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The dynamic response of elastic waveguides is
important for a wide range of applications that
involve dispersive waves as well as wave localization.
In particular, a case of special interest relates to
waveguides subjected to moving loads. In the
case where the elongated structure includes a
sequence of built-in resonators, the range of resonance
regimes may be extended accordingly. The present
paper gives an overview of several mathematical
formulations that connect Floquet theory to the
dynamic response of multi-scale waveguides, which
include inertial sub-structures subjected to external
forces.

This article is part of the theme issue ‘Wave
generation and transmission in multi-scale complex
media and structured metamaterials (part 2)’.

1. Introduction
Conventionally referring to the inertial system of
coordinates as the one where the momentum of a
particle is conserved when external forces are absent,
we note that Newton’s laws of motion are typically
considered relative to such inertial systems. Would the
terms ‘negative inertia’ or ‘negative mass’ make sense?
Many would be tempted to say ‘no’, assuming the
layman notion of a mass as a non-negative quantity
which can be measured in an inertial system of
coordinates. On the other hand, why would it be of
interest to consider dynamics relative to non-inertial
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systems? This is a rhetorical question, and of course everything on planet Earth should be referred
to in a non-inertial reference system, due to the gyroscopic planetary motion, with the Coriolis
effect and the vortex-like motion of the air mass around low-pressure areas being well-observed
examples.

More than 50 years ago, a model of an elastic waveguide with a dynamic sub-structure
was introduced by Slepyan [1], who analysed a strain wave in an elastic solid connected
to vibration-isolated masses, including the evolution of a wave in a cylindrical elastic shell
with the attached dynamic macro-structure (modelled by uniformly distributed mass–spring
oscillators).

More recently, Milton and Willis published an article [2] on modifications of Newton’s second
law and linear continuum elastodynamics; this paper introduced a theory for an elastic medium
with a dynamic structure, where the inertia is no longer characterized by a non-negative scalar
mass density. In particular, for elastic systems with built-in resonator sub-structures, negative
inertia can be achieved by introducing a phase shift in oscillations of a resonator relative to the
background main system.

In the context of the Floquet–Bloch waves in periodic elastic systems, elastic structures with
built-in resonators are shown to support standing waves as well as localized waveforms. Detailed
analysis of several classes of such elastic systems has been conducted by Bigoni et al. [3], Bigoni &
Movchan [4] and Mishuris et al. [5,6]. Waves in a complex waveguide are topical in a wide range
of interdisciplinary applications. Examples include the electro-mechanical interaction of waves in
biological systems studied by Engelbrecht et al. [7] and the modelling of ‘nerve pulse propagation’
studied by Peets et al. [8] in a microstructured waveguide. The transmission problem for waves
in water and air has been discussed by Bok et al. [9] in the context of wave interaction with a
microstructured interface.

Here, we give an overview of several configurations representing waveguides with multiple
resonators, which constitute a dynamic sub-structure. In the simplest case, we consider one-
dimensional waves forced by a moving–oscillating load and propagating in a uniform waveguide
with a dynamic structure. The monograph [10] presents a comprehensive theory of waves in
lattice systems containing advancing cracks and moving loads. We discuss the questions of spatial
scaling and explain the term ‘multi-structure’ in the context of wave dynamics. The question of
phase shifts within the system of resonators is of paramount importance, and several examples
are considered here. Dynamic loading of multi-structures, and in particular moving loads, are
very important in the context of wave dynamics and wave localization. Finally, we touch upon
an interesting phenomenon of dynamic fracture—when a fault is advancing in a dynamic elastic
lattice, the method of analysis differs substantially from that for continuous models.

2. The notions of multi-structure and microstructure
In mechanics, the terms ‘multi-structure’ and ‘microstructure’ are used in parameter-dependent
formulations involving a small parameter, which characterizes an elementary cell of a periodic
pattern or a particular constituent within a connected mechanical system. The mathematical
notion of multi-structure was introduced by Ciarlet [11] in the context of connections between
high-contrast elastic plates. It was further extended by Kozlov et al. [12] to parameter-dependent
systems which consist of elements of different limit dimensions, and the mathematical theory
of multi-structures was described with an emphasis on the analysis of fields around junctions
between different constituents. When multiple parameters are introduced and the background
solid includes many constituents of different scales, the term microstructure is often used.
In the context of physics, terms such as microstructure and nanostructure reflect the scale
of the structure, e.g. micrometre and nanometre, respectively. However, when the governing
equations and additional boundary and initial conditions are written in normalized form with
a small non-dimensional parameter being present, a wide class of specific physical configurations
can be considered. In the context of homogenization theory, static microstructures which consist
of elastic rods were analysed by Panasenko [13]. Two-dimensional periodic dynamic elastic
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structures with built-in resonators and macro-cells of complex geometries were analysed in the
context of Floquet waves and their dispersion by Martinsson & Movchan [14].

The question of the connection between different scales is important in understanding how a
process observed on one scale can be modelled at a different scale. Let the material properties,
and hence the wave speeds, be the same in both scales. In this case, it is assumed that the scale
relations for length and time are X = λx and T = λt with λ being a constant, 0 < λ < ∞, where (x, t)
and (X, T) are the initial and new coordinate–time pairs, respectively.

A point-mass–spring lattice is a natural model of such a microstructure. On the other hand,
the continuous, non-structural medium model provides a long-wave approximation (i.e. the
wavelength is much greater than the lattice cell size).

Slepyan [1] considered the evolution of a wave in a cylindrical elastic shell with the attached
dynamic macro-structure (modelled by uniformly distributed mass–spring oscillators). The same
wave (with appropriately chosen time scale) can propagate in a continuous waveguide with
microstructure.

There are physical examples where there is no such self-similarity. This happens when a
quantity which is expected to be changing under the scale change is instead fixed. One example
is the gravitational force: the acceleration under gravity (at the same height!) is constant. Surface
energy of fixed value is another example.

3. Phase shifts for elastic waveguides with dynamic reflectors
To clarify the connection of the ‘negative inertia’ with phase shift in harmonic oscillations of multi-
structures, we consider two illustrative one-dimensional examples.

In both examples, we assume that a sinusoidal wave propagates in a one-dimensional x-related
waveguide, as follows:

u0(t, x) = A0 ei(ωt−kx), where A0 > 0, (3.1)

with speed v = ω/k > 0. Let a resonance oscillator of eigenfrequency ω = ω0 be attached to the
waveguide at x = 0. The oscillator is designed in such a way that the total field u(x, 0) vanishes
at x = 0. Thinking of the wave reflection and transmission, when two scattered harmonic waves
u1− and u1+ of radian frequency ω propagate to the left and to the right as a result of interaction
with the oscillator, we have the right wave u1+(t, x) = −u0(t, x). Although the oscillator is under
the resonant excitation, its amplitude will not grow to infinity but only until the moment when
the sum u1(t, 0) + u0(t, 0) becomes zero. At the same time, the oscillator’s action on the waveguide
continues. The required scattered wave, u1(t, x), can be represented as

u1(t, x) = u1+(t, x) + u1−(t, x), with u(t, 0) = u0(t, 0) + u1(t, 0) = 0, (3.2)

where

u1+(t, x) = (−A0 ei(ωt−kx) + ũ1+)H(x)

and u1−(t, x) = (−A0 ei(ωt+kx) + ũ1−)H(−x),

⎫⎬
⎭ (3.3)

with ũ1± being possible local disturbances such that

u1(t, 0) = lim
x→±0

u1±(t, x). (3.4)

As a result, we have the reflector defined as follows:

u(t, x) = u0(t, x) + u1+(t, x) = 0 when x > 0

and u(t, x) = u0(t, x) + u1−(t, x) → 2iA0 eiωtsin(|kx|) when x < 0.

⎫⎬
⎭ (3.5)

Now we shall discuss two physical examples which correspond to the above description.
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(a) Wave reflector in an elastic string
Vibrations of an elastic string subjected to a constant pre-tension and containing a spring–mass
resonator attached at the origin are described by the inhomogeneous wave equation for the
transverse displacement u(t, x):

�
∂2

∂t2 u(t, x) − T
∂2

∂x2 u(t, x) = P(t)δ(x), P(t) = �(u0(t) − u(t, 0))

and m
d2

dt2 u0(t) = −P(t),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

where u(t, x) and u0(t) are the string and oscillator displacements, P(t) is the force acting on the
string at x = 0, T and � are the string tension force and the mass per unit length, and m and � are
the oscillator mass and stiffness.

We represent the string displacement as a sum of the incident wave satisfying the
homogeneous string equation and the wave excited by force P,

u(t, x) = ui(t, x) + up(t, x). (3.7)

We take up(t, x) to be the reflector,

up(t, x) = −ui(t, x) = 0 (x > 0). (3.8)

So we define

ui(t, x) = A ei(ωt−kx), up(t, x) = −A ei(ωt−kx)H(x) − A ei(ωt+kx)H(−x),

up(t, 0) = −A eiωt, u(t, x) = 0 (x ≥ 0),

∂u(t, −0)
∂x

= −2ikA eiωt, where A > 0 and 0 < ω =
√

T
�

k, (3.9)

and take the latter to be resonant,

ω =
√

T
�

k =
√

�

m
�⇒ k =

√
��

mT
. (3.10)

It follows that

P(t) = 2kTA ei(ωt−π/2), u0(t) = P(t)
�

,

d
dt

u0(t) = 2ωkT
�

A eiωt and u(t, 0) = 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.11)

Thus, an oscillator of the wave frequency attached at a point is the dynamic reflector for a wave
in the string.

(b) The fourth-order dynamic reflector
Now consider a similar problem for a bending beam with a point oscillator attached. The equations
are

�
∂2

∂t2 u(t, x) + D
∂4

∂x4 u(t, x) = P(t)δ(x), P(t) = �(u0(t) − u(t, 0))

and m
d2

dt2 u0(t) = −P(t),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

where D is the bending stiffness and the other notation is the same as in (3.6). This is a fourth-order
problem, and the dispersion curve is a parabola defined by

ω =
√

D
�

k2. (3.13)



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210381

...............................................................

As in the case of the string, the incident wave is

ui = A ei(ωt−kx). (3.14)

However, the oscillator force, P(t), now induces two pairs of waves, the propagating ones and
local (exponentially decreasing) disturbances,

up(t, x) = −A ei(ωt−kx)H(x) − A ei(ωt+kx)H(−x) + Beiωt−k|x| (k > 0). (3.15)

The latter term serves as the continuation condition at x = 0, from which the equality follows:
∂up(t, ±0)/∂x = 0. It gives us B = iA. The force-related discontinuity is

∂3

∂x3 up(t, +0) − ∂3

∂x3 up(t, −0) = −4ik3A eiωt. (3.16)

Thus,
P(t) = −4ik3DA eiωt = 4k3DA ei(ωt−π/2), u(t, 0) = −iA eiωt

and
d
dt

u(t, 0) = A eiωt.

⎫⎪⎬
⎪⎭ (3.17)

Compared with §3a, in the case of a vibrating flexural beam, the dynamic reflector leaves an
exponentially decreasing perturbed area behind.

At the same time, the energy flux in the incoming wave is completely reflected. It is clear that
there are no period-averaged energy fluxes between the waveguide and oscillator (since in the
steady-state regime considered, the oscillator average energy is unchanged). This fact is reflected
by the −π/2 phase shift; see equations (3.11) and (3.17). The phase shift in forced oscillations and
associated waves has been recently considered in [15].

4. Discrete–continuous structures subjected to dynamic loading
In the recent paper [15], forced waves were considered in a master body equipped with a dynamic
sub-structure or in contact with an ambient medium.

The non-local integral relations connecting the forces on the one hand and the displacements
on the other may be highly effective for solving problems involving moving loads. Of course, in
this case, the corresponding Green’s kernels are also required.

As in [15], given R(t, x) as the fundamental solution for the structure, the displacement u(x, t)
of the body and the force P(t, x) exerted on the body from the structure are related by the formula
written in the convolution form

P(t, x) = −R(t, x) ∗∗ u(t, x), (4.1)

where ∗∗ stands for double convolution with respect to x and with respect to t. In particular, if a
point response of the structure to the attached solid is assumed and there are no additional spatial
interconnections within the structure, then the convolution in x in (4.1) does not occur, and the
equation becomes

P(t, x) = −R(t) ∗ u(t, x) =
∫ t

0
R(t − τ )u(τ , x) dτ . (4.2)

Using the notation L(t, x) for a linear operator of the problem describing the dynamics of an
elastic solid, and assuming that Q(t, x) represents the external force moving with speed v and
oscillating with radian frequency ω0, the integral form of the dynamic equation for the moving
body subjected to both the structure response and a moving–oscillating external force can be
written in the form

(L(t, x) + R(t, x)) ∗∗ u(t, x) = Q(t, x) = Qη(η) eiω0t, where η = x − vt. (4.3)

As demonstrated in [15], because the operator L contains an inertia term which takes into
account the attached structure, the inertia of the connected elastic body includes an additional
convolution term.
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Figure 1. Dispersion diagram for waves in an elastic string with distributed oscillators. (Online version in colour.)

In this case, taking into account the modified inertia which accounts for the effect of the
attached structure, the master body dynamics can be considered as a separate problem. It may
resemble a modified Newton’s second law, also discussed by Milton & Willis in [2].

The role of wave dispersion in problems of elastodynamics of this kind is also highlighted in
[15], in particular for an elastic string equipped with uniformly distributed oscillators with no
interconnections between the latter.

(a) An elementary example: dispersion of waves in an elastic string
with attached oscillators

For the example of a scalar formulation describing waves in an elastic string containing additional
oscillators, the derivation is straightforward. The governing equation for the double Laplace–
Fourier transform uLF of the transverse displacement is(

�s2 + Tk2 + �s2

s2 + ω2
osc

)
uLF(s, k) = 0, (4.4)

where �, T, � and ωosc are the string mass per unit length, the tension force, the oscillator’s spring
stiffness and its frequency, respectively.

By considering the limit s → iω, the dispersion equation relating real k and ω can be written in
the form

k2 − ω2

c2 = − �ω2

T(ω2 − ω2
osc)

, (4.5)

where the wave speed is defined by c =√
T/�. Figure 1 gives the graphical representation of the

above dispersion relation in the non-dimensional form where the parameters �, c, T and ωosc are
all taken to be equal to unity. In this normalized form, the two branches correspond to the non-
dimensional equation (k2 − ω2)(1 − ω2) = ω2; they characterize the influence of the oscillator on
the elastic string. The horizontal lines represent the oscillating loads, which do not move; for
example, the lower line tangent to the lower branch is related to the resonant excitation. The
inclined line corresponds to the moving (v > 0) non-oscillating load.
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(b) Commentaries on the forced waves
A wave process associated with a moving force acting on an elastic solid with a microstructure
is a transient process, which is challenging for analytical modelling. However, if the force is
moving with a constant speed, rigorous analytical approaches have been developed in [10] and
demonstrated for a variety of different physical configurations (see [1,10,15]). Often, the problem
formulated in terms of integral transforms can also employ the dynamic Green’s function, which
inevitably includes information about the dispersion properties of waves supported by the
structured solid in question.

The solutions incorporate important information about the dynamic homogenization, as well
as special cases which stand apart from the homogenization theory. In particular, these include
description of the wavefront, as well as resonant cases, when the velocity of the applied load
tends to the group velocity of the wave within the structure. Problems of such types have been
analysed for both second-order equations for waves in forced structured strings and flexural
elastic beams where the waves are governed by a fourth-order partial differential equation. The
analytical approach provided by these solutions can be used effectively in numerical simulations
and classification of the loading parameters, as discussed in [5,6,10], in problems where direct
transient numerical simulations are extremely challenging and often inconclusive.

5. Dynamic failure and ‘knife waves’ in lattice systems
The idea of the modified inertia for the case of periodically distributed resonators in discrete
or continuous systems also applies to problems of dynamic fracture. According to the general
theory of [10], the advance of cracks in continuous elastic media is different from the propagation
of faults in dynamic elastic lattices. The inertia of the nodal masses within the lattice gives rise to
effects similar to those observed for structured waveguides, as discussed in §4. In particular, the
use of lattice Green’s functions is of paramount importance. In a special case, when the advancing
fault in the lattice is of semi-infinite extent, the mathematical approach is based on analysis of the
functional equations of Wiener–Hopf type (see [10]).

The important phenomenon of wave localization has been studied in [16], where a mode
III lattice with an interface layer was considered, with the dynamic crack advancing along the
interface, aligned with the horizontal x-axis. In the dynamic fracture scenario, the ‘feeding wave’,
which is also referred to as the ‘knife wave’, delivers the energy to the moving crack front, while
the ‘dissipative waves’ carry a part of this energy away from the front.

In [16], the displacement um,n(t) in the lattice at a nodal point (m, n) is sought in the form

um,n(t) = Un(η), with η = m − vt, (5.1)

where m and n are integers, t is time and v is the speed of the crack propagating along the
interface. Although v is assumed to be constant, the Green’s function employed in the analysis
is the dynamic lattice Green’s function, which takes into account the dispersion of the waves
associated with the periodic lattice. While the structure is assumed to be symmetric with respect
to the x-axis, the interface includes the central two horizontal layers (with nodal masses M1 and
spring stiffness C1), and the ambient lattice has different inertial and elastic properties (nodal
mass M2 and spring stiffness C2) from the interface itself.

To reduce the model to the analysis of a functional equation of Wiener–Hopf type, a Fourier
transform is applied with respect to the horizontal variable η. In particular, the Fourier transform
of the displacement in row n = 1, representing the upper border of the interface, is written as

UF
1 (k) = U− + U+(k),

where

U+(k) =
∫∞

0
U1(η) eikη dη and U−(k) =

∫ 0

−∞
U1(η) eikη dη.
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The corresponding Wiener–Hopf equation has the form

U+(k) + L(k)U−(k) = 0, (5.2)

with kernel function L(k) of the form

L(k) = P2(k, 0 + ikv)
P1(k, 0 + ikv)

, (5.3)

where, for the case of C1 = C2 = C, the functions P1 and P2 are given by

P1(k, iω) =
(

M2

2
− M1

)
ω2

C
+ 3 − cos(k) + sgn(Ω)

√
Ω2 − 1

and

P2(k, iω) =
(

M2

2
− M1

)
ω2

C
+ 1 − cos(k) + sgn(Ω)

√
Ω2 − 1.

We note that the poles and zeros of the kernel function L provide information about the dispersion
in the periodic lattice ahead of the crack and behind the crack within the lattice. Using the
factorization

L(k) = L+(k)L−(k),

the factorized form of the Wiener–Hopf equation is

U+(k)
L+(k)

+ L−(k)U−(k) = 0.

The solution of this Wiener–Hopf equation, analysed in [16], provides valuable insights into
the relation between the feeding wave (knife wave) and the wave radiating from the moving
crack. The work presented in [16] includes a study of the range of compatible crack speeds, and
a detailed comparative analysis was given for this solution and a numerical simulation of the
transient nonlinear model, where the advance of the crack through the lattice has a ‘staircase’
structure.

6. Concluding remarks
The term ‘homogenization’ is widely used in the engineering and mathematical literature,
including studies of partial differential equations with rapidly oscillating coefficients. For
problems of elastodynamics, homogenization has a completely different meaning than in static or
quasi-static formulations. While homogenization models of elastostatics deliver important data
about the elastic properties of the effective material, in elastodynamics one also needs equally
important information about the inertia terms. In particular, in [2] it was demonstrated that
characterization of the inertia by a scalar term involving a non-negative mass density may not
be sufficient. Instead, inertia tensor quantities may be required to characterize the dynamic
response of microstructured solids. The overview of structured waveguides presented here
shows an alternative to classical homogenization approaches, especially in the case of moving–
oscillating loads. In this context, general representations of the solutions involve Green’s kernels
and convolution-type integrals, which take into account the structured nature of the waveguide.
The term ‘microstructure’ is not needed in this case, since the approach does not depend on the
structure scale.

The role of uniformly distributed and localized dynamic structures, which can also be referred
to as oscillators, has been demonstrated in the context of wave dispersion, as illustrated for the
simplest waveguides such as the elastic string and a flexural beam.

While considering the energy flux from the oscillating load to the waveguide, the phase shift
appears to be important.

The ‘modified Newton’s law’ concept introduced in [2] has been explained here for a wider
class of problems for multi-scale waveguides with built-in resonators, as well as moving loads.
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Although some key points related to the waves associated with moving–oscillating loads have
been discussed, this broad topic remains open. In this context, some interesting examples that
involve three-dimensional wave localization were discussed in [6]. Studies of three-dimensional
forced waves in structured solids remain vitally important, including the phase shifts and effects
of negative inertia.
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