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1 Introduction 25 

Structural optimization is widely reckoned a viable design tool for engineering structures 26 

(Haftka and Gürdal 1992). However, it has been shown that the performance of a structure is 27 

inevitably affected by the uncertainties stemming from material properties and geometrical 28 

parameters of the structure, as well as external excitations (Li and Chen 2009). To ensure the 29 

optimized structure behaves as expected, the avoidable effects of the uncertainties should be 30 

adequately accounted for in the optimization process. In this regard, reliability-based design 31 

optimization (RBDO) constitutes an advantageous methodology (Valdebenito and Schuëller 2010), 32 

and enormous progress has been made since the 1960s.  33 

Early investigations on RBDO mainly focus on structural design optimization based on the 34 

first-order and the second-order reliability methods. Representative works include the reliability 35 

index approach (Enevoldsen and Sørensen 1994), the performance measure approach (Tu et al. 36 

1999), the sequential optimization and reliability assessment (SORA) method (Du and Chen 2004), 37 

the sequential approximate programming method (Cheng et al. 2006), the single loop approach 38 

(Liang et al. 2007), and the hybrid method (Jiang et al. 2017). These methods have proven practical 39 

and effective (Aoues and Chateauneuf 2010). However, dynamic excitations, such as earthquakes, 40 

sea waves, and wind effects, are usually the dominant causes of structural damage or collapse. This, 41 

therefore, necessitates the development of dynamic-reliability-based design optimization (DRBDO) 42 

(Jerez et al. 2022).  43 

For DRBDO, a crucial issue is to evaluate the dynamic reliability. Methods for assessing 44 

structural dynamic reliability encompass the out-crossing rate-based methods (Coleman 1959), the 45 

stochastic simulation methods (Shinozuka 1972; Au and Beck 2001), the moment-based methods 46 

(Zhao and Lu 2007), and the probability density-based approaches (Chen and Li 2005), etc. Based 47 

on these methods, various DRBDO schemes have been devised. Among them, mathematical 48 

programming algorithms and stochastic sampling-based approaches are commonly adopted as 49 

optimizers, such as the sequential approximate programming algorithms (Valdebenito and Schuëller 50 

2011), the feasible direction interior point algorithms (Jensen et al. 2013), the stochastic subset 51 

optimization algorithms (Taflanidis and Beck 2009), and the transitional Markov chain Monte Carlo 52 

(TMCMC)-based approaches (Jensen et al. 2020, 2021). Although DRBDO can be advantageous 53 

for achieving reliable structural designs, its application scope is hindered due to the complexity and 54 

high computational cost of estimating structural dynamic reliability, especially for nonlinear 55 

systems. Moreover, there exist some limitations in the reliability assessment methods mentioned 56 

above. For example, the out-crossing rate-based methods rely on certain empirical assumptions 57 
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(Lutes and Sarkani 2004), while the moment-based methods may struggle to handle complex 58 

structures with small failure probabilities (Lyu and Chen 2021, 2022). Additionally, stochastic 59 

simulation methods may not be the most efficient way to estimate the dynamic reliability of high-60 

dimensional systems with strong nonlinear behaviors (Li and Wang 2023). In contrast, the 61 

probability density-based approaches exhibit notable benefits. For example, the recently developed 62 

Wiener path integral technique can readily determine the stochastic response of high-dimensional 63 

nonlinear dynamical systems (Petromichelakis and Kougioumtzoglou 2020), while it demonstrates 64 

high accuracy in reliability assessment related to low-probability (failure) events (Psaros and 65 

Kougioumtzoglou 2020). Another prominent method is the probability density evolution method 66 

(PDEM) (Li and Chen 2004, 2008), which stands as a theoretically rigorous and pragmatic method 67 

for structural stochastic response analysis. The PDEM distinguishes itself with its versatility and 68 

applicability, especially for general nonlinear systems. Furthermore, the PDEM has already 69 

showcased its efficacy in optimization processes (Chen et al. 2020; Yang et al. 2022a, b, c), 70 

establishing itself as a powerful tool for design optimization endeavors. 71 

Generally, DRBDO problems can be formulated as constrained optimization problems and 72 

solved using mathematical programming algorithms, where the gradient information of objective 73 

and constraint functions is required (Yang et al. 2022a). However, the gradients of the implicit 74 

reliability constraint functions are analytically intractable for general stochastic nonlinear systems; 75 

this is a situation often encountered in engineering practice. One may resort to numerical techniques 76 

to approximate the gradients, such as the finite difference method. Nevertheless, selecting a proper 77 

step size is cumbersome (Haftka and Adelman 1989). In addition, the reliability constraints may 78 

also exacerbate the non-linearity and non-convexity of the optimization problems, which makes the 79 

gradient-based algorithms sensitive to initial solutions, prone to get stuck in local optima, or even 80 

divergent (fail to converge) (Zhong et al. 2022). 81 

Given this, metaheuristic approaches, e.g., the particle swarm optimization (PSO) algorithm 82 

(Kennedy and Eberhart 1995), can tackle challenging optimization problems without the knowledge 83 

of gradients and achieve global solutions with a higher probability. Hence, there has been a growing 84 

interest in synthesizing metaheuristics into the design optimization of static systems with 85 

uncertainties. For example, Dimou and Koumousis (2009) employed binary PSO for the RBDO of 86 

statically determinate truss structures; Yang and Hsieh (2011) solved the discrete and non-smooth 87 

RBDO problems using an improved PSO algorithm, followed by the standard / multi-objective PSO 88 

algorithm that was enhanced by support vector machine (Yang and Hsieh 2013; Yang et al. 2016); 89 

Chen et al. (2013) performed the RBDO of composite structures based on PSO and the finite element 90 

method; Hamzehkolaei et al. (2016) proposed weighted simulation-assisted PSO to solve the RBDO 91 
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problems; Liao and Biton (2019) utilized PSO to optimize the structure whose reliability was 92 

estimated using an equivalent single variable Pearson’s distribution system; Later, they presented a 93 

RBDO method combining PSO and a generalized moment-based method for reliability assessments 94 

(Liao and Biton 2020). Recent comparative studies on metaheuristics for solving RBDO problems 95 

can be found in Meng et al. (2021). As for designing dynamical systems, a few researchers 96 

embedded the time-dependent reliability-based methods into metaheuristics and proposed some 97 

practical DRBDO frameworks, where the structural reliability was evaluated using the moment-98 

based method (Yu et al. 2019) and the stochastic simulation-based method (Zafar et al. 2020). 99 

Nevertheless, research relevant to DRBDO that incorporates metaheuristic algorithms and effective 100 

dynamic reliability assessment methods is severely inadequate.  101 

Although metaheuristic algorithms are powerful and versatile, they still have some drawbacks, 102 

e.g., premature convergence and low convergence rate. Recently, a new promising family of 103 

quantum-inspired metaheuristics that can alleviate these issues has emerged. Different from 104 

quantum algorithms that should be executed on quantum computers, these metaheuristics can run 105 

on classical computers while taking advantage of quantum mechanisms such as superposition and 106 

entanglement. Representative works include the quantum particle swarm optimization (QPSO) 107 

algorithm based on the stochastic nature of quantum physics (Sun et al. 2004a), the quantum genetic 108 

algorithm based on quantum state superposition (Han and Kim 2000), the quantum annealing 109 

algorithm based on quantum tunnelling effect (Kadowaki and Nishimori 1998), etc. Among them, 110 

the QPSO algorithm has gained great popularity among researchers spanning diverse disciplines. 111 

Its better performance compared to the classical PSO algorithm lies in its fine search ability, reduced 112 

requirements for parameter tuning, and decreased likelihood of premature convergence (Sun et al. 113 

2012). Until now, the QPSO algorithm and its improvements have been widely applied to problems 114 

on deterministic engineering design (Coelho 2010; Agrawal et al. 2021; Chen et al. 2022), image 115 

segmentation (Li et al. 2015), text document clustering (Song et al. 2015), environmental/economic 116 

dispatch (Yao et al. 2012; Liu et al. 2016; Zhao et al. 2020), cancer classification (Xi et al. 2016), 117 

trajectory planning (Xue et al. 2017), and structural damage recognition (Zhang et al. 2020). The 118 

features of the QPSO are beneficial for tackling the challenges associated with DRBDO problems, 119 

which are time-consuming to solve and often involve the presence of numerous local optima. 120 

In the present paper, a new DRBDO scheme is proposed. The scheme incorporates the QPSO 121 

for solving the optimization problem and the PDEM for evaluating structural dynamic reliability 122 

required in the optimization iterations. The design variables can be either deterministic design 123 

parameters or distribution parameters of random variables. This study aims to investigate the 124 

effectiveness of the proposed scheme for designing linear and nonlinear stochastic structures under 125 
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dynamic reliability constraints, as well as to assess the computational efficiency and feasibility of 126 

the proposed scheme under high-dimensional design variables and multiple constraint conditions. 127 

The rest of this paper is organized as follows: Section 2 describes the general formulation of the 128 

DRBDO problem to be solved. Section 3 briefly introduces the fundamentals and solution 129 

procedures for assessing structural dynamic reliability based on the PDEM. The QPSO algorithm 130 

and the proposed DRBDO scheme are presented in Section 4. In Section 5, several numerical 131 

examples are presented. The paper closes with some concluding remarks. 132 

2 Formulation of the DRBDO problem 133 

The optimization problems pertinent to this study can be formulated in the following form: 134 
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where T

1 2( , , , )
xnx x x=x is the 

xn -dimensional vector of design variables with the i -th 136 

component 
ix  belonging to the interval [ , ]i ix x ; ( )f x  is the objective function; ( ) 0jh   x ,137 

h1, ,j n=  are the reliability constraints; ( ) 0kg   x , g1, ,k n=  are the standard constraints; 138 

xn , 
hn  and gn  are the numbers of the design variables, the reliability constraints, and the 139 

standard constraints, respectively.  140 

For the DRBDO problems, the objective function and the standard constraints are generally 141 

related to design requirements (e.g., structural weight, geometric conditions, and construction cost). 142 

They are assumed to be explicit and differentiable in terms of the design vector x . The reliability 143 

constraints are defined in terms of reliability measures. A typical reliability measure for engineering 144 

structures subjected to dynamic actions is the first-passage probability. With this reliability measure, 145 

the reliability constraint functions in Equation (1) can be rewritten as 146 

 
t

h

h 0, (( ) ( ) )1, ,
j jj F Fh P P j n= − =x x , (2) 147 

where ( )
jFP x  denotes the first-passage probability evaluated at the design x  for the j -th 148 

failure mode jF , and 
th

jFP  is the corresponding threshold of the failure probability. The first-149 

passage probability ( )
jFP x  of a structure during the time interval (0, ]T  is given by  150 

  ( ) Pr ( , ; ) , (0, ]
j jF j FP H t t T=   x Θ x , (3) 151 

where ( , ; )jH tΘ x  is the structural response of interest evaluated at the design x ;152 

T

1 2( , , , )n
  =Θ denotes the n

-dimensional random vector; 
jF  is the failure domain of 153 

the failure event jF ; and Pr{}  is the probability operator. In particular, when a symmetrically 154 

double-sided boundary is considered, the first-passage probability can be written as  155 
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  th( ) Pr | ( , ; ) | , (0, ]
jF j jP H t H t T=   x Θ x , (4) 156 

where th 0jH   is the acceptable response threshold. It is noted that the design variables x  can 157 

be either deterministic design parameters or probability distribution parameters, such as the mean 158 

values of the random variables Θ . 159 

3 Reliability analysis with the PDEM 160 

To solve the DRBDO problem outlined in Section 2, the first-passage probability of the 161 

structure needs to be estimated. However, this is arduous because extensive structural analyses and 162 

a demanding high-dimensional integration are required. In this regard, the PDEM is employed due 163 

to its high efficiency and generality. For clarity, the fundamentals of the PDEM-based dynamic 164 

reliability assessment are elaborated in this section. 165 

3.1 Fundamentals of the PDEM 166 

Without loss of generality, the equation of motion of an 
dn  -degree-of-freedom stochastic 167 

dynamical system subjected to stochastic excitations reads 168 

 ( ; ) ( ) ( ; ) ( ) ( , ; ) ( ; )t t t+ + =M Θ x Y C Θ x Y F Θ Y x Γξ Θ , (5) 169 

where Y , Y , and Y  are the 
dn -dimensional displacement, velocity and acceleration vectors, 170 

respectively; M  and C  are the 
d dn n  mass and damping matrices, respectively; F  denotes 171 

the 
dn -dimensional linear or nonlinear restoring force vector; Γ  represents the 

dn r  loading 172 

influence matrix; ξ  is the 1r   vector of stochastic excitations; T

1 2( , , , )
xnx x x=x  is the 173 

design vector; and T

1 2( , , , )n
  =Θ  is the random vector containing the stochastic 174 

parameters involved in structural properties and external excitations. The random vector Θ  is 175 

described by a known joint probability density function (PDF) ( ; )p
Θ
θ x , and θ  denotes a 176 

realization of Θ .  177 

For a well-posed dynamics problem, the solution to Equation (5) exists uniquely and is a 178 

function of the design vector x  and the random vector Θ . With the solution, a set of physical 179 

quantities of interest, such as stresses and displacements, can be obtained. For simplicity, denote 180 

them by T

1 2( , , , )
znZ Z Z=Z . Note that the augmented system ( , )Z Θ  is probability-preserved, 181 

since all randomness has been embedded in the random vector Θ . According to the principle of 182 

preservation of probability (Li and Chen 2008; Chen and Li 2009), the joint PDF of ( , )Z Θ  183 

satisfies the following generalized density evolution equation (GDEE):  184 

 
1

0
( ) ( )

( )
, , ; , , ;

, ;
zn

i

i i

p t p t
t

t z
Z

=

 
+ =

 
ΖΘ ΖΘz θ x z θ x

θ x , (6) 185 



   7 

where ), ;( ,p t
ΖΘ

z θ x  is the instantaneous joint PDF of Z  and Θ  at time t  and the design x , 186 

and ), ;(iZ tθ x  is the velocity response of 
iZ  in the case =Θ θ . The initial condition of 187 

Equation (6) is given by   188 

 
0 0( , )| ( ) ( ), ; ;tp t p= = −

ZΘ Θ
θ x z θz xz , (7) 189 

where 
0z  denotes the deterministic initial value of Z , and ( )   is Dirac’s delta function.  190 

If only one stochastic response Z  of the dynamical system is of interest, the GDEE is reduced 191 

to  192 

 
( ) ( )

( )
, , ; , , ;

, ; 0Z Zp z t p z t
tZ

t z

 
+ =

 

Θ Θ
θ x θ x

θ x  (8) 193 

with the initial condition  194 

  
0 0( , )| ( ) ( ), ; ;tZp t pz z z= = −

Θ Θ
θ x θ x , (9) 195 

where 
0z  is the deterministic initial value of Z . By solving the initial-value problem (Equation 196 

(8)) to obtain the joint PDF , );( ,Zp z t
Θ

θ x  and then integrating the PDF over the probability space 197 


Θ

, one can obtain the instantaneous PDF of the structural response Z , namely 198 

 ;( ) (, )d;, ,Z Zp z t p tz


= 
Θ

Θ
x θ x θ . (10) 199 

Since the GDEE (Equation (8)) is only analytically tractable for a few simple cases (Jiang and 200 

Li 2016), its approximate solutions are desirable to be obtained by numerical methods for most 201 

dynamical systems, for which the closed-form solutions of the velocity response Z  are not 202 

available. Mostly, the finite difference method (FDM) (Chen et al. 2020) is adopted for solving the 203 

GDEE, while other methods are also acceptable. For the sake of conciseness, readers are referred to 204 

the Appendix for further information about the solution procedures of the GDEE.  205 

3.2 Failure probability assessment of structures 206 

On the basis of the PDEM, the first-passage probability of a structure can be estimated by either 207 

the absorbing boundary condition approach (Li and Chen 2005) or the extreme value distribution 208 

approach (Chen and Li 2007). Practically, the absorbing boundary condition approach is more 209 

applicable to time-dependent reliability problems, whereas the extreme value distribution approach 210 

is preferable to systems with multi-failure modes. In light of this, the extreme value distribution 211 

approach is employed herein. According to the extreme value distribution approach, for a system 212 

with multiple failure modes, the first-passage probability can be evaluated by integrating the PDF 213 

of the equivalent extreme-value associated with failure events of the structure (Chen and Li 2007; 214 

Li et al. 2007a). Based on the PDEM, this PDF can be conveniently obtained by constructing a 215 

virtual stochastic process related to the equivalent extreme-value and then solving the GDEE 216 

corresponding to the virtual stochastic process.  217 
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For a dynamical system involving Θ  as the basic random vector at the design x , suppose 218 

that the first-passage probability is defined in terms of structural responses, which are a series of 219 

stochastic processes denoted as T

1 2( , ; ) ( , , , )
znt Z Z Z=Z Θ x . Specifically, the structure is assumed 220 

to be failed if any component ( , ; ), 1, ,i zZ t i n=Θ x  of ( , ; )tZ Θ x  exceeds the corresponding 221 

threshold 
th , 1, ,i zZ i n=  during the time interval (0, ]iT . Thus, as defined by Equation (4), the 222 

first-passage probability reads (e.g., a double boundary condition) 223 

  thPr , ]| ) (0, , 1, ,| ,( ;F i zi iP TZ t tZ i n=     =Θ x . (11) 224 

Denote the time-dependent limit state functions as  225 

 
th( , ; ) = | ( , ; )| , 1, .i i i zG t Z t Z i n=−Θ x Θ x . (12) 226 

Then, Equation (11) can be equivalently written as  227 
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Θ x . (13) 228 

Define the equivalent extreme value as  229 

 ( )
(0, ]

ext
1

( ; ) min min ( , ; )
z it

i
i n T

G G t


=Θ x Θ x , (14) 230 

then the failure probability in Equation (13) can be consequently computed by  231 

  ext ( ; ) 0PrFP G= Θ x . (15) 232 

To obtain the PDF of the equivalent extreme value 
ext ( ; )G Θ x  (Equation (14)) based on the 233 

PDEM, a virtual stochastic process associated with 
ext ( ; )G Θ x  should be first constructed as 234 

 
x ve t )(( ;, ; ) sin()GW   = Θ xΘ x , (16) 235 

which satisfies the conditions 236 

 
0( , ; )| 0W  = =Θ x , (17) 237 

 
c ext extv( , ; )| sin( )( ; ) ; )= (cW G G   = =x Θ ΘΘ x x , (18) 238 

where   is the “virtual time”, 
v 2.5 = , and 

c 1 = .  239 

Then, deduce the GDEE in terms of the joint PDF of ( , ( , ; ))W Θ Θ x  as demonstrated in 240 

Section 3.1, that is  241 

 
(, , ;

0
( ) )

( )
, , ;

, ;W Wp w p w
W

w

 




 
+ =

 

Θ Θ
θ x θ x

θ x  (19) 242 

with the initial condition  243 

 
0( )| ( ) ( ),, ; ;W tp w w p = =

Θ Θ
θ x θ x , (20) 244 

where ), ;( ,Wp w 
Θ

θ x  is the joint PDF of ( , ( , ; ))W Θ Θ x , and W  is the derivative with respect 245 

to  .  246 

Subsequently, the initial-value problem (Equation (19) and (20)) is solved with the numerical 247 

procedures presented in the Appendix to obtain the joint PDF ), ;( ,Wp w 
Θ

θ x , whose marginal 248 

distribution ),( ;Wp w  x  is exactly the PDF of the virtual stochastic process ( , ; )W Θ x , namely 249 

 , ; ,( ) = ( ; )d,W Wp w p w 
 Θ

Θ
x θ x θ . (21) 250 
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According to Equation (18), one can directly get the PDF of the equivalent extreme value 251 

ext ( ; )G Θ x  as  252 

 
ext ,( ) = ( ); ; |,

cG W w gp g p w   = =x x . (22) 253 

Finally, the first-passage probability (Equation (15)) can be easily evaluated through a one-254 

dimensional integration, i.e., 255 

 
ext0

;( )d( )F GP p g g
+

= x x . (23) 256 

4 Optimization strategy 257 

The QPSO algorithm is employed to solve the DRBDO problem in this study. In this section, 258 

the principles of both the QPSO and its classical version, PSO, are elaborated. Then the DRBDO 259 

scheme integrating the PDEM and the QPSO is proposed. 260 

4.1 The PSO algorithm 261 

The PSO algorithm is a population-based optimization algorithm and has been studied 262 

extensively (Freitas et al. 2020). The canonical PSO starts by randomly selecting a population of 263 

pN  particles, with the position of each particle representing a candidate solution. In the 
xn -264 

dimensional search space, the position and the velocity of each particle in the particle swarm are 265 

updated based on the best individual positions of particles and the optimal position of the swarm 266 

during the optimization process. Denote 
( , ) ( , ) ( , ) ( , ) T

1 2( , , , )
x

i i i i

nx x x=x  and 267 

( , ) ( , ) ( , ) ( , ) T

1 2( , , , )
x

i i i i

nv v v=v  as the position and the velocity of the i -th particle at the -th 268 

iteration, respectively. Then, the position and the velocity can be updated using the standard 269 

formulae given by (Shi and Eberhart 1998)   270 
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+

+

v v x

x

x x v

, (24) 271 

where 
1c  and 

2c  represent the cognitive learning rate and the social learning rate, respectively; 272 

  is the inertia weight decreasing with the generation; 1,r  and 2,r  are two independent 273 

random numbers uniformly distributed over the interval [0,1] ; 
( , )pbest i

 is the individual optimal 274 

position of the i -th particle; ( )gbest  denotes the global best position of the particle swarm; and 275 

 is the number of generation. Note that the parameters 
1c , 

2c  and   should be carefully 276 

selected to ensure the stability and the convergence of the PSO.  277 
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4.2 The QPSO algorithm 278 

The PSO determines the movement of a particle by its position and velocity (Equation (24)). 279 

In the view of classical mechanics, the movement follows a deterministic trajectory if the effects of 280 

the random numbers in the algorithm are ignored. Unlike the PSO, the QPSO (Sun et al. 2004a) 281 

describes the position of a particle with a wave function, which is inspired by quantum mechanics 282 

theories. In quantum mechanics, the state of a physical particle can be fully depicted in a 283 

probabilistic way by its wave function. Assuming ψ( , )x t  is the wave function of a particle in a 284 

one-dimensional space, then the probability that the particle appears at position x  at time t  can 285 

be obtained from the PDF 
2|ψ( , ) |x t (Griffith and Schroeter 2018).  286 

In the QPSO, the wave function ψ( , )x t  of a particle is obtained by solving the time-287 

independent Schrödinger equation related to a physical particle that moves in a Delta potential well 288 

( ) ( )V x x = − −  with the center  . Consequently, the wave function takes the form as follows: 289 

 
| |

1
ψ( ) L

x

x e
L


−

−

= , (25) 290 

where L  is the characteristic length of the Delta potential well and e  is the natural exponential 291 

base. The corresponding PDF of the particle’s position in the algorithm is then 292 

 ( )
2| |

2 1
=|ψ( ) |

x

Lq x x e
L

−
−

= . (26) 293 

By employing the Monte Carlo simulation method, one can update the position of the particle 294 

according to the following equation: 295 

 

( , )

( , 1) ( , ) ( , )ln(1 / )
2

i

ji i i

j j j

L
x u+ =  , (27) 296 

where 
( , 1)i

jx +
 represents the j -th component of the position of the i -th particle at the ( 1)+ -th 297 

iteration; 
( , )i

ju  is a random number distributed uniformly within the interval [0,1] ; 
( , )i

j  is the 298 

j -th component of the local attractor of the particle’s position and is defined by  299 

 

( , ) ( , ) ( , ) ( )

( , )

( , ) ( , )

pbest gbesti i i

j j j ji

j i i

j j

 


 

+
=

+
,  (28) 300 

where 
( , )i

j  and 
( , )i

j  are random numbers distributed uniformly within the interval [0,1] ; The 301 

characteristic length 
( , )i

jL  is given as  302 

 
( , ) ( , ) ( , )2 | |i i i

j j jL x =  − , (29) 303 

where   is the contraction-expansion coefficient controlling the convergence rates of particles.  304 

The control of the characteristic length L  is crucial to the convergence performance of the 305 

QPSO. In Equation (29), L  is determined by the distance between the particle’s current position 306 

and the local attractor of the particle’s position. Although updating L  in this way performs well 307 

in this study, it may result in unstable convergence for some particles when the population size of 308 

the swarm is small. To cope with this problem, Sun et al. (2004b) put forward a variant of the 309 
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original QPSO, where the vector of the local attractor in Equation (29) is replaced by the mean 310 

value of particles’ best individual positions. In this study, the update strategy based on Equations 311 

(27) ~ (29) is adopted. Other details of the QPSO algorithm can be found in Sun et al. (2012).  312 

4.3 Optimization scheme 313 

To solve the DRBDO problem in Equation (1), the reliability assessment method introduced 314 

in Section 3 should be integrated into the QPSO algorithm. Moreover, constraints in the 315 

optimization problem should be handled properly, as the QPSO only deals with unconstrained 316 

optimization problems. Herein, a penalty-based method is employed. The penalty-based method 317 

transfers a constrained optimization problem to an unconstrained one by penalizing infeasible 318 

designs during the optimization process (Nocedal and Wright 2006). Accordingly, the unconstrained 319 

optimization problem related to the problem in Equation (1) can be constructed as  320 

 min ( ) ( ) [1 ( )]pf f P=  + 
x

x x x , (30) 321 

where p  is the penalty coefficient given by 
It100 /p N =  ,  is the current iteration number, 322 

and 
ItN  is the maximum iteration number. The penalty function ( )P x  is defined by 323 

 
h g

1

( ) ( )

n n

i i

i

P  
=

+

= x x , (31) 324 

where ( )i x  represents the violation of the i -th constraint, and 
i  is the weight factor to adjust 325 

the penalty for the i -th constraint. 326 

For completeness, the procedures for solving DRBDO problems based on the QPSO and the 327 

PDEM are outlined as follows: 328 

Step 1. Initialization: Initialize the QPSO optimizer: the population size pN , the dimension 329 

of the position 
xn , the maximum iteration number 

ItN , the contraction-expansion coefficient 330 

 , particles’ positions 
( ,0)

p{ , 1, , }i i N=x , the individual optimal positions of the particles 331 

( ,0)

p{pbest , 1, , }i i N= , and the global optimal position of the particle swarm (0)gbest . 332 

Initialize the PDEM solver: the number of the representative points 
seln , the distribution 333 

parameters of the random variables, and the thresholds related to failure events. Set the iteration 334 

index 0= . 335 

Step 2. Reliability analysis: Perform the reliability analysis for each particle in 336 

( , )

p{ , 1, , }i i N=x  based on the PDEM (refer to Appendix). 337 

Step 3. Evaluation of particles’ fitness values: Calculate the fitness value (Equation (30)) of 338 

each particle using the penalty-based method.   339 

Step 4. Updating of the optimal solutions: Set the individual optimal positions of the particles 340 

and the global optimal position of the swarm as 
( ,0)

p{pbest , 1, , }i i N= and (0)gbest , 341 
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respectively, if 0= ; otherwise, update them according to the fitness values at current 342 

iteration. 343 

Step 5. Updating of the particles’ positions: Update the positions of the particles using 344 

Equation (27). 345 

Step 6. Repeating or Ending: Repeat Step 2 ~ Step 4 and set 1= +  until the maximum 346 

iteration number (adopted in this paper) or the error control criterion is reached.  347 

5 Numerical examples 348 

In this section, numerical examples involving four structural models are presented. The 349 

purposes of this work are: (1) to demonstrate the advantages of the PDEM for the reliability analysis 350 

and design optimization of stochastic structures; (2) to verify the effectiveness and efficiency of the 351 

proposed DRBDO scheme. For these goals, the proposed scheme is employed to optimize a linear 352 

truss structure and three nonlinear frame structures under dynamic reliability constraints. The 353 

computational consumption of structural reliability analyses based on the PDEM and Monte Carlo 354 

simulation (MCS) in the optimization process is compared. In addition, the PSO and the method of 355 

moving asymptotes (MMA), a gradient-based optimization algorithm, are also implemented for 356 

comparison.  357 

5.1 Example Ⅰ: A 10-bar linear truss structure 358 

In this example, we are interested in the size optimization of a typical 10-bar truss structure (Li 359 

et al. 2007b). The truss is simply supported on the left side and is subjected to point loads suddenly 360 

placed at the two free nodes with the constant amplitude of 444.8kN, as shown in Figure 1. 361 

Considering the uncertainties in structural parameters, the mass density   and the modulus of 362 

elasticity E  of the material are assumed to be normally-distributed random variables. The 363 

probabilistic characterization of the random variables is presented in Table 1. The damping ratios 364 

5% are adopted in the model. 365 

The objective of the design optimization is to minimize the structural weight, and the reliability 366 

constraint is to ensure that the first-passage probability of the truss shall not exceed the limit value, 367 

th 0.01FP = . The structure is assumed to be failed if the displacement of any free node of the truss 368 

exceeds a prescribed threshold. In this example, the threshold is taken as 
th 50.8mmu = . The design 369 

variables are the cross-sectional areas of the bars, namely 
T

1 10( , , )x x=x . Therefore, the 370 

optimization problem is formulated as  371 
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, (32) 372 

where 
il  is the length of the i -th bar, and   is the mass density, which is assumed to be the 373 

same for all the bars. The failure probability is defined as  374 

 
th(0, ] 1, ,8

( , , ; )
( ) Pr max max 1 0r

F
t T r

P
u E t

u



 =

    
= −     

     

x
x , (33) 375 

where 
ru  stands for the node displacement in the r -th degree of freedom. To obtain structural 376 

responses, the Newmark-   method is implemented with the parameters   = 0.25 and  = 0.5. 377 

The failure probability of the structure is estimated through the PDEM (See Appendix) with 300 378 

representative points. 379 

For solving the problem (32), the penalty function mentioned in Equation (30) is defined as 380 

 

th

th
th

th

0,

( ) ( )
,

F F

F F
F F

F

P P

P P P
P P

P

 


= −




x x .  (34) 381 

Then the unconstrained optimization problem given by Equation (30) is solved by both the QPSO 382 

and the PSO, denoted as Method Ⅰ (PDEM-QPSO-based method) and Method Ⅱ (PDEM-PSO-based 383 

method), respectively. For comparison, we set three sets of parameters for both methods, including 384 

the population size pN  and the maximum number of generations 
ItN :  385 

Setting Ⅰ: p 10N = , 
It 500N = ; 386 

Setting Ⅱ: p 20N = , 
It 300N = ; 387 

Setting Ⅲ: p 30N = , 
It 200N = . 388 

The other parameters are set as follows: for the PSO, 
1 2 0.8c c= = , and 

It0.9 0.5 / N = − , 389 

where  is the current iteration number (Li et al. 2007b); for the QPSO,  = 1/0.96. The optimal 390 

designs of the linear truss structure are shown in Table 2. The objective function values and the 391 

failure probabilities corresponding to the optimal designs are summarized in Table 3, where the 392 

means and the standard deviations are related to the individual optimal objective values of all the 393 

particles in the swarm. 394 

As seen from Table 3, the differences are relatively small in the final objective function values 395 

obtained by Method Ⅰ (PDEM-QPSO-based method) with different settings, compared with those 396 

obtained by Method Ⅱ (PDEM-PSO-based method). For Method Ⅰ, even when the population size 397 

pN  is small, the final objective function values can be satisfactory by increasing the maximum 398 

number of generations 
ItN . However, the quality of the results for Method Ⅱ heavily depends on 399 

the population size. Specifically, Method Ⅱ with small population size (i.e., 10 and 20) tends to be 400 

stuck in local optimums. Although the results can be improved by increasing the population size, 401 
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they are still worse than those obtained by Method Ⅰ with the same setting. Therefore, it can be 402 

concluded that Method Ⅰ is more robust than Method Ⅱ with different population sizes.  403 

The data presented in Table 2 further demonstrate the robustness of Method Ⅰ, as the optimum 404 

designs are similar for Method Ⅰ but quite different for Method Ⅱ. It should be noted that numerical 405 

errors exist in estimating structural failure probability by the numerical procedures of the PDEM. 406 

These numerical errors, together with the non-linearity of the reliability constraint function and the 407 

random nature of the optimization algorithms, make it impractical to achieve exactly the same 408 

solutions for the methods with different settings. From engineering perspective, the differences 409 

between the final designs for Method Ⅰ (shown in Table 2) could be ignored.  410 

From Table 3, it can also be deduced that all particles converge to nearly the same solutions in 411 

Method Ⅰ, while some are prematurely converged in Method Ⅱ. It is because, in Method Ⅰ equipped 412 

with Setting Ⅰ or Setting Ⅱ, the mean value of the individual optimal objective function values is 413 

close to the final objective value, while the corresponding standard deviation approaches 0. It is 414 

noted although the standard deviation is 7.876 kg in Method Ⅰ equipped with Setting Ⅲ, it is 415 

negligibly small compared to the corresponding mean value. When the maximum number of 416 

generations 
ItN  is extended to 500, the standard deviation is close to 0 with the final objective 417 

function value of 5790.481 kg (not shown in Table 3). However, that is not the case in Method Ⅱ. 418 

The iteration history of the objective function value is shown in Figure 2. It is shown that 419 

Method Ⅰ has better convergence performance than Method Ⅱ (Figure 2 and Table 3). Figure 3 420 

presents the iteration history of the optimization process in terms of the failure probability. It is seen 421 

that the first-passage probabilities of the designs are close to 0.01 in the final stage of the 422 

optimization, which means the dynamic reliability constraint is active. Moreover, 300 representative 423 

points are selected in this example to estimate the failure probabilities of different designs via the 424 

PDEM. Therefore, only 300 deterministic structural response analyses are required for a round of 425 

reliability analysis.  426 

 427 

Figure 1. A 10-bar planar truss structure. 428 
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 429 

Table 1. Probabilistic characterization of the random variables (Example Ⅰ). 430 

Random 

variable 
Type of distribution Mean value 

Coefficient 

of 

variation 

  Normal 2.7126
5 3)k( g/10 mm−  0.10 

E  Normal 68,947.5728 (MPa)  0.15 

 431 

 432 

Table 2. Optimum designs (Example Ⅰ). 433 

Method Np NIt 
x1 

(mm2) 
x2 

(mm2) 

x3 

(mm2) 

x4 

(mm2) 

x5 

(mm2) 

x6 

(mm2) 

x7 

(mm2) 

x8 

(mm2) 

x9 

(mm2) 

x10 

(mm2) 

Ⅰ 10  500 41117  554  40196  26136  65  1336  31718  27783  27588  5712  

Ⅰ 20  300 44157  65  35017  20185  116  1375  17501  30811  34145  8052  

Ⅰ 30  200 41996  140  40811  20206  65  1321  20465  29248  31972  6272  

Ⅱ 10  500 45164  43259  45164  27262  65  13243  38629  29488  21455  17875  

Ⅱ 20  300 45164  7305  45164  19458  12509  102  23574  45164  35734  12831  

Ⅱ 30  200 45164  65  45164  20570  65  65  9626  28791  45164  264  

 434 

 435 

Table 3. Optimum objective function values and corresponding failure probabilities (Example Ⅰ). 436 

Method Np NIt Objective function Failure probability 

   Value (kg) Mean (kg) Standard deviation (kg)  

Ⅰ 10 500 6090.552 6090.899 0.376 0.01 

Ⅰ 20 300 5793.685 5794.932 0.584 0.01  

Ⅰ 30 200 5794.002 5798.297 7.876 0.01  

Ⅱ 10 500 8253.626 8253.626 0.000 0.01 

Ⅱ 20 300 7481.293 7537.675 134.638 0.01  

Ⅱ 30 200 5812.696 6523.821 864.672 0.01 

 437 
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 438 

Figure 2. Iteration history in terms of the objective function value (Example Ⅰ). 439 

 440 

 441 

Figure 3. Iteration history in terms of the failure probability (Example Ⅰ). 442 

 443 

5.2 Example Ⅱ: A 2-DOF hysteretic nonlinear frame structure 444 

In the second example, we consider the design optimization of a 2-storey nonlinear frame 445 

structure under earthquake excitations, as shown in Figure 4. The structure is simplified as a 2-446 

degree-of-freedom model with nonlinear restoring force. The floor height of the structure is 447 

3.6mh = . The lumped masses are 
5

1 1.8 kg10m =   and 
5

2 1.2 10 kgm =  . The Rayleigh damping 448 

is adopted with the modal damping ratios of 5%. The nonlinear restoring force is formulated with 449 

the extended Bouc-Wen model (Ma et al. 2004), whose parameters are presented in Table 4. A 450 

typical hysteretic curve of the first floor is shown in Figure 5, demonstrating the strong non-linearity 451 

of the structural response. 452 
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Uncertainties are involved in the initial lateral stiffnesses of the structure and ground 453 

acceleration. In particular, it is assumed that the lateral inter-story stiffnesses )1( ,2iK i =  of 454 

different floors are random variables of independent normal distributions. The mean values 455 

2( )1,
iK i =  of the random variables are taken as the design variables, namely )1( ,2ix i = . The 456 

ground acceleration is assumed to be a random combination of the El Centro acceleration records 457 

in the N-S and E-W directions, that is  458 

 1 ,NS 2 ,EW( ) ( ) ( )g g gu t u t u t = + , (35) 459 

where ,NS ( )gu t  and ,EW ( )gu t  are the El Centro acceleration records in the N-S and E-W directions, 460 

respectively; 
1  and 

2  are the random combination coefficients. The probability information 461 

of the random variables is listed in Table 5, where g is the gravitational acceleration, i.e., 462 

g=9.807m/s2. Totally, there are four random variables involved in the example.  463 

The design optimization aims at minimizing structural cost, which is assumed to be 464 

proportional to the lateral inter-story stiffnesses of the structure. Thus, the objective function is 465 

formulated as the sum of all the lateral inter-story stiffnesses (Chen et al. 2020). Considering 466 

structural performance requirements, the stiffness of the lower floor is required to be greater than 467 

that of the upper one. The structure is considered to fail when any inter-story drift exceeds a specified 468 

threshold, and the corresponding failure probability is defined as  469 

  1 2
(0, ] 1,2

, Pr max max , / ( / 250) 1( ) ( )F r r
t T r

P x x z t h
 =

 =      
Θ , (36) 470 

where ,( )rz tΘ  is the inter-story drift of the r -th floor; 
T

1 2 1 2, , ,( )K K  =Θ  is the random 471 

vector; 
rh  is the height of the r -th floor of the structure; and T is the duration of the ground 472 

acceleration. The design optimization problem is formulated as  473 
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     

, (37) 474 

where 
th 0.01FP =  is the threshold of the failure probability. 475 

To evaluate the failure probability of the structure by the PDEM, 300 representative points are 476 

selected. Note that the representative points should be updated at each iteration step. It is because 477 

the mean values of the random variables are the design variables. Consequently, the changes in the 478 

design variables affect the joint probability distribution of all the random variables. Figure 6 shows 479 

the failure probability curve obtained by the PDEM and MCS. The number of samples for MCS is 480 

10000. It is seen that the PDEM accords well with MCS, but the number of deterministic structural 481 

analyses involved in the PDEM is much less than that involved in MCS. When the PDEM and MCS 482 

are employed in the DRBDO, the numbers of the structural analyses for the PDEM and MCS are 483 
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pIt300 NN   and pIt10000 NN  , respectively. Therefore, the PDEM can significantly reduce 484 

the computational efforts for solving DRBDO problems.  485 

The optimization problem defined in Equation (37) is also solved by Method Ⅰ (PDEM-QPSO-486 

based method) and Method Ⅱ (PDEM-PSO-based method). The constraints in the problem are dealt 487 

with using the penalty-based method introduced in Section 4.3. In order to investigate the 488 

performance of the Method Ⅰ and Method Ⅱ, three sets of parameters are considered for solving the 489 

problem:  490 

Setting Ⅰ: p 10N = , 
It 300N = ; 491 

Setting Ⅱ: p 20N = , 
It 300N = ; 492 

Setting Ⅲ: p 30N = , 
It 300N = . 493 

We have three trial runs for every setting to take into account the randomness of the optimization 494 

algorithms. The other parameters are the same as those in Example Ⅰ.  495 

The iteration histories of the average objective function and the average design variables are 496 

shown in Figure 7 and Figure 8, respectively. It is observed that significant updates of the design 497 

variables occur mainly in the first 50 iterations of the optimization process. In this stage, the 498 

decreasing rates of the objective function values of both Method Ⅰ and Method Ⅱ are slightly 499 

improved as the population size pN  increases. Although the objective function value of Method Ⅰ 500 

declines more slowly than Method Ⅱ when the population size pN  equals 10, the former is smaller 501 

than the latter after about 130 iterations. It can be attributed to the better ability of the QPSO 502 

algorithm to explore the whole design space. On the other hand, since there are only two design 503 

variables, both methods converge quickly despite the non-linearity of the reliability constraint 504 

function complicating the optimization problem. In the later stages of the optimization, the changes 505 

in the design variables are essentially controlled by numerical errors in evaluating structural failure 506 

probability. However, the slight differences between optimization results are negligible from the 507 

engineering point of view. The average results of the optimization are presented in Table 6. It is 508 

seen that the optimal designs and the corresponding objective function values obtained by Method 509 

Ⅰ with different settings are almost identical. However, for Method Ⅱ, the result with the small 510 

population size p 10N =  is slightly worse than the others. In this sense, Method Ⅰ performs better 511 

than Method Ⅱ. Moreover, the failure probabilities of all the final designs are equal to the prescribed 512 

threshold of 0.01, which emphasizes the necessity of considering reliability constraints in the 513 

optimization process. 514 

To gain more insight into the effectiveness of the proposed scheme, the problem (37) is also 515 

solved by MMA (Svanberg 1987) for comparison. MMA is a gradient-based optimization algorithm 516 

extensively used for structural design optimization. In MMA, at every iteration, a convex 517 
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approximation of the original problem is constructed around the current design and then is solved 518 

to improve the current design. The readers are referred to Svanberg (2007) for more details of the 519 

algorithm. To construct the sub-problem, the gradients of the objective function and the constraint 520 

function with respect to the design variables are required. Since the analytical gradient of the 521 

reliability constraint function is unavailable, it is calculated using the finite difference method in 522 

this study. Three feasible designs are adopted as initial solutions: 
T

init,1 (1.0,1.0)=x
8 1)10 N( m−  ,523 

T

init,2 (1.2,1.0)=x
8 1)10 N( m−  and

T

init,3 (1.2,0.8)=x
8 1)10 N( m−  .  524 

Table 7 presents the final objective function values, the final design variables and the 525 

corresponding failure probabilities of the problem. It is seen that the results obtained by MMA are 526 

affected by the initial designs and the step sizes of the finite difference method. The final designs 527 

are all infeasible, except for the case where the initial design and the step size are 
T

init,2 (1.2,1.0)=x528 

8 1)10 N( m−   and 0.010, respectively. However, the only feasible design is not the solution to the 529 

problem. The poor performance of the gradient-based algorithm in this example may be attributed 530 

to the presence of the reliability constraint. On the one hand, the reliability constraint intensifies the 531 

non-linearity and non-convexity of the problem, as shown in Figure 9. On the other hand, the 532 

gradient of the reliability constraint obtained by the finite difference method is impossible to be 533 

exact, which increases the probability of the algorithm obtaining a local optimum or failing to 534 

converge. In this context, the proposed method is preferable for solving this type of DRBDO 535 

problems. 536 

 537 

 538 

Figure 4. A 2-storey frame structure. 539 

 540 

 541 

 542 
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 543 

 544 

Table 4. The parameters for Bouc-Wen model. 545 

bw  
bwA  

bw  
bw  

bwn  bwd
 

bwd  
bwp  

bwq  
bw  bw  

bwd  bw

s  

0.04 1 320 150 1 300 300 1000 0.25 0.05 0.5 5 0.99 

 546 

 547 

 548 

Table 5. Probabilistic characterization of the random variables (Example Ⅱ). 549 

Random variable 
Type of 

distribution 
Mean value 

Coefficient of 

variation 

1K  Normal 
11 Kx =  0.05 

2K  Normal 
22 Kx =  0.05 

1  Normal 0.10 g 0.10 

2  Normal 0.10 g 0.10 

 550 

 551 

 552 

 553 

Figure 5. A typical hysteretic curve. 554 

 555 
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 556 

Figure 6. Probability of failure estimates obtained by different methods.   557 

 558 

 559 

Figure 7. Iteration history in terms of the objective function value (Example Ⅱ). 560 

 561 

 562 

Figure 8. Iteration histories in terms of the design variable (Example Ⅱ). 563 

 564 
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Table 6. Average optimum results for different settings (Example Ⅱ). 565 

Method 
Population 

size 

Objective function value 
8 1)10 N( m−   

1x
8 1)10 N( m−   

2x
8 1)10 N( m−   

Failure 

probability 

Ⅰ 10 1.280 0.867 0.413 0.01 

Ⅰ 20 1.279 0.867 0.412 0.01 

Ⅰ 30 1.279 0.866 0.413 0.01 

Ⅱ 10 1.283 0.872 0.411 0.01 

Ⅱ 20 1.280 0.867 0.414 0.01 

Ⅱ 30 1.280 0.867 0.413 0.01 

 566 

Figure 9. Contour of the failure probability (Example Ⅱ). 567 

Table 7. Optimization results obtained by MMA (Example Ⅱ). 568 

initx  
8 1)10 N( m−   

Step size 

of the 

finite 

difference  

Objective 

function value 
8 1)10 N( m−   

1x  
8 1)10 N( m−   

2x  
8 1)10 N( m−   

Failure 

probability 

T(1.0,1.0)  0.001 1.109 0.765 0.344 0.162 

T(1.2,1.0)  0.001 1.067 0.726 0.341 0.319 

T(1.2,0.8)  0.001 1.046 0.737 0.309 0.340 

T(1.0,1.0)  0.010 1.246 0.848 0.398 0.026 

T(1.2,1.0)  0.010 2.063 1.200 0.863 0.000 

T(1.2,0.8)  0.010 1.368 0.861 0.507 0.029 

 569 
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5.3 Example Ⅲ: A 10-DOF hysteretic nonlinear frame structure 570 

In the third case, the design optimization of a 10-storey nonlinear frame structure is considered. 571 

The model of the frame structure is shown in Figure 10. All the floor heights of the structure are 572 

3.6mh = , except for the ground floor height being 4.0 m. The lumped masses from bottom to top 573 

are 3.4, 3.4, 3.2, 3.2, 3.2, 2.8, 2.8, 2.8, 2.6 and 2.6 
5( 10 kg) , respectively. The modal damping 574 

ratios are 5%. The extended Bouc-Wen model with the parameters presented in Table 4 is also 575 

adopted to describe the nonlinear behavior of the structure. 576 

The structure is subjected to the earthquake excitation defined as Equation (35), where 
1  577 

and 
2  are the random combination coefficients following normal distributions. The lateral inter-578 

story stiffnesses of different floors )1, , 0( 1iK i =  are assumed to be normally distributed random 579 

variables, whose mean values )1,( ,10
iK i =  are taken as the design variables, namely 580 

)1, , 0( 1ix i = . The probabilistic description of all the random variables in this example is listed in 581 

Table 8. 582 

The objective of this design problem is to minimize the total lateral inter-story stiffness of the 583 

structure. The performance requirements and the reliability constraint of the structure are identical 584 

to those in Example Ⅱ. Therefore, the optimization problem is formulated as 585 
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where the threshold of the failure probability 
th 

FP  is set as 0.01, and the failure probability of the 587 

structure is  588 

 
(  0, 1, ,10

(( ) Pr max max , ; / () / 250) 1rF r
t T r

P z t h
 =

 =      
x xΘ , (39) 589 

where ,( )rz tΘ  is the inter-story drift of the r -th floor; 
T

1 10 1 2 ), , ,( ,K K  =Θ is the vector of 590 

random variables. 591 

The optimization problem in Equation (38) is solved by both Method Ⅰ (PDEM-QPSO-based 592 

method) and Method Ⅱ (PDEM-PSO-based method). All parameters and settings are the same as in 593 

those Example Ⅱ, except those mentioned later. The number of the representative points for the 594 

PDEM is set as 700.  595 

The final designs obtained by different methods with different settings are shown in Table 9. 596 

Figure 11 presents the iteration history of the objective function value. It is seen that in all the 597 

settings, Method Ⅰ achieves nearly the same solutions, while Method Ⅱ always obtains premature 598 

designs despite having a faster convergence rate. Note that increasing the population size cannot 599 

monotonically improve the performance of Method Ⅱ. In particular, Method Ⅱ with the large 600 
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population size ( pN =20) finally yields a design inferior to that with the small population size ( pN601 

=10). This indicates the stability of Method Ⅰ in a sense. Together with the results of Example Ⅱ, it 602 

can also be deduced that the superiority of Method Ⅰ will be more evident as the number of design 603 

variables increases.  604 

To take into account the randomness of the optimization algorithms, both Method Ⅰ and Method 605 

Ⅱ equipped with Setting Ⅱ are run twice. The iteration history of the average objective function is 606 

shown in Figure 12, and the corresponding results are presented in Table 10. It is shown that Method 607 

Ⅱ is premature in the early stage of the optimization, while Method Ⅰ progresses well until finding 608 

the solution. Note that although the strong non-linearity of the structure and the increase in the 609 

number of the design variables complicate the optimization problem, it can be well solved using 610 

Method Ⅰ (with different settings). Thus, the results of this example again substantiate the 611 

effectiveness of the proposed scheme. 612 

The problem (38) is also solved by MMA. The optimization algorithm is initialized with three 613 

initial solutions, namely init,1 =x T(8,8,8,8,8,8,8,8,8,8) 8 1)10 N( m−  , init,2 =x614 

T(10,10,10,10,10,10,10,10,10,10) 8 1)10 N( m−   and init,3 =x T(15,15,15,15,15,15,15,15,15,15)615 

8 1)10 N( m−  , with a consistent step size of 0.05 for the finite difference. The optimization results 616 

presented in Table 11 show that MMA fails to yield feasible solutions for the three cases, revealing 617 

the limitations of the gradient-based optimization algorithm for this type of problems. In fact, as the 618 

design space for the problem expands exponentially with an increasing number of design variables, 619 

the number of local optima can increase significantly. Moreover, the numerical solution of the 620 

structural response and dynamic reliability may induce numerical non-convexity and therefore result 621 

in the non-smooth characteristics of the feasible domain boundary (Taflanidis and Beck, 2008). 622 

These factors can collectively contribute to the suboptimal performance of MMA. To achieve a 623 

more profound comprehension of this issue, the projection of the failure probability surface and its 624 

contour in dimensions 
1x  and 

2x  is demonstrated in Figure 13, with the other dimensions fixed 625 

at 
3 4 10( , , , ) =x x x

8 19.,  8.,  7.5, ) 6.5,  5.5,(  5,  5,  5 10 ( N) m−  . It is evident that the contour 626 

exhibits a high degree of non-linearity and non-convexity. Although the non-convexity of the failure 627 

probability surface is visually confirmed in two dimensions, it can be easily deduced based on the 628 

definition of convexity that the original high-dimensional surface of the failure probability is also 629 

non-convex. Therefore, solving the optimization problem may be a formidable challenge for the 630 

gradient-based algorithm. Moreover, the irregularity of the failure probability contour induced by 631 

the numerical calculation can further exacerbate the challenge. In comparison, the proposed scheme 632 

(Method Ⅰ) demonstrates superior performance, which can be attributed to the global convergence 633 

of the QPSO. Sun et al. (2019) have proven the QPSO algorithm asymptotically converges to the 634 
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global optimum with probability one based on the theory of the absorbing discrete Markov model. 635 

Theoretically, the QPSO is more likely to escape local optima and converge towards the global 636 

optimum as the optimization progresses. This feature endows the proposed scheme with a stable 637 

optimization ability, even in the presence of non-convexity in the optimization problem. 638 

 639 

Figure 10. A 10-storey frame structure. 640 

Table 8. Probabilistic characterization of the random variables (Example Ⅲ). 641 

Random variable Type of distribution Mean value 
Coefficient of 

variation 

( 1, ,10)iK i =  Normal 
ii Kx =  0.10 

( 1,2)i i =  Normal 0.10 g 0.15 

 642 

Table 9. Optimum designs and corresponding objective function values (Example Ⅲ)*.  643 

Method Np 

Objective 

function 

value 

1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  

Ⅰ 10 69.340  9.638  9.362  8.669  7.885  7.256  6.189  5.243  5.008  5.010  5.006  

Ⅰ 20 68.943  9.553  9.157  8.508  7.788  7.441  6.164  5.321  5.010  5.000  5.000  

Ⅰ 30 69.245  9.814  9.134  8.584  7.942  7.323  6.244  5.201  5.003  5.000  5.000  

Ⅱ 10 96.913  12.215  11.862  11.596  11.652  11.654  10.261  10.275  7.093  5.000  5.000  

Ⅱ 20 106.183  12.406  11.226  10.536  10.799  9.460  12.711  7.732  10.415  8.164  11.136  

Ⅱ 30 88.456  11.230  11.235  10.464  10.444  8.348  8.345  8.344  7.135  7.102  5.769  

*The units of the objective function value and the design variables  ( 1, ,10)ix i =  are 
8 110 N m−  . 



   26 

 644 

 645 

Figure 11. Iteration history in terms of the objective function value (Example Ⅲ). 646 

 647 

 648 

Figure 12. Iteration history in terms of the average objective function value 649 

 (Example Ⅲ, p 20N = ). 650 

 651 

Table 10. Average optimum designs and corresponding objective function values (Example Ⅲ) *. 652 

Method 
Objective  

function value 
1x  

2x  
3x  

4x  
5x  

6x  
7x  

8x  
9x  

10x  

Ⅰ 69.325 9.802 9.476 8.542 7.813 7.257 6.119 5.300 5.014 5.000 5.000 

Ⅱ 108.127 12.119 11.528 10.570 12.365 9.732 10.233 7.076 10.189 10.265 11.602 

*The units of the objective function value and the design variables  ( 1, ,10)ix i =  are 
8 110 N m−  . 

 653 

 654 
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Table 11. Optimization results obtained by MMA (Example Ⅲ). 655 

 

Initial solution 

Objective 

function 

value 

( 8 110 N m−  ) 

initx  

( 8 110 N m−  ) 

Failure 

probability 

init,1x  56.281 
T(7.006,6.570,6.306,5.891,5.508,5.000,5.000,5.000,5.000,5.000)  0.023 

init,2x  57.258 
T(7.210,6.734,6.568, 6.065,5.681,5.000,5.000,5.000,5.000,5.000)  0.022 

init,3x  56.722 
T(7.121,6.563,6.497,5.928,5.614,5.000,5.000,5.000,5.000,5.000)  0.023 

 656 

 657 

Figure 13. Contour of the failure probability (Example Ⅲ). 658 

 659 

5.4 Example Ⅳ: A 20-DOF hysteretic nonlinear frame structure 660 

This example involves the optimization of a 20-storey frame structure to further investigate the 661 

effectiveness and applicability of the proposed scheme under varying numbers of design variables 662 

and constraints. The structure is shown in Figure 14. The lumped masses of the structure from 663 

bottom to top are 2.6, 2.4, 2.2, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0 664 

and 1.8 
5( 10 kg) , respectively. Except for the following details, the remaining information is the 665 

same as that of Example Ⅲ. 666 

The lateral inter-story stiffnesses of the structure and the combination coefficients of the 667 

amplitude of the El Centro acceleration are taken as random variables, with the corresponding 668 

probability information provided in Table 12. To accommodate different numbers of design 669 

variables, the mean values of the lateral inter-story stiffnesses are linked to 2, 5, 10, and 20 design 670 

variables, respectively. The details of the linkage are provided in Table 13, where 
xn  denotes the 671 

number of design variables. The optimization objective and the reliability constraint in this example 672 
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are the identical to those in Example Ⅲ, while the standard constraints are established in two ways: 673 

either by taking all the performance requirements into account or by excluding them. Consequently, 674 

a total of eight optimization cases are set in this example. 675 

The optimization problems are solved by the proposed scheme with the population size676 

p 20N =  and the maximum number of generations 
It 300N = . The objective function values at the 677 

final designs and the corresponding failure probabilities for all the cases are presented in Table 14. 678 

The results demonstrate that increasing the number of design variables 
xn  can heighten the 679 

intricacy of the optimization. For the cases where the structural performance requirements should 680 

be met, the proposed scheme can achieve satisfactory results when 
xn  is small (ID 2 & ID 4). As 681 

xn  increases, it becomes crucial to appropriately handle the constraints; otherwise, the optimization 682 

algorithm may get stuck in the early stages of the optimization process (ID 8). In this example, two 683 

techniques are employed to deal with the performance requirements, namely reducing the penalty 684 

associated with the constraints (ID 6) and forcing all the updated design variables to satisfy the 685 

performance requirements during the optimization process (ID 9). For the cases where the structural 686 

performance requirements are not imposed, the proposed scheme tends to converge to the solutions 687 

more readily (ID 1, ID 3 & ID 5). However, the performance of the optimization algorithm may 688 

become somewhat unstable as 
xn  increases, which indicates that repetitive execution of the 689 

optimization can yield solutions that are either satisfactory (ID 7) or of poor quality. To mitigate the 690 

instability, it is advisable to improve the initial solutions, for example, by ensuring they are all 691 

feasible.  692 

On the other hand, it is observed that the objective function value tends to decrease as the 693 

number of design variables increases. This trend can be attributed to the linking of design variables, 694 

as it constrains the design space and consequently filters out some superior designs. Nevertheless, 695 

the extent of the decline in the objective function value is limited. Therefore, when performing 696 

structural optimization for engineering applications, it is meaningful to determine an appropriate 697 

number of design variables to strike a balance between the computational complexity and the quality 698 

of the design. Furthermore, an increase in the standard deviation of the optimal objective function 699 

value indicates a larger number of particles prematurely converging as the number of design 700 

variables grows. This highlights the potential risk of premature convergence when the number of 701 

design variables is increased. 702 

To measure the optimization efficiency, the variation of the objective function is defined by  703 
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   (40) 704 

where  is the number of current design iteration and 
0N  is a constant equal to 5. Figure 15 705 

presents the history of the variation of the objective function value errc . It is observed that the 706 



   29 

objective function rapidly achieves a stationary state when the number of design variables is small, 707 

regardless of the presence of performance requirements. In contrast, increasing the number of design 708 

variables can result in a prolonged duration for the objective function to attain the stability. 709 

Furthermore, the consideration of the performance constraints may further increase this duration. 710 

However, it should be noted that this observation is not applicable to the case where the performance 711 

constraints are considered with 20xn = , as seen in Figure 15(b). In this case, the variation of the 712 

objective function value remains constant due to the algorithm’s inability to update the design 713 

variables. This inability underscores the complexity of the optimization problems involving multiple 714 

constraints and design variables. 715 

 716 

 717 

Figure 14. A 20-storey frame structure. 718 

 719 

Table 12. Probabilistic characterization of the random variables (Example Ⅳ). 720 

Random variable Type of distribution Mean value 
Coefficient of 

variation 

( 1, ,20)iK i =  Normal 
ii Kx =  0.10 

( 1,2)i i =  Normal 0.10 g 0.15 

 721 

 722 

 723 

 724 

 725 
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Table 13. Scenarios for the linkage of the design variables (Example Ⅳ) *. 726 

xn  Design variables Description of 
ix  

2  ,10 9 ,10| ( 1,2)i i K i K ix x i −= = = =  
The mean value of the lateral stiffnesses of 

the (10 9)i − -th to (10 )i -th floors. 

5  ( ),4 3 ,4| 1, ,5i i K i K ix x i −= = = =  
The mean value of the lateral stiffnesses of 

the (4 3)i − -th to (4 )i -th floors. 

10  ( ),2 1 ,2| 1, ,10i i K i K ix x i −= = = =  
The mean value of the lateral stiffnesses of 

the (2 1)i − -th to (2 )i -th floors. 

20  ( ),| 1, ,20i i K ix x i= =  
The mean value of the lateral stiffness of the 
i -th floor. 

*The units of the design variables  ( 1, , )i xx i n=  are 8 110 N m−  . 727 

 728 

Table 14. Optimization results (Example Ⅳ) *. 729 

ID xn  
Performance 

requirements 

Objective function 

Value Mean Standard deviation  

1 
2 

None 122.36 122.58 0.16 

2 All 122.75 122.86 0.08 

3 
5 

None 89.88 90.11 0.67 

4 All 89.76 89.89 0.07 

5 
10 

None 85.06 188.66 316.09 

6 All 86.73 168.33 353.73 

7 

20 

None 85.81 368.98 880.46 

8 All 583.58 2194.47 1075.57 

9 All 82.85 88.94 12.91 

*The units of the objective function value, mean, and standard deviation are 8 110 N m−  . 730 

 731 

(a)                                     (b) 732 

Figure 15. History of the variation of the objective function: (a) without the performance 733 

constraints; (b) with the performance constraints (Example Ⅳ).  734 
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6 Conclusions 735 

A general scheme for solving a class of DRBDO problems has been proposed. The problem is 736 

formulated as a standard minimization problem characterized by dynamic reliability constraints. 737 

The quantum particle swarm algorithm is adopted to solve the problem. During the optimization 738 

process, structural dynamic reliability is estimated using the PDEM. To the authors’ knowledge, 739 

this is the first application of quantum-inspired algorithms to the field of design optimization for 740 

dynamical systems under uncertainties.  741 

Several examples concerning linear and nonlinear stochastic systems subjected to dynamic 742 

excitations are carried out to verify the effectiveness and applicability of the proposed scheme. Some 743 

concluding remarks include: 744 

(1) The PDEM is highly efficient and accurate in evaluating the dynamic reliability of 745 

complex nonlinear structures. When integrated into the DRBDO scheme, it can 746 

significantly promote the efficiency of the optimization.  747 

(2) The proposed DRBDO scheme can deal with optimization problems involving stochastic 748 

dynamical structures with strong nonlinear behaviors. Such problems typically exhibit 749 

high level of non-linearity and non-convexity, and may be devoid of analytical gradient 750 

information related to reliability constraints. Consequently, they can be intractable for 751 

gradient-based algorithms, which work well in general when the objective function is 752 

smooth and differentiable or when the gradient information can be efficiently calculated. 753 

In this context, the proposed scheme is both practical and advantageous, as demonstrated 754 

by the numerical examples. 755 

(3) The proposed scheme offers a swifter convergence rate and more robust convergence 756 

capacity, compared with the DRBDO scheme that employs the classical PSO algorithm. 757 

Evaluating structural dynamic reliability is commonly computationally intensive, which 758 

consequently complicates the trial-and-error process for solving DRBDO problems. In 759 

this regard, the characteristics of the proposed scheme are crucial in effectively obtaining 760 

solutions. 761 

(4) The proposed scheme proves to be effective and efficient when the numbers of the design 762 

variables and the constraints are relatively small. However, an increase in the number of 763 

the constraints can result in a convoluted and irregular feasible domain, which makes it 764 

challenging for the optimization algorithm to locate feasible solutions and may lead to 765 

premature convergence. Similarly, an increase in the number of design variables can 766 

significantly expand the design space, resulting in a more complex reliability contour 767 
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surface, which further complicates the optimization process. These factors can worsen 768 

the convergence performance of the proposed scheme. To overcome these challenges, it 769 

is essential to adopt appropriate techniques to handle the multiple constraints and improve 770 

the quality of the initial solutions. 771 

Future research efforts include further improving the performance of the proposed scheme and 772 

applying the proposed scheme to optimize more complicated stochastic structures. Solving the 773 

DRBDO problems involving discrete (or mixed) design variables is another research direction. The 774 

investigation in these directions is currently underway. 775 
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8 Appendix. Numerical procedures for the PDEM 780 

In general, the numerical procedures for solving the GDEE (Equation (8)-(9) and Equation(19)781 

-(20)) are as follows:  782 

Step A.1: Select a representative point set   sel

sel 1
( , )

n

n q q q
M P

=
= θ  in the probability space 783 

associated with random vector Θ  using the generalized F-discrepancy minimization-based point 784 

selection strategy (Chen et al. 2016), where 
seln  is the number of the representative points, qθ  is 785 

the q -th representative point with a representative region 
q


Θ

, and qP  is the assigned 786 

probability of qθ  given by  787 

 ( ) d
q

qP p


= 
Θ

Θ
θ θ . (41) 788 

Step A.2: Carry out deterministic structural analysis for each representative point 789 

sel, 1, ,q q n=θ  to capture the velocity responses ),( ;qZ tθ x  or ),( ;qW θ x , sel1, ,q n= . 790 

Step A.3: Substitute ),( ;qZ tθ x  or ),( ;qW θ x  into the GDEE (Equation (8) or 791 

Equation(19)) and solve the GDEE under the initial condition (Equation (9) or Equation (20)) with 792 

the finite difference method for each representative point sel, 1, ,q q n=θ , yielding the numerical 793 

solutions ), ;( ,Z qp z t
Θ

θ x  or ), ;( ,W qp w 
Θ

θ x , sel1, ,q n= . 794 

Step A.4: Take numerical integration in Equation (10) or Equation (21) to obtain the PDF of 795 

the structural response of interest, that is  796 
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sel sel

1 1

( ) ( , )d ,,, = ( )d ( , ); , ; , ; ;
q

Z Z Z

n

Z

n

q q

qz z z zp t p t p t p t
 

= =

=   
Θ Θ

Θ Θ Θ
x θ x θ θ x θ θ x , (42) 797 

or 798 

 
sel sel

1 1

( ) = ( )d ( )d ( ), ; , , ; , , ; , , ;
q

n n

W q

q q

W W Wp w p w p w p w   
 

= =

=   
Θ Θ

Θ Θ Θ
x θ x θ θ x θ θ x .  (43) 799 
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