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Abstract: Observations that hearing loss is a substantial risk factor for dementia may be accounted
for by a common pathology. Mitochondrial oxidative stress and alterations in α-synuclein pathology
may be common pathology candidates. Crucially, these candidate pathologies are implicated in
Parkinson’s disease (PD). Consequently, hearing loss may be a risk factor for PD. Subsequently, this
prospective cohort study of the English Longitudinal Study of Ageing examines whether hearing loss
is a risk factor for PD longitudinally. Participants reporting self-reported hearing capabilities and no
PD diagnosis prior to entry (n = 14,340) were used. A joint longitudinal and survival model showed
that during a median follow up of 10 years (SD = 4.67 years) increased PD risk (p < 0.001), but not
self-reported hearing capability (p = 0.402). Additionally, an exploratory binary logistic regression
modelling the influence of hearing loss identified using a screening test (n = 4812) on incident PD
indicated that neither moderate (p = 0.794), nor moderately severe/severe hearing loss (p = 0.5210),
increased PD risk, compared with normal hearing. Whilst discrepancies with prior literature may
suggest a neurological link between hearing loss and PD, further large-scale analyses using clinically
derived hearing loss are needed.

Keywords: Parkinson’s disease; hearing loss; risk factor; sensory processes

1. Introduction

Hearing loss is oftentimes considered an inevitable sequela of ageing. However, an
accumulation of evidence has revealed that hearing loss is a substantial, potentially modifi-
able, risk factor for incident all-cause dementia [1]. Specifically, Lin et al. [2] demonstrated
that mild hearing loss almost doubles dementia risk, moderate hearing loss triples dementia
risk, and severe hearing loss increases dementia risk by almost five times, over ~12 years of
follow up.

The underlying mechanism relating hearing loss and dementia remains unclear.
The common cause hypothesis suggests that a common pathology affects both the cochlea
and ascending auditory pathway (causing hearing loss) and the cortex (causing demen-
tia) [3–5]. Mitochondrial oxidative damage and alterations in the production, and aggre-
gation, of α-synuclein are two potential common pathology candidates. Following the
rationale of the common cause hypothesis, it may be that hearing loss is a significant risk
factor for alternative clinical conditions in which mitochondrial oxidative damage and
alterations in the production, and aggregation, of α-synuclein are implicated, such as the
progressive neurodegenerative disorder Parkinson’s Disease (PD).
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Oxidative stress, a biological state, occurs when the production and accumulation of
reactive oxygen species (ROS) within cells outweighs detoxification of these molecules [6].
This state initiates damage to cellular macromolecules, including mitochondrial membranes,
respiratory chain proteins, and nuclear and mitochondrial DNA [7], which can eventually
trigger upstream cell apoptosis [8]. Evidence indicates that mitochondrial oxidative stress
is implicated in dementia pathogenesis [9]. For example, increased levels of DNA strand
breaks [10,11], and brain lesions [12], characteristic of oxidative stress, have been observed
in Alzheimer’s disease. Similarly, mitochondrial oxidative damage in the cochlea is also
implicated in the pathogenesis of acquired hearing loss [13,14]. Specifically, mitochondrial
DNA alterations, indicative of oxidative stress, in the cochlear tissue are more frequent
in patients with age-related hearing loss compared to those with normal hearing [15].
Furthermore, genetic variations in certain antioxidant defence genes have been associated
with increased risk of age-related hearing loss [16–18].

PD is pathologically hallmarked by accelerated dopaminergic neuronal cell death,
particularly within the substantia nigra of the basal ganglia [19]. Whilst the mechanism
underlying this is not yet elucidated, several patomechanisms have been hypothesised.
One of these hypotheses focuses on the role of chronic neuroinflammation, microglial
activation and the subsequent oxidative stress [20]. Indeed, evidence suggests that regular
non-steroidal anti-inflammatory drug (NSAID) users are at reduced risk (~36–55 percent
reduced) of PD [20]. Moreover, significantly elevated inflammation levels are observed in
the blood, identified through neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte
ratios, and the cerebrospinal fluid of PD patients relative to controls [21]. Importantly, it
is postulated that activated microglia produce large amounts of reactive oxygen species
(superoxide radicals) thus implicating oxidative damage in PD [22]. Supporting this
assertion, consumption of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), which
increases ROS production and leads to a sustained inflammatory reaction, can induce
Parkinsonism [23]. Comparably, elevated circulating oxidative stress markers (e.g., ferritin,
8-OhdG and nitrite) and decreased antioxidant levels (e.g., catalase, uric acid, glutathione)
have been observed in PD [24,25].

Another potential common pathological candidate, for the relation between hear-
ing loss and dementia, is alterations in the production, and aggregation, of α-synuclein.
Natively, α-synuclein is unfolded. However, in response to specific environmental fac-
tors, such as toxins and inflammation, α-synuclein folds into monomers, polymers, and
oligomers [26]. Notably, folded α-synuclein are major components of Lewy bodies [27].

Importantly, α-synuclein Lewy body pathology has been detected in over 50 percent
of sporadic [28,29] and ~60 percent of familial [30], Alzheimer’s disease cases at autopsy.
Similarly, elevated levels of soluble α-synuclein are observed in the cerebral spinal fluid
of patients with Alzheimer’s disease [31] and mild cognitive impairment [32,33] relative
to controls. Regarding hearing loss, Park et al. [34] observed weaker efferent nerve and
cochlear homogenate α-synuclein expression in early-onset hearing loss, compared to
late-onset hearing loss mouse models. Furthermore, Akil et al. [35] found significantly
elevated auditory brain stem thresholds in α-synuclein overexpression transgenic mice
compared to wild-type mice, implicating α-synuclein overexpression in hearing loss.

Critically, in addition to accelerated dopaminergic neuronal degeneration, PD is
also neuropathologically hallmarked by intracellular Lewy body inclusions and Lewy
neurites [19]. Moreover, mutations (e.g., PARK1 and PARK4) in the α-synuclein gene
(SNCA) are accountable for autosomal dominant PD [36], and variations in the SNCA
gene appear to be one of the strongest risk factors in the development of sporadic PD [37].
Subsequently, α-synuclein may contribute to the neuropathology of PD [38].

Thus far, mitochondrial oxidative damage and alterations in α-synuclein aggregation
have been presented as dissociable pathologies of hearing loss and dementia. However,
these pathologies may form a positive feedback loop in which either event may trigger a
self-perpetuating process [39–41]. Given that mitochondrial oxidative stress and alterations
in α-synuclein production and aggregation are central to PD pathogenesis [42], following
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the rationale of the common cause hypothesis [3], we may hypothesise that hearing loss
will be intricately related to PD.

Consideration of the relation between essential tremor and hearing loss may further
support the assumption that hearing loss will be intricately related to PD. Evidence suggests
that patients with essential tremor, which can be defined as “bilateral upper extremity
action tremor” [43], are at an elevated risk of PD [44]. Specifically, some analyses report
that patients with essential tremor are up to four times more likely to develop PD than
people without essential tremor [45]. Importantly, hearing loss appears to also be present in
essential tremor patients [46]. Some studies have shown that essential tremor patients have
significantly elevated pure tone audiometry thresholds at high but not low frequencies [47],
and others have observed significantly elevated pure tone audiometry thresholds at low but
not high frequencies [48]. Given that essential tremor is a risk factor for PD, and patients
with essential tremor are likely to experience hearing loss, we may predict that hearing loss
is likely to proceed PD.

Indeed, a meta-analytical review concluded that sensorineural hearing loss and
cochlear impairment are more severe in PD patients compared to age-matched controls [49].
Moreover, asymptomatic hearing impairment (when indicators of hearing loss are ob-
served without self-reported hearing difficulties) is significantly higher in PD patients
than age-matched controls [50,51]. Consequently, altered audiological function may be
related to PD [52]. However, whether hearing loss results from complex sensory processing
impairments during PD, or whether hearing loss antedates PD diagnosis, and is therefore a
risk factor for PD, remains unclear.

Recent prospective studies indicate that hearing loss may antedate, and be a risk factor
for PD. For example, Schrag et al. [53] found that hearing loss, up to 5 years pre-diagnosis,
was more prevalent amongst those who later developed PD than controls. Moreover,
Lai et al. [54] found that, over a five-year follow-up, hearing loss increases the risk of
incident PD by 1.5-fold. Similarly, Simonet et al. [55] observed that hearing loss increases PD
risk by 1.6-fold over <2 years follow-up. These studies implicate hearing loss as a risk factor
for subsequent PD diagnosis; however, further research is required to substantiate these
claims within alternative populations (i.e., using different databases/cohorts). Moreover,
these studies use clinical hearing loss diagnosis (i.e., a documented medical diagnosis) as a
dependent measure. As such, whether hearing loss at different neurophysiological levels,
using different measures of hearing loss, antedates PD diagnosis, and so may be a risk
factor for PD, remains unclear. This study aims, therefore, to determine whether hearing
loss is a risk factor for later PD diagnosis using data from the English longitudinal study of
ageing (ELSA) [56].

2. Materials and Methods

This study was pre-registered on the Open Science Framework (OSF; https://doi.org/
10.17605/OSF.IO/MJGQ6, accessed on 1 February 2023), and the data analysed in this study
are openly available in the UK Data Service at https://doi.org/10.5255/UKDA-SN-5050-25,
accessed on 18 November 2022. The OSF page for this project includes details regarding
the variables analysed, planned statistical analyses, and the data analysis code book. We
summarise the implementation below. This study deviated from the pre-registration only
in the number of covariates embedded within both the primary and exploratory analyses
and the exclusion criteria for missing data. Please refer to Appendix A for full justification
for these deviations.

2.1. Study Population
2.1.1. Primary Analysis

The ELSA is an ongoing longitudinal prospective cohort study of adults living in
private households in England [56]. Data collection follows a longitudinal design with re-
peated measures of core variables occurring biannually over numerous ‘waves’. The present
study utilised the full dataset, including core participants and younger and older respond-

https://doi.org/10.17605/OSF.IO/MJGQ6
https://doi.org/10.17605/OSF.IO/MJGQ6
https://doi.org/10.5255/UKDA-SN-5050-25
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ing relatives, from waves 1–9 (see Appendix B for further sampling details). Participants
were excluded if they:

1. Reported a diagnosis of PD at wave 1;
2. Appeared only in one wave;
3. Were missing data for self-reported hearing capabilities, age, or PD diagnosis variables.

The final analytical sample was n =14,340 (6466 males; 7874 females).

2.1.2. Post-Hoc Exploratory Analysis

We used HearCheckTM Screener data from wave 7 and incident PD data from wave
9 of ELSA. Participants reporting a PD diagnosis at wave 7 who did not complete the
HearCheckTM Screener test, or who did not have age data available, were excluded. The fi-
nal analytical sample was n = 4812 (2065 males, 2747 females).

2.2. Outcome Measure
2.2.1. Primary Analysis

Participants disclosed whether they had a diagnosis of PD at all waves. PD diagnosis
was confirmed at subsequent waves.

2.2.2. Post-Hoc Exploratory Analysis

Participant reported PD in wave 9.

2.3. Exposure Measure
2.3.1. Primary Analysis

Participants self-reported hearing capabilities at each wave by indicating on a five-
point Likert scale “Is your hearing [using a hearing aid as usual] (1) excellent, (2) very good,
(3) good, (4) fair, or (5) poor”.

2.3.2. Post-Hoc Exploratory Analysis

The HearCheckTM screener generates a series of six tones: three mid-frequency tones
of decreasing volume at 1 kHz (55, 34, and 20 dB) and three high-frequency tones of
decreasing volume at 3 kHz (at 75, 55, and 35 dB). Participants indicate when they hear the
tone by raising their finger. Audibility testing occurs separately for each ear. Participants
are required to remove any hearing aid(s) prior to completion of the screening test, thus
the obtained results reflect hearing capabilities in the absence of corrective hearing devices.
Evidence indicates that hearing loss, defined as >35 dB at 3 kHz in the better-hearing
ear, is a robust and justifiable cut off criterion at which intervention is beneficial [57,58].
Subsequently, hearing loss was defined according to this criterion. The resulting hearing
loss variable was further subdivided into two mutually exclusive categories: (1) ‘moderate
hearing loss’: >35 dB to 54 dB (tone not heard at 34 dB HL but heard at 55 dB and at 75 dB)
and (2) ‘moderately severe or severe loss’: >55 dB HL (tone not heard at 35 dB HL and at
55 dB HL, but the tone may, or may not, have been heard at 75 dB HL).

2.4. Covariates

Age is the biggest risk factor for developing PD [59] and hearing loss [60]. Hence, we
controlled for age, as a continuous variable, in all analyses. Age at entry into ELSA is used
as a baseline covariate, while time spent in ELSA (derived from wave number) is used as
the timescale for time to diagnosis of PD and the longitudinal HL outcomes.

2.5. Data Analysis
2.5.1. Primary Analysis

Joint longitudinal and survival models consider the potential dependency between the
longitudinal and survival data [61], assessing the impact a longitudinal covariate, measured
with error, has on the time to an event of interest [62]. Hence, a joint longitudinal and



Brain Sci. 2023, 13, 1196 5 of 15

survival model was fitted to assess the relation between self-reported hearing loss and
subsequent PD, with age as a covariate.

Model structure. There are two components to a joint model: a longitudinal component
and a time-to-event survival component. The longitudinal and survival components of
the model were joined through a trajectory function. (see Appendix C for full joint model
mathematical formulae).

Longitudinal component. The longitudinal component consisted of a continuation
ratio model for the ordinal hearing loss variable, which assumes a linear model with
random effects for the log odds of being in the kth category, conditional on being in the kth
category or higher.

Survival component. The survival component, and time to PD diagnosis, of the joint
model consisted of a Weibull model.

2.5.2. Post-Hoc Exploratory Analysis

Self-reported hearing capabilities are oftentimes influenced by non-auditory factors,
including demographic and socioeconomic characteristics (e.g., biological sex and educa-
tional attainment [63] and medical history [64]). Indeed, almost one-third of participants
with screening-test-identified hearing loss in ELSA wave 7 went undetected by self-report
measures [65], indicating a low concordance between self-reported and screening test hear-
ing capabilities. The wave 7 ELSA screening test hearing loss measure is obtained from the
Siemens HearCheckTM Screener. The HearCheckTM Screener yields a sensitivity of 0.89 and
specificity of 0.86 [66], thus may constitute a more reliable measure of hearing loss. Hence,
we conducted a further exploratory analysis to determine whether screening-test-derived
hearing loss is a risk factor for subsequent PD diagnosis. The HearCheckTM screening
test is not conducted at every wave, rather it was only conducted at wave 7. As such,
only one HearCheckTM Screener data point is currently available per participant, thus not
permitting a longitudinal analysis. Therefore, to determine whether screening-test-derived
hearing loss is a risk factor for subsequent PD diagnosis, a case-control binary logistic
regression was conducted.

3. Results
3.1. Primary Analysis
3.1.1. Sample Demographics

During a median follow up of 10 years (SD = 4.67 years), 151 cases of incident PD were
reported in the analysed sample (n = 14,340), with 89 of these being male.

3.1.2. Joint Longitudinal and Survival Model

A notable proportion of participants’ self-reported hearing capabilities responses
remained stable between two wave points (e.g., wave 7 to wave 8), with the average
proportion (across all nine waves) of participants reporting the same hearing capabilities at
two consecutive waves being 0.46 for excellent, 0.43 for very good, 0.49 for good, 0.46 for
fair and 0.42 for poor. A small number of participants reported their hearing capabilities
at a given wave to be better than the prior wave. This proportion marginally increased
as self-reported hearing capabilities decreased. That is, a marginally larger proportion of
participants reported their hearing capabilities as being better at a subsequent wave if they
reported their hearing capabilities to be fair or poor at the prior wave, than participants
who reported their hearing to be good, very good, or excellent at the prior wave. Across all
waves, a substantial proportion of participants reported their hearing capabilities at a given
wave to be worse than the prior wave. Of these participants, most reported their hearing
capabilities to be one rating scale point lower than the prior wave (i.e., from excellent at
wave 1 to good at wave 2). However, some participants did report a reduction of two
or three rating scale points. A full breakdown of the stability of self-reported hearing
capabilities can be found in the Supplementary Materials.
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Longitudinal outcome. Both age at entry into ELSA (p < 0.001) and length of time since
entering the study (time in study, p < 0.001) were significantly associated with self-reported
hearing loss. Specifically, for each unit increase in either age or time since entering the
study, the odds of being in a better self-reported hearing category decreases by 5.7 percent
(95 CI: 5.4–6.0).

Survival outcome. Concerning incident PD diagnosis, as age increases, the likelihood
of PD diagnosis increases (p < 0.001). However, self-reported hearing capability was not
related significantly to subsequent PD diagnosis (p = 0.402) (see Table 1).

Table 1. Joint longitudinal and survival model.

Mean SD Confidence Interval p

Longitudinal Outcome

Intercept 1.357 0.113 1.135–1.581 <0.001
Cohort Y => 2 1.812 0.019 1.774–1.847 <0.001
Cohort Y => 3 4.179 0.026 4.126–4.228 <0.001
Cohort Y => 4 6.338 0.040 6.263–6.417 <0.001

Age −0.058 0.002 −0.062–−0.055 <0.001
Wave Number −0.058 0.002 −0.062–−0.053 <0.001

Survival Outcome

Age 0.54 0.013 0.026–0.078 <0.001
Hearing Loss 0.063 0.075 −0.080–−0.219 0.402

3.2. Post-Hoc Exploratory Analysis
3.2.1. Sample Demographics

Over the ~4 year follow up (the duration between completion of wave 7 and 9),
24 (13 male, 11 female) cases of incident PD were reported in the analysed sample (n = 4812),
with the mean age of people with PD being 74.67 (6.81).

3.2.2. Binary Regression

In accordance with the HearCheckTM screener, 3575 participants were categorised as
having ‘normal hearing’, 850 participants were categorised as having ‘moderate hearing
loss’, and 387 participants were categorised as having ‘moderately severe/severe hearing
loss’. Generally, participants with greater hearing loss were more likely to be older and male.
See Table 2 for the distribution of demographic characteristics of participants categorised
by HearCheckTM screener derived HL.

The assumption of linearity for the age variable was assumed by observing conditional
density plots and using the Box Tidwell test (z = 0.316, p = 0.752). After controlling for age,
compared with normal hearing, neither moderate hearing loss [OR = 0.87 (95 CI: 0.27–2.41),
p = 0.794], nor moderately severe/severe hearing loss [OR = 1.45 (95 CI: 0.43–4.31), p = 0.521],
increased risk of incident PD over a four-year follow-up.

Table 2. Baseline demographic characteristics of study cohort by hearing loss status.

Hearing Loss Status

Normal (n = 3575) Moderate (n = 850) Moderately Severe/Severe (n = 387) p *

Sex, Male 1416 417 232 F(2,4809) = 459.9, p < 0.001
Age, mean (SE), years 66.48 (0.283) 72.62 (0.396) 75.95 (0.454) F(1,4809) = 38.01, p < 0.001

Incident PD (n) 15 5 5 F(2,4809) = 2.937, p = 0.053

* Note. The p-values documented here were obtained from between-subject ANOVAs which examined whether
demographic (age and sex) and PD incidence significantly differ across hearing loss groups. In this analysis, hearing
loss level formed the independent variable and the relevant demographic variable formed the dependent variable.
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4. Discussion

The present study examined whether hearing loss is a risk factor for incident PD.
Regarding the incidence of PD, we observed that self-reported hearing capability was not a
significant risk factor for incident PD over ~10 years of follow up. Similarly, HearCheckTM

screener-derived hearing loss was not a significant risk factor for incident PD over ~4 years.
These observations may indicate that interventions for hearing loss (i.e., hearing aids or
cochlear implants) may not affect PD progression. However, due to fundamental limitations
in the dataset analyses (e.g., lack of data regarding hearing aid use and PD subcategories
further research is needed to confirm this hypothesis. In terms of the longitudinal outcome
(self-reported hearing capabilities) we observed that as age and length of time in the
study increased, self-reported hearing capabilities decreased. Age-related hearing loss is
characterised by degenerative pathology in the cochlear hair cells, supporting cells, and
auditory nerve endings [67], and age is the largest risk factor for hearing loss [60]. Thus,
this observation is to be expected. However, as it is not possible to manipulate increases in
chronological age, it is implausible for this factor to be a clinical intervention target.

Although the present study did not observe a relation between hearing loss and
incident PD, some previous literature suggests that hearing loss increases the future risk of
incident PD by 1.14–1.6 fold [53–55]. Critically, this prior literature has relied upon clinically
diagnosed hearing loss as the exposure measure. Within the localities in which these studies
recruited participants (Taiwanese, English, and German populations), the clinical diagnosis
of hearing loss relies upon pure tone audiometry assessments [68,69]. Previous literature
has shown that the concordance between pure tone audiometry and self-reported hearing
capabilities is low [65]. Hence, this discrepancy in hearing loss measures may explain the
lack of concordance in the results.

Exploratory analyses also found that screening-test-derived hearing loss was not a
significant risk factor for incident PD. Yet, whilst the HearCheckTM screener constitutes
a substantially more objective hearing loss measure than self-report questionnaires, the
accuracy and sensitivity of the HearCheckTM are, at the lowest, 83 percent [66]. Conse-
quently, discrepancies with prior research could result from use of a screening test measure
with lower accuracy and sensitivity. Crucially, these exploratory findings should be treated
with caution due to the small number of incident PD cases reported (n = 24). Additional
larger-scale cohort analyses that draw on a more reliable diagnosis of hearing loss (e.g., pure
tone audiometry) are required to further elucidate whether hearing loss is a risk factor for
incident PD.

The discrepancies between the current findings and those of previous research could
speak to the mechanism underlying hearing loss and antedating PD motor manifestations.
Pure tone audiometry assessment is thought to depend primarily upon the health of the
outer hair cells, and additionally cochlear transduction by the inner hair cells [70]. Although
pure tone audiometry can be influenced by psychophysiological factors (e.g., patient
attention) and demographic factors (e.g., biological sex) [71], it is largely assumed that pure
tone audiometry outcomes primarily derive from peripheral sensory processes. In contrast,
self-reported hearing capabilities are heavily influenced by non-auditory factors including
demographic (e.g., biological sex, age), socioeconomic (e.g., educational level, occupation),
and lifestyle factors (e.g., tobacco and alcohol consumption and physical inactivity [65]),
as well as social stigma [72]. Hence, self-reported hearing loss may reflect higher-order
subjective processes. Given that audiometrically derived [53–55], but not self-reported,
hearing capabilities appear to be a risk factor for incident PD, this may suggest that hearing
loss and PD are potentially related at a neurological level. This is consistent, potentially,
with the speculations regarding the molecular basis of the common cause hypothesis.

Importantly, both the present study and previous research [53–55] have exclusively
focused on whether hearing loss is a substantial risk factor for incident PD. Parkinson-
ism is an umbrella term used to describe a group of conditions clinically characterised
by motor impairments including tremors, slowed movement, muscle rigidity, gait alter-
ations, and postural instability [73]. Idiopathic PD is the most common Parkinsonism
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disorder, accounting for 85 percent of neurodegenerative cases. The remaining 15 percent of
cases are attributed to atypical Parkinsonian disorders including Progressive Supranuclear
Palsy (PSP), Multiple Systems Atrophy (MSA), Dementia with Lewy Bodies (DLB), and
Corticobasal Degeneration (CBD). On a neuropathological level, atypical Parkinsonism
disorders share several similarities with PD. For example, MSA and DLB, akin to PD, are
α-synucleinopathies [74]. Moreover, neuroinflammation and oxidative stress have been
implicated as patomechanisms in MSA [75,76], PSP [77,78] and CBD [79,80] (note that the
evidence implicating oxidative stress in CBD is less extensive). However, whilst some
studies have found DLB to be characterised by a lack of neuroinflammation [81], alternative
studies have observed oxidative damage in DLB patients [82].

The present study observed that self-reported and HearCheckTM screener-derived
hearing loss are not risk factors for incident PD. However, if clinically diagnosed hearing
loss is a risk factor for incident PD [53–55], it may be that, due to the neuropathological
similarities between PD, PSP, MSA, DLB, and CBD, clinically diagnosed hearing loss will
also be a risk factor for other Parkinsonism disorders. Alternatively, with respect to the
common cause hypothesis, it may perhaps be that hearing loss is a risk factor for some, but
not all, Parkinsonism disorders. Specifically, if hearing loss is related to neurodegenerative
disorders through a neuroinflammation and oxidative stress common cause, we may
anticipate that hearing loss will also be a risk factor for PSP, MSA, DLB, and CBD. However,
if the link is driven by alterations in the production, and aggregation, of α-synuclein, then
we would perhaps expect hearing loss to be a risk factor for MSA and DLB, but not PSP or
CBD (as both are tauopathies [74]).

Although hearing loss may play a small role in the clinical manifestation of Parkinson-
ism disorders, observations of a differential influence of hearing loss on symptom onset
across Parkinsonism disorders may be useful for clinicians to consider when differentiating
such symptomatically similar conditions. Furthermore, ascertaining the relation between
hearing loss and multiple Parkinsonism disorders may provide invaluable insights for the
differential clinical management of Parkinsonism disorders. Therefore, the predictions
made here should be investigated formally.

Within this study, PD was indicated by self-disclosure of a clinical diagnosis. In the
UK, in accordance with UK Parkinson’s Disease Society Brain Bank guidelines, a probable
diagnosis of PD is provided if any given individual presents with bradykinesia (slowed
movement) and at least one of the following: muscular rigidity, rest tremor, or postural
instability [83]. Whilst diagnostic criteria emphasise motor manifestations, cognitive distur-
bances are increasingly recognised as commonplace in PD. Specifically, 30 percent of people
with PD will experience dementia [84]. At a pathological level, Parkinson’s dementia is
oftentimes coupled with Alzheimer’s disease-related pathologies [85]. Given the evidence
that hearing loss is a risk factor for incident all-cause dementia [1], it may be that hearing
loss forms a risk factor for the occurrence and severity of cognitive impairment in PD,
rather than overall diagnosis.

Clinical heterogeneity is well recognised in PD. Such heterogeneity presents a major
barrier in terms of understanding disease mechanisms, developing treatments, and clinical
management. Consequently, a set of clinical criteria for PD subtype categorization has been
developed. The most frequently referred to subtyping system categorises patients into three
subtypes: (1) mild-motor predominant, (2) diffuse malignant, and (3) intermediate, with
categorization being based on motor impairment, cognitive function, rapid eye movement
behaviour disorder, and autonomic symptoms [86]. Given that specific motor and non-
motor symptoms are more strongly associated with some subcategories than others, it
may be that hearing loss is a stronger risk factor for PD onset for certain subtypes over
others. As previously described, PD diagnosis is a binary self-reported variable within
the ELSA dataset. Furthermore, participants are not required to disclose further clinical
information, nor are they required to complete PD symptomology assessments (e.g., the
Unified Parkinson’s Disease Rating Scale [87]). Consequently, it is not possible to subtype
the PD patients within the ELSA dataset, hence rendering it impossible to determine the
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influence of PD subtype on the relation between hearing loss and incident PD. Further
studies that collect sufficient clinical data to allow for subtyping should be conducted.

It is important to also consider the potential role of addressed versus unaddressed
hearing loss (i.e., the use of hearing aids) on symptom onset and the results obtained here.
When accounting for the relation between hearing loss and dementia, it is increasingly
acknowledged that prolonged auditory deprivation, due to hearing loss, may give rise to
chronic cortical reorganisation, which hinders cognitive processes in favour of auditory
perception [3,88]. Although widely debated, due to the potential influence of sociodemo-
graphic factors such as educational level and wealth [89], some evidence also suggests that
correction of hearing loss, through hearing aids, may be associated with better cognition
and a reduction in cognitive change [90,91]. With respect to the relation between hearing
loss and PD, it may be that prolonged auditory deprivation, due to hearing loss, gives
rise to chronic cortical reorganisation that favours auditory perception to the detriment of
motor control, and such an effect may be in some way mitigated by correction of hearing
loss (e.g., the use of hearing aids or cochlear implants). Hence, it may be important for
the use of hearing aids to be controlled within analyses of the relation between hearing
loss and PD. However, the nature of the dataset analysed here renders it impossible for the
potential influence of addressed versus unaddressed hearing loss on symptom onset to
be accounted for within this analysis. Specifically, participants are only asked to disclose
whether they use a hearing aid in wave 7 (whilst completing the HearCheck Screening
test). Consequently, hearing aid use cannot be added as a longitudinal covariate to the
joint longitudinal and survival analysis. Therefore, these findings should be treated with
a degree of caution, and further studies that control for the use of hearing aids should
be conducted.

This study is not without limitations. First, incident PD cases within the final analytical
sample were low (n = 151). However, it is unlikely that this substantially biased our findings.
Specifically, in 2018, the incidence rate of PD in the English population was 0.22 percent [92].
Within this study, the incidence rate of PD was 1.05 percent. Thus, although the raw number
of incident PD cases was low, this is reflective of the overall incidence rate of PD in the
general population. Second, caution must be applied when generalising from the results
of this study. The ELSA is a volunteer cohort [56]. Although the sample aims to be
representative, there is a greater proportion of females, people from managerial/technical
and skilled manual social classes, and ethnic majority groups [56,93]. Therefore, further
studies using alternative, perhaps more representative, samples are required. Finally, due
to the lack of repeat data regarding the use of hearing aids, it is impossible for the potential
influence of hearing loss treatment (i.e., hearing aids or cochlear implants) on symptom
onset to be accounted for. Therefore, further studies that collect additional data regarding
hearing loss treatment are required.

5. Conclusions

To conclude, the present study observed that self-reported hearing loss is not a sub-
stantial risk factor for incident PD. However, sample limitations necessitate further analyses
in alternative populations to substantiate this finding. Should findings be replicated, treat-
ment of hearing loss may not substantially reduce the risk of developing PD. Additionally,
exploratory analyses indicated that more objectively derived hearing loss is also not a
risk factor for incident PD. However, given the small number of incident PD cases in this
sample, further large-scale, planned, analyses are needed to corroborate this conclusion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci13081196/s1, Table S1: Change in self-reported hearing
capabilities across waves.
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Appendix A. Deviations from Pre-Registration

Below, we provide point-by-point justification for the deviation from the pre-registration
analysis plan that occurred within the final analysis.

1. The planned analyses detailed that “Age, sex, smoking, and alcohol will be controlled
for as covariates” in all analyses. However, in the final reported analyses, only age
was fitted as a covariate.
Within the current body of literature, there is debate regarding the advantages and
disadvantages of embedded covariates to any given analysis. Indeed, adjusting for
baseline, highly prognostic, covariates can increase the power to detect a true effect
without inflation of a type 1 error [94]. However, any given dataset can tolerate only a
limited number of parameters; when too many covariates are embedded within an
analysis, the issue of overfitting occurs. Overfitting is a phenomenon in which a given
model fits too well to the given data, and hence the modelled effect does not truly exist
in the population [95]. That is, the model is fitted not only to the systematic variability
but also the random variability in the given dataset, and so will not replicate within an
alternative dataset [96]. As such, within the statistical literature, there is a suggestion
that fitting variance components to mixed-effects models should occur in step-by-
step fashion driven by theoretical considerations, and the resulting model should
be the simplest model that effectively explains the given data [97], i.e., the strongest
prognostic covariate should be fitted first and then, should the statistical analyses
deem it appropriate, the second strongest prognostic covariate should be added,
etc. Age is the largest prognostic factor for developing both PD [59] and hearing
loss [60]. Hence, age was added as a covariate first. The subsequent age controlled
joint longitudinal survival model and binary case-control regression indicated that
the exposure variables of interest, self-reported hearing capabilities and objective
hearing loss, respectively, were not related to subsequent PD diagnosis (p = 0.402,
p = 0.794 (moderate hearing loss), p = 0.521 (moderately severe/severe hearing loss)).
Given that the exposure variables of interest was not significant in the given model,
we deemed it inappropriate to embed further covariates and rather maintain the
principles of parsimony and retain the simplest appropriate statistical model;
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2. Regarding missing data, the planned analysis detailed “as we are interested in whether
hearing loss is a risk factor for the onset of Parkinson’s disease, we will exclude all
participants who have a known diagnosis of Parkinson’s at Wave 1. Participants
whose responses are coded as 0 = Refusal,−8.0 = Do not Know,−1.0 = Not applicable,
on the hearing (hehear) measure will also be excluded from analysis.”. Within both
the primary and exploratory analyses, age was fitted as a covariate. Thus, we also
excluded any participants who had missing data for the age variable.

Appendix B. English Longitudinal Study of Ageing (ELSA) Sampling Information

Table A1. Number of Interviews by Waves in the ELSA.

Fieldwork Period Total Interviews

Wave 1 March 2002–March 2003 12,099
Wave 2 June 2004–July 2005 9432
Wave 3 May 2006–August 2007 9771
Wave 4 May 2008–July 2009 11,050
Wave 5 June 2010–July 2011 10,274
Wave 6 May 2012–June 2013 10,601
Wave 7 June 2014–May 2015 9666 (Nurse Interviews: Nurse Visit—8054)
Wave 8 May 2016–June 2017 8445
Wave 9 May 2018–June 2019 8736

Appendix C. Joint Longitudinal and Survival Model Analysis Mathematical Formulae

Appendix C.1. Survival Component

hi(+1 mi
(t)) = Ho

(t) exp(γTW2 − t α mi
(t))

where α mi
(t) is the direct effect of hearing loss on the time to PD diagnosis, and γTW2

measures the association between hearing loss and time to PD diagnosis.

Appendix C.2. Longitudinal Component

The longitudinal component consisted of a continuous ratio mixed effect model.

Yi
(t) = mi

(t) + Ei
(t)

where mi
(t) is the true hearing capabilities, but we only observe this with error Ei

(t).

Joint Longitudinal and Survival Model: log {
Pr(yij = K| yij ≥ K)

1−P(yij = K|yij ≥ K)} = αk + γij
tβ + Zj

tbi.

For K = 1, 2, 3, 4, i = participant, ij = jth observation from participant i.
P(HLij = 1|bi) = logit−1 [β01 + bij + βageAgei + (βt + Bij)TimeJ] = logit−1 (1.3569 + bij

− 0.0584 × Age + (bij − 0.0582) × TimeJ).
Hearing Capabilities ≥ 2: P(HLij = 2|bi) = P(HLij = 2|HLij > 1, bi) = logit−1 [β02 + B1i

+ βAgeAgei + (βt + β2i)TimeJ] × [1 − P(HLij = 1|bi)].
β02 = Intercept + Cohort (≥2) = 1.3569 + 1.8124.
Hearing Capabilities ≥ 3: P(HLij = 3|bi) = P(HLij = 3|HLij > 2, bi) = P(HLij = 3|HLJ >

2, bi) × [1 − P(HLJ = 2| HLJ > 1, Bi)] = logit−1 [β03 + B1i + βAgeAgei + (βt + β2i)TimeJ] ×
[1 − P(HLij = 2|HLJ > bi)] × [1 − P (HLJ = 1, Bi)].

β03 = Intercept + Cohort (≥3) = 1.3569 + 4.1794.
Hearing Capabilities ≥ 4: P(HLij = 4|bi) = P(HLij = 4|HLij > 3, bi) = P(HLij = 4|HLJ >

3, bi) × [1 − P(HLJ = 3| HLJ > 2, Bi)] = logit−1 [β03 + B1i + βAgeAgei + (βt + β2i)TimeJ] ×
[1 − P(HLij = 3|HLJ > bi)] × [1 − P(HLJ = 2, Bi)].

β03 = Intercept + Cohort (≥4) = 1.3569 + 6.3381.
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