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Abstract: Human skin and its commensal microbiome form the first layer of protection to the outside
world. A dynamic microbial ecosystem of bacteria, fungi and viruses, with the potential to respond to
external insult, the skin microbiome has been shown to evolve over the life course with an alteration
in taxonomic composition responding to altered microenvironmental conditions on human skin. This
work sought to investigate the taxonomic, diversity and functional differences between infant and
adult leg skin microbiomes. A 16S rRNA gene-based metataxonomic analysis revealed significant
differences between the infant and adult skin groups, highlighting differential microbiome profiles
at both the genus and species level. Diversity analysis reveals differences in the overall community
structure and associated differential predicted functional profiles between the infant and adult skin
microbiome suggest differing metabolic processes are present between the groups. These data add
to the available information on the dynamic nature of skin microbiome during the life course and
highlight the predicted differential microbial metabolic process that exists on infant and adult skin,
which may have an impact on the future design and use of cosmetic products that are produced to
work in consort with the skin microbiome.
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1. Introduction

The human skin is the largest and outermost organ with diverse and multiple roles.
Subject to daily challenge, the skin encounters and defends against environmental insults
from friction, abrasion and UV light, as well as the application of personal care products.
The human skin structural maturation progresses across the life course. Newborns have
an epidermal thickness that is approximately 30% less than adult skin [1]. There are
multiple differences in the physiochemical properties of juvenile skin compared with
adults. Infant skin shows increased levels of trans-epidermal water loss (TEWL) [2,3],
and elevated levels of sebum that subsequently decrease to a level lower than that of
adult skin after 6 months [4,5]. At birth, the skin surface pH is neutral or alkaline (pH
6.2–7.5) [6,7] then decreases in the first 4 weeks of life to a pH of 5–5.5, similar to that of older
children and adults [8–10]. The acidity of the skin surface influences the cutaneous bacterial
composition [11–13] that acts as an important defense mechanism against pathogens [9,14].

The microbial inhabitants of skin, collectively termed its microbiota, provide an
essential part of skin’s key functions. Comprising bacteria, archaea, fungi, mites and
viruses [15–17], these biota contribute to the structure and function of skin in both healthy
and diseased states. Microbiomes described as being in dysbiosis have been identified
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in skin conditions ranging from atopic dermatitis [18,19] to dandruff [20,21] and axillary
malodor [22,23], with causative relationships established in many instances.

The skin microbiome composition, and its underlying functionality, is a consequence
of the local ecology of a particular body site with distinct microbiomes present at moist
(e.g., axilla), sebaceous (e.g., face) and dry/sebaceous gland poor (e.g., forearm or leg)
sites [24,25]. In reality, the stark variation in the underlying nutrient and lipid availability,
pH and water activity (aw) and the resultant commensal microbiome, means the skin
microbiome could be considered to be a collection of discrete microbiomes, each with their
own unique characteristics [15,25].

The skin microbiome of infants, like skin structure, has been shown to be dynamic
and can be impacted by multiple factors as it matures over time. Multiple external factors
can contribute to the establishment and development of the skin microbiome. The initial
skin microbiome composition may be impacted by the mode of delivery [26] and the mode
of feeding [27]; however, multiple studies support that this initial variation in bacterial
abundance between natural and cesarian-section-delivered children becomes normalized in
the first few months of life, with body-site-specific microbiomes becoming evident, as seen
in adult subjects [28–30]. Additional factors beyond the mode of birth that can impact the
infant skin microbiome composition have previously been reported, including household
composition [31] and the use of skin care products [32].

The infant skin microbiome, after an initial variability potentially impacted by, e.g., the
method of delivery, becomes a surface dominated by bacteria of the genus Streptococcus, and
to a lesser extent, the Gram-positive genus Gemella, and the Gram-negative genera Prevotella
and Haemophilus, creating a skin microbiome characterized by elevated (relative to adult)
levels of taxa more commonly associated with the oral microbiome [33]. The abundance of
these genera decreases over time as the microbiome transitions to one more associated with
adult skin [29,34]. The lower relative abundance of the adult skin commensal Cutibacterium
acnes was explained as a result of limited maturation of sebaceous glands, the primary
source of nutrients for lipophilic bacteria, including Cutibacterium, Corynebacterium and the
fungi Malassezia [16,35,36]. This correlation of sebaceous gland activity and microbiome
alteration is additionally seen in post-menopausal individuals where microbiome diversity
changes and composition reversion are in evidence following a reduction in sebaceous
gland excretion [37–39].

Here, we present a comparison of healthy infant and adult skin microbiomes from
unrelated subjects examining variations in taxonomic composition, diversity, network
connectivity and the predicted functional capacity between the life stages.

2. Materials and Methods
2.1. Ethics Statement

Written informed consent was obtained from all the enrolled individuals or par-
ents/guardians. The study protocol was approved by the IntegReview Independent Ethics
Committee (Infant Cohort) or the Institutional Review Board Services (Adult Cohort). The
methods were carried out in accordance with the principles of the Declaration of Helsinki
and Good Clinical Practice as applicable to clinical studies on cosmetics.

2.2. Study Participants

The study samples were pooled for meta-analysis from 2 independent internal stud-
ies. All samples were taken from subjects in the USA. A total of 120 samples, split be-
tween groups evenly, were selected from an infant cohort (Montana, USA, mean age
11.6 months, range 6–18 months) and an adult cohort (Texas, USA, mean age 31.85 years,
range 21–50 years). None of the adult subjects were related to the subjects in the infant
cohort, so an examination of familial links was not possible. All subjects were recruited
based on having healthy skin at the proposed sampling sites, having no underlying health
conditions and not using any medication known to impact the skin microbiome for the
previous 3 months. Samples, taken from the legs of subjects in both studies were col-
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lected, stored, processed, sequenced and analyzed in an identical fashion, minimizing any
potential bias as a result of sample collection methodologies or data processing variations.

2.3. 16S rRNA Gene Sequencing
2.3.1. Microbiome Sample Collection and Processing

Buffer washes were collected from all participants (leg skin) using a sterile Teflon
sampling ring (internal diameter 3.5 cm) using the cup scrub method [40] as previously
described [20]. Next, 2.0 mL of buffer wash solution (sterile phosphate-buffered saline
pH 7.9 containing 0.1% v/v Triton X-100) was pipetted into the sampling ring and the
skin surface gently agitated for 1 minute with a sterile Teflon rod. The sampling fluid was
collected using a new sterile disposable pipette and placed into a sterile centrifuge tube. The
sampling procedure was repeated with a further 2.0 mL aliquot of buffer wash material and
both aliquots pooled. The samples were placed on ice during the collection process and then
stored at −80 ◦C prior to the DNA extraction. The shipment of samples from both studies,
prior to extraction, was carried out on dry ice with appropriate temperature logging.

2.3.2. DNA Extraction and 16S rRNA Gene Library Preparation and Sequencing

DNA extractions were carried out as previously described [41]. Library prep was
carried out using oligonucleotide primers targeting the V1-V2 hypervariable region of the
16S rRNA gene,

U28F: 5′ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNAGAGTTTGAT
CMTGGCTCAG3′

U338R: 5′GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGCTGCCTCCCGTA
GGAGT3′

The primer pair were modified versions of the standard 28F and 338R primers con-
taining additional recognition sequences to facilitate nested PCR using methods described
previously [42].

Second-round PCR incorporated Illumina adapters containing indexes (i5 and i7) for
sample identification utilizing eight forward primers and twelve reverse primers, each of
which contained a separate barcode allowing up to 96 different combinations. The general
sequences of the primers are illustrated below with the variable 8 bp barcode underlined;
the amplification was performed as previously described [42].

N501f: 5′AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTCTTTCC
CTACACGACGCT3′

N701r: 5′CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTCAG
ACGTGTGCTC3′

2.3.3. Informatics Processing

The sequence analysis was performed using the QIIME2 microbiome analysis tool
suite [43] version 2019.1. The paired-end sequences were imported into a QIIME2 format,
then denoised using DADA2 [44]. The primer sequence regions were removed during
denoising by setting the DADA2 forward and reverse read trim parameters to the length of
the forward and reverse primers, respectively. A complete list of the software parameters
and versions can be found in Supplementary Tables S1 and S2. Denoising produced
40,054 unique amplicon sequence variants (ASVs) corresponding to 32,091,435 sequences
in the 120 original samples. The samples were rarefied to 10,000 reads per sample in
advance of the diversity analysis. Rooted and unrooted phylogenetic trees were generated
for the ASVs using the QIIME2 phylogeny align-to-tree-mafft-fasttree workflow. The
taxonomy assignments were generated by comparing the ASVs against a BLAST database
composed of the Human Oral Microbiome Database (HOMD), HOMD extended and
GreenGenes sequences (HOMDEXTGG version 14.51) described in [45]. The taxonomic
classification was performed as previously described [46] at a 99% identity across 98% of
the read length. Metagenomic functional predictions were carried out using PICRUSt2
v2.4.2 [47–51]. QIIME2 derived ASV tables in biom format were utilized. Default settings
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using the PICRUSt2 reference database and assignment against the MetaCyc pathway
database were carried out [52].

2.4. Data Processing
2.4.1. Network Analysis

A co-occurrence network analysis was carried out on QIIME2 generated ASV tables
collapsed at the species level. In such methods, the sparsity of microbial datasets often
results in spurious correlations. To address this, the taxa were filtered based on 0.05%
relative abundance and ASVs were removed when present in fewer than 37% of the
samples, in line with previous studies. The networks were inferred using Sparse InversE
Covariance estimation for Ecological Association and Statistical Inference (SPIEC-EASI
version 1.0.7) and at the prevalence threshold selected, the networks appeared stable across
a range either side [53]. The neighborhood method was chosen and the StARS (Stability
Approach to Regularization Selection) method used with a lambda max threshold of 0.01.
The visualizations of the networks were produced in Cytoscape (version 3.7.2) [54].

2.4.2. Statistical Analysis

Statistical analysis of 16S rRNA gene metataxonomic data including alpha and beta di-
versity analysis was carried out using the available scripts in QIIME2 version 2019.1. Within
sample group diversity (alpha) changes (Observed and Shannon) were estimated and tested
using non-parametric approaches. A signed rank test for changes across time-points for
each treatment that accounts for paired differences within subjects. Kruskal–Wallis tests
were used for pairwise treatment comparisons. Between group diversity (beta) was as-
sessed visually using Non-Metric Multidimensional Scaling (NMDS) ordination plots for
key metric distance matrices, Bray–Curtis (semi-metric), Jaccard, weighted and unweighted
Unifrac [55]. The statistical inference was achieved using permutation analysis of variance
(PERMANOVA). Differentially abundant taxa were identified using Linear discriminant
analysis Effect Size (LEfSe) [56] and explainable AI machine learning methods, which were
visualized via SHAP (SHapley Additive exPlanations) analysis [57].

3. Results
3.1. Bacterial Diversity Analysis

The raw DNA sequences were processed using QIIME2 as per the Methods section,
producing ASV level tables that were used for alpha diversity analysis. The analysis was
carried out on both groups following rarefaction of all the samples to a minimum depth
of 10,000 reads per sample. Alpha diversity analysis, using both Observed and Shannon
metrics, showed contrasting results. Observed alpha diversity (Richness), Figure 1a, was
significantly elevated in adult skin microbiome samples (p < 0.05), whereas Shannon diver-
sity (Richness and evenness), Figure 1b, was significantly elevated in infant microbiome
samples (p < 0.05).

3.2. Taxonomic Composition and Differential Abundance

ASVs were classified against a BLAST database composed of the Human Oral Micro-
biome Database (HOMD), HOMD extended and GreenGenes sequences as described in the
Methods section. This analysis produced relative abundances of species level taxa for all
samples. The taxonomic abundances of the major community members of both the infant
and adult skin microbiomes were assessed to ascertain community profiles (Figure 2a,c).
Significant differences in mean relative abundances, as calculated using LEfSe (LDA > 2.5
and p < 0.05), were identified (Figure 2b (genus) and Figure 2d (species)). Relatively, several
genera were elevated in their abundances on infant skin including Streptococcus, Acine-
tobacter and Neisseria whereas Cutibacterium, Lactobacillus, Micrococcus, Enhydrobacter and
Finegoldia were elevated on adult skin. From the species determinations, multiple members
of the genus Streptococcus including S. thermophilus, S. vestibularis, S. mitis, S. crispatus,
S. peroris and S. salivarius were elevated in their relative abundance levels on infant skin.
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Whereas on adult skin Cutibacterium acnes, Micrococcus luteus, Lactobacillus crispatus and Lac-
tobacillus iners were identified as having elevated abundance in comparison to infant skin.
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Figure 1. Diversity analysis of the adult and infant skin microbiome: alpha diversity analysis of the
adult and infant skin microbiome using (a) Observed and (b) Shannon alpha diversity metrics. Data
are visualized using box and whisker plots with significant differences for alpha diversity calculated
using Kruskal–Wallis pairwise comparisons with significant threshold set at p < 0.05. Significant
differences were observed between adult and infant groups for both metrics.
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Figure 2. Taxonomic assessment of the infant and adult skin microbiomes: a and c, bar plot repre-
sentations of the most abundant genera (a) and species (c) identified in the adult and infant skin
microbiome with differentially abundant genera and species highlighted by * (p <0.05). (b,d) Differ-
entially abundant genera (b) and species (d) identified between the infant and adult skin microbiome
as identified using Linear discriminant analysis Effect Size (LEfSe) with a statistical significance cut
off set at LDA > 2.5 and p < 0.05.
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The differentially abundant taxa were highly prevalent across all samples and differ-
ential abundance was not driven by a subset of samples with high abundance of target taxa
or the absence of these taxa in samples (Supplementary Figure S1).

In addition to the standard differential abundance analysis of the DNA sequence data,
machine learning methods (random forest decision trees) [58] were employed to identify
the bacterial taxa that were indicative of skin microbiomes from babies and adults. SHapley
Additive exPlanations (SHAP) analysis was used to visualize differential taxa and can been
seen in Figure 3a (genus) and Figure 3b (species). Each dot represents a microbiome sample
and the corresponding taxon abundance in that sample for genus or species. Red dots
depict a taxon that is enriched and blue dots indicate there is reduced abundance. Clusters
of red dots indicate an increased abundance of that taxon corresponding to the life stage on
the y axis.
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Figure 3. Machine learning analysis of the infant and adult skin microbiome: SHapley Additive
exPlanations (SHAP) summary dot plots as computed using an optimized machine learning model
on features (ASVs) data. Each dot represents a microbiome sample and the corresponding taxon
relative abundance in that sample for genus (a) or species (b). The red dots depict a taxon that is
enriched, and the blue dots indicate there is reduced abundance. The clusters of red dots indicate an
increased abundance of that taxon corresponding to the life stage on the y axis.

There was a high degree of correlation between taxa identified via machine learning
in comparison to LEfSe. Relative abundances of certain genera, including Streptococcus
and Cutibacterium, were highly indicative of a microbiome originating from infant or adult
skin, respectively. Infant skin was additionally characterized by other genera associated
with the oral microbiome including Rothia, Gemella, Granulicatella and Neisseria. Machine
learning analysis indicated that on adult skin, there were elevated levels of Gram-positive
Anaerobic Cocci (GPAC), including Finegoldia, Anaerococcus and Peptoniphilus. The results
at a species level were consistent for the source microbiome tested in the study and showed
multiple species of Streptococcus were indicative of infant skin and Cutibacterium acnes was
a strong biomarker of adult skin.

3.3. Beta Diversity Analysis

Beta diversity analysis was carried out to examine the differences between the life stage
groups at a community level. The analysis was carried out using both non-phylogenetic
(Bray–Curtis and Jaccard) and phylogenetic (Weighted and Unweighted Unifrac). As with
alpha diversity analysis, all samples were rarefied to a minimum depth of 10,000 reads
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per sample. Statistical inference was achieved using a permutation analysis of variance
(PERMANOVA) and demonstrated significant differences (p < 0.05) for all metrics when
comparing the adult and infant skin microbiome samples. The data were visualized using
non-metric multidimensional scaling ordination plots. The distinct clusters for both infant
and baby groups are visible for all the metric analysis, representing significant differences in
community composition between groups on both a taxonomic abundance and phylogenetic
level with centroids for each group included (Figure 4a–d).
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3.4. Functional Analysis

The predicted functional analysis of the skin microbiome was carried out using PI-
CRUSt2 [47]. The differentially abundant pathways were identified using LEfSe (LDA > 2.75,
p < 0.0001). The functional biomarkers that were differentially abundant between the groups
were visualized (Figure 5) on both a group and per sample basis. The multiple pathways
associated with the generation of lipids on skin were increased on infant skin whereas
pathways indicative of adult skin included acid production (propionate) as well as amino
acid and sugar metabolism. The lipid production pathways were predicted based on the
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elevated abundance of streptococci with propionic acid production, as expected, associated
with increased levels of Cutibacterium acnes.
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Figure 5. Differentially abundant predicted functional pathways between the adult and infant skin
microbiomes: functional biomarkers elevated in the adult and infant skin microbiomes, calculated
using LEfSe, are highlighted with red and green bars, respectively. LDA > 2.75, p < 0.0001. The
heatmap visualizes the per sample pathway abundance identified as being differentially abundant
between the sample groups with LefSe.

3.5. Network Analysis

The network analysis was carried out to examine co-occurrence connections in the
infant and adult skin microbiomes. Network analysis has been used extensively to examine
and infer inter-species interactions in a community using methods including correlation
analysis, hierarchical modelling and linear regression [59]. Analysis using Sparse InversE
Covariance estimation for Ecological Association and Statistical Inference showed an
increased level of network connectivity was evident in the infant skin microbiome both at
the community level and visualized using Cytoscape, (Figure 6a,b).

Whereas the nature of the interactions between the relevant taxa differs between the
groups, more positive network interactions between the dominant genus (Streptococcus)
and minor community members are observed. The networks constructed from adult skin
microbiome data show more balanced levels of positive and negative interactions between
taxa. The network analysis has been used for the skin microbiome in previous studies to
show improvements in skin condition following treatment [60] and the impact of pollution
on the skin microbiome [61]. In these examples, increased network connectivity has been
associated with increased health. In this instance, however, both infant and adult groups
were recruited based on having healthy skin free of cosmetic issues, which can in part
explain no significant differences in the network connectivity.
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4. Discussion

Next-generation sequencing analysis was used to examine the microbiome composi-
tion of the infant and adult skin microbiomes. The subsequent taxonomic and diversity
analysis of these data revealed pronounced differences in the community composition.

Community diversity analysis highlighted significant differences between the infant
and adult skin microbiomes. Alpha diversity analysis showed increased richness (Ob-
served diversity) in adult skin, however, analysis of richness and abundance (Shannon
diversity) showed elevated levels on infant skin. The reduction in alpha diversity on adult
skin has previously been attributed to the increase in sebaceous gland activity and subse-
quent abundance of sebum as a primary food source for skin organisms. The associated
increase in C. acnes levels leads to a decrease in Shannon alpha diversity [33]. Indeed, an
increase in skin alpha diversity has been seen in post-menopausal women following a
decrease in sebaceous gland activity and subsequent reduction in skin sebum levels [38].
Significant differences were also seen in beta diversity analyses for all four-core metrics
used (Bray–Curtis, Jaccard, Weighted and Unweighted Unifrac). Taken together, these
data demonstrate that the number, abundance and phylogenetic classification of both the
dominant and minor community members are significantly different between the infant
and adult skin microbiomes.

Taxonomic differences were examined using machine learning methods to gain in-
sights into the compositional differences between host microbiotas. The approach used
here validated the Linear discriminant analysis and the Effect Size analysis to support that
there were differentially abundant genera and species between adult and infant microbiota.
The infant skin microbiome is characterized by elevated levels of streptococcal species
including S. thermophilus, S. vestibularis, S. infantis and S. mitis along with four others. These
streptococci represent the dominant lactic acid bacteria on infant skin and their increased
abundance and presumed metabolic activity may contribute to the acidification of infant
skin following birth. At birth, potentially as a consequence of exposure to alkaline amniotic
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fluid, an infant’s skin pH is close to neutral but acidifies in the months after birth, forming
the acid mantle [62]. With streptococcal species accounting for approximately one quarter
of the bacterial microbiome, it can be hypothesized that the abundance of these lactic acid
producers could drive this acidification process.

In contrast, the adult skin microbiome is dominated by the lipophilic bacterium
C. acnes. While the average abundance of C. acnes (33%) on the leg site sampled, is lower
than what would be seen on a sebaceous skin site, e.g., the face (>70%) [63], the elevated
levels seen on adult skin are consistent with other analyses that ascribe the alterations to the
impact of increased sebaceous secretions on the skin during and following puberty [16,34].
Beyond C. acnes, the adult skin microbiome has a discrete profile of species representing
the lactic acid bacteria. In comparison to infant skin, dominated by streptococci, adult
skin is alternatively colonized by multiple species of Lactobacillus including L. crispatus and
L. iners. There is currently not a clear explanation for this change in lactic acid bacteria,
however, potential community interactions with C. acnes and the associated increase in the
levels of sebum derived antimicrobial lipids may be drivers for the identified taxonomic
abundances. Of note, levels of Streptococcus are elevated on the skin of post-menopausal
individuals, suggesting that sebaceous lipids and the subsequent breakdown products may
indeed be important in controlling the abundance of streptococci on the skin [57,64].

Machine learning analysis of the microbiome data additionally highlighted elevated
levels of Gram-positive Anaerobic Cocci (GPAC) bacteria on adult skin. A previous con-
nection has been made between GPAC and the levels of filaggrin expression in skin, with
GPAC abundance reduced in filaggrin deficient skin [65]. Reduced filaggrin expression
is a significant risk factor for atopic dermatitis development [66]; however, in our study
all subjects, babies and adults, were classified as healthy individuals, free of any cosmetic
skin conditions. Previous analysis identified reduced levels of filaggrin derived natural
moisturizing factors (histidine, pyrrolidone carboxylic acid and urocanic acid) at various
body sites of babies, which at least in part may explain the reduced levels of GPAC observed
on infant skin [67].

The predicted functional differences between the infant and adult skin microbiome
were identified using PICRUSt2. The functional potential of the infant skin microbiome
generally shows increased levels of lipid biosynthesis associated with the increased levels of
streptococci on the skin. Differentially elevated pathways for the biosynthesis of gondoate,
palmitate and oleate as well as pathways for (5Z)-dodec-5-enoate biosynthesis indicate
an increased level of cosmetically relevant microbial fatty acid biosynthesis on the skin.
Indeed, the additional pathways for fatty acid elongation and biosynthesis of L-isoleucine,
a branched chain amino acid that is a precursor for ceramide biosynthesis, are also elevated,
offering the intriguing possibility of microbially derived fatty acid synthesis providing
skin benefits. On adult skin, the production of propanoate was predicted to be elevated
in accordance with the increased levels of propionic acid producing Cutibacterium acnes.
Additionally, an elevated level of heme biosynthetic pathways is seen on adult skin with
these pathways more likely directed to the production of protoporphyrin IX, uroporphyrin
III and coproporphyrin III, all porphyrins produced by C. acnes [68]. The superpathway
of heme biosynthesis from glutamate is likely associated with the elevated L-histidine
degradation I pathways, one endpoint of which is the production of glutamate. In contrast
to infant skin, where lipid biosynthetic pathways were elevated, differentially elevated
pathways on adult skin are associated with sugar degradation for bacterial energy pro-
duction via the TCA cycle including beta D-glucuronide and D-glucuronate degradation,
inositol degradation and D-fructuronate degradation. Recent matched microbiome and
metabolome analysis has been carried out on an infant skin cohort and has identified dis-
tinct cluster correlations between commensal microbiota and metabolite classes including
Cutibacterium with hydrophobic skin barrier components and Staphylococcus with amino
acids [69]. This work also identifies the correlation of Cutibacterium with the pathways
associated with sugar and lipid metabolism similar to the data presented here; however, the
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direct measurement of metabolites by Roux et al. provides more direct evidence between
the microbial metabolism and skin metabolome content.

Co-occurrence network analysis was carried out to examine the relationships between
the bacterial community members in each group. The network analysis was carried out
using the species assigned to the top 10 most abundant genera in each group, with the infant
skin microbiome having fewer network connections overall than the adult skin microbiome,
though not statistically significant based on bootstrapping analysis. This could be explained
due to both study groups having underlying healthy skin in comparison to previous uses
of these approaches comparing health and disease. Within this sparser network, however,
30% of the inter-node interactions are mediated by Streptococcus species, the majority
of which are positive interactions with other community members. In comparison, the
adult skin network shows a greater balance of positive and negative interactions with a
reduced importance on Streptococcus mediated interactions and an increased importance
on Staphylococcus and Lactobacillus interactions.

The increased number of Streptococcus interactions could suggest a heightened impor-
tance of Streptococcus metabolite exchange between the community members, highlighting
a keystone genus role in community functionality. Streptococcus species were shown to have
a variety of beneficial characteristics associated with skin health. As well as being lactic acid,
peroxide [70] and bacteriocin [71] producers, preventing the growth of potential pathogens
including S. aureus, streptococci increase ceramide production in skin following topical
application [72,73] as well as the production of hyaluronic acid [74], both key ingredients in
skin care compositions. The potential importance of Streptococcus spp. as key members of
the infant skin microbiome and potentially the transition to an adult community highlights
the need to be cognizant of the design of cosmetic products specifically formulated for
infant skin, as opposed to adult skin, and their potential impact on the skin microbiome.
While this investigation provides information on the infant and adult skin microbiomes,
there are some limitations to the study.

The focus of this work has solely been the bacterial composition of the microbiome.
Shotgun metagenomics analysis of the skin microbiome would provide information not
only on the bacterial composition, but also on the fungal and potential viral composition
of the microbiome. It would be expected that variations would be present in the fungal
mycobiome due to variations in sebaceous lipids on skin between infants and adults,
which would impact the levels of Malassezia spp. on skin as described previously [75,76].
Additionally, due to the lack of relationship between infants and adults in this study, it
was not possible to examine the similarities or differences between related and non-related
individuals as previous studies [29]. Further investigations should encompass related and
unrelated subjects as well as more comprehensive microbiome profiling, including the
quantitative assessment of target genera and species via qPCR and additional microbiome
related measures such as lipid and metabolite analysis to investigate if the predicted
differences in functional pathway analysis are borne out in direct measurement data.

5. Conclusions

Significant differences in community composition, connectivity and functional poten-
tial exist between the infant and adult skin microbiome. Differences also exist between the
underlying stratum corneum, however, there is limited understanding of the evolution
of the infant skin microbiome and whether this evolution is partly driven by microbiome
composition. A more in-depth understanding of skin microbiome dynamics across the life
course is warranted in order to understand if the early life skin microbiome can impact
skin health later in life.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11061484/s1. Supplementary Figure S1: Differ-
entially abundant genera and species between infant and adult groups. Supplementary Table S1:
QIIME2 Software Parameters; Supplementary Table S2: Software Versions; Supplementary Table S3:
Species level taxa utilised for network analysis.
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