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Abstract: 

Aims: Atrial fibrillation is associated with important mortality but the usual clinical risk factor 

based scores only modestly predict mortality. This study aimed to develop machine learning models 

for the prediction of death occurrence within the year following atrial fibrillation diagnosis and 

compare predictive ability against usual clinical risk scores. 

Methods and Results:  We used a nationwide cohort of 2,435,541 newly diagnosed atrial 

fibrillation patients seen in French hospitals from 2011 to 2019. Three machine learning models 

were trained to predict mortality within the first year using a training set (70% of the cohort). The 

best model was selected to be evaluate and compared with previously published scores on the 

validation set (30% of the cohort). Discrimination of the best model was evaluated using the C 

index. Within the first year following atrial fibrillation diagnosis, 342,005 patients (14.4%) died 

after a period of 83 (SD 98) days (median 37 [10-129]). The best machine learning model selected 

was a deep neural network with a C index of 0.785 (95% CI, 0.781-0.789) on the validation set. 

Compared to clinical risk scores, the selected model was superior to the CHA2DS2-VASc and HAS-

BLED risk scores and superior to dedicated scores such as Charlson Comorbidity Index and 

Hospital Frailty Risk Score to predict death within the year following atrial fibrillation diagnosis (C 

indexes: 0.597; 0.562; 0.643; 0.626 respectively. P<0.0001).  

Conclusion: Machine learning algorithms predict early death after atrial fibrillation diagnosis and 

may help clinicians to better risk stratify atrial fibrillation patients at high risk of mortality. 
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Translational Perspective: 

Atrial fibrillation is responsible for a substantial proportion of short-term mortality making futile, 

complex and expensive, cardiovascular procedures/devices or therapies that will not change overall 

prognosis due to competing risk between cardiovascular and non-cardiovascular death. Machine 

learning algorithms predict early mortality in atrial fibrillation patients with a better ability than 

previously developed traditional clinical risk scores.  A Machine learning approach may help 

clinicians to better stratify atrial fibrillation patients at high risk of mortality and may assist 

physicians in decision-making when managing atrial fibrillation patients in a holistic and integrated 

care manner.  

1. Introduction 

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia with an estimated 

prevalence in adults between 2% and 4%, and is associated with a high burden of morbidity and 

mortality 
1,2

. During the last decades, improvements in the care of patients with AF have been 

confirmed, including the development of stroke and bleeding risk calculators and the validation of 

the benefits of oral anticoagulation on stroke and survival 
3-6

.  

However, mortality is the most frequent major clinical event after the diagnosis of AF with a 

cumulative incidence of 19.5%, 28.2% and 48.8% at 1, 2 and 5 years respectively and an overall 1-

year all-cause mortality which has not improved from 2007 to 2015 despite a significant reduction 

in the rate of cardiovascular (CV) death 
7-9

. This trend has been observed globally, with age-

standardized AF mortality rates remaining stable between 1990 and 2017 but increasing in poorer 

countries 
10

. Although stroke is the most feared complication of AF, stroke accounted for only 7.0% 

of deaths in AF, with sudden cardiac death (22.25%), progressive heart failure (15.1%), and non-

CV death (35.8%) accounting for the majority of deaths in the RE-LY trial 
11

. Indeed, a high 

residual risk of stroke and CV complications remains despite the use of oral anticoagulation 
12,13

. 
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Recognizing AF patients particularly at risk of non-CV death is therefore crucial for the 

management of concomitant non-CV conditions and hence reducing mortality. Even though the 

existence of an association between contemporary clinical risk scores such as CHA2DS2-VASc 

score or HAS-BLED score and increased risk of all-cause death has been previously reported, these 

scores are not dedicated for the prediction of death and importantly, the predictive ability is modest 

14
. More integrative tools such as the Charlson Comorbidity Index (CCI, as a measure of 

multimorbidity) or Hospital Frailty Risk Score (HFRS, as a measure of frailty) have been 

specifically developed to predict mortality but without wide validation in AF populations 
15,16

. 

Machine learning (ML) is emerging as a new method for improving the prediction of adverse 

outcomes in the field of CV disease, including AF 
17

. Highly effective in large data sets with a 

multiplicity of variables, it has already been effective for prognostic prediction and decision making 

in several diseases 
18-20

. 

This study firstly aimed to train and evaluate machine learning models for the prediction of death 

occurrence within the year following AF diagnosis and second, to compare predictive ability again 

the usual clinical risk scores. 

2. Method 

  

2.1. Study population 

This longitudinal cohort study was based on the French hospitalization database, the PMSI 

(Programme de Médicalisation des Systèmes d’Information), covering hospital care across the 

entire population. In France, each hospital discharge from one of the 1,546 French healthcare 

facilities, whether public or private hospital, must be registered in the National Hospital Discharge 

Database. A standardized discharge summary is collected for every hospital stay and categorized 

into a single medical or surgical diagnosis-related group based on the International Classification of 
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Diseases, Tenth Revision (ICD-10).  A unique patient identification number make it possible to link 

multiple hospital stays across time corresponding to a single patient without revealing his or her 

identity. The reliability of PMSI data has already been assessed and used previously to study 

patients with stroke and AF 
21-23

.  

Data for all patients admitted with AF in France from January 2011 to December 2019 were 

collected from the PMSI. The study included adults (aged ≥18 years) with a diagnosis of atrial 

fibrillation (ICD-10 code I48 and its subsections) coded as the primary diagnosis (ie, the health 

problem that justified admission to hospital), the related diagnosis (ie, potential chronic disease or 

health state during hospital stay), or the significantly associated diagnosis (ie, comorbidity or 

associated complication) who were hospitalized between January 1, 2011, and December 31, 2019. 

Baseline characteristics corresponded to all the diagnoses collected at discharge of the first hospital 

stay were a diagnosis of AF was reported, as well as past clinical history in the year before the 

admission to establish history before atrial fibrillation.  

The medical information contained in the database is anonymous and protected by professional 

confidentiality. Consequently, ethics review was not required and patient consent was not sought. 

The study was conducted retrospectively, patients were not involved in its conduct, and there was 

no impact on their care. This type of study was approved by the institutional review board of the 

Pole Coeur Thorax Vaisseaux from the Trousseau University Hospital (Tours, France) on 

December 1, 2015, and registered as a clinical audit. Procedures for data collection and 

management were approved by the Conseil National de l’Informatique et des Libertés (CNIL), the 

independent national ethics committee protecting human rights in France, which ensures that all 

information is kept confidential and anonymous (authorization no. 1749007). 
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2.2. Follow-Up and Outcomes 

 

Each patient was followed until death or 31
st 

December 2019. All-cause mortality was defined as 

any death occurring during follow-up and cause of death (CV or non-CV) was identified based on 

the main diagnosis during hospitalisation resulting in death based on ICD-10 codes (CV death: I00–

I99 – Diseases of the heart and circulatory system; non-CV death: any other ICD-10 codes). The 

main outcome was the occurrence of all cause death within the year following the diagnosis of atrial 

fibrillation. 

 

2.3. Feature selection and model development  

From the imputed dataset, continuous variables were centralized to the mean and scaled to the 

standard deviation, whereas categorical variables were coded into binary numbers (0 and 1). Then, 

the whole dataset was randomly split into derivation (training set) and validation cohort (test set) 

(7:3). To increase the prediction accuracy and make the model practical, only most critical variables 

(features) in the derivation cohort were subsequently used for model building after feature selection 

by a random forest classifier (RFC).  

Best selected features then served as an input to train three well-accepted ML models, including 

logistic regression with L2 regularization (LR), RFC and deep neural network (DNN) 
17

. ML 

models were implemented in Python using open-source packages: Scikit-learn version 1.1.1. 

A random train-test split methodology and cross-validation were then applied, as previously 

published, and is described as follows 
24

: ML models were trained and optimized on the derivation 

cohort (training set) using a random search algorithm with 5-fold cross-validation: the training set 

was split into 5-fold validation sets. For each validation set, the corresponding training set was 
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given by the remaining 4 folds. Each candidate model was fitted and hyper-parameters tuned in 

each training set. The performance measure was then performed on the validation sets. Predictive 

ability of each ML models was assessed using C index and compared to each other. All models 

were trained, optimized and evaluated using the same 5-fold cross-validation and were therefore 

applied on the same whole training set. The model with the best performance was finally selected 

for analysis on the held-out validation cohort (test set) for final evaluation to evaluate the models' 

generalization performance and compared to clinical scores. 

 

 2.4. Model evaluation and comparison 

 

Area under the ROC curve (AUC) of the best ML model selected was calculated on the validation 

cohort and C index was compared to predictive ability of clinical scores previously described such 

as the CHA2DS2-VASc score (Supplemental table 1), the HAS-BLED score (Supplemental table 

2), the Charlson Comorbidity Index (CCI) (Supplemental table 3), and the Hospital Frailty Risk 

Score (HFRS) (Supplemental table 4) for each patient 
3,4,15,16

. Although CHA2DS2-VASc and 

HAS-BLED scores are used to evaluate the thromboembolic and bleeding risk in AF patients, they 

are also predictors of death in AF patients 
14

. The CCI is dedicated tool to evaluate the burden of 

multimorbidity and is associated with an increased risk of all-cause death. CCI uses a system of 

relative weights to evaluate the impact of a list of chronic conditions on mortality risk, based on the 

evaluation of 17 chronic conditions. The HFRS was developed to evaluate frailty in hospitalised 

patients. The score was built according to the ICD-10 codes related to 109 clinical conditions. 

HFRS was established as an accurate tool to evaluate frailty in comparison to established frailty 

scales and validated in nationwide French population 
25

.  

As previously described in the literature, the category of highest thromboembolic risk patients was 

defined as a CHA2DS2-VASc score≥2, the category of highest bleeding risk patients as a HAS-
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BLED≥3, the category of patients with the most multimorbidity as a CCI≥4 and the category of the 

frailest patients as a HFRS≥15. 

 

 2.5. Statistical analysis 

Qualitative variables were described using counts and percentages, and continuous quantitative 

variables were described as mean±SD or median [interquartile range]. Comparisons were made 

using parametric or nonparametric tests, as appropriate: The Wilcoxon signed rank and Kruskal 

Wallis tests were used for comparing values between 2 independent groups, and the Chi
2 test was 

used to compare categorical data. Receiver operating characteristic curves were constructed, and 

Harrell C indexes (i.e., AUC) were calculated as a measure of model performance and compared 

using the DeLong test 
26

. Net reclassification improvement was calculated according to the methods 

described by Pencina et al. to assess the reclassification performance of the scores 
27

. Clinical 

usefulness and net benefit of the best ML model in comparison to the best clinical score were 

estimated using decision curve analysis 
28

.  Multivariate logistic regression was used, and results 

were expressed as odds ratio (OR) and 95% confidence intervals (95%CI). Analyses were 

performed using Python version 3.09 and STATA version 16.0 (Stata Corp, College Station, TX). 

All statistical significance levels were two-sided, and the significant differences were expressed as 

p < 0.05. 

 

3. Results 

 

Among 2,435,541 patients diagnosed with AF from 2011 to 2019 and included for analysis, 

617,737 (25.4%) deaths were recorded during a mean follow-up of 2.0 ± 2.3 years (median 1.1 

[0.07-3.39]) in whom were 187,186 (7.7%) CV death and 430,551 (17.7%) non-CV death (Figure 

1). Among patient dead from CV cause, 80,913 (43.2%) died from heart failure and 43,429 (23.2%) 

died from stroke or systemic embolism. Overall, incidence rates (95% CI) for the study outcomes 
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were accordingly 12.69 %/year (12.66-12.72) for all-cause death, 3.84 %/year (3.83-3.86) for CV 

death and 8.84 %/year (8.82-3.87) for non-CV death.  

 

Early deaths, within the year following the first episode of AF, occurred in 342,005 patients after a 

mean time of 83 ± 98 days and represented 55.4% of all deaths and 14.04% of the whole 

population. These patients were older than patients still alive at one year with a mean age of 

81.29±10.28 years vs. 76.53±12.23 years respectively (P<0.0001) and had more comorbidities as 

highlighted by clinical scores (mean CHA2DS2-VASc score 3.96±1.53 vs. 3.38±1.62, HAS-BLED 

score 2.61±1.12 vs. 2.34±1.19, CCI 4.56±2.67 vs. 3.28±2.78 and HFRS 11.69±8.57 vs. 8.88±9.19, 

P<0.0001 for each) (Table 1). Patients still alive at one year had significantly more dyslipidemia 

(21.9% vs. 19.2%, P<0.0001), obesity (14.6% vs. 12.3%, P<0.0001), sleep apnea syndrome (5.3% 

vs.4.4%, P<0.0001) and gastroesophageal reflux (2.3% vs. 2.0%, P<0.0001).   

 

Among deaths recorded at one year, 107,715 were CV death (31.5%) and 234,290 non-CV death 

(68.5%). CV deaths occurred earlier than non-CV deaths (mean time 73 ± 95 days for CV death and 

88 ± 99 days for non-CV death). Patients who died from non-CV death were younger than patients 

who died from CV death (mean age 80.66±10.44 vs. 82.66±9.78 years, P<0.0001) (Table 2), and 

had less prevalent cardiovascular comorbidities and more prevalent extra cardiac comorbidities than 

patients who died from CV death. Hence the CHA2DS2-VASc and HAS-BLED scores were lower 

in patient who died from non-CV death than CV death (3.74±1.51 vs. 4.45±1.46, P<0.0001 and 

2.57±1.14 vs. 2.71±1.07, P<0.0001 respectively). Conversely, CCI and HFRS were higher in 

patients who died from non-CV death than CV death (4.75±2.75 vs. 4.14±2.45, P<0.0001 and 

12.32±8.72 vs. 10.34±8.05, P<0.0001 respectively). 
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Among 110 variables available, only the 18 most important were selected, as adding any other varia

ble did not improve prediction (Supplemental figure 1). Most critical features selected for analysis 

were age, presence of cancer metastasis, resuscitated cardiac arrest, cancer, congestive heart failure, 

decubitus ulcers, renal failure, pneumonia, lung disease, difficulty in walking, malnutrition, anemia, 

impaired mobility, liver disease, acute renal failure, renal disease, blood transfusion and urinary trac

t infection (Supplemental figure 2, Supplemental table 5).  

 

After hyperparameter tuning using the derivation cohort (training set), ML algorithms had good 

predictive performances based on C indexes: LR 0.780 (95% CI, 0.778- 0.781), RF 0.785 (95% CI, 

0.782 - 0.788), DNN 0.786 (95% CI, 0.783- 0.789). The DNN model showed the best predictive 

performances and was therefore selected as the best model for further evaluation (P=0.0001 vs LR, 

P=0.19 vs RF). The chosen hyperparameters are displayed in Supplemental table 6.  

Once evaluated on the held-out validation cohort (test set), DNN had a good C index: 0.785 (95% 

CI, 0.781 - 0.789). The model was well calibrated to the validation cohorts (Supplemental Figure 

3). The optimal cut-point was defined as the point closest to the point (0,1) on the ROC curve and 

was 0.16. Thus, we stratified AF patients into a low-risk group (<0.16) and high-risk group (≥0.16). 

At this decision threshold, sensitivity was 73.1%, specificity 69.1%, negative predicted value 94% 

and positive predicted value 28.1%. The incidence of all cause death at one year rises in a stepwise 

fashion from 13.8 per 1000 patients for the first quintile to 352.4 per 1000 for the fifth quintile 

(Figure 2). 

 

When compared to the previously described clinical scores, DNN showed significantly higher 

predictive ability: CHA2DS2-VASc score: 0.596 (95% CI, 0.592- 0.602), HAS-BLED score: 0.562 

(95% CI, 0.557 - 0.567), CCI: 0.643 (95% CI, 0.638 - 0.648) and HFRS: 0.626 (95% CI, 0.622 - 

0.631) (P<0.0001) (Figure 3, Panel A).  
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The DNN had a positive net reclassification improvement and integrated discriminatory 

improvement compared with the CHA2DS2-VASc score (79% (P<0.0001) and 13% (P<0.0001), 

respectively), HAS-BLED score (82% (P<0.0001) and 14% (P<0.0001), respectively), CCI ((79% 

(P<0.0001) and 12% (P<0.0001), respectively) and modified HFRS (80% (P<0.0001) and 13% 

(P<0.0001]) respectively). Using decision curve analysis, our DNN showed better clinical 

usefulness compared with the traditional scores (Figure 3, Panel B). 

 

Predictive abilities of our DNN model were broadly similar when applied to early non-CV death 

prediction (C index 0.786 (95%CI, 0.782 - 0.791), while slightly lower when applied to early CV 

death prediction (C index 0.724 (95%CI, 0.716 - 0.731) (Figure 4). In both cases, DNN model was 

significantly superior to all clinical scores described above (P<0.0001) even after stratification on 

age (Supplemental table 7). 

 

Univariable and multivariable logistic regression analyses for association between clinical risk 

scores and outcomes occurrence are reported in Table 3. After adjustment on baseline clinical 

characteristics, the DNN was independently associated with increased risk of all cause death (odd 

ratio (OR) 1.56 (95% CI, 1.54-1.58) for each decile, OR 4.00 (95% CI, 3.78-4.22) DNN≥0.16 vs. 

<0.16, P<0.0001), non-CV death (OR 1.57 (95% CI, 1.55-1.59) for each decile, OR 4.50 (95% CI, 

4.21-4.80) DNN≥0.16 vs. <0.16, P<0.0001) and CV death (OR 1.34 (95% CI, 1.31-1.37) for each 

decile, OR 2.26 (95% CI, 2.05-2.47) DNN≥0.16 vs. <0.16, P<0.0001). DNN was also 

independently associated with increased risk of all cause death when using Cox regression analysis 

and increased risk of non-CV and CV death when using Fine-Gray competing analysis 

(Supplemental table 8). 
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4. Discussion 

In a large nationwide French hospital data base of 2,435,541 AF patients, ML scoring was an 

effective method for the prediction of 1-year all-cause mortality as well as non-CV and CV death. 

When compared to contemporary clinical risk scores, this approach had a significantly better 

predictive ability to target patients with a higher risk of mortality. These findings suggest that ML 

could have a crucial clinical role in assessing prognostic risk in patients with AF and improve 

holistic management of AF patients to reduce mortality. 

4.1. Mortality rates across studies  

With an overall one-year mortality rate of 14.1% (342,005 patients), including 68.5% (234,290 

patients) of non-CV deaths, rates reported in our cohort are higher than results previously reported 

by Singh et al (8% at one year) with a similar ratio between CV and non-CV death 
9
. However, 

these cohort included data from hospital-based care but also physician services and patients were 

therefore younger and had less comorbidities explaining a lower mortality. Our results are more 

consistent with Piccini et al who reported a one-year mortality rate of 19.5% with slightly older and 

comorbid patients than in our cohort 
8
.  

4.2. Morbidity, frailty and mortality  

It has been reported that comorbid long-term health conditions (LTC) and especially 

multimorbidity, defined as the presence of one more LTC in addition to an index condition, are 

frequent in AF patients when compared to non-AF patients and is associated with mortality in AF 

patients 
29-33

.  This additional risk is added to AF itself which is already an independent risk factor 

for all-cause mortality 
30

. In the same way, the high mean CHA2DS2-VASc score in our cohort 

reflects CV comorbidities and high CCI reflects non-CV comorbidities. These scores were even 
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higher in AF patients who died at one year when compared to patients still alive. Both scores were 

independently associated to one-year mortality underlying the burden of multimorbidity.  

 

Frailty is another concept developed recently. While multimorbidity and frailty represent two 

different ways of looking at the complexity of older persons and share some aspects, frailty differs 

from multimorbidity by integrating the concept of functional loss 
34,35

. Moreover, multimorbidity is 

monodimensional and grounds its roots in the somewhat inadequate framework of “disease”, 

whereas frailty implies a more exhaustive and comprehensive assessment of the individual, 

facilitating the implementation of multidimensional and tailored interventions.  Indeed, AF patients 

are frequently frail with an estimated prevalence of 40% reported across the literature, and frailty is 

also strongly associated to mortality 
36

. In our cohort, patients had an intermediate risk profile, with 

a mean±SD HFRS of 9.3±9.2 which increased to 11.69±8.57 for patients who died at one year and 

HFRS was independently associated with death at one years. 

4.3. Variable selection  

Age plays a pivotal role in our algorithm and was the most important variable selected by Random 

Forest. More surprisingly, only one CV comorbidity (congestive heart failure) was included in our 

model. All other selected variables were non-CV underlying the burden of non-CV multimorbidity 

and frailty on survival. To some extent, this is consistent with previous observations. For example, 

Singh et al reported that heart failure contributed to 3.8% of all deaths and was the second CV cause 

of death after ischemic heart disease, being responsible for 16% of all deaths 
9
. Cancer and 

respiratory failure were the most common non-CV cause of death accounting for 30% and 10% 

respectively. Interestingly, ischemic heart disease was not retained by our model, and stroke deaths 

were infrequent (2.7%). Of note, the GARFIELD-AF and ROCKET-AF studies have previously 

shown that heart failure and sudden cardiac death are the major reasons for death of AF patients 

taking oral anticoagulant medication 
37,38

.    
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Other selected variables related to non-CV conditions such as cancer, renal disease and lung disease 

are strongly associated with mortality in AF patients 
30,33

. Once again, these conditions are found 

out with the common thromboembolic risk scores. 

 

Another strength of random forest feature selection is the identification of variable un- or poorly 

described such as difficulty in walking, blood transfusion or urinary tract infection. Difficulty in 

walking or impaired mobility are not intuitively risk factors of death, but when considered as 

surrogates of falls, this is consistent with the REGARDS study which have shown association 

between the risk of falls and mortality particularly in AF population 
39

. 

4.4. Risk stratification of mortality  

AF guidelines have mainly focused on identifying patients with different risks of stroke and major 

bleeding 
40-42

. Prior prognostic models for stroke and bleeding in AF showed only modest predictive 

performance when evaluated to predict the outcome of death 
14

. On the other hand, scores such as 

CCI and HFRS assessing mortality through multimorbidity and frailty have been developed from 

hospitalized patients but not especially on AF patient cohorts 
15,16

. Additionally, HFRS was not 

fitted on patients under 75 years. Hence, assessing mortality remain a challenge, especially in 

patients with AF. 

 

Few recent studies aimed to propose new dedicated scores developed with ML methods to predict 

the occurrence of all-cause death in AF patients 
43-46

. Reported predictive ability ranged from 0.77 

to 0.85 (c-index) which is comparable to our model. However, the GARFIELD-AF and BASIC-AF 

risk scores need to integrate biological and echocardiography variables unlike our only clinical 

factor based ML model 
43,44

. Additionally, Lasso-Cox model and ABC risk score use variables not 

routinely available such as GDF-15, monoamine oxidase, cholinesterase, blood urea nitrogen in the 

clinical setting that might decrease their practicality in everyday clinical practice 
45,46

. Moreover, 
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clinical variables used as input for these models were only cardiovascular items except cancer for 

Lasso-Cox model and dementia for GARFIELD-AF, and biomarker are non-specific, likely 

reflecting a sick patient or a sick heart 
47

.  

 

Yet we know that non-CV deaths represent the majority of mortality and that multimorbidity and 

frailty are strong predictors of mortality in AF patients, reflecting the clinical complexity of such 

patients 
48

. Thus, including non-CV conditions multimorbidity and frailty to our model could 

explain the good performance of our model, similar to the others, even without biological or 

echography parameters. Unsurprisingly, the management of concurrent comorbidities (not limited 

to cardiovascular ones) is a pillar of the integrated and holistic management of AF patients, and 

how such a management approach can improve prognosis in clinically complex patients, 

characterized – among others – by frailty and multimorbidity 
49,50

. Of note, our model was built 

using exhaustive real-life data at the country level, unlike other models derived from a single-center 

cohort or randomized control trial that might induce selection bias 
44-46

. This would confer a good 

reproducibility of our results when applied for external validation but need to be confirmed in other 

populations (e.g. North America, Asia).  

 

Potential Clinical practical implications and perspectives 

 

Healthcare systems increasingly adopt electronic health records (EHR) for the management of 

patients. As AF is frequently associated with multimorbidity or frailty which are strong predictors 

of mortality, this obviates the current need for separate stroke and bleeding risk scores to aid 

mortality calculations for each individual.  Indeed, the predictable aspect of survival outcomes in 

AF patients appear virtually all non-AF rhythm related and many are non-cardiac. More integrative 

and dedicated tools might allow the clinician to evaluate all these risks separately when deciding on 

whether to recommend management strategies.  Indeed, our DNN model has the potential to be 
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incorporated into online calculators, mobile applications, or routine electronic record systems and to 

automatically predict mortality (total, non-CV and CV) and would allow users to base treatment 

decisions on more precise measures of risk. Alerts can be implemented in case of a ‘high risk’ score 

to flag up those patients at high risk of early death.  

 

Populations and medical practices change very rapidly and models are quickly outdated. This model 

has also the possibility to be implemented in nationwide administrative datasets and trained in real 

time to provide up to date versions of the model in order to fit perfectly the data over time. 

Moreover, using ICD-10 codes internationally enable comparisons and validation to be carried out 

in different populations across the world.  Future attempts to modify the prognosis of AF patients in 

clinical trials may ultimately need to select out lower risk subsets using modeling approaches (eg. 

using machine learning), where the effects of unmodifiable relationships are much smaller and there 

is a better causal pathway between AF and AF-related adverse outcomes.  

 

5. Limitations 

Despite a large amount of data, ideal to feed and train ML algorithms, the nature of PMSI data base 

derived from ICD-10 codes and therefore composed almost exclusively by categorical features 

minimize algorithms performances because of a lack of granularity. Moreover, diagnoses during 

outpatient visits were not included in our analysis and were possibly. Echocardiographic, biological 

and imaging parameters were also lacking.   

 

6. Conclusion 

Machine learning algorithms predict mortality in AF patients with a better ability than previously 

developed traditional clinical risk scores.  A ML approach may help clinicians to better stratify AF 

patients at high risk of total, non-CV and CV mortality and may assist physicians in decision-

making when managing AF patients in a holistic and integrated care manner.  
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Figures 

 

Figure 1. Flow chart for the training and validation of models. 
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Figure 2. Kaplan-Meier curves of the prediction all cause death during follow-up.  
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Figure 3. Panel A: Receiver operating characteristic curves of occurrence of all cause death during 

the year following atrial fibrillation diagnosis.  

     Panel B: Decision curve analyses for the deep neural network algorithm and CHA2DS2-

VASc score, HAS-BLED score, Charlson Comorbidity Index and Hospital Frailty Risk Score.  

* DNN (Deep Neural Network) P<0.0001 vs. CHA2DS2VASc score, HAS-BLED score, CCI 

(Charlson Comorbidity Index) and HFRS (Hospital Frailty Risk Score). 
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Figure 4. Panel A1 and A2: Receiver operating characteristic curves and Decision curve analyses 

for non-cardiovascular death within the year following AF diagnosis. 

    Panel B1 and B2: Receiver operating characteristic curves and Decision curve analyses 

for cardiovascular death within the year following AF diagnosis. 

* DNN: Deep Neural Network, P<0.0001 vs. CHA2DS2VASc score, HAS-BLED score, CCI 

(Charlson Comorbidity Index) and HFRS (Hospital Frailty Risk Score). 
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Table 1. Baseline characteristics of the AF population according to death before or after one year. 

 

Total Alive after one 

year 

Dead within the 

first year 

P
a 

 

(n=2435541) (n=2093536) (n=342005)  

Clinical characteristics     

Age, mean±SD 77.2±12.1 76.53±12.23 81.29±10.28 <0.0001 

CHA2DS2VASc score, mean±SD 3.5±1.6 3.38±1.62 3.96±1.53 <0.0001 

HASBLED score, mean±SD 2.4±1.2 2.34±1.19 2.61±1.12 <0.0001 

Charlson comorbidity index, mean±SD 3.5±2.8 3.28±2.78 4.56±2.67 <0.0001 

Frailty index, mean±SD 9.3±9.2 8.88±9.19 11.69±8.57 <0.0001 

Gender (male), n (%) 1286313 (52.8) 1103154(52.6) 183,159(53.6) <0.0001 

Hypertension, n (%) 1459065 (59.9) 1245027 (59.5) 214038 (62.6) <0.0001 

Diabetes mellitus, n (%) 509617 (20.9) 426980 (20.4) 82919 (24.2) <0.0001 

Heart failure, n (%) 882430 (36.2) 708360 (33.8) 174070 (50.9) <0.0001 

Valve disease, n (%) 334730 (13.7) 283937 (13.6) 50793 (14.9) <0.0001 

Dilated cardiomyopathy, n (%) 169108 (6.9) 142331 (6.8) 26777 (7.8) <0.0001 

Coronary artery disease, n (%) 596709 (24.5) 500199 (23.9) 96510 (28.2) <0.0001 

Previous MI, n (%) 119230 (4.9) 96876 (4.6) 23084 (6.7) <0.0001 

Previous PCI, n (%) 97241 (4.0) 83207 (4) 14034 (4.1) 0.0004 

Previous CABG, n (%) 79822 (3.3) 67744 (3.2) 12078 (3.5) <0.0001 

Vascular disease, n (%) 428526 (17.6) 349961 (16.7) 78565 (23) <0.0001 

Previous pacemaker or ICD, n (%) 94691 (3.9) 77622 (3.7) 17069 (5) <0.0001 

Ischemic stroke, n (%) 173563 (7.1) 141315 (6.8) 32248 (9.4) <0.0001 

Previous major bleeding, n (%) 187806 (7.7) 144263 (6.9) 43543 (12.7) <0.0001 

Smoker, n (%) 162715 (6.7) 135364 (6.5) 27351 (8) <0.0001 

Dyslipidemia, n (%) 524489 (21.5) 458680 (21.9) 65809 (19.2) <0.0001 

Obesity, n (%) 346996 (14.2) 304846 (14.6) 42150 (12.3) <0.0001 

Alcohol related diagnoses, n (%) 122218 (5.0) 98136 (4.7) 24082 (7) <0.0001 

Abnormal renal function, n (%) 166930 (6.9) 127027 (6.1) 39903 (11.7) <0.0001 

Lung disease, n (%) 403259 (16.6) 310776 (14.8) 92483 (27) <0.0001 

Sleep apnea syndrome, n (%) 127100 (5.2) 111998 (5.3) 15102 (4.4) <0.0001 

Liver disease, n (%) 88742 (3.6) 63429 (3) 25313 (7.4) <0.0001 

Gastroesophageal reflux, n (%) 55201 (2.3) 48477 (2.3) 6724 (2) <0.0001 

Thyroid diseases, n (%) 233230 (9.6) 199187 (9.5) 34043 (10) <0.0001 

Inflammatory disease, n (%) 145531 (6.0) 119309 (5.7) 26222 (7.7) <0.0001 

Anaemia, n (%) 414210 (17.0) 315096 (15.1) 99114 (29) <0.0001 

Previous cancer, n (%) 428273 (17.6) 311607 (14.9) 116666 (34.1) <0.0001 

AF therapeutic strategy     

Medical treatment only, n (%) 2181323 (89.6) 1844118 (88.1) 337205 (98.6) <0.0001 

Electrical cardioversion, n (%) 206153 (8.5) 201911 (9.6) 4242 (1.2) <0.0001 

Atrial fibrillation ablation, n (%) 62069 (2.6) 61889 (3) 180 (0.1) <0.0001 

AV node ablation, n (%) 13784 (0.6) 13280 (0.6) 504 (0.1) <0.0001 

Left atrial appendage occlusion, n (%) 2699 (0.1) 2656 (0.1) 43 (<0.1) <0.0001 

*Patients alive versus dead at one year after AF diagnosis 

AF: Atrial Fibrillation; CABG: Coronary Artery Bypass Graft; ICD: Implantable Cardiac 

Defibrillator; MI: Myocardial Infarction; PCI: Percutaneous Coronary Intervention; PM: 

Pacemaker. 
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Table 2. Baseline characteristics of the AF patients dead within the first year following diagnosis of 

AF according to the cause of death. 

 

Dead within 

the first year 

Non-CV 

death 

CV  

death p* 

 

(n=342005) (n=234290) (n=107715) 

 Clinical characteristics     

Age 81.29±10.28 80.66±10.44 82.66±9.78 <0.0001 

CHA2DS2VASc score, mean±SD 3.96±1.53 3.74±1.51 4.45±1.46 <0.0001 

HASBLED score, mean±SD 2.61±1.12 2.57±1.14 2.71±1.07 <0.0001 

Charlson comorbidity index, mean±SD 4.56±2.67 4.75±2.75 4.14±2.45 <0.0001 

Frailty index, mean±SD 11.69±8.57 12.32±8.72 10.34±8.05 <0.0001 

Gender (male), n (%) 183,159(53.6) 131,264(56) 51,895(48.2) <0.0001 

Hypertension, n (%) 214038 (62.6) 144197 (61.5) 69841 (64.8) <0.0001 

Diabetes mellitus, n (%) 82919 (24.2) 56164 (24) 26755 (24.8) <0.0001 

Heart failure, n (%) 174070 (50.9) 105237 (44.9) 68833 (63.9) <0.0001 

Valve disease, n (%) 50793 (14.9) 27286 (11.6) 23507 (21.8) <0.0001 

Dilated cardiomyopathy, n (%) 26777 (7.8) 15375 (6.6) 11402 (10.6) <0.0001 

Coronary artery disease, n (%) 96510 (28.2) 57702 (24.6) 38808 (36) <0.0001 

Previous MI, n (%) 23084 (6.7) 10805 (4.6) 12279 (11.4) <0.0001 

Previous PCI, n (%) 14034 (4.1) 7855 (3.4) 6179 (5.7) <0.0001 

Previous CABG, n (%) 12078 (3.5) 7081 (3) 4997 (4.6) <0.0001 

Vascular disease, n (%) 78565 (23) 46771 (20) 31794 (29.5) <0.0001 

Previous pacemaker or ICD, n (%) 17069 (5) 10676 (4.6) 6393 (5.9) <0.0001 

Ischemic stroke, n (%) 32248 (9.4) 14313 (6.1) 17935 (16.7) <0.0001 

Previous major bleeding, n (%) 43543 (12.7) 32989 (14.1) 10554 (9.8) <0.0001 

Smoker, n (%) 27351 (8) 20708 (8.8) 6643 (6.2) <0.0001 

Dyslipidemia, n (%) 65809 (19.2) 43344 (18.5) 22465 (20.9) <0.0001 

Obesity, n (%) 42150 (12.3) 28988 (12.4) 13162 (12.2) 0.2 

Alcohol related diagnoses, n (%) 24082 (7) 18606 (7.9) 5476 (5.1) <0.0001 

Abnormal renal function, n (%) 39903 (11.7) 26662 (11.4) 13241 (12.3) <0.0001 

Lung disease, n (%) 92483 (27) 66907 (28.6) 25576 (23.7) <0.0001 

Sleep apnea syndrome, n (%) 15102 (4.4) 10659 (4.5) 4443 (4.1) <0.0001 

Liver disease, n (%) 25313 (7.4) 18965 (8.1) 6348 (5.9) <0.0001 

Gastroesophageal reflux, n (%) 6724 (2) 4989 (2.1) 1735 (1.6) <0.0001 

Thyroid diseases, n (%) 34043 (10) 23364 (10) 10679 (9.9) 0.6 

Inflammatory disease, n (%) 26222 (7.7) 19143 (8.2) 7079 (6.6) <0.0001 

Anaemia, n (%) 99114 (29) 76301 (32.6) 22813 (21.2) <0.0001 

Previous cancer, n (%) 116666 (34.1) 98778 (42.2) 17888 (16.6) <0.0001 

AF therapeutic strategy     

Medical treatment only, n (%) 337205 (98.6) 231659 (98.9) 105546 (98) <0.0001 

Electrical cardioversion, n (%) 4242 (1.2) 2341 (1) 1901 (1.8) <0.0001 

Atrial fibrillation ablation, n (%) 180 (0.1) 91 (<0.1) 89 (0.1) <0.0001 

AV node ablation, n (%) 504 (0.1) 251 (0.1) 253 (0.2) <0.0001 

Left atrial appendage occlusion, n (%) 43 (<0.1) 22 (<0.1) 21 (<0.1) 0.01 

*CV versus non-CV death 
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AF: Atrial Fibrillation; CABG: Coronary Artery Bypass Graft; CV: Cardiovascular; ICD: 

Implantable Cardiac Defibrillator; MI: Myocardial Infarction; PCI: Percutaneous Coronary 

Intervention; PM: Pacemaker. 
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Table 3. Logistic regression analysis for clinical risk scores and occurrence of death within one 

year. 

  Univariate analysis Multivariable analysis* 

 OR (95% CI) p OR (95% CI) p 

All-Cause Death     

DNN (for each decile) 1.52 (1.50-1.53) <0.0001 1.56 (1.54-1.58) <0.0001 

DNN ≥ 0.16 (vs. <0.16) 6.09 (5.84-6.35) <0.0001 4.00 (3.78-4.22) <0.0001 

CCI (for each point) 1.16 (1.15-1.17) <0.0001 1.15 (1.14-1.16) <0.0001 

CCI ≥4 (vs. <4) 2.33 (2.24-2.42) <0.0001 1.88 (1.79-1.99) <0.0001 

HFRS (for each point) 1.03 (1.03-1.03) <0.0001 1.00 (1.00-1.01) 0.001 

HFRS ≥15 (vs. <15) 1.50 (1.44-1.56) <0.0001 0.94 (0.90-0.99) 0.015 

Non-CV Death 
    

DNN (for each decile) 1.53 (1.51-1.55) <0.0001 1.57 (1.55-1.59) <0.0001 

DNN ≥ 0.16 (vs. <0.16) 6.23 (5.92-6.55) <0.0001 4.50 (4.21-4.80) <0.0001 

CCI (for each point) 1.17 (1.16-1.18) <0.0001 1.19 (1.18-1.21) <0.0001 

CCI ≥4 (vs. <4) 2.49 (2.38-2.61) <0.0001 2.22 (2.09-2.35) <0.0001 

HFRS (for each point) 1.03 (1.03-1.04) <0.0001 1.01 (1.01-1.02) <0.0001 

HFRS ≥15 (vs. <15) 1.70 (1.62-1.78) <0.0001 1.12 (1.06-1.18) <0.0001 

CV Death 
    

DNN (for each decile) 1.35 (1.34-1.37) <0.0001 1.34 (1.31-1.37) <0.0001 

DNN ≥ 0.16 (vs. <0.16) 3.99 (3.72-4.27) <0.0001 2.26 (2.05-2.47) <0.0001 

CCI (for each point) 1.09 (1.08- 1.10) <0.0001 0.99 (0 .97-1.01) 0.412 

CCI ≥4 (vs. <4) 1.72 (1.61-1.83) <0.0001 1.10 (1.01-1.19) 0.025 

HFRS (for each point) 1.01 (1.01-1.02) <0.0001 0 .98 (0.98-0.99) <0.0001 

HFRS ≥15 (vs. <15) 1.03 (0.95- 1.11) 0.453 0.68 (0 .62-0 .74) <0.0001 

*adjusted on all clinical characteristics displayed Table 1 

CCI: Charlson Comorbidity Index; CI: Confidence Interval; CV: Cardiovascular; DNN: Deep 

Neural Network; HFRS: Hospital Frailty Risk Score; OR: Odds Ratio 
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Graphical abstract.  

 

 

 

CCI: Charlson Comorbidity Index; DNN: Deep Neural Network; HFRS: Hospital Frailty Risk 

Score. 

 

                  


