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Abstract—Neural-network-based (NN-based) planners have been
increasingly used to enhance the performance of planning for
autonomous vehicles. However, it is often difficult for NN-based
planners to balance efficiency and safety in complicated scenarios,
especially under real-world communication disturbance. To tackle
this challenge, we present a safety-guaranteed framework for NN-
based planners in connected vehicle environments with communi-
cation disturbance. Given any NN-based planner with no safety-
guarantee, the framework generates a robust compound planner
embedding the NN-based planner to ensure overall system safety.
Moreover, with the aid of an information filter for imperfect
communication and an aggressive approach for the estimation of the
unsafe set, the compound planner could achieve similar or better
efficiency than the given NN-based planner. A comprehensive case
study of unprotected left turn and extensive simulations demonstrate
the effectiveness of our framework.

Index Terms—neural-network-based planning, safety guarantee,
connected vehicles, communication disturbance

I. INTRODUCTION

Learning-based methods have shown great promise in the
planning and control of connected and autonomous vehicles [1]–
[5], and neural-network-based (NN-based) planners are becoming
increasingly popular [6], [7]. In comparison with traditional
model-based planners, NN-based approaches could effectively
capture system properties and enhance average vehicle planning
performance/efficiency under various scenarios. However, a major
challenge of NN-based planners is to balance efficiency and
safety. To fully ensure system safety, some NN-based planners
could become overly conservative and thus significantly sac-
rifice efficiency [8]. On the other hand, over-aggressive NN-
based planners may violate safety constraints when trying to
enhance efficiency. Balancing the two objectives with the safety
verification of NN-based planners is very challenging and time-
consuming, especially under complicated scenarios [6], [9].

In connected vehicle environments, NN-based planners could
leverage the messages from other vehicles to improve their own
sensor-based estimation. However, previous works in connected
vehicles often assume perfect communication [1]–[3], [10], [11],
while communication disturbance [12] including message trans-
mission delays [13] and drops is common in real-world connected
vehicle environments. Such imperfect communication makes it
much harder to leverage the messages from other vehicles in
NN-based planning. Besides, the inaccuracies of sensor measure-
ments [14] are often neglected as well [11].

To overcome the above challenges, we propose a safety-
guaranteed framework for NN-based planners in connected ve-
hicle environments with communication disturbance and sensor
inaccuracies. First, given any NN-based planner, the framework
generates a compound planner embedding the NN-based planner.
Most of the time, the compound planner adopts the planning
decision from the NN-based planner; however, when a runtime

monitor assesses that safety constraints are about to be violated,
the compound planner switches to an emergency planner to
ensure the overall system safety. Second, two techniques, infor-
mation filter and aggressive unsafe set estimation, are proposed to
further enhance system efficiency. The information filter fuses the
reachability analysis and a Kalman Filter to extract information
from imperfect communication and sensors, and the aggressive
unsafe set estimation generates a reduced unsafe set for the em-
bedded NN-based planner. As a result, both safety and efficiency
are taken into account.

The main contributions of this work are summarized below:
• We propose a novel safety-guaranteed framework that could

be applied to any NN-based planner in connected vehicle
environments under communication disturbance.

• We design the information filter and the aggressive unsafe
set estimation methods, which could effectively reduce the
size of the unsafe set and thus enhance the efficiency.

• We conduct a comprehensive case study of the unprotected
left turn scenario. The experiment results demonstrate the
safety and efficiency improvement from our framework, in
comparison with the pure NN-based planners.

The remainder of this paper is organized as follows: Section II
defines the system model and formulates our problem. Section III
details the design of our compound planner. Section IV illustrates
the case study of unprotected left turn. Section V shows experi-
mental results. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we consider a general and discrete system of
connected vehicles described as follows.
Vehicle. A vehicle Ci can be described as follows (here we adopt
a one-dimensional system as a representative):[

pi(t+∆tc)
vi(t+∆tc)

]
=

[
1 ∆tc
0 1

] [
pi(t)
vi(t)

]
+

[
1
2∆t2c
∆tc

]
ai(t), t ≥ 0,

where ∆tc is the control time step, pi(t), vi(t), and ai(t) are the
position, velocity, and acceleration of Ci, respectively.
Ego vehicle. The ego vehicle C0 is the vehicle controlled by our
planner. In other words, our planner determines the acceleration,
a0(t), of the ego vehicle at each timestamp t.
Unsafe set. The unsafe set Xu includes all states causing
violations of safety constraints. For example, if the ego vehicle
C0 and another vehicle Ci are on the same lane, C0 must keep
a distance gap with Ci to avoid collision. Therefore, the unsafe
set could be defined as Xu = {x(t) | |p0(t) − pi(t)| < pgap},
where x(t) is the system state (including positions and velocities
of all the vehicles) at t, and pgap is the minimum distance gap
to ensure safety.



(a) Conservative NN-based planner. (b) Aggressive NN-based planner.

(c) Our basic compound planner. (d) Basic + information filter.

(e) Basic + aggressive unsafe set. (f) Our ultimate compound planner.
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Fig. 1: Schematic of planners’ behavior. Planners from (c) to (f)
are the contributions of this paper.

Target set. The target set Xt consists of the destination states of
the ego vehicle. For example, consider a lane-changing scenario.
If the ego vehicle aims to change from Lane A to Lane B, the
target set can be defined as Xt = {x(t) | C0 is on Lane B.}.
Message. We assume that every ∆tm seconds, the ego vehicle C0

receives messages, pi,m(t), vi,m(t), and ai,m(t) (i = 1, 2, . . . , n−
1), from other vehicles. The message content is accurate (i.e.,
pi,m(t) = pi(t), vi,m(t) = vi(t), and ai,m(t) = ai(t)); however,
the message may delay with ∆td (i.e., C0 receives the message
of timestamp t at t+∆td), or even drop (i.e., ∆td → ∞). Note
that the system model could also be applied to the circumstance
where vehicles are not connected (i.e., messages always drop).
Sensor. In addition to messages from other vehicles, another way
for the ego vehicle to estimate the information of other vehicles
is via its own onboard sensors. Every ∆ts seconds, the ego
vehicle C0 senses the information, pi,s(t), vi,s(t), and ai,s(t)
(i = 1, 2, . . . , n−1), of other vehicles. In contrast to the messages,
we assume that C0 always obtains the sensor-measured values
without delay (i.e., the computation delay is negligible); however,
such measurement is inaccurate. For example, pi,s(t) could be
any number between pi(t) − δp and pi(t) + δp, where δp is the
uncertainty of the sensor in detecting the position. (We assume a
uniform distribution in [pi(t) − δp, pi(t) + δp]). Besides, δv and
δa are the uncertainty in velocity and acceleration, respectively.
Planner. A planner κj determines the acceleration of the ego
vehicle C0 at every timestamp t based on the current system
state, i.e., a0(t) = κj(x(t)).
Evaluation. To evaluate the efficiency and safety guarantee of a
planner κj , we define an evaluation function η as follows:

η(κj) =


−1, if ∃tk, s.t., x(tk) ∈ Xu and ∀t < tk, x(t) /∈ Xt;
1
tr
, else if ∃tr, s.t., x(tr) ∈ Xt and ∀t < tr, x(t) /∈ Xt;

0, otherwise.

A larger value of η(κj) indicates a better performance/efficiency
of κj . As we can see, the evaluation function views safety as
the top priority, and thus a violation of safety constraints causes
η(κj) = −1. If κj could make the vehicle reach the target set
safely, its efficiency is further evaluated by the reaching time tr.

B. Problem Formulation

Given a system of connected vehicles defined in Section II-A
and a neural-network-based planner κn, our framework aims to
find a compound planner κc which embeds κn, such that κc

could achieve similar or better efficiency than κn. Moreover,
κc should always guarantee system safety, even under imperfect
communication (i.e., with message delays and drops).

Formally, κc needs to satisfy:
η(κc) ≥ η(κn) and η(κc) ≥ 0. (1)

III. OUR FRAMEWORK

A. Overview of Compound Planner Design

As aforementioned, it is difficult for pure NN-based planners
κn to balance both safety and efficiency under communication
disturbance and complicated scenarios. A conservative NN-based
planner, as shown in Figure 1a, often detours to avoid the unsafe
set, and may even miss the target set. On the other hand, as shown
in Figure 1b, an aggressive planner is liable to enter the unsafe
set on its way to the target set.

To achieve a better balance between safety and efficiency,
we introduce the runtime monitor and the emergency planner
κe to form a compound planner with κn. They play as the
“last line of defense” for the system safety. That is, if the
ego vehicle is about to run into the unsafe set, the runtime
monitor will select the emergency planner κe to ensure the ego
vehicle stays in the safe set. Otherwise, the runtime monitor will
just select the NN-based planner κn (the selection criteria is
detailed in Section III-C). Note that the emergency planner is only
selected when safety constraints are about to be violated; thus,
the efficiency degradation due to κe is minimized. As illustrated
in Figure 1c, the basic compound planner could guarantee system
safety while maintaining efficiency.

To further enhance the system efficiency, we observe that the
planner’s behavior is greatly influenced by the size of the unsafe
set. When the unsafe set is too large, κn tends to control the ego
vehicle in a more conservative manner to avoid violation of safety.
Besides, a large unsafe set also implies κe is likely to be selected
and hence damaging to the efficiency. On the other hand, if the
unsafe set is overly underestimated, κn may be misled and thus
incur κe as well. Therefore, an adequate and precise estimated
unsafe set is desirable.

We employ two techniques to reduce the size of the estimated
unsafe set moderately. First, we perform reachability analysis on
the delayed messages and adopt the Kalman Filter to extract
accurate information from uncertain sensor measurements (the
implementation details are described in Section III-B). Through
the information processing, the unsafe set could be estimated
more precisely, as shown in Figure 1d. Second, as the runtime
monitor and the emergency planner already guarantee the overall
system safety, we do not need to consider the whole unsafe set
when manipulating κn. Instead, we feed an underestimated unsafe
set, Xu,aggr (called the aggressive unsafe set), which includes
only the “core” part of the unsafe set, into κn. It is reasonable
since many extreme states in the original Xu seldom occur.
Therefore, discarding these states could avoid over-conservative
planning. As illustrated in Figure 1e, κn only adopts the solid part
while neglecting the slashed part, resulting in more aggressive
planning.

Eventually, combining the runtime monitor and the emergency
planner with the two techniques, our compound planner could
not only guarantee system safety but also improve efficiency
compared to the pure NN-based planner, as shown in Figure 1f.
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Fig. 2: The architecture of the compound planner κc.

In summary, Figure 2 illustrates the full design of our com-
pound planner κc. First, the received messages and sensor-
measured values are passed through the information filter. Then,
the runtime monitor could compute a precise unsafe set based
on the processed information. After that, it selects either the
emergency planner or the NN-based planner accordingly to
determine the next control input (i.e., a0(t)) for the ego vehicle.
If the NN-based planner is selected, the aggressive unsafe set is
computed for the NN-based planner’s planning.

B. Information Filter

As aforementioned, we apply reachability analysis and Kalman
Filter on delayed messages and inaccurate sensor measured
values, respectively. Afterward, the estimations are joined to-
gether and passed to the runtime monitor. For example, if
the possible position of Ci is estimated as any value in
[pi,1(t), pi,2(t)] via reachability analysis, and [pi,3(t), pi,4(t)] via
Kalman Filter, then the joined estimation of Ci’s position is
[max(pi,1(t), pi,3(t)),min(pi,2(t), pi,4(t))].

Kalman Filter. We adopt the Kalman Filter [15], [16], one of
the most common and effective filters, to recover information
from uncertain sensor measurements. As Figure 3 illustrates, the
Kalman Filter estimates the real current state based on historical
and current measurements. In each sensing period, the Kalman
Gain, Ki(t), is computed. Then, the estimate of the system state
(resp. covariance), x̂i(t, t) (resp. P (t, t)), is updated based on the
Kalman Gain, the new measured values pi,s(t) and vi,s(t), and
the prediction from the previous iteration, x̂i(t, t − ∆ts) (resp.
Pi(t, t−∆ts)). After that, the prediction of the next state (resp.
covariance), x̂i(t+∆ts, t) (resp. Pi(t+∆ts, t)), is extrapolated
according to the measured value and uncertainty of the control
input. The corresponding equations for the connected vehicle
system defined in Section II-A could be deduced as follows [16]:

x̂i(t+∆ts, t) = F x̂i(t, t) +Gai,s(t),

Pi(t+∆ts, t) = FPi(t, t)F
T +Q,

Ki(t) = Pi(t, t−∆ts)(Pi(t, t−∆ts) +R)−1,

x̂i(t, t) = x̂i(t, t−∆ts) +Ki(t)(xi,s(t)− x̂i(t, t−∆ts)),

P (t, t) = (I −Ki(t))Pi(t, t−∆ts)(I −Ki(t))
T +Ki(t)RKi(t)

T ,

where

F =

[
1 ∆ts
0 1

]
, G =

[
0.5∆t2s
∆ts

]
, Q =

[
0.25∆t4s 0.5∆t3s
0.5∆t3s ∆t2s

]
δ2a
3
,

R =

[
δ2p
3

0

0
δ2v
3

]
, xi,s(t) =

[
pi,s(t)

vi,s(t)

]
, I =

[
1 0

0 1

]
.
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Fig. 3: The flow of Kalman Filter [16]. The red dashed line is
the boundary of a sensing period. x̂i(0, 0) and P̂i(0, 0) are the
initial values of Ci’s states and covariance, respectively.

To enhance the predictability of the Kalman Filter, we mod-
ify the traditional design and further incorporate the message
information into the filter. In each transmission period t, the
extrapolated state x̂i(t, t−∆ts) and the covariance Pi(t, t−∆ts)
are stored in the memory. Then, every time a message record-
ing the states of Ci at time tk arrives, x̂i(tk, tk − ∆ts) and
Pi(tk, tk−∆ts) are restored, and the filter renews the estimations
from tk to the current timestamp based on xi,m(tk) and ai,m(tk).

Reachability analysis. To deal with message delay or drop,
we perform reachability analysis on the latest received message
information. For example, assume that the current time is t
and the latest message records the states of Ci at time tk, i.e.,
pi(tk) and vi(tk). Then, the current position of Ci could be any
value between pi,min(t) and pi,max(t), where

pi,max(t) =


pi(tk) + vi(tk)(t− tk) +

1
2ai,max(t− tk)

2,

if vi(tk) + ai,max(t− tk) ≤ vi,max;

pi(tk) + vi,max(t− tk)− (vi,max−vi(tk))
2

2ai,max
,

otherwise,
(2)

where vi,max and ai,max are the maximum velocity and acceler-
ation of Ci, respectively, and pi,min(t) could be computed in a
similar way. Then, we can estimate the unsafe set based on the
interval [pi,min(t), pi,max(t)] to ensure system safety.

C. Runtime Monitor

To formally describe the functionality of the runtime monitor,
we should define the boundary safe set Xb first:

Xb = {x(t) ∈ Xs | ∃a0(t), . . . , an−1(t) s.t. x(t+∆tc) ∈ Xu}, (3)

where Xs is the safe set. The boundary safe set includes all the
states that are only one step away from the unsafe set.

In each control step, the runtime monitor estimates the unsafe
sets Xu based on the filtered information of other vehicles. After
that, the boundary safe set is computed by Equation (3). Then,
the runtime monitor selects the emergency planner if and only
if the current state x(t) is in the boundary safe set.

If the NN-based planner is selected, i.e., the ego vehicle will
not enter the unsafe set in the next step under any valid control
input, the runtime monitor further computes the aggressive unsafe
set for the NN-based planner. For example, as vehicles rarely
change their velocities drastically, we may replace ai,max in
Equation (2) with a much smaller value (e.g., ai(t)) to estimate
pi,max(t). In this way, the neural-network-based planner could
control the ego vehicle more aggressively, hence the improve-
ments in efficiency without making sacrifices for safety.
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Fig. 4: The unprotected left turn scenario.

D. Emergency Planner

As for the emergency planner κe, it must satisfy the following
equation:

∀x(t) ∈ Xb, x(t+∆tc) ∈ Xs under the control of κe. (4)

That is, the emergency planner always keeps the ego vehicle
within the safe set. An example of emergency planner design
is demonstrated in Section IV.

E. Analysis of Compound Planner

In this subsection, we verify if the compound planner satisfies
Equation (1).

Safety: η(κc) ≥ 0. Based on proof by contradiction, assume the
ego vehicle enters the unsafe set at time tk. Then, according to
Equation (3), the ego vehicle belongs to the boundary safe set at
some time tl with tl < tk. However, the emergency planner must
take over the control at tl and keep the ego vehicle staying in
the safe set, according to Equation (4). Therefore, the ego vehicle
will never enter the unsafe set and thus η(κc) ≥ 0.

The above analysis also indicates as long as the design of the
emergency planner satisfies Equation (4), the ego vehicle will
never enter the unsafe set. Therefore, it does not require extra
resources for safety verification during runtime.

Efficiency: η(κc) ≥ η(κn). Consider the following two cases:
1) The ego vehicle has never entered the boundary safe set

before reaching the target set.
2) The ego vehicle once entered the boundary safe set.

In the first case, the runtime monitor always selects κn to control
during the process. Therefore, the efficiency of κc should be
at least the same as κn, thus η(κc) ≥ η(κn). For the second
case, the emergency planner κe has been selected. Although κe

may lower the efficiency, the two techniques, information filter
and aggressive unsafe set estimation, could compensate for the
sacrifice. Moreover, under the control of a pure NN-based planner,
the ego vehicle is liable to fall into the unsafe set once it runs into
the boundary safe set, and thus it is very likely that η(κn) < 0. On
the other hand, the compound planner always ensures the safety
of the ego vehicle, hence η(κc) ≥ 0. As a result, η(κc) ≥ η(κn)
holds for most of the time.

IV. CASE STUDY: UNPROTECTED LEFT TURN

Figure 4 illustrates the unprotected left turn scenario of our case
study. The ego vehicle, C0, aims to turn left, while there is another
oncoming vehicle C1 in the opposite direction. A collision occurs
if the two vehicles are in the unsafe area (i.e., the red rectangle)
at the same time. To simplify the system model, we assume that
the paths of the two vehicles are fixed. Therefore, it becomes a
one-dimensional system, and the planner only needs to determine
the acceleration of C0 at each timestamp.

Inspired by the work in [6] on unprotected left turn, we define
the input variables of the NN-based planner κn as t, p0(t), v0(t),
τ1,min(t), and τ1,max(t), where [τ1,min(t), τ1,max(t)] is the pos-
sible time window for C1 to pass the unsafe area. Consequently,
to apply our framework to the unprotected left turn scenario, we
could define the unsafe set Xu using these five variables. Then,

we could compute the boundary safe set, design the emergency
planner, and estimate the aggressive unsafe set accordingly.
Unsafe set estimation. To ensure system safety, C0 and C1

should not appear in the unsafe area simultaneously. Thus, the
unsafe set Xu contains all the states that may result in such
situations. To formally compute Xu, we first define the slack s(t)
and the projected passing time interval [τ0,min(t), τ0,max(t)]:

s(t) =


pf − db − p0(t), if p0(t) ≤ pf ;

p0(t)− pb, else if p0(t) ≤ pb;

∞, otherwise,

(5)

[τ0,min(t), τ0,max(t)] =


[t+

pf−p0(t)

v0(t)
, t+ pb−p0(t)

v0(t)
], if p0(t) ≤ pf ;

[t, t+ pb−p0(t)
v0(t)

], else if p0(t) ≤ pb;

[0, 0] otherwise,

where pf is the front line of the unsafe area, pb is the back
line of the unsafe area, and db = −0.5v0(t)

2/a0,min(t) is
the braking distance of C0. A nonnegative slack indicates C0

is able to stop before the front line; on the other hand, a
negative slack implies C0 must run into the unsafe area before it
stops. [τ0,min(t), τ0,max(t)] represents the projected passing time
window of C0 to the unsafe area under current velocity. Then,
the unsafe set Xu could be defined as:

Xu = {(t, p0(t), v0(t), τ1,min(t), τ1,max(t)) | s(t) < 0

and [τ0,min(t), τ0,max(t)] ∩ [τ1,min(t), τ1,max(t)] ̸= ∅}. (6)

That is, the projected passing time windows of C0 and C1

intersect, but C0 is unable to stop before the unsafe area. Thus,
collisions may occur.

Lastly, note that C0 only obtains the position, velocity, and ac-
celeration of C1, the runtime monitor needs to estimate τ1,min(t)
and τ1,max(t) on its own:

τ1,min(t) =


v1,max−v1(t)

a1,max
+

pf−p1(t)−dth
v1,max

, if pf − p1(t) > dth;

−v1(t)+
√

v1(t)2+a1,max(pf−p1(t))

a1,max
, otherwise,

(7)

where dth =
v2
1,max−v1(t)

2

2a1,max
is just for simplification. τ1,max(t)

can be estimated similarly based on v1,min, a1,min, and pb. For
convenience, here we assume that C0 obtains the exact values of
p1(t) and v1(t) (i.e., perfect communication). When there exist
message delays, the reachability analysis like Equation (2) needs
to be performed first. Furthermore, the uncertainties δp and δv
should be taken into consideration as well.
Boundary safe set computation. According to Equation (3)
and Equation (6), the boundary safe set at timestamp t for the
unprotected left turn scenario are the states that may lead to a
negative slack value at t+∆tc. The minimum possible slack at
the next timestamp t+∆tc is:

s(t+∆tc) = pf − db(t+∆tc)− p0(t+∆tc)

≥ pf − (v0(t) + a0,max∆tc)
2

2a0,min
− (p0(t) + v0(t) +

a0,max∆t2c
2

)

= s(t)− (v0(t)∆tc +
1

2
a0,max∆t2c)(1−

a0,max

a0,min
),

which should be nonnegative. Thus, combining with Equation (5),
the boundary safe set is:

Xb = {(t, p0(t), v0(t), τ1,min(t), τ1,max(t)) |

0 ≤ s(t) < (v0(t)∆tc +
1

2
a0,max∆t2c)(1−

a0,max

a0,min
)

and [τ0,min(t), τ0,max(t)] ∩ [τ1,min(t), τ1,max(t)] ̸= ∅}.



Aggressive unsafe set estimation. Most of the time, other vehi-
cles would neither accelerate with the extreme values nor travel at
the maximum (or minimum) velocity. Therefore, instead of using
the physical limits a1,max and v1,max to estimate τ1,min(t) as
Equation (7), we could adopt a1,est = min(a1(t)+abuf , a1,max)
and v1,est = min(v1(t)+vbuf , v1,max), respectively, where abuf
and vbuf are user-defined buffers. It is reasonable since vehicles
usually change their velocity within a limited range. In this way,
we could estimate a more compact passing time window and
hence a smaller unsafe set. Moreover, the aggressive passing time
window is still close to the real passing time; therefore, the ego
vehicle would not fall into the emergency planner easily.

τ1,min(t) =


v1,est−v1(t)

a1,est
+

pf−p1(t)−dth
v1,est

, if pf − p1(t) > dth;

−v1(t)+
√

v1(t)2+a1,est(pf−p1(t))

a1,est
, otherwise,

(8)

where dth =
v2
1,est−v1(t)

2

2a1,est
is just for simplification. τ1,min(t)

can be estimated similarly based on max(v1(t)− vbuf , v1,min),
max(a1(t)− abuf , a1,min), and pb.

Emergency planner. According to Equation (4), κe should
always keep C0 away from Xu. The acceleration generated by
κe could be set as:

κe(x(t)) = a0(t) =

{
− v0(t)

2

2(pf−p0(t))
, if p0(t) ≤ pf ;

a0,max, otherwise.

If C0 has not yet entered the unsafe area, κe will make it stop
before the unsafe area with the least required braking force.
Otherwise, κe will let C0 escape from the unsafe area as soon as
possible.

V. EXPERIMENTAL RESULTS

Our planner is implemented in the C++ programming language,
and the experiments are conducted on a Linux workstation with
3.7 GHz CPU and 192 GB RAM.

A. Effectiveness of the Proposed Framework

As aforementioned, some NN-based planners are overly con-
servative while some are too aggressive. Hence, based on the
learning methods in [6], we implement two NN-based planners,
κn,cons and κn,aggr, to represent the two designs. Then, we com-
pare these pure NN-based planners with the corresponding basic
compound planners design κcb,cons/κcb,aggr in our framework
(i.e., without information filter and aggressive unsafe set) and
the ultimate compound planners design κcu,cons/κcu,aggr in our
framework (i.e., with all techniques), under various communica-
tion settings.

We design three types of communication. In the “no dis-
turbance” setting, the ego vehicle C0 always obtains messages
from C1 every ∆tm seconds. In the “messages delayed” setting,
messages may delay with ∆td or drop with a probability pd,
where ∆td = 0.25s and pd = {0.05j | j = 0, 1, . . . , 19}.
In the “messages lost” setting, messages always drop, and thus
only sensor information is available. The sensor uncertainty is
δp = δv = δa = {1 + 0.2j | j = 0, 1, . . . , 19}. For each
type of communication, we conduct 80,000 simulations. In each
simulation, we randomly generate a sequence of accelerations
in which the i-th element is the control input of C1 at the
i-th timestamp. The initial positions are p0(0) = −30m and
p1(0) = {50.5 + 0.5j | j = 0, 1, . . . , 19}, and the position of the
unsafe area is between 5m and 15m. We assume ∆tc = 0.05s
and ∆tm = ∆ts.

TABLE I: The comparison between the conservative pure NN-
based planner κn,cons and the corresponding basic and ultimate
compound planners. Winning percentage is the percentage of sim-
ulations in which the ultimate compound planner has the higher
η value. Emergency frequency is the percentage of timestamps at
which the acceleration is determined by κe.

settings planner
types

reaching
time

safe
rate η value winning

percentage
emergency
frequency

no
disturbance

pure NN 7.989s 100% 0.144 99.97% —
basic 7.990s 100% 0.144 99.97% 0.01%

ultimate 6.408s 100% 0.178 — 7.99%

messages
delayed

pure NN 8.868s 100% 0.127 100% —
basic 8.871s 100% 0.127 100% 0.03%

ultimate 6.719s 100% 0.171 — 10.37%

messages
lost

pure NN 9.704s 100% 0.113 100% —
basic 9.707s 100% 0.113 100% 0.02%

ultimate 7.654s 100% 0.150 — 17.58%

TABLE II: The comparison between the aggressive NN-based
planner κn,aggr and the corresponding compound planners. ‘*’
indicates that only reaching time of safe cases is counted.

settings planner
types

reaching
time

safe
rate η value winning

percentage
emergency
frequency

no
disturbance

pure NN *4.513s 61.50% −0.244 93.52% —
basic 6.325s 100% 0.177 99.66% 20.39%

ultimate 6.130s 100% 0.183 — 19.08%

messages
delayed

pure NN *4.684s 56.04% −0.314 93.57% —
basic 6.766s 100% 0.167 99.85% 23.62%

ultimate 6.431s 100% 0.176 — 21.39%

messages
lost

pure NN *5.238s 59.02% −0.289 82.98% —
basic 7.769s 100% 0.145 99.87% 29.67%

ultimate 7.385s 100% 0.154 — 29.14%

Table I shows the results of planners based on κn,cons. As the
reaching time of κcb,cons is almost the same as that of κn,cons, our
basic compound planner design causes no efficiency degradation.
Moreover, with the aid of the information filter and the aggressive
unsafe set, the reaching time of the ultimate compound planner
κcu,cons is significantly reduced.

Table II shows the results of planners based on κn,aggr.
Although the pure aggressive NN-based planner κn,aggr has the
shortest reaching time, a collision occurs in around 40% of the
simulations. On the contrary, our compound planners achieve
100% safe rate. Besides, as we only count the reaching time
of those safe simulations, the efficiency difference between our
planner and the NN-based planner is actually smaller than it
appears. The winning percentage also indicates our planner shows
greater safety and efficiency than the NN-based planner (i.e.,
η(κn,aggr) ≤ η(κcu,aggr)) in more than 80% of simulations.

From these two tables, we can see that our framework
provides significant improvements over the pure NN-based
planners in safety and efficiency under various communica-
tion scenarios.

B. Impact of Communication Disturbance

In Figures 5a, 5c, and 5e, we analyze the relation between
reaching time and communication disturbance. As expected, if C0

has received less information (i.e., larger transmission time steps
or higher message drop probability) or the information becomes
less precise (i.e., higher sensor uncertainty), the efficiency of
C0 decreases. Nevertheless, our ultimate compound planner still
outperforms the pure NN-based planner by a significant margin
when communication disturbance is severe. On the other hand,
if the amount and quality of the received information deteriorate,
the estimated unsafe set could expand. Consequently, it is more
easily for C0 to run into the emergency mode, as illustrated in
Figures 5b, 5d, and 5f. Similarly, Tables I and II show that a
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more aggressive NN-based planner could also lead to a higher
emergency frequency.

C. Effectiveness of Information Filter and Aggressive Unsafe Set

As described in Section III, the objective of the information
filter and the aggressive unsafe set is to obtain a small and precise
estimation of the unsafe set. Figure 6a demonstrates an example
of sensor-measured velocities before and after the filter. As we
can see, the filtered results are quite close to the real velocities
of C1, though the sensor-measured values are quite inaccurate. In
addition, we sample 200 trajectories of C1 and compute the root-
mean-square-error (RMSE) before and after the filter. It turns out
that the RMSE of C1’s position (resp. velocity) reduces by 69%
(resp. 76%) after leveraging the filter. Thus, the information filter
increases the precision for the estimation of the unsafe set.

Figure 6b illustrates the conservative (as Equation (7)) and
the aggressive (as Equation (8)) estimations of C1’s passing time
window. The aggressive time window is much more compact than
the conservative one, and it is pretty close to the real passing time.
The result indicates our aggressive unsafe set estimation method
could effectively capture the core part of the unsafe set, thus
increasing the system efficiency.

VI. CONCLUSION

We propose a safety-guaranteed framework for NN-based
planners in connected vehicle environments under communication
disturbance. In our framework, the given NN-based planner is
combined with a runtime monitor and an emergency planner to
form a compound planner that guarantees system safety. With
the aid of the information filter and the aggressive unsafe set,
the system efficiency is further enhanced. In a case study of
unprotected left turn, our framework always assures safety even
under severe communication disturbance, while showing similar
or better efficiency than NN-based planners in most of the time.
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