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Deep neural network training 
method based on vectorgraphs 
for designing of metamaterial 
broadband polarization converters
Jiale Gao 1, Chunjie Feng 1, Xingyi Wu 1,3, Yanghui Wu 1,3, Xiaobo Zhu 1,3, Daying Sun 1,3, 
Yutao Yue 2,3 & Wenhua Gu 1*

In this work, we proposed a method of extracting feature parameters for deep neural network 
prediction based on the vectorgraph storage format, which can be applied to the design of 
electromagnetic metamaterials with sandwich structures. Compared to current methods of manually 
extracting feature parameters, this method can automatically and precisely extract the feature 
parameters of arbitrary two-dimensional surface patterns of the sandwich structure. The position and 
size of surface patterns can be freely defined, and the surface patterns can be easily scaled, rotated, 
translated, or transformed in other ways. Compared to the pixel graph feature extraction method, this 
method can adapt to very complex surface pattern design in a more efficient way. And the response 
band can be easily shifted by scaling the designed surface pattern. To illustrate and verify the method, 
a 7-layer deep neural network was built to design a metamaterial broadband polarization converter. 
Prototype samples were fabricated and tested to verify the accuracy of the prediction results. In 
general, the method is potentially applicable to the design of different kinds of sandwich-structure 
metamaterials, with different functions and in different frequency bands.

Electromagnetic (EM) metamaterials can effectively manipulate the propagation, polarization, and wavefront of 
EM  waves1,2, and have been widely used in many applications, including absorbers, EM shielding, and polariza-
tion  converters3,4. The EM metamaterial usually adopts a typical sandwich structure, including a 2D conductive 
surface pattern, an intermediate dielectric layer, and an underlying conductive ground layer. The main design 
parameters lie in the various geometrical parameters of the 2D conductive surface pattern, plus two parameters 
of the dielectric layer, i.e., the dielectric constant and the thickness. The traditional EM metamaterial design 
process usually includes empirical model design, parameter scanning and optimization with the help of com-
mercial software simulation, which usually requires a lot of computing resources and time.

Artificial neural networks have shown many advantages in areas including prediction and  clustering5. 
Recently, many groups are also exploring the use of artificial neural networks for the inverse design of EM 
 metamaterials6–10. J. Wang, et al. proposed a data cropping algorithm to design a low-profile, broad transmission-
band absorption frequency selective transmission (AFST) subsurface  pattern11. Zhu et al. used CNN networks to 
extract electromagnetically induced transparency (EIT) metasurface feature  parameters12. Chang et al. success-
fully predicted metal mesh shielding effectiveness curves using BP networks and further used them to guide the 
design of surface patterns for given shielding effectiveness  requirements13. In all these works, feature parameters 
of the metamaterial structures were manually extracted to guide the neural network training.

A general solution of feature extraction is to directly employ pixel graphs to represent the surface pattern, 
but it requires a large number of computing resources. Hodge et al. used deep convolutional generative adver-
sarial networks (DC-GANS) to guide the design of polarization converters, using metamaterial cells in over 150 
reflectance array configurations as the training dataset for predicting the relationship between surface pattern 
parameters and the reflectance spectra of the two  polarizations14. Liu et al. used “1” and “0”to indicate whether 
metal is attached to a 16*16 square sub-block of the surface pattern, and 70,000 coding patterns were used to train 
the neural network to obtain the reflection phase at 10  GHz15. This feature extraction approach based on pixel 
graphs is very successful, but requires a huge amount of data and computational resources, and the optimization 
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can be pretty complex. This work suggests using the vectorgraph to extract feature parameters from surface pat-
terns of the sandwich-structured metamaterial, which can be a general and efficient method for neural network 
design of metamaterial.

For comparison, we show the flowchart of the conventional metamaterials design process (Fig. 1), as well as 
that of the proposed method (Fig. 2). It can be seen that to propose the basic idea of surface pattern is the first 
step for both methods. The idea can come from theoretical directions, or literature survey results, and so on. 
The design process itself does not make any limitation to the surface pattern design, but it is necessary to come 
up with some basic pattern design first to avoid very complex optimization process. With the basic design of 
surface pattern, the vector graph can be directly generated using vectorgraph software (CAD, Solidworks, etc.), 
as shown in Fig. 2.

Meanwhile. To illustrate the contribution of this manuscript, table 1 makes a simple comparison of the 
proposed method to the conventional metamaterial design method as well as two other AI design methods.

Vectorgraph feature-extraction method
The vectorgraph is a well-established digital storage technology for 2D graphs. It features high information 
density and easy transformation, and automatically extracts key feature parameters of a given graph, includ-
ing the location, shape, size, contour, color, and other features. The fact that vector graphics are not distorted 

Figure 1.  Flowchart of the conventional manual optimization method.

Figure 2.  Flowchart of vectorgraph parameter extraction method design process.

Table 1.  Comparison of the proposed method to the conventional metamaterial design method as well as two 
other AI design methods.

Method
Neural network input v.s. 
output

Suitable for complex 
surface pattern design Computer resource needed Progress can be automated

Can cover all kinds of 
pattern varieties

Conventional manual opti-
mization method – No Small No No

Pixel graph parameter 
extraction method

Target performance curves 
v.s. Pixel graph of the surface 
pattern

Yes Huge No Yes

Manual parameter extrac-
tion method

Target performance curves 
v.s. Feature parameters 
manually extracted from the 
surface pattern

No Medium No Not guaranteed

Our work: vectorgraph 
parameter extraction 
method

Target performance curves 
v.s. Feature parameters auto-
matically extracted from the 
vector graph of the surface 
pattern

Yes Medium Yes Yes
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with the change of scale is another important feature that is superior to pixel graphics. There are several mature 
vectorgraph storage formats for selection. For example, the Scalable Vector Graphics (SVG) format can enable 
dynamic description and employ descriptive language in text format to describe the visual content. From the 
SVG format of a given surface pattern, the feature parameters can be directly extracted to fully describe the 
2D pattern without any distortion. Part of unnecessary information such as color can be directly removed or 
replaced by other parameters such as surface resistance if needed. Therefore, the manual and random selection 
of feature parameters can be replaced by an automatic and determined method, where the feature parameters 
can be automatically extracted from the SVG file by a simple computer code under certain rules, as will be 
illustrated in this report.

Assume N feature parameters are extracted from the SVG file, all we need to do is to add two parameters of 
the dielectric layer: the thickness t and the permittivity εr , and the metamaterial design can be fully described by 
these [N+12] parameters. We can further correlate the desired EM properties of the metamaterial to the [N+12] 
parameters for data training. After sufficient and correct data training, the deep neural network can predict the 
EM properties of any given metamaterial, or backwardly design the metamaterial structure according to the 
required EM properties. Figure 3 shows the block diagram of the deep neural network training method based 
on vectorgraphs for designing metamaterial broadband polarization converters.

Of course, there are almost infinite surface pattern design possibilities, so there should be certain limits of 
the surface pattern for practical and meaningful data training. This work demonstrates a simple surface pat-
tern as the example for the design of a transparent reflection-type broadband polarization converter, which is 
a combination of a line and an arc, as illustrated in Fig. 3. The classical slash structure is used to implement the 
polarization conversion function as an example to specify how the parameters can be extracted and used for 
neural network prediction by means of a vectorgraph. In order to increase the complexity of the structure, a 
circular structure is added to the basic slash structure. The SVG format description of the vectorgraph is very 
concise. Using the structure shown in Fig. 4 as an example, the feature parameters can be directly extracted from 
the SVG file, as listed in Table 2.

In principle, the feature parameters extracted in Table 1 can be directly used for the DNN training. However, 
for simplicity and better adaptability to the simulation software parameter setting, the feature parameters are 
further processed. First, all color information is not needed. Second, a fixed rectangle period is set for the data 
training, so all the parameters related to the periodic structure can be ignored. Third, since both 

(

x1, y1
)

 and 
(

x3, y3
)

 can be used to describe the location of the rectangle, one representing the center and the other represent-
ing the left-up corner, only one is needed, and 

(

x1, y1
)

 is kept. Fourth, it is more convenient to use the arc radius 
R and arc angle γ to describe the arc in the simulation software, so the following translation equations are used:

(1)











x4 = x2
y4 = y2 − R

x5 = x2 + R sin γ

y5 = y2 − R cos γ

Figure 3.  Block diagram illustrating the system of the proposed deep neural network training method based on 
vectorgraphs for designing metamaterial broadband polarization converters.
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Therefore, altogether feature parameters can be extracted based on the SVG file, and design parameters are used 
for the metamaterial description, as shown in Table 3. The value range of each parameter is also listed in Table 3.

The polarization conversion rate (PCR) spectra in (10–20) GHz of the metamaterial structure were acquired 
via CST software simulation (Version: CST Studio Suite 2020, https://www.3ds.com/) as the output set, and 450 
sets of feature parameters were randomly chosen within the given range as the training data set, among which 
15 sets were taken as the validation set.

Table 2.  SVG format interpretation and parameter extraction.

Source file Description Feature parameter extraction

<svg width=’100%’ height=’100%’ version= "1.1" 
xmlns=’http://wwww.w3.org/2000/svg’> < title >Sandwich 
Structure< /title >

File head –

< rect x= "0" y= "0" width="7" height = "7" fill="RGB 
(0,255,255) " >< /rect >

Rectangular period structure positioned at (0,0), width 
7mm, height 7mm, color defined as RGB (0,255,255), 
representing cyan

x0 = 0, y0 = 0 width = 0 height = 0 RGB(0, 255, 255)

< rect x= "2" y= "1" width="1" height = "5" transform= 
"translate (3.5, 3.5) rotate (45)" fill="RGB (255,255,0) "> </
rect>

Left-up corner of the rectangle positioned at (2,1), 1mm 
wide, 5mm high, rotated 45◦ around the (3.5,3.5) point, the 
color defined as RGB (255,255,0), representing yellow

x3 = 2, y3 = 1 ω1 = 1, L = 5 x1 = 3.5, y1 = 3.5 α = 45◦ 
RGB(255, 255, 0)

< path d="M 3.5 1.5 A 3.5 3.5, 135, 0, 1, 5.5, 3.5 stroke-
width="0.5" fill="RGB (255,255,0) ">

The arc starts from (3.5, 1.5), centered at (3.5, 3.5), rotated 
135◦ clockwise, and ends at (5.5, 3.5); the arc width is 
0.5mm, the color defined as RGB (255, 255, 0) represent-
ing yellow

x4 = 3.5, y4 = 1.5
x2 = 3.5, y2 = 3.5 γ = 135, c = 1 t = 0
x5 = 5.5, y3 = 3.5
ω2 = 0.5
RGB(255, 255, 0)

< /svg > File end –

Figure 4.  (a) Schematic diagram and parameter definition of the surface pattern and the metamaterial. 
(b) Photo of Example 1, on top of a piece of white paper with the university logo printed on it to show the 
transparency of the sample (scale bar: 2cm).

Table 3.  Extracted feature parameters and their value ranges.

Parameters Value Range Parameters Value range

H(mm) 1–3 l2 (mm) 2–5

εr 3–6 x2 2–5

x1 1–6 y2 2–5

y1 1–6 w2(mm) 0.5–1.5

w1(mm) 0.3–1 β ( ◦) 60–360

α(◦) 15–75 γ ( ◦) 15–75

l1(mm) 2–5 R(mm) 1–6
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Deep neural network optimization
A 7-layer deep neural network (DNN) was used for the metamaterial training and prediction. Figure 5 depicts 
the network topology of the DNN employed in this work. The neurons in layer i are connected to the neurons 
in layer i + 1 , and the successive layers are completely interconnected. The primary activation functions used 
in this DNN are ELU and Tanh.

The loss function used in this work is the mean square error (MSE) loss function, which is given by:

where Yi is the sample data and f (xi) is the fitted data. The MSE loss function is used to measure the difference 
between the predicted value and the actual value, and the squared loss should be minimized. The smaller the 
value of MSE, the higher the accuracy of the prediction model. In addition, in order to prevent overfitting, and 
to avoid the lack of model versatility due to the small amount of data, the L2 regularization is used to limit the 
weights, which is given by:

where � is the weight of the L2 regularization and is Wi the weight vector of the network. The degree of regu-
larization is measured by the L2 regularization factor. Before each activation function layer, a BN (Batch Nor-
malization) layer is added to speed up network training and increase the model stability. Adam (Adaptive 
Moment Estimation) method is selected as the optimizer. The learning rate decay and early stop methods are 
also employed in order to acquire the best model. All the above skills together form the primary architecture of 
the DNN used in this work.

The Intel(R) Core (TM) i9-10980XE CPU architecture served as the neural network operating environment. 
The input is a 334-point data set sampled with 0.03 GHz step in (10–20) GHz. As shown in Fig. 6, the average 
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Y |f (x)
)

=
1

n

n
∑

i=1

(

Yi − f (xi)
)2

(3)Jloss = MSE +
1

m

�

2

n
∑

i=1

Wi
2

Figure 5.  Illustration of the deep neural network (DNN) model. The target PCR spectrum is used as the input 
layer at the left end, the 7-layer DNN network is in the middle, and the metamaterial structure parameters is at 
the right side as the output.

Figure 6.  (a) The effect of the number of network layers on the network prediction error(based on ReLU); 
(b) Average prediction error of the 14 feature parameters given by the validation set (15 data sets). (Plotted in 
OriginPro 2021).
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prediction error of the feature parameters was 2.3%, as given by the validation set (15 data sets), under the fol-
lowing conditions: the number of network neurons was (512, 512, 512, 512, 256, 64), the learning rate α was 0.04, 
Adam’s default parameters were utilized, the L2 regularization coefficient was 0.05, and the early stopping factor 
was 1200. The sample size was set to be 205 mm*205 mm, the unit surface pattern period was 7 mm, the surface 
resistance was (6–8) �/sq , and the thickness of the bottom conductive ground layer was 0.125 nm.

In this study, the optimization process of the deep neural network go through the following steps:
Step 1, the number of levels of the network needs to be determined, and the typical values of the other param-

eters of the deep neural network are selected and kept constant when evaluating the impact of the number of 
layers on the network training. When optimizing the number of layers of the network, the activation functions 
were all ReLU functions, and the number of neurons in each layer was 512. This number was chosen because the 
input dimension was 334, so the nearest power of 2 larger than 334 was selected. At the same time, the L2 param-
eter was chosen to be 0.2. For optimization, the number of network layers started from 4 and the optimization 
step was 1 until the inflection point of the error function appeared. It can be seen from Fig. 6a that the average 
error of the network output decreases continuously as the number of network layers increases, until it reaches 
the lowest value where the number of network layers is 7; then the error bounces back with further increased 
number of network layers, which is probably due to network overfitting.

Step 2, in the above process, there are three main options of activation functions in this paper, which are 
ReLU function, ELU function and Tanh function. The error functions of the three activation functions under 7 
network layers are tested separately, and the results are listed in Table 4. It can be found that the ELU function 
has the smallest error of 3.2%.

Step 3, other hyperparameters can be further optimized, including the number of neurons at the end of the 
output layers and the value of L2 regulation parameter, and the lowest error of 2.86% was obtained with final 
number of neurons of (512, 512, 512, 512, 256, 64) and L2 parameter as 0.04.

Step 4, an additional attempt was made to see if the error could be reduced by performing a combination 
of activation functions based on the activation function ELU, which is the activation function with the lowest 
error in the first step. We tried "ELU+ReLU", "ReLU+ELU", "Tanh+ELU" and "ELU+Tanh ", as well as the adjust-
ment of different activation functions with different number of network layers, the error of the network varies 
considerably.

Finally, after the optimization process described above, this study achieved an average error of 2.3% (average 
for the 14 output parameters of the network), by building up a 7-layer DNN network with the number of neurons 
(512, 512, 512, 512, 256, 64, 14), where the first four layers of the network activation function are ELU functions, 
the last three layers are Tanh functions, and the L2 regularization parameter is 0.04.

Three typical target PCR spectra were chosen to verify the metamaterial design method, and three samples 
were made correspondingly, as shown in Table 5 (Example 1, 2, and 3). Here the dielectric constant 3 corresponds 
to the dielectric material polyethylene terephthalate (PET), and the dielectric constant 5.5 corresponds to the 
dielectric material glass, both are optically transparent. The transparent conductive material for the surface 
pattern and ground layers was chosen to be indium tin oxide (ITO), and the surface layer was patterned using 
yellow-light etching technology. The samples were fabricated and measured, as introduced in detail in the next 
section. The target, predicted, and measured PCR curves of the three samples are plotted together for comparison, 
as shown in Fig. 7. Calculation shows that, in the (10–20) GHz range, the average error of the experiment value 
versus the prediction value was 0.14%, 0.001%, and 0.1%, respectively, for the three samples.

What is more, the proposed method can also be used to design single-frequency-point polarization converters 
at any given center frequency, as illustrated in Table 5 (Examples 4 and 5). Two center frequency points (15 GHz 
and 18 GHz) were randomly chosen, with the dielectric constants randomly set to be 4.8 and 3.6, respectively. 
The target single-frequency-point PCR spectra were artificially defined using the Origin function generator 
(Version: OriginPro 2021, https:// www. origi nlab. com/), as shown in Fig. 7. The proposed method can predict the 
polarization converter design parameters precisely, as listed in Table 5 (Examples 4 and 5). The corresponding 
PCR curves at these given parameters can be simulated by CST (shown as Predicted curve), for comparison to 
the target curves (shown as Target curve), as shown in Fig. 7. The spectra matching is reasonably good. Due to 
the randomly chosen dielectric constants, it is difficult to find proper materials for sample fabrication.

Experiment
The polarization conversion spectra of the samples were measured in a microwave darkroom with an N5244A 
PNA-X Network Analyzer (Agilent Technologies), as shown in Fig. 8. Two standard horn antennas were used 
as transmitter and receiver, respectively. The distance between the horn antenna and the sample satisfies the 

Table 4.  Comparison of average errors with different network layers and activation functions.

Network layers Average of error (%) Activation function Average of error (%)

8 6.50 ReLU 5.30

7 5.30 ELU 3.20

6 8.20 Tanh 8.90

5 9.70 ReLU+ELU 4.20

4 16.10 ELU+Tanh 2.30

https://www.originlab.com/
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Table 5.  Design of three samples with typical target PCR spectra.

Parameter Example 1 Example 2 Example 3 Example 4 Example 5

Target parameters

Bandwidth type Broadband Broadband Broadband Single point Single point

PCR 0.96 0 0.96 1 1

εr 3 (PET) 5.5 (glass) 5.5 (glass) 4.8 3.6

Center frequency 15 GHz 15 GHz 15 GHz 15 GHz 18 GHz

Predicted parameters

Predicted pattern

     

 H (mm) 2.3 2.5 2.02 2.4 2.7 [t]

 x1 4.36 5.52 5.37 2.31 4.03

 y1 4.65 5.51 4.59 2.33 1.82

 w1(mm) 1.18 1 1.12 1.2 0.3

 α(◦) 40.57 45 51.68 44.2 30.8

 l1(mm) 2.94 1.8 2.27 3.8 2.2

 l2(mm) 3.54 0.5 3.01 0.5 0.2

 x2 3.89 4.48 4.27 3.92 3.53

 y2 3.73 4.53 4.07 3.88 2.56

 w2(mm) 0.64 1 1.11 1.1 1.2

 β(◦) 159.99 149.3 163.48 143.5 277.6

 γ(◦) 37.795 29.65 39.9 44.8 35.8

 R(mm) 2.98 2 2.8 4.2 2.63 [b]

Figure 7.  Comparison between target data, predicted data, and experiment data for broadband frequency 
of Examples 1, 2, and 3; Comparison between target data and predicted data for single frequency points of 
Example 4 and Example 5. (Plotted in OriginPro 2021).
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far-field condition. An aluminum foil with the same size as the samples were placed and measured at the same 
position as the reference reflection  plane16.

Figure 9 compares the simulated and measured S-parameter and PCR spectra of the samples, which match 
reasonably well. A more precise comparison can be run by calculating the average error and decision variance 
of the experiment value versus the prediction value. The decision variance can be calculated as:

where yi denotes the actual value, ȳ is the average of the actual values, yp is the predicted value, and R2 is referred 
to as the fraction of variance unexplained. The closer is to 1, the better the regression analysis is. Calculation 
shows that, in the (10–20) GHz range, the relative average error of the experiment value versus the prediction 
value is 0.14%, 0.001%, and 0.1%, respectively, for the three samples, and the decision variance is 0.92, 0.96, 
and 0.97, respectively. These statistical results indicate that the prediction is very successful. Possible reasons for 
the deviation might include: (1) the actual dielectric constant of the dielectric layer for PET/glass may deviate 
quite a bit from the set value of 3/5.5; (2) sample fabrication error; (3) measurement and data processing errors.

Dissussion
In this work, a general design method is proposed and demonstrated to extract the feature parameters of a 
sandwich-structured EM metamaterial from the vectorgraph for DNN training and prediction. By employing 
a 7-layer DNN, this method was used to successfully design polarization converters with target PCR spectra, 
with an inaccuracy of 2.3% on the validation set. Three optically transparent broadband polarization converters 
were fabricated and measured for demonstration and verification. For the three samples, the average error of the 
experiment versus predicted values was only 0.14%, 0.0016%, and 0.1%, respectively; and the decision variance 
was 0.92, 0.96, and 0.97, respectively.

A comparison of this work to other reports on the neural-network-based design of metamaterial EM devices 
is shown in Table 6.

In summary, the proposed deep-neural network-training method based on vectorgraphs can express arbitrary 
complex two-dimensional patterns with a large number of effective feature quantities. What is more, thanks to 
the merits of vectorgrpahs, the designed patterns can be easily deformed, including scaling, rotating, shifting, 
and other deformations. It is a universal feature extraction method and is effectively applicable to the design of 
all kinds of metamaterial sandwich structures. The method allows design of complex surface patterns, and can 

(4)R2 = 1− FVU = 1−

∑

n

(

yi − yp
)2

∑

n

(

yi − ȳ
)2

Figure 8.  Measurement of the PCR spectra in the microwave darkroom.
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Figure 9.  Comparison between the simulation results of the design target and experiment data, including S11, 
S21, and PCR spectrum which are represented by dotted Lines and lines. (a) (c) (e) are the S-parameter spectra 
of samples 1, 2, and 3, (b) (d) (f) are the PCR spectra of samples 1, 2, and 3, respectively. (Plotted in OriginPro 
2021).
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be applied to the design of sandwich-structure metamaterial EM devices with different frequency bands and 
functions, providing a new technology path for the structural design of metamaterials.

Data availibility
The data sets that support the findings in this study are available from the corresponding author upon reason-
able request.
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