B}
=
Qi−1,i

Hi−1

, (33)

where

Qi−1,i =

∫ 0

B

dAi

∫ B

0

p(Ai−1, ti−1;Ai, ti)dAi−1 (34)

and

Hi−1 =

∫ B

0

p(Ai−1, ti−1)dAi−1. (35)

Attention is directed next to the efficient computation of the integrals in Eqs. (34-35). First,
in agreement with their slowly varying behavior in time, the equivalent elements ωeq(t) and
βeq(t) are considered to be constant over [ti−1, ti]. In this regard, they are approximated as
βeq(t) = βeq(ti−1) and ωeq(t) = ωeq(ti−1) over [ti−1, ti] for i = 1, 2, . . . ,M . Further, taking
into account Eq. (20) in conjunction with the condition p(Ai, ti−1|Ai−1, ti−1) = δ(Ai − Ai−1),
Eqs. (27) and (28) are solved over [ti−1, ti] to yield

c(ti−1, ti) =
πG

ω2
eq(ti−1)

exp (− (β0 + βeq(ti−1)) ti)

×
∫ ti

ti−1

exp ((β0 + βeq(ti−1))z)Sw (ωeq(ti−1), z) dz (36)
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and

h(ti−1, ti) = Ai−1 exp

(
−1

2
(β0 + βeq(ti−1)) τi

)
, (37)

respectively, where τi = ti − ti−1. Furthermore, according to the theory of locally stationary
processes (e.g., [34, 11, 30]), the excitation EPS is considered to vary slowly with time. Thus, em-
ploying the approximation exp ((β0 + βeq(ti−1)) t)Sw (ωeq(ti−1), t) = exp ((β0 + βeq(ti−1)) ti−1)
×Sw (ωeq(ti−1), ti−1) over [ti−1, ti], Eq. (36) becomes

c(ti−1, ti) = πG
Sw (ωeq(ti−1), ti−1)

ω2
eq(ti−1)

τi exp (−(β0 + βeq(ti−1))τi) . (38)

Next, applying a Taylor series expansion around zero and considering the first order term only, the
exponential on the right-hand side of Eq. (38) is approximated by exp (−(β0 + βeq(ti−1))τi) =
1− (β0 + βeq(ti−1))τi. Thus, Eq. (38) becomes

c(ti−1, ti) = πG
Sw (ωeq(ti−1), ti−1)

ω2
eq(ti−1)

τi. (39)

Similarly to the derivation of Eq. (39), Eq. (37) is approximated as

h(ti−1, ti) = Ai−1

√
1− (β0 + βeq(ti−1))τi. (40)

Further, applying a Taylor series expansion around t = ti−1 in the time interval [ti−1, ti], and
considering the first order term only, yields

c(ti) = c(ti−1) +
dc(t)

dt

∣∣∣∣
t=ti−1

τi. (41)

Taking into account Eqs. (19) and (39), Eq. (41) becomes

c(ti) = c(ti−1)(1− (β0 + βeq(ti−1))τi) + c(ti−1, ti) (42)

or, equivalently,

c(ti−1, ti) = c(ti)
(
1− r2i

)
, (43)

where

r2i =
c(ti−1)

c(ti)
(1− (β0 + βeq(ti−1))τi) . (44)

The parameter r2i can be construed as a measure of the correlation of the random variables Ai−1

and Ai, since r2i → 0 for τi → ∞ and r2i → 1 for τi → 0; see also [45] for a relevant discussion.
Next, considering Eqs. (39-40) and Eqs. (43-44), the joint response amplitude PDF of Eq. (30)
becomes

p(Ai−1, ti−1;Ai, ti) =
G2Ai−1Ai

c(ti−1)c(ti)(1− ri)2
I0

(
GAi−1Airi√

c(ti−1)c(ti)(1− r2i )
2

)

× exp

(
−G

A2
i c(ti−1) + A2

i−1c(ti)

2c(ti−1)c(ti)(1− r2i )
2

)
. (45)
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Further, the modified Bessel function of the first kind of order zero in Eq. (45) can be expanded
in the form [1]

I0(y) = 1 +
∞∑
n=1

y2n∏n
k=1(2k)

2
. (46)

Furthermore, substituting Eqs. (45-46) into Eq. (34) yields

Qi−1,i = D0 +
N∑

n=1

Dn, (47)

where

D0 =

∫ ∞

B

∫ B

0

G2Ai−1Ai

c(ti−1)c(ti)(1− r2i )
exp

(
−G

A2
i c(ti−1) + A2

i−1c(ti)

2c(ti−1)c(ti)(1− r2i )

)
dAi−1dAi, (48)

Dn =
r2ni G

2n+2

(c(ti−1)c(ti))n+1(1− r2i )
2n+1

∏N
k=1(2k)

2
Ln, (49)

and

Ln =

∫ ∞

B

∫ B

0

(Ai−1Ai)
2n+1 exp

(
−G

A2
i c(ti−1) + A2

i−1c(ti)

2c(ti−1)c(ti)(1− r2i )

)
dAi−1dAi. (50)

Note that Eqs. (48) and (50) can be integrated analytically to yield

D0 = (1− r2i ) exp

(
− GB2

2c(ti)(1− r2i )

){
1− exp

(
− GB2

2c(ti−1)(1− ri)2

)}
(51)

and

Ln = 4n(1− r2i )
2n+2c(ti−1)

n+1c(ti)
n+1G−2n−2Γ

(
n+ 1,

GB2

2c(ti)(1− r2i )

)
×
{
Γ(n+ 1)− Γ

(
n+ 1,

GB2

2c(ti−1)(1− r2i )

)}
, (52)

respectively. In Eq. (52), Γ(z) =
∫∞
0
sz−1e−sds and Γ(γ, z) =

∫∞
z
sγ−1e−sds denote the

Gamma and upper incomplete Gamma functions, respectively (e.g., [1]). Lastly, considering
Eq. (21), the integral of Eq. (35) is analytically calculated yielding

Hi−1 = 1− exp

(
− GB2

2c(ti−1)

)
. (53)

2.4 Mechanization of the technique

The mechanization of the herein developed approximate analytical technique for determining
the survival probability of nonlinear/hysteretic oscillators with fractional derivative elements
comprises the following steps:

i. Solve numerically the deterministic first-order nonlinear differential equation of Eq. (19)
for determining the time-dependent coefficient c(t). This can be done by employing
standard integration schemes, such as the Runge-Kutta [41].
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ii. Determine the non-stationary response amplitude PDF p(A, t) of Eq. (16) and the equiva-
lent time-dependent damping βeq(t) and stiffness ωeq(t) elements of Eqs. (13) and (14),
respectively.

iii. Consider a discretized time domain as ti = ti−1 + qTeq(ti−1), where q ∈ (0, 1] and
Teq(t) =

2π
ωeq(t)

.

iv. Use Eqs. (53) and (47) to determine Hi−1 and Qi−1,i, respectively.

v. Determine the survival probability PB(T ) based on Eq. (32).

Clearly, the herein developed approximate analytical technique for determining the oscil-
lator survival probability is characterized by enhanced computational efficiency. Indeed, the
computational cost is kept to a minimum level, since it corresponds, in essence, only to the
numerical integration of the deterministic differential equation shown in Eq. (19). Further, the
technique exhibits a quite high degree of versatility since it can account readily for diverse
nonlinear/hysteretic response behaviors, and for excitation EPS of arbitrary form, even with
time-varying frequency contents.

3 Numerical examples

The reliability of the herein developed approximate analytical technique is assessed by consider-
ing as numerical examples a hardening Duffing and a bilinear hysteretic nonlinear oscillators with
fractional derivative elements. The oscillators are initially at rest and subjected to non-stationary
stochastic excitation described by the non-separable EPS (e.g., [47, 17])

Sw(ω, t) = S0

( ω
5π

)2
exp(−b0t)t2 exp

(
−
( ω
5π

)2
t

)
, (54)

which is plotted in Fig. 1 for S0 = 0.5 and b0 = 0.1. Notably, the EPS of Eq. (54) comprises some
of the main characteristics of seismic shaking, such as decreasing of the dominant frequency with
time; see also [27, 4, 35, 10] for a broader perspective. In the ensuing analysis, the time-dependent
survival probabilities determined by the approximate analytical technique are compared with
MCS-based estimates. The latter are determined by utilizing the spectral representation scheme
[25] to generate excitation realizations (10, 000 samples) compatible with Eq. (54), in conjunction
with an L1-algorithm [20] for integrating numerically Eq. (1) and for determining response
realizations.

Fig. 1: Non-separable excitation evolutionary power spectrum.
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3.1 Duffing nonlinear oscillator with fractional derivative elements

The equation of motion of a Duffing nonlinear oscillator with fractional derivative elements is
given by Eq. (1) with

z(t, x, ẋ) = ω2
0x(1 + εx2), (55)

where the parameter ε > 0 controls the magnitude of the nonlinearity. Next, considering Eq. (55)
in conjunction with Eq. (16) the time-dependent equivalent elements of Eqs. (13) and (14)
become

βeq(t) = −β0 +
βG sin

(
απ
2

)
c(t)

∫ ∞

0

A

ω1−α(A)
exp

(
−GA2

2c(t)

)
dA (56)

and

ω2
eq(t) = ω2

0 +
βG cos

(
απ
2

)
c(t)

∫ ∞

0

ωα(A)A exp

(
−GA2

2c(t)

)
dA

+
3εω2

0G

4c(t)

∫ ∞

0

A3 exp

(
−GA2

2c(t)

)
dA, (57)

respectively. Note that for the special case of α = 1 for which the fractional derivative de-
generates to a standard first order derivative, Eq. (56) yields βeq(t) = −β0 + β. Thus, the
effective damping coefficient of the ELS in Eq. (15) becomes β0 + βeq(t) = β. In other
words, as anticipated for the limiting case α = 1, the fractional derivative term in Eq. (1)
becomes βDα

0,tx(t) = βẋ(t) and contributes to damping only. Similarly, for α = 0, Eq. (56)
yields βeq(t) = −β0, and thus, the effective damping coefficient of the ELS in Eq. (15) be-
comes β0 + βeq(t) = 0. This is consistent with the original Eq. (1), where α = 0 yields
βDα

0,tx(t) = βx(t). That is, the fractional derivative term contributes to stiffness only.
Further, using the parameters values β0 = 0.07, ω0 = 3.6120, β = 0.07, b0 = 0.15, and

S0 = 1, Eq. (19) is solved numerically for determining c(t). This is shown in Fig. 2 for an
indicative fractional derivative order α = 0.75 and nonlinearity magnitude ε = 0.5. Next, c(t) is
substituted into Eqs. (56-57) for evaluating ωeq(t) and βeq(t) + β0, which are plotted in Fig. 3.
Furthermore, setting q = 0.1 and N = 60, and following the steps outlined in section 2.4, the
oscillator survival probability is determined by Eq. (32). This is plotted in Fig. 4 for various
values of the fractional derivative order and in Fig. 5 for various barrier level values. Based
on comparisons with MCS data (10, 000 realizations), it is seen that the approximate technique
exhibits a satisfactory degree of accuracy.

Fig. 2: Time-dependent coefficient c(t) of Eq. (19) for the Duffing nonlinear oscillator described
by Eqs. (1) and (55) with β0 = 0.07, ω0 = 3.6120, and β = 0.07, fractional derivative
order α = 0.75 and nonlinearity magnitude ε = 0.5.
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(a) (b)

Fig. 3: (a) Equivalent time-dependent damping βeq(t) + β0, and (b) equivalent time-dependent
natural frequency ωeq(t) corresponding to the oscillator described by Eqs. (1) and (55)
with β0 = 0.07, ω0 = 3.6120, and β = 0.07, fractional derivative order α = 0.75 and
nonlinearity magnitude ε = 0.5.

Fig. 4: Survival probability of a Duffing nonlinear oscillator with fractional derivative elements
under evolutionary stochastic excitation for ε = 0.5, B = 0.4 and for various values of
the fractional derivative order; comparison with MCS data (10, 000 realizations).

Fig. 5: Survival probability of a Duffing nonlinear oscillator with fractional derivative elements
under evolutionary stochastic excitation for ε = 2, α = 0.5 and for various values of the
barrier level; comparison with MCS data (10, 000 realizations).



13

3.2 Bilinear hysteretic oscillator with fractional derivative
elements

Consider next a bilinear hysteretic oscillator with fractional derivative terms governed by Eq. (1)
with

z(t, x, ẋ) = γω2
0x+ (1− γ)ω2

0xyz0, (58)

where γ denotes the post- to pre-yield stiffness ratio and xy is the critical value of the displacement
at which yielding occurs. Further, z0 represents the hysteretic component corresponding to the
elastoplastic characteristic. It is described by the differential equation (e.g., [37, 7])

xyż0 = ẋ (1−H(ẋ)H(z0 − 1)−H(−ẋ)H(−z0 − 1)) , (59)

where H(·) denotes the Heaviside step function.
Further, considering Eq. (58), Eq. (11) becomes

S(A) =

{
4xy

π

(
1− xy

A

)
A > xy

0 A ≤ xy
, (60)

whereas Eq. (12) takes the form

F (A) =

{
A
π

(
Λ− 1

2
sin(2Λ)

)
A > xy

A A ≤ xy
, (61)

with Λ given by

Λ = arccos

(
1− 2xy

A

)
. (62)

Furthermore, taking into account Eqs. (60-61) and Eq. (16), the ELS time-variant elements of
Eqs. (13) and (14) become

βeq(t) = − β0 +
βG sin

(
απ
2

)
c(t)

∫ ∞

0

A

ω1−α(A)
exp

(
−GA2

2c(t)

)
dA

+
4xyω

2
0(1− γ)G

πc(t)

∫ ∞

xy

1− xy

A

ω(A)
exp

(
−GA2

2c(t)

)
dA (63)

and

ω2
eq(t) = ω2

0 − (1− γ)ω2
0

{
exp

(
−
Gx2y
2c(t)

)
− G

πc(t)

∫ ∞

xy

(
Λ− 1

2
sin(2Λ)

)
A exp

(
−GA2

2c(t)

)
dA

}

+
βG cos

(
απ
2

)
c(t)

∫ ∞

0

ωα(A)A exp

(
−GA2

2c(t)

)
dA, (64)

respectively.
Next, applying the herein developed technique, whose steps are outlined in section 2.4, the

survival probability of the bilinear hysteretic oscillator is determined. In particular, considering
the parameters values S0 = 0.08 and b0 = 0.12 for the excitation EPS, and ω0 = 5.47, β0 = 0.1
and xy = 0.07 for the oscillator, Eq. (19) is solved numerically to compute the time-dependent
function c(t). This is shown in Fig. 6 for an indicative value of the fractional derivative order
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α = 0.25 and post- to pre-yield stiffness ratio γ = 0.7. Further, substituting c(t) into Eqs. (63-64)
the ELS damping and natural frequency elements are evaluated and plotted in Fig. 7. Furthermore,
using the parameter values q = 0.25 andN = 60, the oscillator survival probability is determined
by Eq. (32). This is plotted in Fig. 8 for various values of the fractional derivative order, and in
Fig. 9 for various barrier level values. Comparisons with pertinent MCS-based estimates (10, 000
samples) demonstrate a quite satisfactory degree of accuracy.

Fig. 6: Time-dependent coefficient c(t) of Eq. (19) for the bilinear hysteretic oscillator described
by Eqs. (1) and (58) with β0 = 0.1, ω0 = 5.47 and xy = 0.07, fractional derivative order
α = 0.25 and post- to pre-yield stiffness ratio γ = 0.7.

(a) (b)

Fig. 7: (a) Equivalent time-dependent damping βeq(t) + β0, and (b) equivalent time-dependent
natural frequency ωeq(t) corresponding to the oscillator described by Eqs. (1) and (58)
with β0 = 0.1, ω0 = 5.47 and xy = 0.07, fractional derivative order α = 0.25 and post-
to pre-yield stiffness ratio γ = 0.7.
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Fig. 8: Survival probability of a bilinear hysteretic oscillator with fractional derivative elements
under evolutionary stochastic excitation for γ = 0.7, B = 0.06 and for various values of
the fractional derivative order; comparison with MCS data (10, 000 realizations).

Fig. 9: Survival probability of a bilinear hysteretic oscillator with fractional derivative elements
under evolutionary stochastic excitation for γ = 0.4, α = 0.5 and for various values of
the barrier level; comparison with MCS data (10, 000 realizations).

4 Concluding remarks

In this paper, an approximate analytical technique has been developed for determining the
survival probability of nonlinear/hysteretic oscillators with fractional derivative elements under
evolutionary stochastic excitation. This has been done by relying on a combination of statistical
linearization and stochastic averaging for deriving approximate closed form expressions for the
oscillator non-stationary marginal, transition, and joint response amplitude PDFs and, ultimately,
for the time-dependent oscillator survival probability. A significant advantage of the technique
relates to the fact that it can account readily for a wide range of nonlinear/hysteretic response
behaviors. Further, non-stationary excitation EPS, even of the non-separable kind with time-
dependent frequency content, can be treated in a direct manner. Notably, the technique is
characterized by significant efficiency. In fact, the associated computational cost relates, in
essence, only to the numerical integration of a deterministic nonlinear differential equation
governing approximately the evolution in time of the oscillator response variance. Overall, the
developed technique can be construed as an extension of the concepts and the results in [45] to
account for fractional derivative terms in the equation of motion. A hardening Duffing and a
bilinear hysteretic nonlinear oscillators with fractional derivative elements have been considered
as numerical examples. Comparisons with pertinent MCS data have shown that the approximate
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analytical technique exhibits a satisfactory degree of accuracy in determining the oscillator
survival probability.
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systems under Lévy white noise through path integral method. Nonlinear Dynamics,
85(3):1445–1456, 2016.

[6] C. Bucher and M. Di Paola. Efficient solution of the first passage problem by path
integration for normal and Poissonian white noise. Probabilistic Engineering Mechanics,
41:121–128, 2015.

[7] T. K. Caughey. Random excitation of a system with bilinear hysteresis. J. Appl. Mech.,
27:649–652, 1960.

[8] L. Chen and W. Zhu. First passage failure of SDOF nonlinear oscillator with lightly
fractional derivative damping under real noise excitations. Probabilistic Engineering
Mechanics, 26(2):208–214, 2011.

[9] L. Chen, Q. Zhuang, and W. Zhu. First passage failure of MDOF quasi-integrable Hamil-
tonian systems with fractional derivative damping. Acta mechanica, 222(3):245–260,
2011.

[10] L. Comerford, I. A. Kougioumtzoglou, and M. Beer. An artificial neural network approach
for stochastic process power spectrum estimation subject to missing data. Structural Safety,
52:150–160, 2015.

[11] R. Dahlhaus. Fitting time series models to nonstationary processes. The annals of Statistics,
25(1):1–37, 1997.

[12] A. Di Matteo, P. D. Spanos, and A. Pirrotta. Approximate survival probability determina-
tion of hysteretic systems with fractional derivative elements. Probabilistic Engineering
Mechanics, 54:138–146, 2018.



17

[13] M. Di Paola and C. Bucher. Ideal and physical barrier problems for non-linear systems
driven by normal and Poissonian white noise via path integral method. International
Journal of Non-Linear Mechanics, 81:274–282, 2016.

[14] M. Di Paola, G. Failla, A. Pirrotta, A. Sofi, and M. Zingales. The mechanically based
non-local elasticity: an overview of main results and future challenges. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
371(1993):20120433, 2013.

[15] M. Di Paola, A. Pirrotta, and A. Valenza. Visco-elastic behavior through fractional calculus:
an easier method for best fitting experimental results. Mechanics of materials, 43(12):799–
806, 2011.

[16] K. R. M. dos Santos, I. A. Kougioumtzoglou, and P. D. Spanos. Hilbert transform–
based stochastic averaging technique for determining the survival probability of nonlinear
oscillators. Journal of Engineering Mechanics, 145(10):04019079, 2019.

[17] V. C. Fragkoulis, I. A. Kougioumtzoglou, A. A. Pantelous, and M. Beer. Non-stationary
response statistics of nonlinear oscillators with fractional derivative elements under evolu-
tionary stochastic excitation. Nonlinear Dynamics, 97(4):2291–2303, 2019.

[18] M. Grigoriu. Stochastic calculus: applications in science and engineering. Springer, 2002.

[19] D. V. Iourtchenko, E. Mo, and A. Naess. Response probability density functions of strongly
non-linear systems by the path integration method. International Journal of Non-Linear
Mechanics, 41(5):693–705, 2006.

[20] C. G. Koh and J. M. Kelly. Application of fractional derivatives to seismic analysis of
base-isolated models. Earthquake engineering & structural dynamics, 19(2):229–241,
1990.

[21] I. A. Kougioumtzoglou and P. D. Spanos. Response and first-passage statistics of nonlinear
oscillators via a numerical path integral approach. Journal of Engineering Mechanics,
139(9):1207–1217, 2013.

[22] I. A. Kougioumtzoglou and P. D. Spanos. Stochastic response analysis of the softening
duffing oscillator and ship capsizing probability determination via a numerical path integral
approach. Probabilistic Engineering Mechanics, 35:67–74, 2014.

[23] J. Li and J. Chen. Stochastic dynamics of structures. John Wiley & Sons, 2009.

[24] W. Li, L. Chen, N. Trisovic, A. Cvetkovic, and J. Zhao. First passage of stochastic fractional
derivative systems with power-form restoring force. International Journal of Non-Linear
Mechanics, 71:83–88, 2015.

[25] J. Liang, S. R. Chaudhuri, and M. Shinozuka. Simulation of nonstationary stochastic
processes by spectral representation. Journal of Engineering Mechanics, 133(6):616–627,
2007.

[26] Y.-K. Lin. Probabilistic theory of structural dynamics. McGraw-Hill, 1967.

[27] S.-C. Liu. Evolutionary power spectral density of strong-motion earthquakes. Bulletin of
the Seismological Society of America, 60(3):891–900, 1970.



18

[28] L. D. Lutes and S. Sarkani. Random vibrations: analysis of structural and mechanical
systems. Butterworth-Heinemann, 2004.

[29] A. Naess, D. Iourtchenko, and O. Batsevych. Reliability of systems with randomly varying
parameters by the path integration method. Probabilistic Engineering Mechanics, 26(1):5–9,
2011.

[30] G. P. Nason, R. Von Sachs, and G. Kroisandt. Wavelet processes and adaptive estimation
of the evolutionary wavelet spectrum. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 62(2):271–292, 2000.

[31] K. Oldham and J. Spanier. The fractional calculus theory and applications of differentiation
and integration to arbitrary order. Elsevier, 1974.

[32] G. D. Pasparakis, I. A. Kougioumtzoglou, V. C. Fragkoulis, F. Kong, and M. Beer.
Excitation–response relationships for linear structural systems with singular parameter
matrices: A periodized harmonic wavelet perspective. Mechanical Systems and Signal
Processing, 169:108701, 2022.

[33] A. Pirrotta, I. A. Kougioumtzoglou, A. Di Matteo, V. C. Fragkoulis, A. A. Pantelous, and
C. Adam. Deterministic and random vibration of linear systems with singular parameter ma-
trices and fractional derivative terms. Journal of Engineering Mechanics, 147(6):04021031,
2021.

[34] M. B. Priestley. Evolutionary spectra and non-stationary processes. Journal of the Royal
Statistical Society: Series B (Methodological), 27(2):204–229, 1965.

[35] S. Rezaeian and A. Der Kiureghian. A stochastic ground motion model with separable
temporal and spectral nonstationarities. Earthquake Engineering & Structural Dynamics,
37(13):1565–1584, 2008.

[36] J. B. Roberts and P. D. Spanos. Stochastic averaging: an approximate method of solving
random vibration problems. International Journal of Non-Linear Mechanics, 21(2):111–
134, 1986.

[37] J. B. Roberts and P. D. Spanos. Random vibration and statistical linearization. Courier
Corporation, 2003.

[38] Y. A. Rossikhin and M. V. Shitikova. Application of fractional calculus for dynamic
problems of solid mechanics: novel trends and recent results. Applied Mechanics Reviews,
63(1), 2010.

[39] J. Sabatier, O. P. Agrawal, and J. A. T. Machado. Advances in fractional calculus, volume 4.
Springer, 2007.

[40] G. I. Schueller, H. J. Pradlwarter, and P.-S. Koutsourelakis. A critical appraisal of reliability
estimation procedures for high dimensions. Probabilistic engineering mechanics, 19(4):463–
474, 2004.

[41] L. F. Shampine and M. W. Reichelt. The matlab ode suite. SIAM journal on scientific
computing, 18(1):1–22, 1997.



19

[42] G. P. Solomos and P. T. D. Spanos. Oscillator response to nonstationary excitation. Journal
of Applied Mechanics, 51:907–912, 1984.

[43] P. D. Spanos, A. Di Matteo, Y. Cheng, A. Pirrotta, and J. Li. Galerkin scheme-based
determination of survival probability of oscillators with fractional derivative elements.
Journal of Applied Mechanics, 83(12):121003, 2016.

[44] P. D. Spanos, F. Kong, J. Li, and I. A. Kougioumtzoglou. Harmonic wavelets based
excitation–response relationships for linear systems: A critical perspective. Probabilistic
Engineering Mechanics, 44:163–173, 2016.

[45] P. D. Spanos and I. A. Kougioumtzoglou. Survival probability determination of nonlinear
oscillators subject to evolutionary stochastic excitation. Journal of Applied Mechanics,
81(5), 2014.

[46] P. D. Spanos, I. A. Kougioumtzoglou, K. R. M. dos Santos, and A. T. Beck. Stochastic
averaging of nonlinear oscillators: Hilbert transform perspective. Journal of Engineering
Mechanics, 144(2):04017173, 2018.

[47] P.-T. D. Spanos and G. P. Solomos. Markov approximation to transient vibration. Journal
of Engineering Mechanics, 109(4):1134–1150, 1983.

[48] V. E. Tarasov. Fractional mechanics of elastic solids: continuum aspects. Journal of
Engineering Mechanics, 143(5):D4016001, 2017.

[49] E. H. Vanmarcke. On the distribution of the first-passage time for normal stationary random
processes. ASME J. Appl. Mech., 42:215–220., 1975.

[50] H. Vanvinckenroye, I. A. Kougioumtzoglou, and V. Denoël. Reliability function deter-
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