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CONTEXT AND SIGNIFICANCE

Infectious and inflammatory

diseases are the most common

causes of children seeking

medical care in both hospital and

community settings. It is a

considerable challenge for clinical

teams to reliably distinguish

common viral infections, bacterial

infections (which are potentially

serious), and less common

inflammatory diseases, with

existing tests when children

initially present at healthcare

settings. Habgood-Coote et al.

describe an approach for

simultaneously distinguishing

between 18 infectious and

inflammatory diseases using the

differences in the levels of

expression of 161 genes in

patients’ blood. A future

diagnostic test based on this

approach could help provide the

right treatment, to the right

patient, at the right time, while

optimizing antibiotic use and

reducing lengthy time to

diagnosis for inflammatory

diseases.
SUMMARY

Background: Appropriate treatment and management of children pre-
senting with fever depend on accurate and timely diagnosis, but current
diagnostic tests lack sensitivity and specificity and are frequently too
slow to inform initial treatment. As an alternative to pathogen detec-
tion, host gene expression signatures in blood have shown promise in
discriminating several infectious and inflammatory diseases in a dichot-
omous manner. However, differential diagnosis requires simultaneous
consideration of multiple diseases. Here, we show that diverse infec-
tious and inflammatory diseases can be discriminated by the expression
levels of a single panel of genes in blood.
Methods: A multi-class supervised machine-learning approach, incorpo-
rating clinical consequence of misdiagnosis as a ‘‘cost’’ weighting, was
applied to awhole-blood transcriptomicmicroarray dataset, incorporating
12 publicly available datasets, including 1,212 childrenwith 18 infectious or
inflammatory diseases. The transcriptional panel identifiedwas further vali-
dated in a new RNA sequencing dataset comprising 411 febrile children.
Findings: We identified 161 transcripts that classified patients into 18
disease categories, reflecting individual causative pathogen and spe-
cific disease, as well as reliable prediction of broad classes comprising
bacterial infection, viral infection, malaria, tuberculosis, or inflammatory
disease. The transcriptional panel was validated in an independent
cohort andbenchmarked against existingdichotomous RNA signatures.
Conclusions: Our data suggest that classification of febrile illness can
be achieved with a single blood sample and opens the way for a new
approach for clinical diagnosis.
Funding: European Union’s Seventh Framework no. 279185; Hori-
zon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z);
Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR
Imperial BRC.
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INTRODUCTION

Infectious and inflammatory diseases are the most common causes of children seeking

medical care in both hospital and community settings.1 It is a considerable challenge for

clinical teams to identify and appropriately treat the small proportion of patients who

have severe bacterial infection2,3 or inflammatory conditions while avoiding over-treat-

ing the majority of patients who have self-limiting, usually viral, illness.

Conventional diagnostic tests cannot distinguish the multitude of potential etiol-

ogies with sufficient speed and accuracy to inform initial treatment.4 Culture-based

microbiological diagnosis is slow, and while molecular diagnostic techniques are

faster, they are limited by the pathogens included in the panel and positive results

may identify pathogens that are not the cause of the current illness, particularly for

respiratory samples.5 Infection can involve either a single causative pathogen or

the interaction ofmultiple organisms, limiting the utility of viral pathogen detection.6

Infections are frequently localized in inaccessible sites (such as the lungs) and, conse-

quently, pathogen detection from accessible sites such as blood, urine, or cerebro-

spinal fluid is frequently negative, even when severe infections are present.

For most inflammatory disorders, there is currently no single test to confirm or refute

the diagnosis, and therefore patients with conditions such as Kawasaki disease (KD)

or juvenile idiopathic arthritis are often not diagnosed until after a long period of

hospitalization, treatment for presumed infection, and numerous investigations.7–9

As a result of the limitations of existing diagnostics, definitive final diagnoses are

made for less than 50% of children attending an emergency department with fever,

and in only half of children admitted to pediatric intensive care with suspected

infection.10,11 Given this diagnostic uncertainty, many patients without bacterial

infection are unnecessarily treated with broad-spectrum antibiotics to mitigate the

risks of missing severe bacterial infection, contributing to the growing problem of

antimicrobial drug resistance.12

Gene expression microarrays and, more recently, RNA sequencing (RNA-seq) have

revealed an alternative approach, in which infectious or inflammatory diseases are

characterized by unique patterns of host gene expression in patients’ blood, thus

bypassing the need for direct pathogen detection. There is a growing literature doc-

umenting that specific infectious and inflammatory diseases can be distinguished

from conditions with similar presenting features using sparse transcriptional signa-

tures in whole blood, including discriminating between bacterial and viral infec-

tions,13–19 malaria,20,21 dengue virus,22 respiratory syncytial virus,23,24 rotavirus,25,26

and tuberculosis (TB)27,28–30 and diagnosing inflammatory conditions such as KD31

and systemic lupus erythematosus (SLE).32

Previous studies using gene expression for diagnosis have focused on simplified

binary distinctions, either one versus one (e.g., bacterial versus viral) or one versus

all (e.g., tuberculosis versus other diseases). However, in clinical practice, there is

a hierarchy of diagnostic categories, and many potential etiologies must be consid-

ered and prioritized according to the risks posed by each. We hypothesized that

multiple infectious and inflammatory diseases could be simultaneously discrimi-

nated by a limited number of gene transcripts measured in patients’ blood.

To investigate this hypothesis, we applied a multi-class feature selection and classi-

fication approach based on least absolute shrinkage and selection operator (LASSO)

and Ridge regression to genome-wide RNA expression data from 1,212 febrile
2 Med 4, 1–20, September 8, 2023
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children in 12 publicly available gene expression microarray datasets, representing

18 disease categories, incorporating the clinical risks associated with incorrect diag-

nosis as a ‘‘cost weighting.’’ We identified 161 transcripts that predicted the broad

disease category (bacterial, viral, inflammatory, malaria, TB, and KD) with high con-

fidence, as well as specific causative pathogens and diseases.

Cross-platform validation of the signature was performed in an independent cohort

of patients (n = 411) for whom gene expression was instead measured in whole

blood by RNA-seq. Our data provide proof of concept that the pattern of expression

of a single set of transcripts in each patient’s blood can be used to diagnose a wide

range of infectious and inflammatory diseases.

RESULTS

Two datasets measuring whole-blood gene expression from pediatric patients with

febrile illness were used to investigate the potential of a multi-class approach to

biomarker discovery. A dataset composed of 12 publicly available gene expression

microarray datasets (n = 1,212) was used for the discovery of a biomarker panel,

which was then applied to a newly generated RNA-seq dataset (n = 411).

The discovery dataset

To explore the feasibility of using a limited number of RNA transcripts to classify

febrile illness, we merged and analyzed publicly available microarray datasets. A

comprehensive literature search, limited to Illumina Beadchip arrays, identified 12

datasets (GEO: GSE73464, GSE68004, GSE65391, GSE64456, GSE42026,

GSE40396, GSE39941, GSE38900, GSE34404, GSE30119, GSE29366, GSE22098)

that measured gene expression in whole-blood samples from both pediatric pa-

tients with acute febrile illnesses and appropriate controls (Table S1). The control

samples in each dataset were used to perform batch correction with the COmbat

CO-Normalization Using conTrols (COCONUT) method19(Figure S1).

Patients with multiple potentially causative pathogens and disease groups with

fewer than 10 cases were excluded, leaving 1,212 patients across 18 disease classes.

Of these patients, 338 had bacterial infections caused by Staphylococcus aureus (n =

107), Streptococcus pneumoniae (n = 15), group A Streptococcus (GAS) (n = 38),

group B Streptococcus (GBS) (n = 10), Neisseria meningitidis (n = 10), Escherichia

coli (n = 58), or Mycobacterium tuberculosis (n = 100). There were 290 cases due

to viral infections, including respiratory syncytial virus (RSV) (n = 61), rhinovirus

(n = 12), human herpesvirus 6 (HHV6) (n = 10), influenza virus (n = 98), enterovirus

(n = 57), and adenovirus (n = 52). The 487 cases of inflammatory disease included

SLE (n = 204), juvenile idiopathic arthritis (JIA) (n = 98), Henoch-Schönlein purpura

(HSP) (n = 18), and KD (n = 167). Malaria (n = 97) was the only parasitic infection

present in the datasets. The merged and batch-corrected data were randomly split

into subsets comprising 75% and 25% for training and testing respectively using

stratified holdout to maintain class proportions.

Identification of a multi-class signature of febrile illness

In the discovery set, repeated cross-validation was performed in order to select the

best method for deriving a multi-class signature of febrile illness (see STAR

Methods). Of the five multivariate penalized regression methods compared,

LASSO + Ridge derived the smallest models with good classification performance

while allowing cost-sensitivity (Figure S2A). This is a two-stage method in which

LASSO regression is used to perform feature selection followed by a Ridge regres-

sion to refit the coefficients and improve predictive performance.33
Med 4, 1–20, September 8, 2023 3
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Figure 1. Confusion matrix for the gene expression microarray test set predictions

(A and B) Performance of the 161-transcript signature in the 25% microarray test set over 18 specific disease classes (A) and over six broad disease

classes (B). Confusion matrices show the numbers of each type of misclassification made where each sample is predicted to belong to the class with

highest probability. Green corresponds to correct predictions (true positives), brown corresponds to incorrect predictions within the same broad

disease category, and pink shows incorrect predictions for disease category (false positives/negatives). Cost-weighting, point estimates for sensitivity,

and specificity for each prediction are shown on the right. E. coli, Escherichia coli; GAS, group A Streptococcus; GBS, group B Streptococcus; N.

meningitidis, Neisseria meningitidis; S. pneumoniae, Streptococcus pneumoniae; S. aureus, Staphylococcus aureus; HHV6; human herpesvirus 6; RSV,

respiratory syncytial virus; HSP, Henoch-Schönlein purpura; JIA, juvenile idiopathic arthritis; SLE, systemic lupus erythematosus; KD, Kawasaki disease.
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An important consideration in the context of clinical diagnostics is the potential

consequence of incorrect diagnosis. In order to incorporate the clinical conse-

quences of misdiagnosis, we applied a ‘‘cost-sensitive learning’’ approach by

performing example weighting. Class weights were assigned by the consensus judg-

ment of five independent pediatric infectious disease specialists to reflect the risks

posed by each disease if untreated, the speed of disease progression, and the avail-

ability of effective treatment. Weights were divided by the abundance of each class

to offset the effect of class imbalance (Table S2). The effect of incorporating these

weights in the training process is to bias the feature set and coefficients to reduce

the false-negative error for high-risk groups at the expense of increasing the false-

negative error of low-risk groups (Figure S2B).

We applied multinomial LASSO + Ridge penalized regression in the 75% discovery

set to identify an RNA transcript panel consisting of 161 probes for the discrimina-

tion of 18 disease classes. This set of probes was selected from the LASSO regulari-

zation path at a value of lambda at which the cross-validated mean square error

(weighted by cost and class imbalance) for the Ridge regression was within two stan-

dard errors of the minimum. A heatmap of the standardized expression of the

selected probes is shown in Figure S3.
Test set predictions

Predicted probabilities for the 25% test set were used to derive a confusion matrix

for which discrete class predictions for each sample were made by taking the class

with highest predicted probability (Figure 1A). The ability of the classifier to separate

disease groups was also assessed for pairwise (one-versus-one) and one-versus-all

discrimination on the basis of predicted probabilities (Figure S4 and Table S3). While

the model was able to reliably predict most diagnostic classes, the predictive perfor-

mance was lower for groups with smaller number of samples in the training dataset

(Figure S2C). While many of the samples could be assigned to specific disease

classes, many of the misclassifications occur between classes from the same broad

disease category (bacterial or viral) (Figures 1B and S5).
Broad clinical categories with immediate clinical implications

While the rapid identification of causative pathogens would be useful for optimal

treatment and choice of antibiotics, clinical teams require a high degree of confi-

dence in the broad disease category (i.e., viral, bacterial, or inflammatory) to ensure

potentially life-threatening conditions are not missed and to direct empiric

treatment and appropriate subsequent investigations.

We investigated whether the biomarker panel could also be used to make confident

predictions of broad disease category. Refitting the coefficients for the 161 tran-

scripts using multinomial Ridge regression allowed the panel to predict the broad

disease categories: inflammatory disease, viral infection, bacterial infection, KD,

malaria, and tuberculosis (Figures S2D and Table S3). Although tuberculosis is a bac-

terial disease, it was considered as a separate class, as it requires very different
Med 4, 1–20, September 8, 2023 5
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Pairwise and one-versus-all discrimination of broad disease categories. Scatterplots and ROC curves are shown for pairs of disease categories (columns

1–6). Each scatterplot shows the predicted probabilities for patients with one of a pair condition; conditions for each scatterplot are given on the
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clinical management from the other bacterial infections, and also induces distinct

transcriptional responses (Figure S2G). Similarly, KD, which also induced distinct

transcriptional responses, was considered as a distinct class. Although epidemiolog-

ical features suggest an infectious agent as the cause of KD, its etiology remains un-

known and treatment is directed at immunomodulation.34,35 The resulting model

accurately predicted the presence of these six disease classes both when consid-

ering the most likely class for each patient (Figure 1B) and when considering classes

independently (Figure 2 and Table S3). These predictions allow the model to reflect

the diagnostic classification used in clinical decision making and simultaneously

address multiple clinical questions. The clinical teams can be provided with the

probabilities for each patient to belong in each class as an optimal input for decision

making.
6 Med 4, 1–20, September 8, 2023



Table 1. RNA-seq set demographics

Characteristic Bacterial Viral Inflammatory TB Malaria KD

Number of patients 130 88 50 18 12 113

Age: months,
median (IQR)

30 (9–65) 7 (2–20) 171 (132–200) 79 (43–93) 70 (51–93) 35 (18–56)

Male sex: no. (%) 72 (55) 58 (66) 11 (22) 10 (56) 6 (50) 68 (60)

Population group African 25 (19.2) 5 (5.7) 0 1 (5.6) 12 (100) 7 (6.2)

Asian 5 (3.9) 2 (2.3) 1 (2.0) 0 0 16 (14.2)

European 85 (65.4) 62 (70.5) 49 (98.0) 0 0 27 (23.9)

Latin
American

1 (0.8) 8 (9.1) 0 1 (5.6) 0 37 (32.7)

Mixed/other/
unknown

14 (10.8) 11 (12.5) 0 16 (88.9) 0 26 (23.0)

Days from symptoms:
median (IQR)

2 (1–4) 5 (2–7) 264 (158–765)/
877 (364–2,095)a

14 (7–30) 3 (2–3) 6 (5–7)

Intensive care:
no. (%)

69 (53.1) 17 (19.3) 0 0 0 2 (1.8)

Deaths: no. 10 1 0 0 0 0

CRP (mg/L):
median (IQR)

203
(111–281)

6 (3–18) 10 (3–44) 60 (51–69) NA 72 (42–162)

Blood cell differential

Neutrophil %:
median (IQR)

75.0
(59.9–85.7)

29.0
(16.8–48.7)

51.3
(42.8–59.4)

NA 65.8
(56.6–74.4)

61.3
(52.5–76.9)

Lymphocytes %:
median (IQR)

17.0
(9.3–27.9)

47.5
(28.5–60.3)

35.4
(29.8–45.0)

29.5
(25.0–35.5)

27.1
(18.8–34.4)

22.5
(11.8–30.2)

Monocyte %:
median (IQR)

5.88
(3.0–8.0)

7.7
(5.0–11.1)

8.4
(7.0–10.7)

5.0
(5.0–6.9)

6.8
(4.7–8.5)

5.0
(3.0–8.0)

Clinical syndromes

Soft tissue 10 0 0 0 0 0

Inflammatory 0 0 50 0 0 113

Gastrointestinal 3 1 0 0 0 0

Urinary tract infection 8 0 0 0 0 0

Upper respiratory/ear,
nose, throat

3 25 0 0 0 0

Lower respiratory tract 17 62 0 17 0 0

Central nervous system
involvement

38 0 0 0 0 1

Musculoskeletal 7 0 0 0 0 0

Otherc 6 1 0 9 0 0

Pathogen specificb 3 0 0 0 12 0

Sepsis 76 0 0 0 0 0

IQR, interquartile range; CRP, C-reactive protein; Ethnicity, self-reported ethnicity; TB, tuberculosis; KD, Kawasaki disease.
aRelative to initial symptom onset for the first episode or exacerbations respectively.
bIncluding scarlet fever, staphylococcal scalded skin, and malaria.
cIncluding central-line-associated bloodstream infection, endocarditis, extra-pulmonary TB, facial palsy, pericarditis, and status epilepticus. Patients could be

affected by more than one syndrome at the same time.
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Validation in an independent study using RNA-seq

We evaluated the performance of the diagnostic signature in an independent

patient cohort and using a different RNA quantification platform. We used a newly

generated dataset of whole-blood RNA-seq including 411 pediatric patients with

a range of infectious or inflammatory diseases, covering all six broad diagnostic clas-

ses and 13 of the 18 specific diagnostic classes used in the discovery dataset (demo-

graphic and clinical details in Table 1 and study details in STAR Methods).

The 161 microarray probes were mapped uniquely to 155 genes, of which 10 did not

have sufficient read counts in the RNA-seq dataset for reliable quantification, leaving

145 genes in the panel in the RNA-seq dataset (Table S4). Gene level read counts
Med 4, 1–20, September 8, 2023 7
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Figure 3. Performance of the 145-transcript panel in the validation cohort

(A and B) Multi-class confusion matrices for disease prediction in the RNA-seq validation set for specific disease classes (A) and for broad disease classes

(B). Circle area and color correspond to number of patients and type of misclassification, respectively, where green is correct classification, pink is

incorrect classification in a different broad disease group, and brown is incorrect classifications within the same broad disease class. Specificities and

sensitivities for the detection of each class were derived from discrete class predictions. Cost weighting and point estimates for sensitivity and

specificity for each prediction are shown on the right.
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were normalized for sequencing depth with scaling factors calculated with DESeq236

followed by a log transformation. To account for the different quantification platform

and smaller signature, the coefficients of the multi-class models for classifying both

broad and specific disease class were refitted on a random selection of 50% of the

dataset using multinomial Ridge regression with class weighting (Table S2). The per-

formance in the remaining 50% is shown for discrete class predictions (Figure 3) us-

ing predicted probabilities for pairwise and one-versus-all comparisons (Figures 4,

S2E, S2F, and S5 and Table S3) and for individual patients.

In addition, and although microarray and RNA-seq rely on very different quantifica-

tion approaches, we assessed the performance of the broad disease classifier in the

RNA-seq dataset without retraining the coefficients in the RNA-seq dataset. The

coefficients were refitted using Ridge regression in the completemicroarray dataset.

This model was then used to make predictions on the RNA-seq dataset after

applying limma voom transformation37 to the DESeq2 depth normalized RNA-seq

count data (Figure S6).

The utility of a diagnostic test is highly dependent on the prevalence of disease in the

population on which it is being used; however, since a multi-class diagnostic panel

could be applied in different clinical contexts, values for specificity, positive predic-

tive value, and negative predicted value are shown for four illustrative scenarios of

disease prevalence in different populations (Table S5).38–41

We performed differential expression analyses between each broad disease cate-

gory and the other disease groups using DESeq236 and the enrichment analysis

for the different comparisons using g:Profiler42 of Gene Ontology (biological path-

ways) and Reactome terms (Figure S7).

Benchmarking with previously published one-versus-all signatures

There are no previously reported transcriptional panels that can simultaneously

distinguish multiple causes of fever in children against which to benchmark perfor-

mance. We therefore compared the performance of our multi-class biomarker panel

to four previously reported binary classification signatures for the classification of

pediatric febrile illness: tuberculosis,27,30 KD,31 and for distinguishing bacterial

from viral infections14(Table S6). Since some of the microarray datasets were used

for binary signature derivation, performance was only compared in the RNA-seq

dataset for comparison fairness. The coefficients of each linear model were refitted

using the same 50% of the RNA-seq dataset and performance was evaluated using

receiver operating characteristic (ROC) curves on the remaining 50%. There was no

significant difference in the area under the ROC curve (AUC) between the Wright

signature31 and the Kawasaki component of the multi-class signature (p = 0.2, boot-

strap test, Benjamini Hochberg corrected). The multi-class biomarker panel

performed better in terms of AUC than the single-class Sweeney signature for tuber-

culosis30 (p = 0.03) but there was not a significant difference to the AUC of the An-

derson signature27 (p = 0.08) (Figure 5 and Table S7). The improvement relative to

the bacterial-viral signature was significant for the identification of viral infection

(viral versus all; p = 0.007) and bacterial infection (bacterial versus all; p = 0.007)
Med 4, 1–20, September 8, 2023 9



Bacterial 
 n = 66

    0.95
(0.9−0.95)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

    0.98
(0.96−0.98)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

    0.93
(0.89−0.93)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

    0.99
(0.97−0.99)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

    0.98
(0.95−0.98)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

    0.89 
(0.83−0.89)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Viral 
 n = 44

    0.97
(0.93−0.97)

    0.97
(0.93−0.97)

    0.98
(0.94−0.98)

    1
(0.99−1)

    0.96 
(0.91−0.96)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

JIA
 n = 25

    0.99
(0.98−0.99)

    0.99
(0.97−0.99)     1     0.98 

(0.96−0.98)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

KD
 n = 57

    1
(0.99−1)     1     0.94 

(0.9−0.94)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tuberculosis 
 n = 9

    0.98
(0.93−0.98)

    0.98 
(0.97−0.98)

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Malaria 
 n = 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

    1 
(0.99−1)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. RNA-seq validation set predictions of broad disease classes

Pairwise and one-versus-all discrimination of broad disease categories. Scatterplots and ROC curves are shown for pairs of disease categories (columns

1–6). Each scatterplot shows the predicted probabilities for patients with one of a pair condition; conditions for each scatterplot are given on the

diagonal, above (x axis) and to the right (y axis) of each plot. ROC curves show the performance when distinguishing each pair of conditions; conditions

for each ROC plot are given on the diagonal, below and to the left of each plot. Separation of the pair of diseases is performed using the predicted

probabilities of both classes where the decision threshold is defined by varying the gradient of a line p(class1) = m 3 p(class2). The rightmost panels

(columns 7–8) show the predicted probabilities for each class (left) and the one-versus-all ROC curve defined using only these probabilities to

distinguish the class in a one-versus-all comparison. 95% confidence intervals are shown for all ROC curves except where they could not be calculated

due to lack of overlap.
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but not for distinguishing bacterial from viral infection (bacterial versus viral; p = 0.3),

reflecting that the inclusion of the additional disease groups on this study has only a

minor impact on overall performance measured by AUC for the direct bacterial-viral

comparison, but the use of a cost-sensitive approach improves the sensitivity to bac-

terial infection for the lower values of specificity.
DISCUSSION

We investigated whether multiple diseases could be distinguished simultaneously

using a single whole-blood transcriptional panel. A multi-class machine-learning

approach was applied to publicly available blood gene expression datasets to

identify a set of 161 transcripts sufficient for accurate diagnosis of diverse causes

of febrile illness in children. The 161-transcript panel can identify 18 specific inflam-

matory diseases and pathogen species and distinguish between six broad disease
10 Med 4, 1–20, September 8, 2023
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Figure 5. Comparison of the multi-class RNA signature to previously published signatures of infectious disease

(A–E) ROC curves and 95% confidence intervals of specificity are shown for the multi-class signature and previously reported signatures for tuberculosis

(A), KD (B), and for distinguishing bacterial and viral infection (C–E). The comparison to the bacterial-viral signature is split by the formulation of the

classification problem.

(C) A bacterial versus viral comparison where, for the multi-class classifier, the ratio of predicted probabilities for bacterial and viral infection are used.

(D and E) The problem as a viral versus all and bacterial versus all respectively with each using the corresponding component of the multi-class

signature.
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categories (bacterial infection, viral infection, inflammatory disease, tuberculosis,

malaria, and KD). As some diagnostic errors carry severe consequences (such as fail-

ure to diagnose a life-threatening bacterial infection), while others have few adverse

consequences (such as failing to diagnose a self-limiting viral infection for which

there is no specific treatment), we used a cost-sensitive learning approach in our dis-

covery pipeline by example weighting. Although derivation of a full cost matrix

based on formally defined outcome measures would be necessary to fully recapitu-

late the clinical consequences of misclassifications, this is beyond the scope of this

study. We instead used a weighting scheme based on expert consensus that could

effectively prioritize the predictions in favor of diseases for which misdiagnosis

carries the greatest consequence. The 161-transcript signature identified using

gene expression microarray datasets was validated in a translated 145-gene form

in an independent study of febrile children in whom gene expression levels were

detected by RNA-seq, supporting the clinical validity, the robustness, and the repro-

ducibility of the approach.

In order to incorporate a multi-class transcriptomic signature for febrile illness into

clinical care, the panel of RNA transcripts needs to be translated into a diagnostic

test suitable for use in hospitals or clinics, which would be able to measure the

transcripts rapidly and at affordable cost. There is a rapidly expanding number of

molecular methods and technologies for rapid, inexpensive, and high-throughput

measurement of large numbers of targets, including customized arrays,43 high-

throughput PCR-based methods, NanoString technologies,44 and electrochemical

biosensor technology.45,46

The imperative need of a novel diagnostic platform capable of simultaneously iden-

tifyingmultiple pathogens anddifferent analyte types to improvediagnosis andman-

agement of febrile patients (MAPDx) was highlighted by Médecins Sans Frontières

(MSF), Foundation for Innovative New Diagnostics (FIND), and the World Health Or-

ganization (WHO)47 in a foundation document for a fever-specific assay. A host RNA-

based approach that could simultaneously identify different causes of fever would

meet several of the target product profile (TPP) characteristics reported: single sam-

ple, kinetics of infection, and semi-open design to allow for relevant genes to be

measured in different settings and to address different clinical questions. Further

research needs to be conducted to optimize the presentation of results and level

of detail that would be made available to the clinical team and to determine whether

results are presented as most likely cause, probability of each cause, or enhanced

with management suggestions taking pre-test probabilities into account.

This study provides a proof of principle that a single panel of RNA transcripts can be

used to assign patients with fever and non-specific clinical and laboratory findings to

a range of etiologies from a single whole-blood sample. Coupled with diagnostic

technological advances able tomeasure RNA transcripts rapidly and at an affordable

cost, a multi-class diagnostic test for febrile illness could circumvent lengthy clinical

diagnostic processes and reduce delays to diagnoses, missed diagnoses, and un-

necessary antibiotic treatment, having a significant impact on global health.
12 Med 4, 1–20, September 8, 2023
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Limitations of the study

While our study provides proof of principle that disease class assignment for a rangeof

infectious and inflammatory diseases can be achieved using the pattern of gene

expression in the blood of each patient, further development of the approach is

currently limited by the availability of whole-blood gene expression datasets.

Although the use of publicly available gene expression datasets allows more hetero-

geneity to be captured, particularly where a single disease is considered across mul-

tiple datasets,30 the scope of the approach can be limited by the representativeness

and completeness of datasets used for discovery, imposed by the research focus of

prior studies. Further optimization of the transcript panel will require a large compre-

hensive blood gene expression dataset where a wide range of illnesses is considered

simultaneously to ensure signatures are robust to the full range of potential etiologies.

In our study, class imbalance was taken into account; however, some of the patho-

gens and diseases for which a limited number of samples were available were not

accurately identified by the transcript panel (e.g., E. coli in the RNA-seq data), as

were pathogens whose clinical relevance is less well defined (such as viral pathogen

detection in respiratory samples).48 While a more stringent filtering of disease

groups of small sample size would improve predictive performance, this would

mean the omission of clinically relevant diseases from this proof-of-concept study.

For some of these underrepresented disease groups in the discovery set, good per-

formance could be achieved, such as N. meningitidis, which could be reliably

detected in both discovery and validation datasets. Additionally, we have excluded

patients with more than one potential cause of fever, but further work needs to be

undertaken to benchmark the predictions for cases with more than one clinical diag-

nosis. While the discrimination of healthy control samples might be an advantage in

a screening context, the populations targeted by a diagnostic test of this kind will

consist of febrile patients with sufficient clinical concern to warrant a blood test.

Although we successfully performed cross-platform and cross-cohort validation mov-

ing from a microarray discovery cohort to an RNA-seq validation cohort, some of the

originally discovered 161-microarray transcript set were not present in the RNA

sequence data. Additionally, there were insufficient numbers of patients in the RNA-

seq data to include five of the disease groups present in the microarray data (entero-

virus, GBS, HHV6, HSP, and SLE). To ensure clinical utility, further development of the

approach will require large prospective patient cohorts, with consistent, detailed, and

accurate clinical phenotypes. By expanding the rangeof conditions included in thedis-

covery of the transcript panels, it may be possible to improve the treatment of a large

number of patients, particularly for rare and under-diagnosed conditions for which

early detection and thus treatment could have a significant benefit. Similarly, given

appropriate clinical cohorts and gene expression datasets, it may be possible to

expand this principle to other populations such as adults, patientswith co-morbidities,

and populations affected by pathogens specific to certain geographic areas, such

dengue, arbovirus infections, or zoonotic illnesses such as Lyme disease and typhus,

which pose considerable diagnostic challenges.
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Mercedes del Rı́o Garma, Josefina Pena Nieto, Ma Elena Álvarez Garnelo, Ángel Ló-
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STUDY PARTICIPANT DETAILS

Description of the validation study (RNA-Seq dataset)

Patient recruitment. Patients were recruited as part of the European Union Child-

hood Life-threatening Infectious Disease Study (EUCLIDS https://www.euclids-

project.eu), a prospective, multicentre, cohort study conducted in six countries in

Europe. Patients aged 1 month to 18 years with sepsis (or suspected sepsis) or

severe focal infections, admitted to 98 participating hospitals in the UK, Austria,

Germany, Lithuania, Spain, Switzerland and the Netherlands were prospectively

recruited between July 1, 2012, and Dec 31, 2015. Febrile patients were recruited

additionally with similar criteria in Spain (GENDRES network, Santiago de Compos-

tela), in the Netherlands (Virgo cohort, JIA cohort), in the USA (Rady Children’s

Hospital-San Diego as described previously),54 and in Cape Town (Red Cross

Children’s hospital) between 2009 and 2013. Patients were recruited if they met

the inclusion criteria of having febrile illness (temperature R38�C) of perceived suf-

ficient severity to warrant blood testing or hospital admission and were <17 years of

age. Participants’ information on sex, age, and race was self-reported, or reported

by parent/guardian. Information on gender and socioeconomic status was not

collected. Patients were excluded if they had comorbidities or treatments likely to

affect gene expression, including prior bone marrow transplant, immunodeficiency,

or immunosuppressive treatment. Blood samples for RNA analysis were collected

together with clinical blood tests at, or as close as possible to, presentation to hos-

pital, irrespective of antibiotic use at the time of collection.

Diagnostic process. All patients underwent routine diagnostic investigations as

part of clinical care in each hospital’s microbiology and virology laboratories,

including blood count and differential, C-reactive protein (CRP), blood chemistry,

blood, and urine cultures, and cerebrospinal fluid (CSF) analysis where indicated.

Throat swabs were cultured for bacteria, and viral diagnostics were undertaken on

nasopharyngeal aspirates using multiplex PCR for common respiratory viruses.

Chest radiographs and other tests were undertaken as clinically indicated. Patients

were assigned to diagnostic groups using predefined criteria as described

previously.14,30 The Definite Bacterial group included only patients with bacteria

identified in a sample from a sterile site, and the Definite Viral group included

only patients with culture, PCR or Immunofluorescent test - confirmed viral infection.

Children were recorded as having juvenile idiopathic arthritis, Kawasaki disease,

tuberculosis disease and malaria in the respective studies. Children in whom

definitive diagnosis was not established were not used in this study.

Study conduct and oversight. Clinical data and patient samples were identified only

by study number. Assignment of patients to clinical groups was made independent

of those managing the patient clinically by consensus of two experienced clinicians,

after review of the investigation results and using previously agreed definitions.

Statistical analysis was conducted after the RNA expression data and clinical assign-

ment databases had been locked.Written, informed consent was obtained from par-

ents or guardians at all sites using locally approved permissions (St Mary’s Research

Ethics Committee (REC 09/H0712/58); Ethical Committee of Clinical Investigation of

Galicia (CEIC ref 2010/015); Amsterdam, the Netherlands (NL41023.018.12 and

NL34230.018.10); the University of California San Diego (Human Research Protec-

tion Program 140220); The Gambia Govemment/MRC Joint Ethics (Committee

reference L2013.07V2); Cape Town, South Africa (HREC No 389/2017 linked to

No 045/2008); Cantonal Ethis Committee Bern (KEK-029)).
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Peripheral blood RNA sequencing. Whole blood was collected at the time of

recruitment into PAXgene blood RNA tubes (PreAnalytiX, Germany), frozen, and

later extracted. Library preparation and sequencing of 30million 75 or 100 bp paired

end reads was conducted using the Illumina’s TruSeq RNA Sample Preparation Kit,

ribosomal and globin RNA depletion was performed using the Illumina� Ribo-Zero

Gold kit and HiSeq 4000 at The Wellcome Centre for Human Genetics.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed in R version 3.4.455

Microarray data pre-processing

We identified human Illumina gene expressionmicro-array datasets in National Insti-

tutes of Health Gene Expression Omnibus database56 and ArrayExpress,57 which

included expression data from children with infectious and inflammatory diseases

as well as healthy controls (Table S1). Only datasets where Illumina Beadchip arrays

(V3, V4) were used to measure whole blood gene expression were included.

Datasets were retrieved with GEOquery,58 normalised using robust spline normal-

isation (RSN) from the lumi package59 and log transformed independently prior to

batch correction. Probes common to all datasets were identified using lumiHuma-

nIDMapping to map probes to Illumina nuIDs.60 Duplicate samples between

datasets were identified using correlation structure and checked using patient char-

acteristics. ComBat as was performed using the R package SVA61 to correct for a

batch internal to GSE72829 before using COCONUT,19 which assumes that healthy

controls are drawn from the same distribution, to correct for batch effects between

experiments (Figure S1).

Disease groups with fewer than 10 patients were excluded from the discovery set, as

were cases in which a single causative pathogen was not identified or the diagnosis

was uncertain. Stratified holdout was used to select the 25% of the data to be used in

testing.

Feature pre-filtering

Prior to feature selection pre-filtering was performed to reduce the size of the search

space and remove probes with little or no association with any of the diseases

considered. To this end a differential expression analysis was performed with

limma62 for all 153 pairwise disease comparisons. Probes with absolute log2 fold

change below 0.5 were discarded and the remaining probes for each comparison

were ranked by p value. Probes were selected from these lists in an iterative process

until at least 2,000 probes were present. At each iteration the contribution of each

probe was divided between the comparisons in which it was selected (i.e. a probe

selected by 2 comparisons contributes a weight of 0.5 to each) in order that all

comparisons were defined by similar numbers of discriminatory probes.

Method selection

In order to compare methods for performing the feature selection and classification,

we used stratified 10-fold cross-validation in the microarray training set, this

was repeated 10 times by changing seed values. We considered five different multi-

variate penalised regression methods, implemented here using glmnet63: one-vs-all

LASSO, one-vs-all LASSO followed by multinomial Ridge regression over the

selected feature set, multinomial-LASSO, multinomial-LASSO + Ridge and multino-

mial relaxed LASSO. Nested cross validation was used to select hyper-parameters;

when performing feature selection, the 1SE method was used and when refitting

coefficients, the parameters were selected to minimise error. Performance was
Med 4, 1–20.e1–e5, September 8, 2023 e3
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evaluated using mean weighted square error (MWSE) and mean size of the selected

feature set. We concluded that the one-versus-all approach was not feasible due to

the identification of very large gene signatures with more highly correlated and

redundant features (Figure 1A). Of the multi-class approaches used, the

LASSO+Ridge two-stage procedure obtained the smallest models with high predic-

tive performance.
LASSO+Ridge hybrid

Penalised regression was performed on standardised expression values using the

glmnet63 package in Bioconductor.64 Coefficients were grouped so that all coeffi-

cients for each feature were set to zero together. l1 and l2 penalised regression

were combined into a two-stage procedure, referred to here as LASSO+Ridge,33

for which the LASSO (l1 penalty) was used to perform feature selection followed

by a Ridge regression (l2 penalty) to refit the coefficients for the resulting feature

set. This method has similarities with the Relaxed LASSO65 and LARS-OLS66

methods, which use LASSO and ordinary least squares (OLS) for the second stage

respectively. For the LASSO+Ridge procedure the tuning parameters of LASSO ( l

) and Ridge fits ( 4 ) were selected using nested cross validation. At each l of the

LASSO regularisation path, genes with non-zero coefficients are used as input for

a Ridge regression. For each Ridge regression the tuning parameter 4 was selected

to minimise the MWSE. l was then selected to minimise model size such that the

MWSE was within two standard errors of the minimum (2SE). Relative to LASSO

and Relaxed LASSO, the LASSO+Ridge hybrid method had lower MWSE for each

feature set, which resulted in smaller signatures with similar predictive accuracy

(Figure 1A).
Cost and rescaling

Example weighting67 was used to bias the feature selection in order to prioritise the

reduction of false negative error for diseases which are associated with greater

immediate risk to the patient. These relative weights were defined for each disease

class by a team of 5 paediatric infectious disease specialists to reflect: risk of nega-

tive outcome (e.g. death, organ damage), speed of disease progression and the

availability of effective treatment (Table S2). The effect of adding class weights to

a multinomial LASSO is to bias the feature set and weights towards reducing the

false negative error for classes with worse potential outcomes, more rapid progres-

sion and available treatment; this also leads to an increase in the false positive error

for these classes and the converse for diseases with smaller weights (Figure 1B).

Weights were also modified to counteract the bias induced by differences in the

numbers of samples in each group (class imbalance), as there was a 20:1 ratio be-

tween most and least abundant classes. This was done by updating class weights

by dividing costs by the number of patients in each class.
Performance

Classifier performance is shown using confusion matrices where discrete class pre-

dictions, for each patient, are the class with highest predicted probability. ROC

curves were derived using the predicted probabilities for each class with the

pROC package and trapezoidal calculation of AUC,68 the bootstrap methods were

used for to derive confidence intervals and compare AUCs. Pairwise ROC curves

were derived using the ratio of the predicted probabilities of the two classes.
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RNA-sequencing analysis

The RNA-Seq analysis pipeline consisted of: quality control using FastQC,69

MultiQC70 and annotations modified with BEDTools,71 alignment and read counting

using STAR,72 SAMtools,73 FeatureCounts74 and version 89 ensembl75 GCh38

genome and annotation. Normalisation was performed using the DESeq236 method

for estimating scale factors with a subsequent log transformation (Figures S1D and

S1E). The 161 microarray probes were mapped uniquely using BLAST to 155 genes,

10 of which were removed due to low read counts (unnormalised counts >5 in fewer

than 10 samples) (Table S4). Refitting of the coefficients of the model was performed

using Ridge regression on 50% of the dataset, the remainder was used for perfor-

mance evaluation. The same split was used when retraining and testing comparator

signatures. Differential expression and enrichment analyses were performed using

DESeq2 and g:Profiler41 (Figure S6).
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