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Chapter 1

Introduction

In the last two decades there has been a considerable effort to accelerate scientific
discovery by the use of artificial intelligence and machine learning techniques. Artifi-
cial intelligence (AI) is the field of developing computers and robots that are capable
of behaving in ways that mimic and human capabilities, like the ability to coordi-
nate motor actions in the real world, or to derive information from data, all without
human intervention.

Machine learning (ML) is an area of artificial intelligence that focuses on the
development of algorithms and models that enable computers to recognize patterns
in data, and make predictions or decisions based on these patterns, without being
explicitly programmed.

In the context of applied science AI is increasingly employed in several ways [48],
for example to develop robotic platforms capable of performing experiments au-
tonomously, while both AI and ML are widely used to make decisions on the ex-
periments to perform, based on the analysis of input data. Machine learning and
artificial intelligence algorithms can analyze and process large amounts of data, and
consequently identify patterns not recognizable by humans [60]. Also, they can pro-
vide a prediction for physical systems before these are actually observed in the real
world, augmenting the information available to researchers.

Furthermore, using ML models for decision making allows us to take advantage
of parallel computational resources to handle a large number of decisions simultane-
ously.

Integrating robotic platforms and artificial intelligence in the process of scientific
discovery has also the advantage to let human experts to focus on the most complex
and strategic tasks, once repetitive tasks are assigned to machines.

Presently, this approach to design experiments has already been implemented
successfully in the field of applied sciences like Biology [74, 89, 116], drug discovery
[25, 109], Engineering [112], Physics [28, 54], Chemistry and Materials Design [8, 22].
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In Chemistry and Materials Science the application of AI algorithms has be-
come extremely popular, and it is often combined with the automatisation of the
experimental workflow via robotic platforms. This is due mainly to the growing
implementation of high throughput experiments, a methodology consisting in the
synthesis and characterization of a large number of compounds, which can vary from
thousands up to millions. This approach allows researchers to rapidly identify com-
pounds with the desired properties. High throughput Chemistry is performed in an
automated fashion in order to reduce the required experimental time, thanks also
to the possibility of executing multiple tasks in parallel. However, as the chemical
space is large and high dimensional, high throughput alone might not be enough to
accomplish the optimisation of chemical properties in the desired time window.

To overcome this problem a closed loop approach has been recently introduced,
where robotic automatisation is combined with the use of decision-making machine
learning algorithms, designed to find the optimal solution exploring just a portion
of the search space [16, 18, 27]. A closed loop is in fact an active learning workflow,
where a search algorithm provides recommendations of the experiments to perform,
and such an algorithm is in turn informed with the data coming from real world
experiments.

As both the set up of the robotic platforms and the execution of ML and deep
learning algorithms are becoming more affordable, this experimental paradigm is
becoming more common. An important factor is the increasing availability of com-
putational resources as GPUs, which have strongly accelerated the training and test-
ing of ML models. For example, the use of first principle simulations for materials
discovery has been largely replaced by ML and AI methods with remarkably lower
computational cost [11, 12, 99].

Generally, a closed loop experiment requires three components: a robotic plat-
form, software to analyse the experimental results, and an algorithm to recommend
new experiments.

The work described in this thesis is focused on this last element. Specifically,
we develop new Bayesian optimisation methods designed to be applied to materials
discovery, we test them on synthetic and real world tasks, and we compare them
against already established techniques

1.1 Bayesian optimisation for materials design

Bayesian optimisation is a global optimisation method designed to search the op-
timum of black-box functions that are expensive to evaluate. Black-box functions
are functions for which relationship between a set of inputs and the corresponding
set of outputs is not known, ans as a consequence they cannot be expressed in an
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analytical form. This makes their optimisation challenging, as methods based on
gradient descent are not applicable.

To address this issue gradient-free optimisation methods have been largely inves-
tigated in literature, among these random search, simulated annealing [58], particle
swarm optimization [56], Nelder–Mead simplex method [78, 96] and genetic algo-
rithms [45, 97]. The application of these frameworks however might become unfea-
sible if the evaluation cost of the objective is elevated, in which case it is necessary
to reduce the number of evaluations required to reach convergence1.

Bayesian optimisation achieves that by focusing the search in regions of the input
space where the probability of finding the optimum is high. The location of these
points is computed based on the information from previous evaluations. In practice
however, exploration outside these regions is allowed in order to gain more informa-
tion about the objective function, so to improve the decision of the regions to sample
and avoid the optimisation process to get stuck.

This makes BO particularly suitable for design of experiments, which very of-
ten implies an optimisation task where the objective function is represented by the
relationship between a set of controllable variables and outcome of the experiment.
Typically a such relationship is indeed a black-box function, and its evaluation re-
quires us to perform real world experiments, which can be time consuming and
expensive in terms of material cost. Another advantage of BO is that it can handle
noisy functions [75, 82], which is very important when the data is obtained via real
world experiments, which are intrinsically noisy.

1.1.1 Bayesian inference

Bayesian inference is a statistical model where an initial hypotheses is updated as
more information becomes available, using Bayes’ theorem.

Let us assume that we formulate a certain hypotheses, A, and we want to compute
the probability that A actually occurs. Before any evidence is taken into account
A has an initial probability P (A), called prior probability, which is usually defined
based on some assumption about A. Let us assume that, after defining P (A), new
related data is obtained: the observation of this data is indicated as the event B.
Bayes’ theorem states that the conditional probability P (A|B) that A occurs, given
that B has occurred, is given by:

1As the actual global optimum might never be found in finite time, a criterion to establish if the
optimisation process has converged is set a priori. Most commonly the optimisation is considered
to have converged if it has reached a point where further iterations do not improve the objective
function’s value by more than a given threshold.

3



CHAPTER 1. INTRODUCTION

P (A|B) =
P (B|A) P (A)

P (B)
(1.1)

where P (A|B) is called the posterior probability, P (A) is the prior probability over A,
while P (A|B), which is called the likelihood, is the probability of observing B given
that the hypotheses A is true. Thus the likelihood indicates the compatibility of B,
i.e. the observed data, with the hypotheses A. P (B) is the probability to observe B
regardless of any hypotheses.

1.1.2 The strategy behind Bayesian optimisation

The surrogate model. The main strategy of Bayesian optimisation to deal with
a black-box objective function is to model it with a probabilistic model, called sur-
rogate model, as it replaces the actual objective. Typically the surrogate model is a
parametric function, like the Gaussian processes introduced in Section 1.1.3, describ-
ing the probability over the infinitely many objective functions that are compatible
with the currently observed data. A specific surrogate model is identified by a set of
parameters θ: a given set of parameters represent a hypotheses about the objective
function.

Applying Bayesian inference over the parameters θ we can find the most probable
function to have generated the data observed. For this purpose we initially need to
compute the most likely surrogate model given the set of all the data acquired so far,
which from now on we indicate as D. This can be done exploiting Bayes’ theorem:
in the context of Bayesian optimisation each set of parameters θ of the surrogate
model represents a given hypotheses on the actual objective, while the data set D
represents the evidence. Thus Eq. (1.1) becomes:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(1.2)

The most probable values for the parameters θ is thus calculated by maximising
p(θ|D) in Eq. (1.2). Once the surrogate model has been inferred, it is possible to
estimate the most probable value of the objective, as explained in Chapter 2.

As new evaluations of the objective become available, Bayesian inference is re-
peated, and the the surrogate model is updated.

The acquisition function. At each stage of the optimisation process one or more
new input points are selected, based on a policy that chooses the most useful points
with respect to the optimisation task at hand, and the objective function is evaluated
at these points.
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In BO this policy is implemented by maximising a utility function, called the
acquisition function, which uses the surrogate model to evaluate the next evaluation
points. This adaptive sampling strategy is meant to allow us to find the optimum
point by exploring only a small portion of the search space, reducing the number of
function evaluations. However acquisition functions are designed in such a way that
a portion of points is also sampled from unexplored regions of the search space. In
other words a balance between exploration and exploitation is enforced, in order to
avoid that poor estimations suggested by the surrogate model results in the excluding
the actual optimal region.

Application of BO to design of experiments. Applying BO to design of ex-
periments requires the following steps:

1. Defining the objective to optimise. This is a physical quantity or a property to
minimise or maximise, for example maximising the yield of a chemical reaction.

2. Defining the input variables, which are the controllable variables of the experi-
ment to be tuned to optimise the objective. Typically these are environmental
variables like temperature, concentration and time, or they can be the compo-
sition and the structure of the molecules involved, as shown in Chapter 5.

3. Building a surrogate model of the experimental outcome as a function of the
controllable variables.

4. Using the acquisition function to suggest the new conditions in which to per-
form the next experiment.

5. Performing the experiment and measuring the outcome.

6. Updating the surrogate model.

1.1.3 Gaussian processes as surrogate models

The most common surrogate model used in Bayesian optimisation is the Gaussian
process (GP), which is a stochastic process representing the probability distribution
over all the possible objective functions.

GPs can be seen as an extension of multivariate normal distributions to the space
of functions. However, while a normal distribution is a stochastic process defined
over individual data points, Gaussian processes model a probability distribution of
functions defined over these points. Thus Gaussian processes are a family of infinite-
dimensional stochastic processes, and they are fundamentally different concepts from
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normal distributions. For this reason we will indicate them differently: N (·) is a
normal distribution, while GP(·) is a Gaussian process.

As a consequence of the distribution being Gaussian, GPs are fully characterised
by a mean and a covariance function, which we indicate respectively with µ(x) and
k(x,x′). The mean represents also the most probable function, the covariance rep-
resents the related uncertainty:

f(x) ∼ GP(µ(x), k(x,x′)) (1.3)

Given a finite set of data points, there are infinite possible functions that could have
generated them, but via Bayesian inference it is possible to determine the most likely
one, as well as the related uncertainty. The possibility of determining the uncertainty
over the modelled objective function is one of the most important advantages of
Gaussian processes.

GPs allow us to incorporate prior knowledge, which can be done in several ways.
A possible strategy is choosing the analytical form for the covariance function, so as
to encode general assumptions: for example the belief that that f is periodic can be
expressed by a periodic covariance function, while selecting a radial basis function
for the covariance implies that f is smooth.

Alternatively, prior knowledge can be encoded by defining prior distributions
over the objective that reflect prior beliefs about the analytical form of objective.
In practice this is achieved by defining an initial GP having a mean with a given
analytical form.

Finally, prior knowledge can be incorporated by augmenting the training data,
for example by adding extra data coming from similar optimisation tasks that have
been previously solved, or synthetic data points that provide an approximation of
the actual objective function. This last method has been used in the work described
in Chapters 3 and 4.

1.2 Our contributions

In this work we develop Bayesian optimisation methods developed to be applied
to the field of materials design, aiming to further accelerate the optimisation pro-
cess. Two possible approaches to achieve this goal are introducing prior knowledge
into Bayesian optimisation or parallelizing the evaluation of the objective function.
The introduction of prior knowledge into BO is intended to improve the prediction
accuracy of the aforementioned surrogate model.

The motivation behind the second approach is the assumption that evaluating
the objective is expensive, in terms of time or material cost, which is certainly true
for experimental evaluations. Fortunately it is often the case that experiments can
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be performed in parallel, and thus it is possible to execute multiple recommended
experiments simultaneously. In this scenario it is convenient to use batch BO, or
BBO, a variant of the BO, where multiple points are selected at each optimisation
step.

We explore both approaches: the study reported in Chapters 3 and 4 is focused
on the integration of inexpensive predicted data into the optimisation process. The
approaches described in these chapters are based on sequential Bayesian optimisation
over continuous search spaces. On the other hand, the work described in Chapter 5
is focused on the development of a BBO technique to address materials design tasks
defined in a discrete space.

Integrating Predicted Data into Bayesian optimisation. The core idea of
this work, which has been published at the BNAIC 2021 conference [1], is to initialize
the optimisation process with predicted data, generated by an approximate model of
the actual objective function to optimize. This model, which we call a predictor, is
assumed is assumed to be much less expensive to evaluate than the actual objective,
so that an arbitrary number of predicted points can be exploited to warm start the
optimisation, virtually at no extra cost. Unfortunately, in real the world inexpensive
predictors may suffer from low accuracy, and to take this into account we assumed
that the predictors have a non negligible predictive error. In order to be as general
as possible, we did not formulate any assumption about the predictors’ errors, nor
about the consistency of such errors across the search space. For this reason it is
possible that even a predictor with small average error2 provides very inaccurate
predictions in some regions of the space.

More specifically, two methods are proposed, dealing differently with the inac-
curacy of the predictor. The first one, called exclusion radius method, deletes some
of the predicted points at each step of the optimisation process. Indeed, while the
predicted points allow us to define an initial surrogate model that reflects the prior
information available, their presence in the data set could be detrimental later on
in the optimisation due to their inaccuracy. We thus built this method so that as
more real data is acquired, BO relies more and more on the evaluations of the actual
objective and less and less on the predicted data. However, since the sampling of the
search space is not uniform, we might still have large regions where the objective f
is completely unexplored. In these regions the surrogate model has poor information
about f , and the related uncertainty is high, so approximate estimations coming
from the predictor are still valuable. For this reason we set a maximum distance
from the real points behind which predicted points are kept. Operationally, we elim-

2As described in Chapter 3, we estimated the average error of each predictor by computing the
absolute value of the difference between predicted and real data over a grid of 30000 points.
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inate predicted points only if they fall within a spherical region having a predefined
radius r, which we call the exclusion radius. The value of r is a hyper-parameter of
the exclusion radius method, which needs to be tuned to achieve good performance
of the method. As will be shown in Chapter 3, the optimal choice for r depends on
the accuracy of the predictor: if predictors with low level of accuracy are used, the
method performs better with higher values of r, compared to the case where more
accurate predictors are used. This is because increasing r leads to a faster elimina-
tion of the predicted points, which is beneficial if we generated predicted points with
low accuracy and thus low informativeness.

On the other hand, as the initial set of predicted points is spread over all the
search space, the value of the exclusion radius must be set taking into account also
the extension of such space. For example we set r to be a fixed fraction of the length
of one dimension of the search space, which in our case was a 2-dimensional square.

The second method we propose, called discrepancy prediction method , estimates
the difference between the predictor and the actual objective, which we call discrep-
ancy, and corrects the predicted points accordingly. To predict the discrepancy we
use a second surrogate model. One advantage of the discrepancy prediction method
with respect to the exclusion radius method is the absence of extra hyper-parameters
to tune, but, as we will show, the exclusion radius method performs better overall.

Both these approaches have the advantage of being fast and conceptually simple,
and they generally outperform the related strategies published in literature, like
multi-fidelity BO, while using significantly less computational time

In Chapter 4 we propose a few variants of the exclusion radius method, in order
to explore optimal rates at which to discard predicted data, as soon as their pres-
ence is more detrimental than helpful for the optimisation process. Additionally,
we investigate strategies to optimise the correction of the predictor’s error, with the
purpose of improving the discrepancy prediction method.

For the exclusion radius method we define two heuristic approaches to delete
all the predicted points before the BO process ends. The first one is the early
switch method, a naive strategy where all the predicted data is erased at a given
iteration number, which is set a priori, and which is a parameter of the method.
The second one is called adaptive radius exclusion method, and it works as exclusion
radius method, except that the radius r is not kept constant, but it is increased by
a constant amount at each iteration. As the early switch method, adaptive radius
exclusion aims to discard all the predicted points at a given step of the optimisation
process, and the increase rate of the radius r is adjusted accordingly. However, this
second method aims to do progressive elimination We also propose two variants for
the discrepancy method: one consists in predicting the discrepancy using a gradient
boosting regressor model instead of a GP, while in the other one we introduce a
stochastic criterion to establish at each iteration whether the next point to evaluate
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should be given by the acquisition function or a random point should be selected,
within a neighbourhood of the current best point. The idea behind this strategy
is to improve the predictive accuracy of the discrepancy in a region of the search
space where the probability to find the optimum is higher than elsewhere. As the
extra evaluations are counted against the total budget of observations, this last
method effectively increases the degree of exploitation in the sampling of the points
to evaluate compared to the original discrepancy prediction method.

Batched Bayesian Optimization for Molecular Structures. The second ap-
proach we investigated in order to accelerate the Bayesian optimisation process for
materials design is the application of batch BO, or BBO, and it is fully reported in
Chapter 5.

As discussed in Chapter 2, the advantage of BBO over sequential BO is the
possibility to acquire a larger number of observations potentially at no extra com-
putational time, wherever parallel computational resources are available. For this
reason several studies have applied BBO to the design of experiments. However,
while several frameworks have been proposed to solve problems defined in a con-
tinuous search space, the application of BBO to discrete spaces has so far received
little attention. To fill this gap we explore the applicability of LAW2ORDER [79],
a state of the art BBO method for discrete spaces, and we revise it to be applicable
to materials properties optimisation problems. For this purpose we integrate it with
similarity kernels appropriate for chemical applications. We also asses the perfor-
mance of our adjusted version of the method by benchmarking on different molecular
data set, and comparing the outcome with the results obtained with Thompson sam-
pling based BBO, a method which has already been successfully applied to the fields
of Chemistry and Materials Science [43, 95, 107].

The LAW2ORDER BBO method belongs to the family of BBO approaches rely-
ing on determinantal point processes to maximise the diversity among all the points
which will be evaluated in parallel. Diversity is an important requirement for BBO to
be really advantageous over BO: indeed if the batch points are too similar, acquiring
multiple points at the same step will result in no relevant gain in information. The
Thompson sampling based BBO for example, is a poorly exploratory method, and
this potentially diminishes the advantage of parallelism. On the contrary, previous
works using determinantal point processes (DPPs), briefly described in Chapter 5,
enforce only diversity.

Differently from these DPPs based approaches, LAW2ORDER reintroduces also
the acquisition function in the sampling policy, as it will be described in Section 5.2.3.
The purpose is to take into account also the informativeness in the points sampling.
LAW2ORDER is originally formulated for permutation problems, and the rationale
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for applying it to materials design is that the search space of permutation problems
not only is discrete, but it is also large, analogously to many materials design tasks.

We also explored the impact of the chosen molecular descriptors on the per-
formance of this method. Molecular descriptors are mathematical representations
of molecules’ properties, while similarity kernels, closely related to the variance of
GPs, quantify the similarity between input variables, as explained in Chapter 2. The
choice of kernel to encode similarity between molecules is in part conditioned by the
choice of molecular descriptors, as will be shown in more details in Chapter 5.

For our work we chose two types of descriptors, the Coulomb descriptors and
the SOAP descriptors, which are described in Chapter 5, each one of them used in
combination with a different similarity kernel.

Comparison between LAW2ORDER method and Thompson sampling method
shows that the first one performs better than the second for Coulomb descriptors only,
while for the SOAP descriptors the performances of the two methods are comparable.
With both methods, Coulomb descriptors give better results than SOAP descriptors.

1.3 Structure of the thesis

This thesis is structured in six chapters, as described below.

Chapter 2: Background. This chapter provides the theoretical background re-
lated to the work described in the following chapters. The topics covered are Bayesian
optimisation and Gaussian processes, as well as BBO. Furthermore there will be a
short section about the previous work published in the literature to extend BO to
discrete spaces. This topic is preliminary to the content of Chapter 5, although the
most closely related techniques in discrete spaces are described in that chapter.

Chapter 3: Methods for Integrating Predicted Data into Bayesian opti-
misation. Chapter 3 is a slightly extended version of the paper presented at the
BNAIC conference, and it is focused on the results and the implementation details of
the exclusion radius method and the discrepancy prediction method. As the proposed
methods are benchmarked against a multi-fidelity approach, a general introduction
to the framework of multi-fidelity optimisation is also given.

Chapter 4: Enhanced Methods for Integrating Predicted Data into Bayesian
Optimization. Several variants of the exclusion radius method and discrepancy
prediction method have been investigated, and the related results are reported in
this chapter, and compared to the original methods. In some cases this comparison
is complemented with additional experiments intended to assess the causes of the
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observed differences in the performance of each method. Although all the methods
reported in this chapter do not represnt an improvement with respect to their original
versions, described in the previous chapter, we illustrate them here for completeness.

Two modified versions are proposed for the exclusion radius and for the discrep-
ancy prediction methods respectively. For the latter we also explored the integration
of gradient boosting descent (GBR) into BO, as predictive model for the estimation
predictors’ inaccuracy from the available data. A brief introduction to ensemble
methods and GBR is thus provided.

Chapter 5: Batched Bayesian Optimization for Molecular Structures.
This chapter is dedicated to the description of our work on batch BO for materials
design in discrete spaces. A summary of previous work is reported at the beginning
of this chapter, including a description of the Thompson sampling method, against
which LAW2ORDER is compared. For a better understanding of LAW2ORDER,
which is based on stochastic models called determinantal point processes (DPPs),
a brief overview of DPPs will precede the description of the experimental results.
Furthermore, the concept of chemical descriptors will be introduced, and the de-
scriptors used for our work, namely Coulomb matrices and SOAP descriptors, will
be illustrated.

Chapter 6: Conclusions. This chapter reports a summary of all the main find-
ings of all the chapters and provides the overall conclusion of all the work described
in this thesis.
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Chapter 2

Background

This chapter is focused on the description of Bayesian optimisation (BO), which is
at the base of all the work described in this thesis. We start with a description of the
basic principles of BO, which includes a brief illustration of its two main components,
surrogate models and acquisition functions, and Gaussian process surrogate models
will be introduced: the content related to Gaussian process is adapted from the
Book [115], and it follows the same notations.

Significant parts of the presentation of the background material are taken from
the book

Following this general part, we will introduce batched Bayesian optimisation
(BBO) and Bayesian optimisation in discrete spaces, as these topics are preliminary
to the work reported in Chapter 5.

2.1 Bayesian Optimization

Bayesian optimisation (BO) is a derivative free method developed to solve global op-
timisation problems where the objective function f satisfies the following properties:

• f is a black-box function, which usually cannot be expressed by an analytical
form.

• f may be expensive to evaluate.
• f may not be differentiable.
• f may have multiple local optima.

All of the optimisation tasks considered in this work are formulated as minimisation
problems1 : given the objective function f : x ∈ X → y, the problem to solve is

1Maximisation problems are converted into minimisation ones by transforming f → −f .
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2.1. Bayesian Optimization

formulated as:

xopt = arg min
x∈X

f(x), (2.1)

where X is the whole search space. BO is an iterative optimisation method which
deals with expensive black-box functions with two fundamental strategies:

1. The use of a surrogate model, M, to approximate the unknown objective, at
significantly lower evaluation cost. M provides an estimation of the real value
of f by combining the data already observed with pior beliefs about f . This
estimation is updated during the optimisation process, every time new data
becomes available.

2. The use of a utility function, called acquisition function, which evaluates the
best point x∗ where to query f at the next step, for the purpose of finding the
optimum value.

Formally, step 2 is executed by maximising the acquisition function, which from now
on will be denoted by a:

x∗ = arg max
x∈X

a(x). (2.2)

In this way the original optimisation problem over the objective f is solved by
solving a maximisation problem over the function a, which is much cheaper to eval-
uate. The purpose of introducing the acquisition function is to apply a strategy for
the selection of the points at which f will be evaluated, so as to reduce the number
of steps required to approach the optimum point. Such a strategy uses the informa-
tion provided by the surrogate model. For example, in most cases M is a Gaussian
process (GP), which is a stochastic process defined in the function space, describing
the probability distribution over the objective, and which is fully characterised by a
mean and a covariance. In this case the acquisition function combines the mean and
covariance into a criterion that directs the search for x∗. GPs will be presented in
Section 2.2. However other choices for the surrogate model are also possible, like ran-
dom forests or neural networks. We used a GP, as our goal aimed to develop methods
suitable for materials design, where the objective is expensive and the observations
are the outcome of real world experiments, which are intrinsically noisy.

The Bayesian optimisation process. In its basic form BO operates in three
phases, as shown in Algorithm 1.

Firstly the surrogate model M is used to learn the latent objective function f
from the data set of previous observations. This data set is called training data set,
as it is used to train the model, and here it is denoted by: D = {(xi, yi)}i=1,...,n.

13



CHAPTER 2. BACKGROUND

The second phase consists in selecting the next query point by maximizing the
acquisition function. At the third phase the objective function is evaluated at the new
point x∗ returned by the acquisition function according to Eq. (2.2), the data set D is
augmented with the point (x∗, f(x∗)), and the surrogate modelM is updated using
the updated data set. Specific examples of acquisition functions will be discussed in
Section 2.3.2. All three steps are repeated until a given stopping condition is reached,
typically after a given number of steps have been completed.

Algorithm 1: Bayesian Optimization

Input: Objective function f , stopping condition
Output: Optimum point xopt

1 Initialize the model data set D0

2 for n← 0, 1, ... do
3 Update surrogate model M the current data set using Dn
4 Select new x∗n+1 by optimizing the acquisition function a:
5

x∗n+1 = arg max
x∈X

a(x|Dn)

Compute yn+1 = f(xn+1)
6 Augment the data set Dn+1 = {Dn, (xn+1, yn+1)}
7 if stopping criterion is reached then
8 break
9 end

10 end

2.2 Gaussian processes

Gaussian processes are a class of non-parametric regression models.

Formally, a GP is defined as a collection of random variables, any finite com-
bination of which is a joint Gaussian distribution. In other words, a GP can be
considered to be a multivariate normal distribution over functions, which is thus
completely specified by its mean µ(x) and its covariance function (or kernel func-
tion), k(x,x′):

f(x) ∼ GP (µ(x), k(x,x′)) (2.3)

14



2.2. Gaussian processes

where

µ(x) = E[f(x)] (2.4)

k(x,x′) = cov(f(x), f(x′)) (2.5)

= E [(f(x)− µ(x))(f(x′)− µ(x′))]

Eq. (2.5) shows that the mean of the GP, also called predictive mean, is the expected
value for the objective function and, being the probability distribution normal, also
the most probable value. The covariance function k(x,x′) represents instead the
uncertainty over the estimation E[f(x)]. If no data has been observed yet, µ(·)
represents the prior beliefs over f , i.e. it reflects the initial assumptions on the
objective. Usually however, no prior assumptions are given, and this is expressed by
fixing the initial value of the predictive mean to a constant, typically µ0 = 0, where
µ0 is called the prior mean.

Gaussian Prior. A Gaussian prior is a GP which describes the probability of a
given observation y to occur, independently from previously acquired data. This
probability is given by:

p(y) = N (y|µ(x) , k (x,x′)) (2.6)

where p(y) is the Gaussian prior. From Eq. (2.6) it is possible to see that, once the
prior mean is set, the covariance function fully determines the Gaussian prior: the
prior beliefs about our objective are fully encoded by k(x,x′) alone.

Posterior distribution. The predictions given by the prior can be improved by
conditioning p(y) over the training data set D: this corresponds to restricting the
prior distribution to contain only those functions which agree with the observed data
points. The resulting probability distribution over functions is called the posterior
distribution, and it is given by p(y?|x?,D, θ), where x? is a test input, while y? =
f(x?) + ε is a noisy evaluation of the objective function. The noise ε is assumed to
be independent and identically distributed: ε ∼ N (0, σ2

n). The vector θ is a set of
parameters which specifies the kernel function, as described in Section 2.2.1. The
posterior distribution is again a GP:

p(y?|x?,D) = GP(y?|µ(x?), kpost(x
?,x?)) (2.7)

where
kpost(x

?,x?) = cov(y?)

kpost is the posterior covariance, while µ(x?) is the posterior mean. Both the posterior
variance and the posterior mean are related to the kernel function according to:

µ(x?) = k(x?, X)>(K + σ2
nI)−1y (2.8)
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σ2(x?) = k(x?,x?)− k>(x?, X)(K + σ2
nI)−1k(x?, X), (2.9)

where X is the set of input points contained in the training data set D, and K is
the matrix with elements Ki,j = k(xi,xj). The term σ2

n accounts for possible errors
in the observations y, due to presence of the noise ε in the measurements of the
objective f .

2.2.1 Regression with Gaussian processes

The task of predicting values of the latent objective function at a set of points is in
fact a regression problem. It can be formally solved in the specific case where the
objective can be expressed as a linear function:

f(x) = x>w, (2.10)

where w is a vector of weights of the linear model. This class of regression tasks
is called linear Bayesian regression. Bayesian linear regression problems can be
performed by optimising w over the observed data, and they have an explicit solution.
For problems where Eq. (2.10) does not hold, it is still possible to map the original
objective function to a linear relationship via the so called kernel trick. Here we first
introduce linear Bayesian regression briefly, and then we describe the extension of
regression with Gaussian processes to the general case.

Bayesian linear regression

As mentioned before, inferring the objective f under the assumption expressed by
Eq. (2.10) is equivalent to inferring the weights w. As it will be shown below this is
possible by evaluating the posterior distribution over w via the Bayes’ theorem.
If we denote with y a vector of noisy observations of f at points X = {x1, . . . ,xn},
and we have a prior distribution over the weights, p(w), the posterior distribution
conditioned over the data (X,y) can be computed via Bayes’ theorem, and it is given
by:

p(w|X,y) =
p(y|X,w)p(w)

p(y|X)
, (2.11)

where p(w|X,y) and p(w) are respectively the posterior and the prior probabilities
over the weights, p(y|X,w) is the the likelihood over y, i.e. the probability density
over the observations given the parameters w, and p(y|X) is the marginal likelihood,
which is given by:

p(y|X) =

∫
p(y|X,w)p(w)dw. (2.12)
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The prior over the weight is generally given by a normal probability distribution
centered in 0: w ∼ N (0,Σp). Finally, the explicit expression for the posterior over
w is given by [115]:

p(w|X,y) ∼ N
(
w̄, A−1

)
, (2.13)

where

w̄ = σ−2
n A−1Xy (2.14)

A = σ−2
n XX> + Σ−1

p (2.15)

Once the predictive mean over the parameters w is given, the mean over the objective
is also known, via Eq. (2.10).

The kernel function

The assumption of a linear relationship between input variables and observables
assumed in the case of linear Bayesian regression is very restrictive, and generally
results in a poor approximation of the objective. Instead it is more convenient to
assume the more general relationship:

f(x) = φ(x)>w, (2.16)

where φ :→ φ(x) is feature mapping function, which can be learnt during inference.
In this case the mean and kernel function of the GP surrogate model become:

E [f(x)] = φ(x)>E[w] (2.17)

k(x,x′) = E [f(x), f(x′)] = φ(x)>E[ww>]φ(x′)

= φ(x)>Σpφ(x) = ψ(x)>ψ(x′) (2.18)

Eq. (2.18) shows that the covariance depends on the input variables only via the dot
product of φ(x), and it can be expressed as:

k(x,x′) = 〈ψ(x), ψ(x′)〉. (2.19)

In other words the kernel trick has been applied as a direct consequence of the
transformation (2.16). The kernel trick is a method that allows us to perform data
linearisation without explicit feature mapping. This is particularly advantageous
when the number of dimension is high, as feature mapping becomes computationally
expensive.

As the dot product between two vectors measures their similarity [14], by virtue of
Eq. (2.19) the kernel function also quantifies the similarity between ψ(x) and ψ(x′),
i.e between the transformations of the original input points. Because of Eq. (2.16),
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the same dot product is also a similarity measure between f(x) and f(x′). Two
dissimilar objects have a small dot product, while the more similar these objects are,
the higher is the dot product. If the function φ is normalized the maximum value of
〈ψ(x), ψ(x′)〉 is 1, corresponding to identical objects.

There are several possible choices for the specific analytic form of the kernel
function, which encodes the initial beliefs about the objective function, for example
its smoothness. However not all functions are valid kernels, as they must satisfy
the condition of being positive semi-definite. A few examples of kernel functions are
given in Section 2.3. Each type of kernel is characterised by a vector of parameters,
which we will denote by θ, and which strongly impacts the behaviour of the GP
model, and its predictive accuracy.

Predictions with Gaussian processes

A very important aspect of Gaussian processes, especially when applied to optimisa-
tion problems, is their capability of predicting the values of the objective function at
unobserved points. This is true for all machine learning models, but the particularity
of GPs is that they provide also the uncertainties over such predictions. Here we
assume again that the observations are noisy: y = f(x) + ε with ε ∼ N (0, σ2

n).

Let us imagine we have a set of training inputs X = {x1, . . . ,xN} and the corre-
sponding training outputs y = {y1, . . . , yN}, and we want to predict the value of the
objective f at a set of test points Xtest = {xtest,1, . . . ,xtest,M}. In the framework of
Gaussian processes this can be done in a probabilistic way, by computing the joint
prior probability distribution of the training outputs, y, and the test outputs ytest,
and then conditioning this probability over the observations. Assuming a constant
prior mean, µ0 = 0, the joint prior probability distribution for noisy observations is
given by2: [

y
ytest

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,Xtest)
K(Xtest, X) K(Xtest, Xtest)

])
. (2.20)

Here K(·, ·) is a Gram matrix, i.e a Hermitian matrix of inner products, for which
each element is given by Ki,j = k(xi,xj) = 〈ψ(xi), ψ(xj)〉. The probability over
ytest is given by conditioning the joint prior over the training points, which results
in another multivariate normal distribution:

ytest|X,y, Xtest ∼ N (ȳtest, cov(ytest)) , (2.21)

2Here y is an array of variables and not a function, thus we have a normal distribution and the
notaion N (·) is used.
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where

ȳtest = K(Xtest, X)
[
K(X,X) + σ2

nI
]−1

y (2.22)

cov(ytest) = K(Xtest, Xtest)−K(Xtest, X)
[
K(X,X) + σ2

nI
]−1

K(X,Xtest). (2.23)

The predictions at the test points are given by ȳtest, which represents the most
probable values of f at these points, while cov(ytest) quantifies the uncertainty on
these predictions. Eq. (2.22) and (2.23) show that the quality of the predictions
depend uniquely on the covariance matrixK(·, ·). Thus the parameters characterising
K must be optimised over the available data for the predictions to be correct. This
process is described in Section 2.3.1 below.

2.3 Examples of kernel functions

Two very commonly used kernel functions are the Radial Basis Function (RBF) and
the Matern kernels.

The RBF kernel. The radial basis function kernel (RBF), also called squared
exponential kernel, is given by:

kRBF(xi,xj) = σ2
fexp

(
− 1

2`2
(xi − xj)

2

)
+ σ2

nδij. (2.24)

This kernel is meant to model noisy observations, assuming a Gaussian distribution
with variance σn for the noise. The parameters σf and ` are respectively the signal
variance, and the characteristic length-scale. The first one models the amplitude of
the noiseless objective f , the second is a measure of spatial correlation between input
variables.

The Matérn kernel. The Matérn kernel is a generalization of the RBF kernel,
and it is given by:

k(xi,xj) =
1

Γ(ν)2ν−1

(√
2ν

l
d(xi,xj)

)ν

Kν

(√
2ν

l
d(xi,xj)

)
, (2.25)

where Γ is the gamma function, Kν is the modified Bessel function of the second
kind, ρ and ν are positive parameters of the Matérn covariance and d(xi,xj) is the
distance between xi and xj, typically an Euclidean distance:

d(xi,xj) =

√√√√ D∑
d=1

(
xi,d − xj,d

)2

, (2.26)
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where D is the number of dimensions of the space.
Common values for the ν parameter are 3/2 and 5/2. These examples show that

typically kernel functions are parametric, and their parameters ultimately are the
parameters of the GP. The GP has also an additional parameter, σn, which is the
variance of the noise ε over the observations.

2.3.1 Model selection

To be able to use the surrogate modelM as an accurate approximation of the latent
objective function, we need to optimize all its parameters, based on our previous
observations. Generally the hyper-parameters of M are organised hierarchically:
at the lowest level are the parameters of the objective function f , if present. For
example this is the case when BO is employed to optimise the hyper-parameters of
a machine learning model, like the hyper-parameters of a neural network, which can
be represented by a vector w. The objective function in this case is the loss function
of the neural network, and it is thus parameterized by w.

At the second level there are the parameters which control the probability distri-
butions. These are the hyper-parameters of the kernel, θ. Sometimes the surrogate
model consists of a set of structures, for example a mixture of GPs or an ensemble
model. In this case an additional level of parameters is present, which parametrize
the whole model. These latter parameters are at the top of the hierarchy. If all these
three levels of parameters are present, the inference occurs one level at the time,
starting from the lowest. For each level the following steps take place:

1. Computing the posterior probability according to Bayes’ rule as shown in
Eq. (2.11).

2. Marginalizing the posterior probability with respect to the parameter at the
current level of the hierarchy. This means integrating the posterior probability
over all the possible values of this parameter, as shown in Eq. (2.12). The result
of this operation is the marginal likelihood, which represents how probable the
observed data is, given our surrogate model and taking into account all possible
values of the parameter.

As one level of parameters is optimised, the marginal likelihood computed at step 2
represents the likelihood for the next level of parameters. Thus we compute the
posterior probability as indicated at step 1, over the remaining parameters, and
using the marginal likelihood calculated at the previous step as current likelihood.

Steps 1 and 2 are repeated for all the levels of parameters, from lowest to highest,
until we find the overall marginal likelihood:

P (y|X) =
∑
i

p(y|X,Hi)p(Hi), (2.27)
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where Hi is the set of parameters at the top of the hierarchy. The other parame-
ters are contained in Eq. (2.27) implicitly. Afterwards, a further step is necessary,
consisting in the maximisation of P (y|X). This allows us to find the optimal values
for all parameters, although this might be unfeasible in practice, and approximate
calculation methods might be required.

In majority of cases however, only the hyper-parameters of the kernel need to be
tuned. The whole process of model selection is then given by the three steps below:

1. Computation of posterior:

p(θ|X,y) =
p(y|X,θ)p(θ)

p(y|X)
. (2.28)

2. Computation of the marginal likelihood:

p(y|X) =

∫
p(y|X,θ)p(θ)dθ. (2.29)

3. Maximization of the logarithm of the marginal likelihood3:

θ = arg max log p(y|X,θ) (2.30)

log p(y|X,θ) = −1

2
y>K−1y − 1

2
log|K| − N

2
log(2π). (2.31)

The maximization of p(y|X,θ) in step 3 is typically performed using a gradient
based optimizer. A full explanation of regression with Gaussian processes can be
found in [115], Chapter 5.

2.3.2 Acquisition functions

An acquisition function gives a heuristic that specifies how desirable it is to evaluate
the objective f at any given point, based on the information provided by the surrogate
model. In sequential BO the next point to evaluate is returned by maximizing the
acquisition function:

x∗ = arg max
x∈X

a(x). (2.32)

3N
2 log(2π) is a normalisation term, where N is the number of data points.
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Generally, to make the optimisation process efficient, acquisition functions enforce
an automatic trade off between exploitation, which focuses the search for the opti-
mum in vicinity of the current best point, and exploration, which aims the search
towards unexplored regions of the space. Commonly used acquisition functions are
the expected improvement [51], the upper confidence bound [5], the knowledge gra-
dient [13], and the entropy search [40]. All experimental results reported in this
thesis have been obtained using expected improvement (EI), with the exception of
the multi-fidelity experiments reported in Chapter 3, for which entropy search has
been used. A brief description of these two specific acquisition functions is given
below.

Expected improvement. Let us suppose that we have already acquired some
data during the optimisation process, and that fbest

n = f(xbest
n ) is the best value

observed so far at the step n. For minimization problems fbest
n is the lowest observed

output: fbest
n = mini<nf(xi). It is possible to define the improvement In as:

In = max
x∈X

(f(xbest
n )− f(x), 0), (2.33)

which is a non-negative quantity. The expected value of the improvement at a given
point before it is actually acquired is thus given by:

E[In(x)] = E[max(f(xbest
n )− f(x), 0)]. (2.34)

Intuitively, Eq. (2.34) means that EI estimates how much closer we get to the
global optimum of the objective function by evaluating f at a given input variable x.
Obviously, it is desirable to select the point which maximises the expected improve-
ment, and fortunately this acquisition function can be expressed by a closed form, as
a function of the posterior mean µ(x) and the posterior variance σ(x) of the GP [2]:

EI(x) =

{
(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0
, (2.35)

where:

Z =

{
µ(x)−f(x+)−ξ

σ(x)
if σ(x) > 0

0 if σ(x) = 0
. (2.36)

In the formulas above, φ and Φ are the probability density function and the cumula-
tive density function of a standard normal distribution, respectively. The parameter
ξ, also called jitter, tunes the balance between exploitation and exploration, and it
is typically set to 0.01.
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Entropy search. Entropy search is an information theory based acquisition func-
tion which aims to minimize the uncertainty about the location of the optimum
point, xopt. In information theory the uncertainty over a random variable x with
probability distribution p(x) is quantified by the negative differential entropy of p(x).
The entropy H of p(x) is defined as [42]:

H[p(x)] = −
∫
p(x)log p(x)dx. (2.37)

When a new point x is acquired, the posterior distribution over the optimum point
varies from p(xopt|Dn) to p(xopt|Dn ∪ (x, y). Ideally, at a given BO step, the best
point to query next is the one which leads to the highest decrease in entropy, thus
to the highest reduction in uncertainty. The expected value of such reduction can
be estimated as:

ESn = H (p(xopt|Dn))− E [H (p(xopt|Dn ∪ (x, y))] , (2.38)

where ESn is the negative differential entropy, and E [H (p(xopt|Dn ∪ (x, y))] is the
estimated value the entropy would assume if the point x is acquired. The maximi-
sation of ESn is analytically intractable, but it can be performed via approximation,
as described in the original paper by Hennig and Schuler [40].

2.4 Batched Bayesian Optimization

As mentioned before, the aim of Bayesian optimisation is to minimize the number
of evaluations of the objective f . However this number can still be considerable for
some optimisation problems, for example if the search space is high dimensional or
large. This problem can be addressed by parallelizing the evaluations of f . In this
case, the data set is augmented by multiple points at each optimisation step, instead
of a single one.

The objective is then evaluated at all the new points simultaneously in parallel.
The challenge of this approach is to establish a policy to select a batch of k input
variables at which f will be evaluated next Bk

n = {x1, . . . ,xk}, where k is the batch
size, and n is the current optimisation step. For this purpose it is necessary to define
an acquisition function abatch, analogously to sequential BO. Each point xn,b ∈ Bk

n is
chosen so as to maximize abatch, based on the surrogate model and the current data
set, which includes the previously selected batch points at the same optimisation
step n:

x∗n,b = arg max
{xb}b=1,...,k∈X

abatch(x). (2.39)
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Solving (2.39) presents two issues: the first one is that no observations are available
at any of the points x1, . . . ,xk. This implies that the uncertainties about the inputs
xn,b, as well as about the outputs yn,b = f(xn,b), must be taken into account by
marginalizing over both input and output variables, using the respective predictive
distributions. Formally [37]:

xn,b = arg max
x∈X

∫
abatch(x|Dn,j−1) (2.40)

k−1∏
j=1

p(yn,j|xn,j,Dn,j−1)p(xn,j|xn,j,Dn,j−1)dxn,jdyn,j (2.41)

where Dn,j−1 is the available data set at step n, when the jth point of the batch
is selected. However this optimisation is practically intractable, and some heuristic
batching policies have been proposed in literature instead. The second issue is the
risk of redundancy, i.e. the sampling of batch points which give similar outputs, so
that little more information is gained by acquiring an entire batch instead of a single
point. On the other hand, driving the sampling by diversity only can be detrimental
to the informativeness of the points about the location of the actual optimum. Thus
a trade off between diversity and informativeness is necessary. Recent methods pro-
posed in literature to satisfy this requirement include local penalization [37], Parallel
Predictive Entropy Search (PPES) [94], parallel knowledge gradient [116], but this
matter is still an active topic of research.

Local penalization. In order to avoid redundancy when sampling, González et
al. [37] proposed a BBO method called local penalization (LP). The core idea of
LP is to penalize points falling in a spherical neighbourhood of previously selected
points. The radius of this sphere is determined on the basis of the estimated Lipschitz
constant of the acquisition function.

Parallel Predictive Entropy Search (PPES). The PPES method, proposed by
Shah and Ghahramani [94] focuses on the informativeness of the batched points. It
relies on a batching policy that aims to maximize the negative differential entropy of
the posterior distribution. From a conceptual point of view this policy corresponds
to maximizing the information about the location of the global optimum.

Parallel knowledge gradient. Another BBO method based on information the-
ory is the parallel knowledge gradient method [116], proposed by Frazier and coau-
thors, which chooses the next point by maximizing the expected difference between
the current optimum value, estimated from the surrogate model, and the estimated
optimum value after the new points are acquired.
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2.5 Bayesian optimisation in discrete spaces

This section presents an overview of BO methods which have been proposed in liter-
ature to deal with discrete spaces. Examples of optimisation problems over discrete
spaces are problems over strings [74, 102] or combinatorial problems [80], or problems
defined over categorical variables [33]. Optimisation over strings is particularly rele-
vant to materials design, as molecules are often represented as SMILES stings [114].

Bayesian optimisation over discrete variables is challenging for multiple reasons:
in first place the similarity kernels commonly used for BO and introduced in Chap-
ter 2 are defined for continuous variables, and they are not guaranteed to be suitable
for discrete variables, as the condition of being semi-positive definite might be vi-
olated. Secondly the evaluation of the next point or batch of points at which to
evaluate the objective function f is not straightforward. Indeed this step requires
the maximisation of the acquisition function a, as expressed by Eq. (2.42):

xn = arg max
x∈X

a(x). (2.42)

For continuous search spaces this maximization problem can be solved by gradient
based methods, which in principle are not applicable to discrete spaces. A common
solution to this issue is to consider the search space to be continuous, to apply a gra-
dient based method to solve Eq. (2.42), and then to evaluate the objective function
at the closest input location which is actually present in the discrete optimisation
domain. However this approach raises two problems: first there is a discrepancy be-
tween the point suggested by the acquisition function and the point which is actually
added to the model’s data set D. This can cause inaccuracy in the optimisation pro-
cess. Furthermore, the rounding process can induce to evaluate the objective always
at the same input point [33]. Several strategies have been proposed in literature to
address the aforementioned problems. Among these, the most related to our research
goals are the amortized Bayesian optimisation [102], the BOSS method [74], combi-
natorial Bayesian optimisation with graph representations [80]. A brief description
of these methods is provided below.

Amortized Bayesian optimisation. The amortized Bayesian optimisation method
[102], proposed by Swersky and co-authors, focuses on optimisation over strings, us-
ing a novel optimizer for the acquisition function. The core feature of amortized
Bayesian optimisation is the implementation of the Deep evolutionary solver algo-
rithm (DES) to maximize the acquisition function, which combines an evolutionary
algorithm with reinforcement learning. The evolutionary algorithm mutates a pop-
ulation of strings according to a policy πθ. The mutated strings that maximize the
acquisition function are used to update the surrogate model. The policy πθ is a
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network policy, and its parameters θ are optimized online via REINFORCE. The
main advantage of this approach is that the the solver uses the parameters θ learnt
from previous iterations in order to progressively approach optimal locations for the
acquisition function instead of solving Eq. (2.42) from scratch at each optimisation
step. In addition of being suitable for discrete spaces, this BO approach is also
suitable for batch optimisation.

Bayesian optimisation over String Spaces. Analogously to amortized BO, the
BOSS method [74] focuses on BO over string spaces, and maximizes the acquisi-
tion function using a genetic algorithm. Additionally, a customized GP for string
spaces is used, which is achieved in two steps: first the authors introduce a kernel
specifically designed for string variables, then they use a vectorized form of dynamic
programming, previously proposed by Beck and Cohn [10], in order to reduce the
computational cost of the kernel evaluations.

Although the genetic algorithm usually requires numerous function evaluations,
and thus it is expensive for optimizing a high-cost objective function, in this work
it is used to optimize the acquisition function, which is designed to be much less
costly. For this work in particular the authors chose expected improvement as the
acquisition function.

Combinatorial Bayesian Optimization using Graph Representations. The
Combinatorial Bayesian Optimization method using Graph Representations or COMBO [80]
is formulated to solve optimisation problems on combinations. The main goal of this
work is the design of an appropriate kernel for this class of problems. For this pur-
pose the search space is represented as a graph, where a vertex represents a given
combination, and an edge between two vertexes determines whether the combina-
tions it connects are similar or not. Then a diffusion kernel on graphs is used [59].
In order to achieve a linear dependence of the kernel computation cost with respect
to the number of input points, the original graph is decomposed in the Cartesian
product of smaller sub-graphs. The acquisition function is optimized via a greedy
optimisation on graphs.
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Chapter 3

Methods for Integrating Predicted
Data into Bayesian Optimization

3.1 Introduction

One reason why Bayesian optimisation can require numerous observations is that
the surrogate model provides a poor approximation of the actual objective function.
This is especially true if no assumptions are made a priori, and the training of the
surrogate model relies only on the available starting data set.

It is often the case however, that prior knowledge related to the optimisation
problem at hand is available. This is particularly true for the design of experiments
in the field of physical sciences, where prior knowledge is typically available in the
form of theoretical models, numerical simulations or previous experimental results.
The resulting information can be used to produce predictions of the expected values
of the objective f , and to generate a more accurate surrogate model. However these
predictions can be fairly coarse, with no formal guarantee on their accuracy, and
they may give completely incorrect answers for some portions of the domain.

The work reported in this chapter addresses this problem by formulating strate-
gies to balance the informativeness of the prior knowledge, while limiting the impact
of its inaccuracy.

Overview of the methods. The first method that will be introduced, called
exclusion radius method, adds predicted data at the start of the optimisation process,
and then iteratively deletes it as real data is obtained.

The second method, called discrepancy prediction method, also adds predicted
data at the start of the process, and then as more information about f is obtained,
it attempts to correct the errors in the predicted data by learning a model of the
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difference between actual and predicted outputs. These methods have been tested
on standard benchmarks for Bayesian optimisation, using synthetic predictors with
different levels of accuracy. For this purpose predictors at a specified accuracy level
were created for each given benchmark function. In Section 3.5 the predictors’ ac-
curacy is formally defined, and the method to build deterministic smooth predictors
for a given function and a given accuracy level is described.

3.2 Problem statement

The work reported in this chapter aims to solve the following optimisation problem:

x∗ = arg min
x∈X

f(x), (3.1)

where f : X → R is the objective function of interest.
The main working assumption is that f is expensive to evaluate, but a predictive

model p : X → R is available, which returns an approximate value of f at each point
in the domain, and which is assumed to be significantly cheaper to evaluate than the
actual objective. The quality of the predictor at any given point can be quantified
by the discrepancy, δ : X → R, defined as:

δ(x) = f(x)− p(x), (3.2)

where δ(x) represents the error coming from using p to evaluate f instead of com-
puting f itself. However δ(x) is not known a priori, and potentially the predictor
provides low quality predictions. The working hypotheses for the problem we aim to
solve can be summarized as follows:

1. The objective function f is much more expensive to evaluate than the predictor
p, which can be evaluated essentially for free.

2. The predictor is deterministic, so querying the same point multiple times yields
no extra information.

3. The predictor is a smooth function.
4. The predictor may also present systemic errors on the estimation of f .
5. The estimation error of the predictors, δ(x), is unknown.

The aim is to initialize the BO processes by initializing the GP surrogate with a
given number of predicted points, and then discard them or reduce their impact on
the predictive distribution during the optimization process.

The methods we propose do not need any formal assumption on the nature of the
predictor nor on the process by which it is generated: it may be implemented using
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a theoretical model, through computational simulations, or it could be a machine
learning model.

Points 3 and 4 imply that, if the predictor makes a poor quality prediction for a
particular point x, then it may well also make poor quality predictions for the points
surrounding x. So, if one is in a region where the predictor gives poor predictions,
then there may be no easy way to extract information about f , and so the main
challenge is to discard these poor quality predictions while making use of good quality
predictions when they arise

3.3 Related work

The sequential BO approaches that have been proposed in literature that are closest
to the exclusion radius and the discrepancy prediction methods are the warm start-
ing and multi-fidelity methods. The first one exploits the information gained from
optimisation tasks which have already been solved on previous data sets, while the
second relies on approximate models of the objective function to generate additional
observations at a lower cost than querying the actual objective.

Warm starting

The warm starting approach assumes that the optimisation task under study has
already been solved on data sets which are somehow similar to the current one. The
resulting information can be transferred to the current task by initializing the BO
process with samples from the previous tasks [88, 101].

The most straightforward way to achieve this, which is also the closest to our
proposed methods, is the approach proposed by et. al. [88], who use samples of
previous tasks to initialize the surrogate model at the beginning of the optimisation
process. Afterwards, the difference between the present objective function and the
objective of a previous task is modelled with the quantity δ`, where ` indicates a
specific previous task. It is assumed that, for each task `, δ` is drawn from an
independent Gaussian process with mean function µ` and covariance kernel Σ`.

The posterior distribution over the current objective is modelled as a joint Gaus-
sian process, which is built starting from these individual surrogate models, in the
same way as it is done in the multi-fidelity paradigm, which is described in the fol-
lowing section. Poloczek and and co-authors also use hyper-parameters for the kernel
that were optimal for the previous tasks to formulate the prior distribution over the
current objective.
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Multi-fidelity optimisation

Multi-fidelity optimisation methods have been developed to deal with scenarios where
the optimisation process has access to lower fidelity models which approximate the
actual objective function, and which can be evaluated at reduced cost [29, 47, 52,
57, 86, 87, 98].

In this setting it is assumed that these models are hierarchically ordered by
their fidelity with respect to the actual objective, such that as one moves up the
hierarchy the cost of evaluating the models decreases, but with the drawback of
obtaining lower fidelity information about the function that is being optimized. The
relationship between the actual objective function and the lower fidelity models, also
called information sources, is expressed as [34, 41, 85, 87, 98]:

f(`,x) = ρf(`− 1,x) + δ`(x), (3.3)

where ` = {1, . . . , n} indicates the level of fidelity, ρ is a scaling constant that
quantifies the correlation between the model outputs f(`,x) and f(`−1,x). Typically
` = 0 refers to the actual objective function. The discrepancy δ`(x) is the difference
between the approximate model f(`,x) and the actual objective f(0,x):

δ`(x) = f(`,x)− f(x). (3.4)

The purpose of using lower fidelity models is to reach the optimal trade-off be-
tween cost and accuracy. For this purpose, at each step, the fidelity level ` of the
model to sample and the next input point where to evaluate it are selected simul-
taneously to minimise the overall cost of the optimisation process. As a result, the
original optimisation problem, which was defined over the input variables x ∈ X is
now defined over x and `. To solve it, a suitable GP surrogate model and a suitable
acquisition function need to be defined.

Construction of prior. In order to build a prior probability distribution for multi-
fidelity optimisation problems δ`(x) is assumed to be drawn from an independent
Gaussian process:

δ`(x) ∼ GP (µ`,Σ`) . (3.5)

On the other hand, the objective f(0,x) is drawn from another independent GP:
f ∼ GP (µ0,Σ0). From all these independent Gaussian processes it is possible to
build a new joint GP [29, 88]:

GP (µ(`,x),Σ((`,x), (m,x′))) , (3.6)
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where:

µ(`,x) = µ(0,x) (3.7)

Σ((`,x), (m,x′)) = Σ0(x,x′) + I`,mΣ0(x,x′). (3.8)

The probability distribution defined by Eq. (3.6) models the information source
f(`,x) for all ` simultaneously.

Acquisition function. In order to choose the optimal fidelity level `∗ and the
optimal point x∗ it is necessary to use a specifically designed acquisition function
which take the specific cost of each model into account [87, 117]. For example Marco
et al. [70] and Swersky et al. [101] proposed a cost-sensitive version of the information
gain acquisition function which has been shown to be more efficient for multi-fidelity
optimisation compared to expected improvement.

Multi-fidelity BO workflow. The workflow of a multi-fidelity Bayesian optimi-
sation, which is also represented in Figure 3.1, can be summarized as follows:

1. Initialization of GP (µ0,Σ0) with samples from all the information sources.
2. At each optimisation step n:

• find the values (`n,xn) which maximise the acquisition function.

• evaluate the next observable at yn = f(`n,xn).

3. Return the optimum point xopt = arg minx′∈X µ(0,x′)).

Comparison with our methods.

Similar to the warm-starting method, the exclusion radius method and the discrep-
ancy prediction methods introduce prior knowledge into BO by initializing the GP
surrogate with samples similar to the real data. However they present the advantage
that no results from previous optimisation tasks are required, since the initializing
data is generated by an inexpensive predictor.

On the other hand the problem settings for the two methods we propose are also
close to the multi-fidelity scenario, as the predictor is in fact a lower fidelity model.

However, whereas existing work in multi-fidelity optimisation balances the costs of
obtaining predicted data as opposed to obtaining real data [64, 87], for the predictor p
and for the objective function f the cost is not specified, as the first one is assumed
to be essentially cost-free, while the second is extremely expensive, so essentially
infinitely more expensive than the predictor.
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The rationale behind these assumptions is that our methods are designed for
applications to experimental work in natural sciences, where the cost of the objective
is typically very large but not known a priori. Furthermore in this scenario it is not
possible to make formal assumptions about the quality of the data produced by
p. Indeed, while a scientist may have a theory that predicts the outcome of an
experiment, the only way to validate the accuracy of that theory would be to run
experiments. But that would be self-defeating, as it is those expensive experiments
that we would like to avoid in the first place.

  

Initial Dataset 𝒟
Update GP 

 next point  xn+1
 xn+1=arg max a(x) 

 y(ℓ)n+1=fℓ(xn+1)ℓ=1, 2

Return
xopt=arg minμ0 (x)

n <  max_steps?

n1 high fidelity data

n2  low fidelity data

Update the data set 𝒟n+1 =  𝒟n ⋃{xn+1, y(ℓ)n+1}

 Choose fidelity level ℓ={1, 2} 
at which to  compute yℓ

No

Yes

Figure 3.1: High-level workflow for multi-fidelity BO method. Steps which differ
from standard BO are in orange. The level of accuracy to use at the current BO
step t is selected by the acquisition function. The best point xopt is evaluated as the
optimum point of the predictive mean at the highest level of accuracy. µ1
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3.4 Our Methods

This section describes in detail the exclusion radius method and the discrepancy
prediction method.

3.4.1 The exclusion radius method

The core idea of the exclusion radius method, described in Algorithm 2, is to sample
a large number of points from the predictor and use these to initialize Bayesian opti-
misation. Then Bayesian optimisation is performed as normal, but in each iteration,
when f(x) is sampled at a point x ∈ X , all predicted points that are within a given
radius from x are removed from the model. Formally, in each iteration i, the method
maintains two sets of data. The set Ri denotes the set of real data, and it contains
pairs (x, f(x)). The set Pi denotes the set of predicted data, and it contains pairs
(x, p(x)). At the start of the process R0 is empty, since no queries to f have been
made, so the surrogate model is initialized with a set of initial predicted points, P0.
P0 is generated selecting random input points from the domain X and evaluating
the predictor at these points. In each step, Bayesian optimisation proposes a new
point xi ∈ X to be sampled. The new data (xi, f(xi)) is added to Ri, and then all
predicted points that are close to xi are deleted from Pi. Specifically, all predicted
points within distance r from xi are deleted from Pi. Thus, the set of points to delete
at step iteration i + 1 is given by: Bi+1 = {(x, y) ∈ Pi : ‖x− xi‖2 ≤ r}. The radius
r is a parameter of the algorithm.

3.4.2 Discrepancy prediction method

The discrepancy prediction method, shown in Algorithm 3, aims to reduce the discrep-
ancy of a point, as defined in Equation (3.2), by estimating its value, and correcting
the predicted points by this estimated quantity. The estimation of δ(x) is maintained
during the entire optimisation process.

For this purpose δ is modelled by a Gaussian process which is trained during
the course of the Bayesian optimisation. Hence, this method uses two Gaussian
processes: the model M that is used as part of Bayesian optimisation, and a model
Mδ that is used to predict the discrepancy.

As Bayesian optimisation proceeds, a set Ci containing data on the discrepancy
of all points that we have sampled from f is maintained. That is, every time f(x) is
sampled, (x, f(x)−p(x)) is added to Ci. Then the surrogate model of the discrepancy,
Mδ, is trained using Ci. We define δ̂ : D → R to be the expected value δ(x) of each
point x ∈ D as predicted by Mδ.
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Algorithm 2: The exclusion radius method

Input: The initial exclusion radius r, a predictor p, and a number of real
observations Nobs

1 Initialize the starting sets of real and predicted points respectively as
R0 = ∅, P0 = {(xj, p(xj)}j=1,··· ,N and set the initial data set D0 = R0 ∪ P0

2 for i← 0, 1, ... do
3 Update the surrogate model M using the whole data set Di
4 Select a new point xi+1 by optimizing the acquisition function a:

xi+1 = arg max
x∈X

a(x,M)

5 Query f to obtain yi+1 = f(xi+1)
6 Create a new real data set Ri+1 = Ri ∪ {(xi+1, yi+1)}
7 Find the predicted points in a ball around xi+1:

Bi+1 = {(x, y) ∈ Pi : ‖x− xi+1‖2 ≤ r} Exclude those points by setting
Pi+1 = Pi \ Bi+1

8 Set Di+1 = Ri+1 ∪ Pi+1

9 if number real observations = Nobs then
10 break
11 end

12 end

Like the exclusion radius method, we split the data into real points Ri, and
predicted points Pi, but no predicted points are deleted. Instead, in each iteration i
the predicted points are updated using the currently estimation of the discrepancy δ̂i.
Formally this update is performed by creating a set Pi containing (xp, p(xp) + δ̂(xp))

for each predicted point xp ∈ A. The values of the expected discrepancy δ̂(xp) are
inferred using the surrogate model Mδ.

The discrepancy prediction method is initialized using a mix of predicted points
and real points (for the experiments a set of 45 predicted points and 5 real points are
used). The small set of real points is used to train an initial discrepancy predictor,
and then make an initial adjustment of the predicted data before the optimisation
process begins. So formally, if k real points and l predicted points are used for
initialization, then the real set is given by R0 = {(xi, f(xi)) : i = 1, 2, . . . , k} where
each xi is chosen uniformly from the domain X , and the set of predicted points is
given by C0 = {(xi, f(xi)− p(xi)) : i = 1, 2, . . . , k} for those same points. Then we
train Mδ on C0, and we set P0 = {(xi, p(x) + δ̂(x)) : i = 1, 2, . . . , l} as the initial
set of predicted points.
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Algorithm 3: The discrepancy prediction method

Input: predictor p, number of real observations Nobs

1 Initialize the R0, P0, and C0 as mentioned in the text, and set S0 = R0 ∪ P0

2 for i← 0, 1, ... do
3 Update the surrogate model M using the data in Si
4 Update the surrogate model for the discrepancy Mδ using the data in Ci
5 Select a new point xi+1 by optimizing the acquisition function a:

xi+1 = arg max
x∈D

a(x,M)

6 Query f to obtain yi+1 = f(xi+1)
7 Create a new real data set Ri+1 = Ri ∪ {(xi+1, yi+1)}
8 Set Ci+1 = Ci ∪ ((xi+1, f(xi+1)− p(xi+1))), and then retrain Mδ on Ci+1

9 Compute the predicted discrepancy δ̂(x)) using the updated model Mδ

10 Create Pi+1 = {(x, p(x) + δ̂(x)) : x is a point in P0}
11 Set Si+1 = Ri+1 ∪ Pi+1

12 if number real observations = Nobs then
13 break
14 end

15 end
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nr = 0 real  data

Update GP 

 next point  xn+1
 xn+1=arg max a(x) 

n <  max_steps?

Delete predicted data within
distance r from xn+1Bn+1=(x , y)∈D0 :‖x−x i+1‖2≤ryn+1=f(x)

Initial Dataset 𝒟0

np  predicted data

Update the data set 𝒟n+1 =  𝒟n ⋃{xn+1, yn+1}\Bn+1

Return
xopt=arg minμ0 (x)

Yes

No

Figure 3.2: Left: workflow diagram of the exclusion radius method. Steps which differ
from standard BO are in orange. Right: scheme of the exclusion radius method for a
1-dimensional problem. Real points are indicated with ×, and predicted points with
a circle. Each time a new real point is acquired, a region centered in that point is
computed according to point 7 of Algorithm 2. The predicted points which fall any
of these regions are shown by grey circles: those points are removed from the data set
of the surrogate model, D, and will no longer be considered for the hyper-parameters
optimization since the next BO step. The green circles indicate the predicted points
which are outside of the aforementioned regions, and that will remain in D.
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Update GPf

Initial Dataset 𝒟

yn+1=f(xn+1)
 next point  xn+1

Update GPδ

Compute discrepancy δ(xt+1)= f(xt+1) - p(xt+1)
Pn+1={(x ,p(x)+δ̂ (x))}

Update the data set 𝒟n+1 =  Rn ⋃ 𝒫 n+1 ⋃{xn+1, yn+1} 

Return

n < max_steps?

Recompute all the predicted points

 xn+1=arg max a(x)

xopt=arg minμ0 (x)

No

Yes

Figure 3.3: Top left: workflow diagram of the discrepancy prediction method. Steps
which differ from standard BO are in orange. The graph on the right shows a 1D
example of the discrepancy prediction method: in the top graph the actual objective
function f and the predictor p are plotted respectively with a continuous and a dash
black line, while the red points indicate the set of initial predicted points. The real
points are indicated with a black ×. Each time a real point (xt, yt) is acquired, the
predicted output at xt is computed, and the point (xt, f(xt) − p(xt)) is added to
the data of the surrogate model for the discrepancy, GPδ, as shown at point 8 of
Algorithm 3. These additional predicted points, plotted in the top graph with green
×, are used to train GPδ. The bottom graph shows the actual discrepancy over the
whole search space and (red continuous line), while the grey dashed line and the blue
dashed line plot the discrepancy predicted by GPδ at t = 0 and t = 5 respectively,
showing significant improvement as more data becomes available.
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3.5 Experimental Setup

This section is organised as follows: first a formal treatment of the predictors is
introduced as they are vital to the study of our methods.

Indeed, even if the methods we propose are agnostic to the nature of the predictor
and how it is generated, for our studies we needed to implement synthetic predictors,
and to be able to tune their error with respect to the actual objective function, in
order to assess the performance of each method against such error.

The building procedure for the predictors is an important part of our experi-
mental set up, because, as explained in Section 3.5.1, some requirements need to be
fulfilled in order to asses our methods correctly and to mimic realistic approximate
models, which would be used for optimisation of experiment design: for example
a low accuracy model would be continuous and smooth. It is important to notice
that the procedure to build the predictor is not part of our BO methods, and the
information about the predictor’s accuracy is not used in the optimisation process.
Thus the assumptions listed in Section 3.2 are still valid.

Following the description of the predictors, the overall experimental setup, and
the setup for each of the methods will be provided.

3.5.1 The Predictors

The study presented here has been accomplished on five synthetic benchmarks func-
tions: Ackley, Griewank, Michalewicz [50], Rastrigin [109] and Styblinski-Tang [100].
The analytical form of these functions as well as their global minima and the search
domain over which they are optimized are summarized in Table 3.1.

While these benchmarks are standard, they do not come with any pre-defined
predictor functions, so for the purpose of this study we build the predictors starting
from the benchmark functions themselves. In doing so we also aim to tune the
predictors’ accuracy.

Creating the predictors. As mentioned in Section 3.2 the predictors must have
the following properties:

• The predictor must be deterministic.
• The predictor must be smooth.

Furthermore, for benchmarking purposes, the discrepancy between the actual ob-
jective function and a predictor needs to be tunable, so to allow us to assess the
robustness of a given optimisation method at different levels of accuracy.
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Name Formula Minimum Search domain

Ackley −20 exp

−0.2

√√√√0.5
2∑
i=1

x2
i


− exp

[
0.5

2∑
i=1

cos(2πxi)

]
+

e+ 20

f(0, 0) = 0 −4 ≤ xi ≤ 4

Griewank 1 +
1

4000

2∑
i=1

x2
i −

2∏
i=1

cos

(
x(i√
i

) f(0, 0) = 0 −10 ≤ xi ≤ 10

Michalewicz −
∑2

i=1 sin(xi) sin20

(
i x2

i

π

)
f(2.20, 1.57) = −1.801 0 ≤ xi ≤ π

Rastrigin 20 +
2∑
i=1

[
x2
i − 10 cos(2πxi)

]
f(0, 0) = 0 −5.12 ≤ xi ≤ 5.12

Styblinski-
Tang

1

2

2∑
i=1

(
x4
i − 16x2

i + 5xi
)

f(−2.0935,−2.0935) ' −78.33 −5 ≤ xi ≤ 5

Table 3.1: The benchmark functions that we use

To achieve all these requirements we create the predictors using Gaussian pro-
cesses, which are initialised with a subset of the search space A ⊂ X . The set A is
chosen according to a Latin hypercube sampling [66] that is overlaid on the space X .

Latin hypercube sampling is a method for generating near-random samples from
a multivariate distribution. Compared to random sampling, it is able to reduce
the number of samples necessary to approach the real distribution of the sampled
function [69].

To further reduce the regularity, each point in the set A is perturbed using a
random shift. In full detail, our technique is as follows.

1. Firstly, we extend the original search space by 10% in each dimension, obtaining
a new space X ′ ⊃ X . Afterwards a subset of 400 input points A ⊂ X ′ is
generated, according to a Latin hypercube sampling [66].

2. To further increase the variability between different predictors a second set of
points A′ is generated, in which each point in A is translated by a random
offset. This is done by constructing a point (x + α, y + β) for each input
variable x ∈ A, where α and β are distributed according to N (0, 0.2).

3. A set of training points Dp = {(xj, f(xj) + αN)} is generated, where xj ∈ A,
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and a value of +1 or −1 is randomly assigned to α, with the probability of
either choice being 0.5.

4. The set of points {(x, v(x) : x ∈ A′} are fitted using a Gaussian process with
squared exponential kernel, GP (µ(x), k(,x′)). The posterior mean of the GP,
µ, is our predictor function p.

The resulting predictor is a deterministic smooth function over the entire domain,
which assumes values p = µp ≈ f(x) ± N for x ∈ A, while its value in the space
X \ A is still affected by N .

In Step 1, we extend the domain beyond the original search space to ensure that
the predictor gives reasonable answers on the boundary of the domain. Without this,
the GP will have high variance on the boundary, leading to poorer quality predictions
on the boundary relative to the rest of the space.

Creating predictors for benchmarking. Despite the parameter N being fixed
during the construction process of the predictors we still observed a wide variety of
predictors. Moreover, different benchmark functions react to increases in the error
parameter to different extents. This problem can be addressed as follows. For each
predictor it is possible to quantify its inaccuracy via the mean squared error between
f and p, defined as:

Ê =

√∑M
i=1 [f(xi)− p(xi)]2

M
. (3.9)

For our setup, we sampled Ê according to a grid containing M = 30000 points.
However, Ê is not normalized across different benchmark functions, and thus it
cannot be used directly as a measure of accuracy. It is instead convenient to define
the accuracy of a predictor as acc(p) = Ê/∆f , where ∆f = max

x∈X
[f(x)]−min

x∈X
[f(x)].

For the experiments reported below three target error levels were fixed for each
benchmark: acc(p) = {0.05, 0.10, 0.15}. From here on these three levels will be
referred to as low, medium, and high error, respectively. Once the desired levels of
accuracy have been set, for each level a subset of predictors has been selected which
have that level of accuracy. This has been achieved by binary search over the values
of N .

For each accuracy value 100 predictors have been generated, and then N has been
adjusted upwards or downwards depending on whether the average accuracy was too
high or to low relative to the target accuracy. Then, once an appropriate value of
N was found, there was still a wide range of accuracies in the generated predictors.
Thus all predictors that were further than 5% away from the target accuracy.

After this pruning, there were at least 20 generated predictors left in the bench-
marking set. The resulting predictors and error levels are shown in Figure 3.4.
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Figure 3.4: Top: the error parameters used to generate predictors for each function.
N has been divided by ∆f to partially normalize across the benchmarks. Bottom:
example of predictors at the three error levels for the Michalewicz function.
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3.5.2 Experimental parameters

A summary of all the parameters can be found in Tables 3.2 and 3.3 in this section.
Both exclusion radius and discrepancy prediction methods have been benchmarked
against the standard Bayesian optimisation method that does not use the predictor
at all, and against a standard multi-fidelity approach that treats the predictor as a
lower fidelity model.

For a fair comparison both our methods and multi-fidelity were run until the
objective function f was queried a fixed number of times, so that all the methods
could exploit an equal amount of real data. In all experiments, this number is set
to 80 real queries. For all methods except multi-fidelity, this means that the number
of steps is fixed, since those methods query one real point in each iteration, while
for the multi-fidelity approach the number of iterations was unbounded, since any
iteration that queried the predictor was not counted. For practical reasons however
the multi-fidelity method was stopped after a maximum of 1000 iterations in total.

The quality of each method is measured according to the regret of the optimal
point xopt found by the method, which is defined as R(t) = f(xopt(t))− fopt, where t
indicates the BO iteration step. As the R(t) is averaged over all the experiments on
the individual predictors, the actual measure of performance is the averaged regret :

R̂ = 〈f(xopt(t))− fopt〉 = 〈f(xopt(t))〉 − fopt. (3.10)

For the exclusion radius method and discrepancy prediction method the optimum
point xopt is defined as the point that minimizes the mean of the surrogate model
M, while for the multi-fidelity method xopt is defined as point that minimizes the
mean of the high-fidelity surrogate model.

Standard Bayesian optimisation. The standard Bayesian optimisation method
is initialized with five random points, and it is otherwise unaltered.

Exclusion radius method. The exclusion radius method is initialized with zero
real points and 50 predicted points. The performance of this method is tested for a
range of different values for the radius parameter r.

Each benchmark has a different sized domain, so absolute values of r cannot be
compared across different benchmark functions. For this reason, the values of r are
selected relative to the size of the search space. Since each benchmark function has
a square shaped search space with side-length l (see Table 3.1), the values of r are
chosen so that r/l = {0.05, 0.1, 0.15, 0.2, 0.3}, corresponding to 5%, 10%, 15%,
20%, and 30% of the size of the search space.

Additionally, the case where r/l = 0 was tested. Setting the radius to zero
implies that no points will be deleted during the optimisation. This will allow us to
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compare the exclusion radius method and the discrepancy prediction method against
a baseline method that does not delete points.

Discrepancy prediction method. For the discrepancy prediction method we
chose a GP with an RBF kernel as surrogate model Mδ, which was initialised with
5 points, which were randomly sampled from the search space, and for which both
the objective function and the discrepancy δ(x) = f(x)− p(x) were evaluated.

The surrogate model for the objectiveM was initialised with a total of 50 points,
which included the 5 points used to initialize Mδ. Unlike the exclusion radius
method, discrepancy prediction method needs no other parameters.

Both the exclusion radius method and the discrepancy prediction method were
implemented on top of the package for Bayesian optimisation GPyOpt [7].

The multi-fidelity method. To compare exclusion radius method and discrep-
ancy prediction method to multi-fidelity Bayesian optimisation, the predictor and
the actual objective function were treated as low and high fidelity model respec-
tively. Since both our methods use one single predictor for each experiment, the
multi-fidelity experiments reported were set with only two levels of fidelity.

Although one of the working assumptions for this work is that the the predictor
is essentially free to query, applying the multi-fidelity method requires us to assign
a finite and positive cost to both the objective and the predictor.

To be consistent with the hypotheses that the f is much more expensive than p,
a much higher cost should be assigned to the first than to the second. However doing
so caused the method to almost exclusively query p, and the stopping condition of
80 real observations was not reached in a reasonable amount of time. For this reason
the cost of p was set to 1, and two testing values were chosen for the cost of f : 2
and 10.

The multi-fidelity method was initialized by using 5 random real points for the
high-fidelity function, and 50 random points for the low-fidelity function. The code
for the multi-fidelity experiment uses the implementation provided by the python
package Emukit [84]. The cost aware acquisition function chosen for all experiments
is obtained by dividing the standard entropy search by the cost of each model.
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Method # Real # Pred. Â/∆f r/l Cost
Standard 5 0 — — —
Exclusion
radius

0 50 0.05, 0.1,
0.15, 0.2

0, 0.05, 0.1,
0.15, 0.2, 0.3

—

Discrepancy
prediction

5 45 0.05, 0.1,
0.15, 0.2

— —

Multi-fidelity 5 50 0.05, 0.1,
0.15, 0.2

— 2, 10

Table 3.2: Experimental setup for each method. # Real and # Pred. denote the
number of real and predicted points used to initialize the method. Â/∆f denotes the
predictor accuracies that were tested. r/l gives the values of the radius parameter
for the exclusion radius method, while cost denotes the costs that were tested for the
multi-fidelity method.

Function
Error parameters (N) Exclusion radius (r)
5% 10% 15% 0% 5% 10% 15% 20% 30%

Ackley 0.83 2.8 3.75 0 0.4 0.8 1.2 1.6 2.4
Griewank 0.12 0.31 0.48 0 1.0 2.0 3.0 4.0 6.0
Michalewicz 0.07 0.3 0.8 0 0.16 0.31 0.47 0.63 0.94
Rastrigin 2.23 6.22 14.22 0 0.51 1.02 1.54 2.05 3.07
Styblinski-Tang 50.18 158.91 234.18 0 0.5 1.0 1.5 2.0 3.0

Table 3.3: Absolute values of the set up parameters for the exclusion radius method
and for each benchmark functions.
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3.6 Results

Experimental results are shown in Figure 3.5, on a logarithmic scale, and in Fig-
ure 3.6 on a linear scale. The experiments with the exclusion radius and with the
discrepancy prediction methods have been performed using a package built on top
of the python library GPyOpt [7], while the results with the multi-fidelity method
have been accomplished using the Emukit [84] library.

We observed that both the exclusion radius method and the discrepancy pre-
diction method outperform standard Bayesian optimisation, especially during the
early stages of the optimisation process. This is particularly clear in the linear-scale
charts. However in the logarithmic scale it can be seen that multi-fidelity methods
eventually catch up once we are very close to the optimal point.

Another measure of performance considered here is the number of real observa-
tions needed to get within 5% of the optimal value. This percentage is quoted relative
to the average value of the benchmark function: we define f̂ to be the average value
of f , computed by sampling 10000 points according to a grid design, and then we

set our target as 0.05×
(
f̂ − fopt

)
.

The plot in Figure 3.7 shows the first real observation at which each method
achieves a regret that is better than this value. This data is reported in more detail,
for each level of error of the predictors, in Tables 3.4, 3.5, and 3.6.

Analysis. For the exclusion radius method, it can be seen that as the error level
of the predictor increases, the optimal values for r/l also increase, indicating that
a higher number of predicted points need to be discarded in higher error regimes.
Generally optimum values for the exclusion radius are between 0 and 0.15 × l in
the low error regime, between 0.05× l and 0.2× l in the medium error regime, and
between 0.1× l and 0.2× l in the high error regime. In reality the level of error of the
predictors is not known a priori, but the results shown in Figure 3.7 indicate that
the choice r/l = 0.1 is suitable for all the three regimes.

Surprisingly, the benchmark obtained by setting the radius to r/l = 0, meaning
that no points were deleted, was competitive, though not optimal, in the low and
medium error regimes. However, the method performs very poorly in the high error
regime. Hence, deleting points does have a positive effect on convergence speed.
The results also show that, for low and medium error predictors, the discrepancy
prediction method is competitive with the exclusion radius technique on four out of
the five benchmark functions, with only the Styblinski-Tang function showing poorer
convergence in the earlier stages of optimisation. In the high error regime the method
is less consistent.

In summary, if an approximate estimation of the error level of the predictor is
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available, then the parameter r can be fine-tuned to achieve excellent results. If
the error level of the predictor is unknown, then either the exclusion radius method
with r/l = 0.1, or the parameter-free discrepancy prediction method can be used, to
achieve generally good results. The trends of the average regrets obtained for each
function are plotted in logarithmic and in linear scale in Figure 3.5 and in Figure 3.6
respectively.

Computation time. We also found that our methods were substantially faster in
computation time when compared to the multi-fidelity approach. Figure 3.8 shows
the wall clock time that was taken for each method to reach 80 real observations.
The multi-fidelity approach can be seen to be substantially slower, and we found
that this was for two reasons: the multi-fidelity approach uses more iterations, and
each iteration takes substantially more time.
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Figure 3.5: Experimental results for all methods on all benchmarks. The curves for
standard BO, for the discrepancy prediction method, and for multi-fidelity Bayesian
optimisation experiments start at observation 5, as they are all initialized with 5 real
points. The curves for the exclusion radius method start from 0 as no real points are
used for the initialization.
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Figure 3.6: Here the average regrets shown in Figure 3.5 are plotted on a linear scale.
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Figure 3.8: Total computational time in seconds for each method.
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Low Error
Function r/l Exc. radius Standard Discr. MF cost 2 MF cost 10

Ackley 0 7 24 12 12 12
0.05 7
0.1 7
0.15 7
0.2 6
0.3 7

Griewank 0 1 11 7 21 14
0.05 1
0.1 1
0.15 1
0.2 1
0.3 1

Michalewicz 0 17 46 21 35 46
0.05 17
0.1 25
0.15 25
0.2 21
0.3 29

Rastrigin 0 14 63 22 52 36
0.05 18
0.1 14
0.15 20
0.2 18
0.3 27

Styblinski-Tang 0 8 25 13 11 8
0.05 8
0.1 8
0.15 6
0.2 7
0.3 16

Table 3.4: Number of steps needed to get within 5% of the optimal point for low
error predictors.
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Medium Error
Function r/l Exc. radius Standard Discr. MF cost 2 MF cost 10

Ackley 0 11 24 14 15 12
0.05 8
0.1 8
0.15 8
0.2 7
0.3 8

Griewank 0 4 11 8 21 16
0.05 3
0.1 2
0.15 2
0.2 3
0.3 3

Michalewicz 0 9 46 15 28 29
0.05 7
0.1 11
0.15 9
0.2 11
0.3 14

Rastrigin 0 17 63 23 47 38
0.05 14
0.1 19
0.15 16
0.2 17
0.3 23

Styblinski-Tang 0 34 25 17 13 12
0.05 17
0.1 12
0.15 10
0.2 13
0.3 18

Table 3.5: Number of steps needed to get within 5% of the optimal point for medium
error predictors.
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High Error
Function r/l Exc. radius Standard Discr. MF cost 2 MF cost 10

Ackley 0 28 24 19 16 17
0.05 14
0.1 12
0.15 11
0.2 12
0.3 12

Griewank 0 8 11 10 19 18
0.05 4
0.1 4
0.15 4
0.2 4
0.3 4

Michalewicz 0 22 46 32 35 35
0.05 24
0.1 21
0.15 23
0.2 23
0.3 22

Rastrigin 0 53 63 40 49 71
0.05 23
0.1 24
0.15 25
0.2 29
0.3 41

Styblinski-Tang 0 - 25 18 18 18
0.05 22
0.1 14
0.15 13
0.2 14
0.3 19

Table 3.6: Number of steps needed to get within 5% of the optimal point for high
error predictors.
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3.7 Conclusion

Two algorithms to accelerate Bayesian optimisation by exploiting predicted knowl-
edge were proposed. Both methods are conceptually simple and they are competitive
with state of the art methods like multi-fidelity optimisation, while requiring remark-
ably less computational time. Experimental findings show that a reasonable choice
for the exclusion radius is r/l = 0.1, which is suitable for all the error levels that we
considered. The discrepancy prediction method is overall less performant than the
exclusion method, especially in the high error regime, but it has the advantage of
not depending on any hyper-parameters.
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Chapter 4

Enhanced Methods for Integrating
Predicted Data into Bayesian
Optimization

4.1 Introduction

This chapter describes variants of the methods reported in Chapter 3 to integrate
predicted data into Bayesian optimisation. The two main methods proposed there
are the exclusion radius method and the discrepancy prediction techniques. For each
of these methods, here we explore several variants, with the aim to further improve
the balance between the informativeness of the predicted data and its inaccuracy. For
the exclusion radius method this means optimizing the rate at which the predicted
points are deleted, by tuning the value of the radius r. For the discrepancy prediction
method instead, higher performance can be potentially achieved by increasing the
predictive accuracy of the surrogate modelMδ which approximates the discrepancy.
This can be achieved either by increasing the amount of training data or trying to
improve the model Mδ itself. The work reported in Chapter 3 has been performed
using a Gaussian process as surrogate the model Mδ, but alternative regression
models can be used to learn the discrepancy. Here the gradient boosting regressor
(GBR) model has been tested, and a brief description of this model is given in
Section 4.4.1.

In total four different approaches have been implemented:

1. Early switch exclusion radius method.
2. Adaptive radius exclusion method.
3. Discrepancy prediction method with a gradient boosting regressor.
4. Discrepancy prediction method with extra training points for Mδ.
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All the experiments described in this chapter have been performed using the same
benchmark functions, the same predictors and, where applicable, same the values of
radius parameter r used for the results reported in Chapter 3. The performance
of each method will be measured using the average regret, which has already been
defined in Eq. (3.10):

R̂ = 〈f(xopt(t))− fopt〉.
It is worth here mentioning how xbest is evaluated: in Bayesian optimisation this

is done simply by taking the best point among all those previously observed, i.e:

xbest = arg min
x∈D

f(x). (4.1)

In multi-fidelity BO however, xbest is evaluated by sampling the predictive mean
of the surrogate model at the highest level of fidelity, µ`=0, and selecting the optimal
sampled point:

xbest = arg min
x∈Xsample

µ`=0(x), (4.2)

where Xsample ⊂ X This approach is followed for instance by Poloczek et al., [87],
and it is also adopted for the experiments reported in Chapter 3. The reason for this
procedure is that multi-fidelity BO aims to limit the queries of the objective function
to minimise the evaluation cost, but querying a low fidelity model might result in
acquiring poor quality observations. On the other hand more accurate values might
be obtained by querying µ`=0, while still avoiding the cost of evaluating the actual
objective function itself.

As the methods described in this chapter will also be compared to the multi-
fidelity method, we use both Eq. (4.1) and Eq. (4.2) for xbest. For clarity, in the
rest of this chapter the regret R computed combining Eq. (3.10) with Eq. (4.1) will
be called predicted regret and indicated simply with R, while the regret computed
using Eq. (4.2) will be called predicted regret, as it is computed using the predictive
mean, and it will be indicated with Rp. To compute Rp the predictive mean of the
actual objective has been sampled over 10,000 points randomly sampled from the
whole search space X according to a uniform distribution.

We point out however that using Rp as a measure of performance is due only
for fair comparison with the multi-fidelity method. For some of the experiments
reported below Rp is lower than the simple regret R: this indicates that, for these
specific experiments, the surrogate model is a fairly accurate model of the objective,
and that the acquisition function gives less accurate estimation of the position of the
optimum point. We speculate that this happens because the acquisition function
not only exploits the information coming from the surrogate model to find xbest,
but it also enforces exploration, which could result in detrimental performance if the
surrogate model is accurate.
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4.2 The early switch exclusion radius method

The main idea of the early switch exclusion radius method is to switch from exclusion
radius method BO to standard BO before the optimisation process ends, by deleting
all the remaining predicted points altogether at a given optimisation step tsw.

From here on we will call this method simply the early switch method. The
rationale behind this strategy is that, while the predicted points accelerate the con-
vergence of the BO at its early stages, they could hinder the optimisation later on,
because their inaccuracy could prevent the surrogate model from learning the objec-
tive function efficiently: for example a predictor could wrongly predict high values
of the objective function in the proximity of the minimum. In this case the surro-
gate model would also return high expected values in that region, thus biasing the
acquisition function to avoid sampling there. The consequence is that BO will not
converge to the minimum. By removing misleading predicted points, the early switch
method may help in that scenario.

The exclusion radius method is designed to remove predicted points along the
way, but the amount and the location of the deleted points are not directly con-
trolled during the experiment, as they depend on which points have been previously
acquired. As a consequence, depending on the specific objective at hand, the number
of predicted points remaining until the end of the BO process might still be too high,
especially for the highest levels of predictors’ error.

The early switch method was implemented to test this hypotheses and to investi-
gate if and when the elimination of all predicted points is beneficial. The experiments
performed using this method have the purpose to explore the possible experimental
for each value of predictors’ error, which will be described in Section 4.3.

4.2.1 Early switch method experimental settings

The early switch method has two parameters, the radius r and the switch iteration
tsw, at which the switch to standard BO happens. The radius r was set to r/l =
{0.05, 0.10, 0.15, 0.20, 0.30}, and, for each value of r, the iteration tsw was varied
between 10 and 70 in steps of 10. Each single combination of experimental settings
was repeated on a series of at least 20 predictors, over which the results have been
averaged.

4.2.2 Results of the early switch method

The early switch method has been compared to the exclusion radius method sim-
ply by evaluating the difference between the respective average final regrets: ∆R̂ =
R̂switch − R̂excl, where the R̂switch and R̂excl are defined as in Eq. (3.10). The heat
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maps in Figure 4.1 and Figure 4.2 report the values of ∆R̂ versus all the combina-
tions of exclusion radius r and switch iteration tsw for predicted and simple regrets
respectively. Results are shown for all benchmark functions and for all the three
levels of error of the predictors.

These figures show that the original exclusion radius method outperforms the
early switch method in a large majority of experimental settings for r and tsw, for
all three regimes of predictors’ error. Although the early switch method achieves a
lower final regret at some specific combinations of r and tsw, no clear trend can be
inferred between these parameters and the observed values of ∆R, which prevents
us from determining in which conditions the early switch method would generally
perform better for most of the benchmarks. Also, the extent of such improvement
varies widely among the benchmark functions, being almost irrelevant for some.

More importantly, at a given level of predictors’ accuracy, the absolute best result
is almost always achieved by the exclusion radius method, for an appropriate value
of r. This is shown in Tables 4.1 and Tables 4.2 for simple and predicted regrets
respectively. More detailed information is displayed in Tables A.1, A.2 and A.3 for
simple regrets, and in Tables A.4, A.5 and A.6 for predicted regrets.

Each table reports the best final regrets observed with early switch method and
the parameter tsw at which they are achieved, compared with the results obtained
with exclusion radius method in the same conditions.

A possible cause of the lower performance of the early switch method is the
abrupt drop in the predictive accuracy of the surrogate GP model, observed after
the elimination of the points. Here the predictive accuracy is defined as follows: first
the objective function f is evaluated on a grid of 10,000 points, Xgrid, then values
of f predicted by the GP at Xgrid are computed. The latter values are given by
µ(Xgrid), where µ is the posterior mean of the GP, defined by Eq. (2.8). Finally the
predictive accuracy Ap is defined as the Pearson correlation coefficient ρ between the
actual values of the objective function, f(Xgrid) and the predicted values µ(Xgrid):

Ap = ρ (f(Xgrid), µ(Xgrid)) . (4.3)

Compared to other possible ways of measuring the predictive accuracy, like for ex-
ample mean-squared error, the Pearson correlation coefficient gives a quantity that
is independent of how large values these functions can get in the search space where
we studied them.

The values of Ap are plotted in Figure 4.3, Figure 4.4, and Figure 4.5. These plots
show the values of Ap, evaluated at BO steps n = {11, 21, 31, 41, 51, 61, 71},
i.e. one optimisation stage after all the predicted points are deleted. It is possible to
observe that:

1. A sharp drop in Ap occurs immediately after all the predicted points are deleted,
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Figure 4.1: Final predicted regrets for different values of radius parameter r and
early switch iteration tsw for all the benchmark functions. Blue and red squares
indicate experimental settings at which the early switch method performs better and
worse than the exclusion radius method respectively.
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Figure 4.2: Final simple regrets for different values of radius parameter r and early
switch iteration tsw for all the benchmark functions. Blue and red squares indicate
experimental settings at which the early switch method performs better and worse
than the exclusion radius method respectively.
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followed by a steady increase during the following optimisation steps.

2. The extent of this drop decreases with increasing tsw, meaning that the later the
predicted points are eliminated the lower is the deterioration of the accuracy
of the surrogate model.

3. The recovery of Ap after the elimination of all predicted points presents a
different behaviour across the different benchmark functions: for some, like
Michalewicz and Styblinski-Tang the curves at all values of tsw tend to overlap
after the recovery starts. For others, like for Ackley, Griewank, and Rastrigin,
the recovery rate varies with tsw, and in some cases the predictive accuracy
remains below the starting value until the end of the optimisation.

4. The highest accuracy is observed for tsw = 70 in almost all cases, i.e. when all
the predicted points are deleted the latest. This is a further confirmation that
switching abruptly to standard BO is detrimental. The only exception to this
trend occurs for the Styblinski-Tang function, which benefits from the early
switch method at all error regimes.

60



4.2. The early switch exclusion radius method

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

r/l=0.05

Ackley

r/l=0.1 r/l=0.15 r/l=0.2 r/l=0.3

t_sw=10
t_sw=20
t_sw=30
t_sw=40
t_sw=50
t_sw=60
t_sw=70

0.2

0.4

0.6

Ac
cu

ra
cy

r/l=0.05

Griewank

r/l=0.1 r/l=0.15 r/l=0.2 r/l=0.3

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

r/l=0.05

Michalewicz

r/l=0.1 r/l=0.15 r/l=0.2 r/l=0.3

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

r/l=0.05

Rastrigin

r/l=0.1 r/l=0.15 r/l=0.2 r/l=0.3

10 20 30 40 50 60 70
BO step num

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

r/l=0.05

Styblinski-Tang

10 20 30 40 50 60 70
BO step num

r/l=0.1

10 20 30 40 50 60 70
BO step num

r/l=0.15

10 20 30 40 50 60 70
BO step num

r/l=0.2

10 20 30 40 50 60 70
BO step num

r/l=0.3

Accuracy low error

Figure 4.3: Predictive accuracy Ap for the early switch method, computed according
to Eq. (4.3), in the low predictors’ error regime. The values of Ap have been observed
at BO step numbers 11, 21, 41, 51, 61 and 71. Each curve refers to experiment with
a different setting for the parameter tsw. The graphs show that, for each value of
tsw, Ap is minimum when the BO step number is equal to tsw + 1, i.e. just after all
the predicted points are deleted.
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Figure 4.4: Predictive accuracy Ap for the early switch method, computed according
to Eq. (4.3), in the medium predictors’ error regime. The values of Ap have
been observed at BO step numbers 11, 21, 41, 51, 61 and 71. Each curve refers to
experiment with a different setting for the parameter tsw. The graphs show that, for
each value of tsw, Ap is minimum when the BO step number is equal to tsw + 1, i.e.
just after all the predicted points are deleted.
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Figure 4.5: Predictive accuracy Ap for the early switch method, computed according
to Eq. (4.3), in the low predictors’ error regime. The values of Ap have been observed
at BO step numbers 11, 21, 41, 51, 61 and 71. Each curve refers to experiment with
a different setting for the parameter tsw. The graphs show that, for each value of
tsw, Ap is minimum when the BO step number is equal to tsw + 1, i.e. just after all
the predicted points are deleted.
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LOW ERROR
Function Rexclusion r/l RSwitch r/l

Ackley 3.282E-02 ± 4.084E-03 0.05 3.363E-02 ± 2.246E-02 0.1
Griewank 3.986E-03 ± 5.059E-04 0.05 4.629E-03 ± 3.603E-03 0.05

Michalewicz 7.162E-04 ± 1.023E-04 0.1 7.127E-04 ± 7.101E-04 0.1
Rastrigin 5.209E-01 ± 1.157E-01 0.05 6.528E-01 ± 7.985E-01 0.05

Styblinski Tang 6.892E-02 ± 1.523E-02 0.15 7.219E-02 ± 7.890E-02 0.15
MEDIUM ERROR

Function Rexclusion r/l RSwitch r/l

Ackley 3.697E-02 ± 3.155E-03 0.05 3.936E-02 ± 2.782E-02 0.1
Griewank 3.892E-03 ± 4.972E-04 0.05 5.314E-03 ± 3.900E-03 0.05

Michalewicz 6.505E-04 ± 7.988E-05 0.05 7.198E-04 ± 6.687E-04 0.05
Rastrigin 5.244E-01 ± 9.302E-02 0.15 6.539E-01 ± 8.485E-01 0.15

Styblinski Tang 6.940E-02 ± 1.349E-02 0.1 6.806E-02 ± 5.470E-02 0.05
HIGH ERROR

Function Rexclusion r/l RSwitch r/l

Ackley 3.273E-02 ± 2.864E-03 0.05 3.407E-02 ± 2.496E-02 0.05
Griewank 5.070E-03 ± 4.782E-04 0.05 5.379E-03 ± 3.898E-03 0.15

Michalewicz 8.532E-04 ± 1.044E-04 0.1 8.484E-04 ± 8.051E-04 0.1
Rastrigin 6.584E-01 ± 7.857E-02 0.1 7.521E-01 ± 8.274E-01 0.1

Styblinski Tang 7.358E-02 ± 1.210E-02 0.15 6.823E-02 ± 7.255E-02 0.05

Table 4.1: Comparison between the best average simple regrets obtained with the
exclusion radius method and with the early switch method for each of the benchmark
functions, at low, medium and high levels of error. The values in bold indicate the
best method for a given function. The columns r/l report the the value of the
parameter r/l at which the best results have been achieved for each of the two
methods.
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LOW ERROR
Function Rexclusion r/l RSwitch r/l

Ackley 1.529E-02 ± 1.180E-03 0.05 1.529E-02 ± 1.180E-03 0.05
Griewank 2.600E-03 ± 5.145E-04 0.05 2.741E-03 ± 5.237E-04 0.05

Michalewicz 1.503E-04 ± 2.567E-05 0.05 1.629E-04 ± 2.709E-05 0.05
Rastrigin 4.535E-01 ± 1.143E-01 0.05 5.229E-01 ± 9.194E-02 0.2

Styblinski Tang 9.200E-04 ± 1.523E-04 0.1 8.097E-04 ± 1.644E-04 0.15
MEDIUM ERROR

Function Rexclusion r/l RSwitch r/l

Ackley 1.637E-02 ± 1.077E-03 0.05 1.595E-02 ± 1.046E-03 0.2
Griewank 2.872E-03 ± 4.911E-04 0.05 3.346E-03 ± 5.065E-04 0.05

Michalewicz 1.494E-04 ± 2.039E-05 0.05 1.545E-04 ± 2.032E-05 0.05
Rastrigin 3.728E-01 ± 9.025E-02 0.15 4.523E-01 ± 1.011E-01 0.15

Styblinski Tang 1.073E-03 ± 1.558E-04 0.15 1.019E-03 ± 2.457E-04 0.1
HIGH ERROR

Function Rexclusion r/l RSwitch r/l

Ackley 1.594E-02 ± 9.688E-04 0.05 1.604E-02 ± 9.780E-04 0.05
Griewank 3.874E-03 ± 4.856E-04 0.15 4.128E-03 ± 4.834E-04 0.15

Michalewicz 1.718E-04 ± 2.895E-05 0.15 1.731E-04 ± 2.892E-05 0.15
Rastrigin 5.782E-01 ± 7.891E-02 0.1 6.543E-01 ± 9.224E-02 0.1

Styblinski Tang 7.434E-04 ± 1.803E-04 0.3 9.303E-04 ± 1.941E-04 0.15

Table 4.2: Comparison between the best average predicted regrets obtained with the
exclusion radius method and with the early switch method for each of the benchmark
functions, at low, medium and high levels of error. The values in bold indicate the
best method for a given function. The columns r/l report the the value of the
parameter r/l at which the best results have been achieved for each of the two
methods.
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4.2.3 Early switch: conclusions

The early switch method was proposed as a straightforward approach to accelerate
the convergence pace of the exclusion radius method, by deleting all the predicted
points before the end of the BO process. The aim of this strategy is to remove
misleading data from the surrogate model, in order to improve its predictive accuracy.
We tested the performance of the early switch method at different values of the
parameter tsw, which represents optimisation step at which the switch to standard
BO occurs. Predicted and simple regrets were assessed, and compared with the
values obtained for the original exclusion radius method. The expectation was a
faster convergence for early switch BO for a suitable value of tsw, depending on the
level of error the predictors.

The experimental results however show that it is actually outperformed by the
exclusion radius method, both in terms of predicted and simple regrets, provided an
appropriate value of r is chosen. There are a few exceptions, observed mainly for the
Styblinski-Tang and the Michalewicz functions, as well as for the predicted regrets
obtained for the Ackley function at medium error regime.

Analysing the behaviour of the GP surrogate model, we found an abrupt decrease
in its predictive accuracy just after all the predicted points are deleted. We ascribe
the lower performance of the early switch method to this loss in accuracy.
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4.3 The adaptive radius exclusion method

The core idea of the adaptive radius exclusion method is to progressively increase the
deletion rate of the predicted points during BO with predictions, with the eventual
elimination of all of them before the optimisation process ends. Similarly to the early
switch method, this approach aims to eliminate inaccurate data that is potentially
harmful for the convergence of the optimisation process.

However, given the finding from Section 4.2 that eliminating them abruptly is
actually detrimental, and that the there is no evident correlation between the switch
point and the resulting performance, here we propose to act on the parameter r,
which was kept constant in the exclusion radius method and its extension the early
switch method, while now it is increased by a constant amount at each iteration.
This results in a gradual increase in the rate at which predicted points are deleted.

The hope is to achieve the same goals of the early switch method, but avoiding
the deterioration of the GP’s predictive accuracy. When r = l/2 all the remaining
predicted points will be eventually deleted from the data set. Thus, a way to set the
deletion rate is to determine at which BO step t∗ this condition first occurs.

Setting the radius. The experiments reported in this chapter have been per-
formed with a linear increase in the parameter r:

r =

{
r0 t < n

r0 + αt t ≥ n
(4.4)

where t is the current iteration, α is a coefficient which sets the increment rate for
r, and n is the number of iterations during which the radius is kept constant. The
value of the coefficient α is a positive real number, representing the increment rate
of the radius r, and it is related to t∗ according to:

α =
l
2
− r0

t∗
. (4.5)

In summary the adaptive radius exclusion method proceeds as follows:

1. Set the BO step number at which the condition r = 0.5l must be reached. The
value of α is then given by Eq. (4.5).

2. At each iteration, set the radius r according to Eq. (4.4).
3. Proceed with the exclusion radius method described in Algorithm 2 in Chap-

ter 3.
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4.3.1 Results of the adaptive radius exclusion radius method

Experimental settings

For the adaptive radius exclusion method the initial value of the radius, r0, was fixed
to r0 = 0.05l, which is the minimum value chosen for the original exclusion method.
We chose this value for r0 because ideally we want to be able to increase r slowly, and
test faster increase rates by varying the t∗: Eq. (4.5) shows that the increment rate
of r is inversely proportional to t∗. Specifically, we varied t∗ from 15 to 80 in steps
of 10 (t∗ = {15, 25, 35, 45, 55, 65, 75, 80}). To avoid deleting too many predicted
points too early in the BO process, we kept r constant for the first 10 iterations by
fixing n = 10.

The evolution of the predicted average regrets during optimisation is displayed
in Figure 4.6 and Figure 4.7, while simple regrets are plotted in Figure 4.8 and
Figure 4.9. To be able to compare the results across all the benchmark functions,
the regret curves are plotted versus the parameter t∗ rather than versus α, as the first
one assumes the same values in all cases, while the second depends on the extension
the search space of the specific function.

An overview of the final regrets reached for every value of t∗ is given also in
Figure 4.14 for predicted and simple regrets. Furthermore, the comparison with
the original exclusion radius method is summarized in Table 4.3 for simple regrets
and Table 4.4 for predicted regrets. Again, more detailed information can be found
in Appendix A: Tables A.7, A.8 and A.9 show those for simple regrets, while Ta-
bles A.10, A.11 and A.12 show results for for predicted regrets.

The figures show that, regardless of the way the regrets are computed, generally
the best final regret is obtained for α = 0, which corresponds to the original exclusion
radius method, and which is indicated as exclusion in the legends. Again, the only
exception is represented by the Styblinski-Tang function, for which the exclusion
radius method gives poor performance when the ratio r/l is set r/l = 0.05. Even
when the adaptive radius exclusion method achieves lower regrets at intermediate
optimisation steps, it is less effective than the exclusion radius method at the later
stages of the optimisation process. In particular the values of the simple average
regrets remain unvaried for quite a few BO steps.

There are at least two possible explanations for the lower performance of the adap-
tive radius exclusion method: firstly it is possible that the deletion of all remaining
predicted points when r/l = 1/2 still causes a drop in the predictive accuracy of the
surrogate model, similar to the early switch method. For simple regrets another pos-
sible explanation is that, when all the remaining predicted points get eliminated at
r/l = 1/2, the uncertainty in the GP model increases, and it has more impact in the
selection policy of the acquisition function: in other words exploration is promoted
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over exploitation, which leads to a slow-down in the convergence of the optimisation
process. This uncertainty is quantified by the variance of the GP, which here we
indicate with Sigma and that is given by Eq. (2.9) in Chapter 2. However, this
scenario does not apply to the predicted regrets, as these are selected by minimizing
the predictive mean of the GP, without taking into account the variance.

To assess these hypotheses, we monitored the evolution of the accuracy Ap, de-
fined by Eq. (4.3), at regular intervals t∗+1, analogously to what we did for the early
switch method. The values of Ap are plotted in Figure 4.10, where each curve corre-
sponds to different settings for t∗. All curves present a clear drop in the predictive
accuracy just after the optimisation process reached the step t = t∗ + 1.

The evolution of the variance of the GP, Σ, presents an opposite behaviour: in the
bottom graphs of Figure 4.11, Figure 4.12 and Figure 4.13 we plotted Σ evaluated
at the point x∗ selected by the acquisition function. Each curve represents values of
Σ(x∗) obtained in different experimental settings, corresponding to different values
of t∗, and each curve shows a peak in correspondence of t∗, indicating that once
BO reaches this step, and all the remaining predicted points are eliminated, the
uncertainty on the point selected by the acquisition is maximum.

In conclusion, both hypotheses are confirmed, and thus both increases in vari-
ance and losses in predictive accuracy contribute to reducing the performance of the
adaptive radius exclusion method.
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Figure 4.6: Average predicted regrets achieved by computing the best point at each
iteration t among all the points returned by the acquisition function up to the tth

step. The results are plotted for the Ackley, Griewank and Michalewicz functions.
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step. The results are plotted for the Rastrigin and Styblinski-Tang.
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Figure 4.8: Average simple regrets achieved by computing the best point at each
iteration t among all the points returned by the acquisition function up to the tth

step. The results are plotted for the Ackley, Griewank and Michalewicz functions.
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LOW ERROR
Function Rexclusion r/l RAdaptive

Ackley 3.282E-02 ± 4.084E-03 0.05 4.545E-02 ± 5.884E-03
Griewank 3.986E-03 ± 5.059E-04 0.05 5.599E-03 ± 5.954E-04

Michalewicz 7.162E-04 ± 1.023E-04 0.1 8.645E-04 ± 1.225E-04
Rastrigin 5.209E-01 ± 1.157E-01 0.05 6.644E-01 ± 9.768E-02

Styblinski Tang 6.892E-02 ± 1.523E-02 0.15 8.212E-02 ± 1.616E-02
MEDIUM ERROR

Function Rexclusion r/l RAdaptive

Ackley 3.697E-02 ± 3.155E-03 0.05 4.838E-02 ± 3.861E-03
Griewank 3.892E-03 ± 4.972E-04 0.05 6.486E-03 ± 5.942E-04

Michalewicz 6.505E-04 ± 7.988E-05 0.05 7.467E-04 ± 8.124E-05
Rastrigin 5.244E-01 ± 9.302E-02 0.15 7.914E-01 ± 9.453E-02

Styblinski Tang 6.940E-02 ± 1.349E-02 0.1 6.710E-02 ± 1.733E-02
HIGH ERROR

Function Rexclusion r/l RAdaptive

Ackley 3.273E-02 ± 2.864E-03 0.05 4.650E-02 ± 4.011E-03
Griewank 5.070E-03 ± 4.782E-04 0.05 5.825E-03 ± 5.581E-04

Michalewicz 8.532E-04 ± 1.044E-04 0.1 1.274E-03 ± 1.292E-04
Rastrigin 6.584E-01 ± 7.857E-02 0.1 9.599E-01 ± 1.076E-01

Styblinski Tang 7.358E-02 ± 1.210E-02 0.15 9.137E-02 ± 1.664E-02

Table 4.3: Comparison between the best average simple regrets obtained with the
exclusion radius method and with the adaptive radius exclusion method for each of
the benchmark functions, at low, medium and high levels of error. The values in
bold indicate the best method for a given function. The value of the parameter r/l
at which the best results have been achieved for the original exclusion method have
been reported in the column with the same name. The adaptive radius exclusion
method has always been performed setting r/l = 0.05.

74



4.3. The adaptive radius exclusion method

LOW ERROR
Function Rexclusion r/l RAdaptive

Ackley 1.529E-02 ± 1.180E-03 0.05 1.529E-02 ± 1.144E-03
Griewank 2.600E-03 ± 5.145E-04 0.05 3.958E-03 ± 5.642E-04

Michalewicz 1.503E-04 ± 2.567E-05 0.05 1.847E-04 ± 2.943E-05
Rastrigin 4.535E-01 ± 1.143E-01 0.05 4.418E-01 ± 8.848E-02

Styblinski Tang 9.200E-04 ± 1.523E-04 0.1 8.480E-04 ± 1.817E-04
MEDIUM ERROR

Function Rexclusion r/l RAdaptive

Ackley 1.637E-02 ± 1.077E-03 0.05 1.671E-02 ± 1.144E-03
Griewank 2.872E-03 ± 4.911E-04 0.05 4.934E-03 ± 6.005E-04

Michalewicz 1.494E-04 ± 2.039E-05 0.05 1.499E-04 ± 1.771E-05
Rastrigin 3.728E-01 ± 9.025E-02 0.15 4.973E-01 ± 8.281E-02

Styblinski Tang 1.073E-03 ± 1.558E-04 0.15 1.061E-03 ± 2.826E-04
HIGH ERROR

Function Rexclusion r/l RAdaptive

Ackley 1.594E-02 ± 9.688E-04 0.05 1.672E-02 ± 1.025E-03
Griewank 3.874E-03 ± 4.856E-04 0.15 4.729E-03 ± 5.270E-04

Michalewicz 1.718E-04 ± 2.895E-05 0.15 1.703E-04 ± 2.374E-05
Rastrigin 5.782E-01 ± 7.891E-02 0.1 6.948E-01 ± 1.158E-01

Styblinski Tang 7.434E-04 ± 1.803E-04 0.3 1.112E-03 ± 2.280E-04

Table 4.4: Comparison between the best average predicted regrets obtained with
the exclusion radius method and with the adaptive radius exclusion method for each
of the benchmark functions, at low, medium and high levels of error. The values in
bold indicate the best method for a given function. The value of the parameter r/l
at which the best results have been achieved for the original exclusion method have
been reported in the column with the same name. The adaptive radius exclusion
method has always been performed setting r/l = 0.05.
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4.3.2 Adaptive radius exclusion method: conclusions

The adaptive radius exclusion method has been proposed with the intent to delete
predicted points faster than in the original exclusion radius method, with the expec-
tation that this could result in faster convergence. To address the issues observed
for the early switch method, we chose to accelerate this deletion gradually instead
of removing all the remaining predicted points abruptly.

However, an analysis of the evolution of the surrogate model, revealed that the
predictive accuracy of the GP deteriorates also for the adaptive radius exclusion
method. Additionally, we showed that just after all the the predicted points are
eliminated, the optimisation process selects points with high variance, meaning that
exploration is largely favoured over exploitation. The trade off between the two is
recovered at the following steps, but overall the performance is negativcely effected.

We conclude that our strategies to accelerate the removal of predicted data is not
beneficial, and that in general, the original exclusion radius method manages better
the trade off between using using the approximated data when it is beneficial and
discarding with it is detrimental.
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Figure 4.10: Predictive accuracy Ap for the adaptive radius exclusion method, com-
puted according to Eq. (4.3), all predictors’ error regimes. The values of Ap have
been observed at BO step numbers 11, 21, 41, 51, 61 and 71. Each curve refers to
experiment with a different setting for the parameter tsw. The graphs show that, for
each value of tsw, Ap is minimum when the BO step number is equal to tsw + 1, i.e.
just after all the predicted points are deleted.
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Figure 4.11: Predictive accuracy of the GP surrogate model for the adaptive ra-
dius exclusion method is displayed in the 2-dimensional graphs. The 3-dimensional
graphs below show the posterior variance of the surrogate model, calculated at
the point x∗ returned by the acquisition function at BO step numbers t∗ =
{15, 25, 35, 45, 55, 65, 75, 80}, as indicated at Section 4.3. Both top and bottom
graphs plot data obtained for the Ackley and Griewank functions respectively.
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Figure 4.12: Predictive accuracy of the GP surrogate model for the adaptive ra-
dius exclusion method is displayed in the 2-dimensional graphs. The 3-dimensional
graphs below show the posterior variance of the surrogate model, calculated at
the point x∗, returned by the acquisition function at BO step numbers t∗ =
{15, 25, 35, 45, 55, 65, 75, 80}, as indicated at Section 4.3. Both top and bottom
graphs plot data obtained for the Michalewicz and Rastrigin functions respectively.
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Figure 4.13: Predictive accuracy of the GP surrogate model for the adaptive ra-
dius exclusion method is displayed in the 2-dimensional graphs. The 3-dimensional
graphs below show the posterior variance of the surrogate model, calculated at
the point x∗, returned by the acquisition function at BO step numbers t∗ =
{15, 25, 35, 45, 55, 65, 75, 80}, as indicated at Section 4.3. Both top and bottom
graphs plot data obtained for the Styblinski-Tang function.
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Figure 4.14: Final predicted average regrets (top) and simple average regrets (bot-
tom) for each level of predictors’ error. Dashed lines represent the final average pre-
dicted regret reached with exclusion radius method. Each colour refers to a distinct
benchmark function.
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4.4 Predicting the discrepancy with GBR

Gradient boosting regression (GBR) has gained increasing popularity in machine
learning due its predictive ability, both in classification and regression tasks [30, 76].
For this reason we decided to employ it as a surrogate model to approximate the
discrepancy between the predictors and the objective function. The Algorithm 3
reported in Section 3.4.2 is still valid, the only difference consisting in the definition
of Mδ. In this section a very brief overview of GBR is given, while the specific
settings of Mδ will be described in the experimental settings section.

4.4.1 The gradient boosting regressor model

Gradient boosting is a machine learning method which uses an ensemble of weak
learners to produce a prediction model. Weak learners are in general naive models,
with poor predictive accuracy but low computational cost. Typically, weak learn-
ers are decision trees, and this is also the case for the work reported here. The
idea behind ensemble machine learning methods is to build a model by combining a
relatively large number of weak predictors, in order to achieve high accuracy. The
advantage of this approach is the possibility to adjust the number of weak learners,
and thus the number of model parameters, so as to reduce bias. An ensemble predic-
tive model F (x) is iteratively improved by adding a new weak learner h(x) at each
iteration. Thus, for each point xi, F (xi) is given by:

Fm+1(xi) = Fm(xi) + βmhm(xi; am), (4.6)

where hm(· ; am) is the new weak learner added at stage m, which is defined by the
set of hyper-parameters am. The parameter βm is the weight assigned to each learner.
The model hm(· ; am) is evaluated so as compensate as much as possible the predictive
error obtained at stage m, which is quantified by the residual rm = yi−Fm(xi), where
yi is the actual value observed at xi. This is accomplished by optimizing the hyper-
parameters am and the weights βm so as to minimise the error function, or cost
function, chosen to quantify the overall predictive error of Fm. A common choice for
the cost function is the mean squared error (MSE), defined as:

LMSE =
1

n

n∑
i=1

(yi − Fm(xi))
2 . (4.7)

Thus the optimisation problem to solve is:

(βm, am) = arg min
β,a

n∑
i=1

L (yi, βhm(xi, a)) . (4.8)
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The solutions of Eq. (4.8) are computed via gradient descent. Thus the solution
at step m, Fm, is given by [14, 22]:

Fm(x) =Fm−1(x)− ρm∇Fm−1L (y, Fm−1(x))

= Fm−1(x)− ρm∇Fm−1

n∑
i=1

L (yi, Fm−1(xi))

= Fm−1(x) + ρmgm(x), (4.9)

where ρm is the learning rate, and

− gm(xi) = −
[
∂L (y, F (xi))

∂F (xi)

]
F (xi)=Fm−1(xi)

. (4.10)

The parameters of the weak learner are given by:

am = arg min
a,β

n∑
i=1

[−gm(xi)− βh(xi; a)]2 . (4.11)

The parameter ρm is computed via line search, and it is given by:

ρm = arg min
ρ

n∑
i=1

L(yi, Fm−1(xi) + ρh(xi; a)). (4.12)

Once the parameters am and ρm have been optimised, the model Fm becomes:

Fm(x) = Fm−1(x) + ρmh(x; am) (4.13)

Gradient boosting tree regression

In this section a few more details about gradient boosting regression are given in the
specific case regression trees are chosen as weak predictive models, as we do for the
discrepancy prediction method. Regression trees are themselves additive models:

h(x; {bjRj}j=1,...,J) =
J∑
j=1

bj1(x ∈ Rj), (4.14)

where J is the number of terminal node of a given tree, Rj with j = 1, . . . , J are the
disjoint regions that collectively cover the whole space of the input variables, and bj
is a constant value predicted by the tree at the region Rj. Each region corresponds
to a terminal node. Also, each region is defined by two types of parameters: its
boundaries and the assigned value bj, which represent the hyper-parameters of this
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specific learner, am. The equation (4.6) for the boosting gradient tree regressor can
be rewritten as:

Fm+1(xi) = Fm(xi) + ρm

n∑
j=1

bjm1(xi ∈ Rj)

= Fm(xi) + γj,m1(xi ∈ Rj). (4.15)

The workflow of gradient boosting, originally published in [31], is described in Algo-
rithm 4.

Algorithm 4: Gradient boosting descent

Input: Training data set Dtrain = {(xi, yi)}ni=1, differentiable loss function
L(y, F (x)), number of iterations m

Output: FM(x)
1 Initialize the model F with a constant value b0: F0 = arg minb

∑n
i=1 L(yi, b0)

2 for m=1,. . . ,M do

3 Compute the pseudo residuals: ỹi = −gm(xi) = −
[
∂L(y,F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

4 Using the train data set Dtrain optimise the parameters of the weak

learner am: am = arg mina,β

∑n
i=1 [ỹi − βh(xi; a)]2

5 Compute the linear coefficient ρm:
ρm = arg minρ

∑n
i=1 L(yi, Fm−1(xi) + ρh(xi; a))

6 Update the model: Fm(x) = Fm−1(x) + ρmhm(x)

7 end

4.4.2 Experimental results

The average predicted and simple regrets for all the benchmark functions are plotted
in Figure 4.15 and Figure 4.16 respectively. The green and red curves represent
respectively the results achieved using a GP or a GBR as a predictive model for
the discrepancy. Predicted average regrets show comparable performance for both
choices, with the exception of the Michalewicz and Styblinski-Tang functions at high
error regime: in the first case a GBR model leads to better convergence, with a final
regret lower than standard BO, while in the second case the opposite is observed.

An analogous behaviour is observed for simple regrets, although these last ones
are significantly higher than predicted regrets, similarly to what happened for the
previously described methods. Figure 4.17 and Figure 4.18 show a comparison be-
tween the final regrets obtained with the discrepancy prediction methods, with GP
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and with GBR as surrogate models, and those obtained with standard BO. While
a the results show a large variability among the different benchmark functions, no
significant difference can be discerned between the performances achieved with either
of the two models, which result comparable.

Furthermore, all the results concerning predicted regrets show that generally the
discrepancy prediction method outperforms standard BO, with the only exceptions
of the Michalewicz and Styblinski-Tang functions at high error regime. This is con-
sistent with the results reported for this BO method in Chapter 3.

On the other hand, simple regrets at the high error regime show lower performance
of the discrepancy prediction method with respect to standard BO for the majority
of the benchmark functions, whether a GP or a GBR method is chosen to predict
the discrepancy.
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Figure 4.15: Comparison between the average predicted regrets obtained using a
GP or a GBR surrogate model for the discrepancy. The results are plotted for all
three predictors’ error regimes for all the benchmark functions and compared to
standard BO.
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Figure 4.16: Comparison between the average simple regrets obtained using a GP
or a GBR surrogate model for the discrepancy. The results are plotted for all three
predictors’ error regimes for all the benchmark functions and compared to standard
BO.
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Figure 4.17: Comparison between final average predicted regrets using a GP or
a GBR surrogate model for the discrepancy. The results are plotted for all three
predictors’ error regimes for all the benchmark functions and compared to standard
BO.
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Figure 4.18: Comparison between final average simple regrets using a GP or a GBR
surrogate model for the discrepancy. The results are plotted for all three predictors’
error regimes for all the benchmark functions and compared to standard BO.
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4.4.3 Discrepancy prediction method with GBR: conclusions

The analysis of the regrets discussed above shows that, on average, using a Gaussian
process or a Gradient boosting regressor as predictive models for the discrepancy be-
tween the predictor and the actual objective function does not results in a significant
difference in the performance of the discrepancy prediction method.

This leads to the conclusion that both models have an overall comparable predic-
tive accuracy. Typically gradient boosting regressors have the capability to handle
complex and high-dimensional data sets, but in our specific study they did not present
advantages over Gaussian processes. We ascribe this to the fact that the data sets
used for our studies were low dimensional and the number of points was not very
large, which might have lead the GBR model to overfitting, outweighing potential
benefits. The results of our experiments show that using a GBR surrogate model to
predict the discrepancy is not a particularly encouraging method. Despite this we
would not rule out the use of ensemble learning models when the discrepancy pre-
diction method is applied to materials design optimisation tasks. Indeed, as it will
be shown in Chapter 5, this type of problems are typically defined in search spaces
with dimensionality much higher than 2. Furthermore overfitting can be mitigated
by applying regularisation. For example if the weak learners are decision trees as
in our experiments, Lasso regularization [39, 104] could be applied to the weights
of the trees. Alternatively, more recent and effective regularisation methods, like
DART [108], could be employed.

Other ensemble learning algorithms could also be explored, like the extreme gra-
dient boosting regressor [20], or LightGBM [55], which have proven to be more robust
than traditional Gradient Boosting Regressor against overfitting [92]. We leave the
investigation of these options for future work.
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4.5 Discrepancy prediction method with augmented

real data

This method aims to improve the original discrepancy prediction method by aug-
menting the training data set of the surrogate model for the discrepancyMδ. How-
ever this requires extra evaluations of the objective function f , which is contrary to
our overall goal. A compromise can be reached by acquiring extra real observations
only at some optimisation steps, for example according to a probabilistic rule. For
this work a random number β ∈ [0, 1] is sampled according to a uniform distribution,
and extra observations are acquired only if n is below a given threshold, T . The cri-
terion to select the location where to evaluate f is related to the location of the best
point at the current step t, xbest

s (t), as defined in Eq. (4.1). Ten points are randomly
sampled from the search space according to a uniform distribution, within a square
of side 2λ, centered at xbest

s (t). Finally, out of these ten points only the farthest from
xbest
s (t) is selected.

The rationale behind this policy, which we call FarNeighbour, is to improve the
prediction of the discrepancy in the portions of the search space with high probability
to find the optimum: the idea is that, by spending the budget of real observations in
a limited region, the predictive accuracy of the surrogate model of the discrepancy
becomes particularly good in that region. We expected this to be increasingly bene-
ficial as optimisation proceeds, as BO is more and more likely to focus in proximity
of the optimum. In the meantime we want to avoid sampling too close to previ-
ous observations, which would lead to redundancy. The parameters of this method
are the threshold T and λ. The FarNeighbour sampling method is described in the
Algorithm 5 below.

The full algorithm of the discrepancy prediction method with augmented real
data is described in Algorithm 6.

4.5.1 Experimental results

Experimental settings

For the parameter λ five values were tested, so that λ/l = {0.1, 0.2, 0.3, 0.4, 0.5},
while three values have been chosen for the threshold T , T = {−1, 0.3, 0.5} corre-
sponding respectively to 0%, 30% and 50% probability to acquire one extra observa-
tion at each BO step.

The last value of λ, λ = l/2, implies that the ten points can be selected anywhere
in the search space, disregarding the location of xbest

s completely. Furthermore the
same method has been implemented using both a Gaussian process and a gradient
boosting regressor as the surrogate models. It is important to notice that in all
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Algorithm 5: FarNeighbour

Input: Current best point xbest
s (t), sampling threshold T , sampling distance

λ, number of points to sample Nextra

Output: Point xextra

1 Sample a number β ∈ [0, 1] randomly from a uniform distribution.
2 if β < T then
3 Sample Nextra points {x1, . . .xNextra} from a uniform distribution, s.t.

xj,d ∈ [xbest
d (t)− λ,xbest

d (t) + λ] where d = {1, 2} is the spatial
component of the space.

4 Select the point xextra as:

xextra = arg max
x∈{x1,...xNextra}

d(x,xbest(t))

5 end

experiments the extra points acquired around the best point so far are counted
against the maximum number of real observations. Thus the number of real data
points in the discrepancy prediction method with augmented data is actually the
same as for all the other methods, i.e. 80.

Results

As for the previous methods, also for the discrepancy prediction with augmented real
data the average predicted and simple regrets have been computed.

Convergence curves observed with all the variants of this method are plotted in
Figures 4.19 and 4.20 for simple regrets, and T = 0.3: they show respectively the
results achieved using a GP or a GBR as surrogate model for the discrepancy. The
converge curves for the other experimental settings are provided in Appendix B, while
Table 4.5 and Table 4.6 report a summary of the final average regrets for the original
discrepancy prediction method, for the discrepancy prediction method with GBR,
and for the discrepancy prediction method with augmented real data. For this last
one, the tables show the best combination of experimental settings that give the best
results, i.e. the best choice of the surrogate model for the discrepancy, Mδ, as well
as the best values for the parameters T and λ/l. The values reported in both tables
indicate that the variant of the discrepancy prediction method with augmented real
data is the most performant in majority of the experiments, for appropriate settings
of Mδ, T , and λ/l. In particular we observe that the choice of a Gaussian process
as surrogate model Mδ is preferable for the high error regime.
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Algorithm 6: Discrepancy prediction method with augmented real data

Input: Predictor p, number of real observations Nobs, number of points to
sample Nextra, sampling threshold T , sampling distance λ

Output: Optimum point xopt
1 Initialize the real points data set R0, the predicted points data set P0, the

discrepancy data set C0 and the set S0 = R0 ∪ P0

2 for i← 0, 1, ... do
3 Update the surrogate model M using the data in Si.
4 Select a new point xi+1 by optimizing the acquisition function a:

xi+1 = arg max
x∈D

a(x|Di)

5 Select the input point for the extra real observation:
xextra
i ← FarNeighbour

6 Query f to obtain yi+1 = f(xi+1), yextra
i+1 = f(xextra

i+1 )

7 Create a new real data set Ri+1 = Ri ∪
{

(xi+1,yi+1) ,
(
xextra
i ,yextra

i+1

)}
8 Set Ci+1 = Ci ∪ ((xi+1, f(xi+1)− p(xi+1))) ∪ (xextra

i+1 , f(xextra
i+1 )− p(xextra

i+1 )),
and then retrain Mδ on Ci+1

9 Create Pi+1 = {(x, p(x) + δ̂(x)) : x is a point in P0} where δ̂ is the
predicted discrepancy.

10 Set Si+1 = Ri+1 ∪ Pi+1

11 if number real observations = Nobs then
12 break
13 end

14 end

On the other hand, combining a GBR with the discrepancy prediction method
with augmented real data generally gives lower or comparable predicted regrets with
respect to the the original method. Final simple and predicted regrets are also plotted
respectively in Figures B.7 to B.8 and in Figures B.9 to B.10, leading to analogous
conclusions.

Unfortunately there is no evident trend between the experimental settings and
the performance of the discrepancy prediction with augmented data.

This analysis however is partial, as it focuses on the best final regrets only. We
can have a broader overview of the experimental results form the converge curves
plotted in Figure 4.19, in Figure 4.20 and in in Figures B.1 to B.6. These show that,
for both simple and predicted regrets, the fastest convergence is obtained with the
original discrepancy prediction method, displayed with a black dashed line across
all the graphs. Even when the version of this method with augmented real data
reach the lowest final regret, it shows noticeably slower convergence compared to the
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original method at previous stages of Bayesian optimisation.
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Figure 4.19: Average simple regrets for all the benchmark functions, using a GP
surrogate model and a sampling threshold T=0.3. Each curve corresponds to a
different value of the ratio λ/l. The black dotted curve refers to the discrepancy
prediction method without any additional real data.
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Figure 4.20: Average simple regrets for all the benchmark functions, using a GBR
surrogate model and a sampling threshold T=0.3. Each curve corresponds to a
different value of the ratio λ/l. The black dotted curve refers to the discrepancy
prediction method without any additional real data.
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LOW ERROR
Function Rdiscr RGBR Rbest

agument Method T λ/l

Ackley 3.17E-02 ± 4.45E-03 4.10E-02 ± 5.65E-03 3.23E-02 ± 3.24E-03 GPM 0.3 0.3
Griewank 3.96E-03 ± 4.66E-04 3.91E-03 ± 4.64E-04 3.94E-03 ± 4.46E-04 BGR 0.3 0.2

Michalewicz 8.05E-04 ± 1.01E-04 8.84E-04 ± 1.11E-04 6.51E-04 ± 8.53E-05 BGR 0.3 0.5
Rastrigin 8.61E-01 ± 1.76E-01 6.72E-01 ± 1.13E-01 4.67E-01 ± 9.11E-02 GPM 0.3 0.3

Styb.-Tang 8.92E-02 ± 2.07E-02 1.10E-01 ± 3.64E-02 8.64E-02 ± 1.61E-02 GPM 0.5 0.1

MEDIUM ERROR
Function Rdiscr RGBR Rbest

agument Method T λ/l

Ackley 4.22E-02 ± 3.36E-03 4.18E-02 ± 3.42E-03 3.79E-02 ± 2.80E-03 GPM 0.5 0.5
Griewank 4.26E-03 ± 5.18E-04 4.47E-03 ± 5.54E-04 3.75E-03 ± 4.89E-04 GPM 0.3 0.2

Michalewicz 8.48E-04 ± 1.11E-04 7.88E-04 ± 9.58E-05 7.39E-04 ± 7.52E-05 BGR 0.3 0.5
Rastrigin 1.02E+00 ± 1.73E-01 1.13E+00 ± 1.94E-01 5.20E-01 ± 7.29E-02 BGR 0.3 0.5

Styb.-Tang 1.54E-01 ± 2.25E-02 4.12E-02 ± 1.48E-02 9.07E-02 ± 1.68E-02 GPM 0.5 0.2

HIGH ERROR
Function Rdiscr RGBR Rbest

agument Method T λ/l

Ackley 3.74E-02 ± 2.88E-03 4.94E-02 ± 4.60E-03 4.05E-02 ± 2.95E-03 GPM 0.3 0.1
Griewank 4.69E-03 ± 5.02E-04 4.47E-03 ± 4.75E-04 4.20E-03 ± 4.53E-04 GPM 0.3 0.3

Michalewicz 9.73E-04 ± 1.15E-04 1.31E-03 ± 4.26E-04 8.13E-04 ± 1.01E-04 GPM 0.3 0.4
Rastrigin 1.20E+00 ± 1.11E-01 1.62E+00 ± 1.65E-01 8.39E-01 ± 6.46E-02 GPM 0.5 0.1

Styb.-Tang 7.68E-02 ± 1.59E-02 7.50E-01 ± 3.50E-01 8.87E-02 ± 1.45E-02 GPM 0.3 0.1

Table 4.5: Comparison between the final simple average regrets obtained with the original discrepancy prediction
method, the discrepancy prediction method with gradient boosting regressor, and the version of the same method
with augmented real data. The regrets for each of these methods are indicated respectively with Rdiscr, RGBR

and Rbest
agument. For this last one, only the best results are displayed, and the corresponding choice of the surrogate

model for the discrepancy is reported in the column Method, where the values GPM or GBR indicate a Gaussian
process or a gradient boosting regressor respectively. The values of the parameters T and λ/l giving Rbest

agument are
also shown in the columns T and λ/l.
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LOW ERROR
Function Rdiscr RGBR Rbest

agument Method T λ/l

Ackley 1.75E-02 ± 1.48E-03 1.96E-02 ± 1.53E-03 1.64E-02 ± 1.33E-03 BGR 0.3 0.1
Griewank 2.31E-03 ± 4.93E-04 2.38E-03 ± 4.88E-04 8.12E-04 ± 2.73E-04 BGR 0.3 0.2

Michalewicz 1.47E-04 ± 2.58E-05 1.43E-04 ± 2.50E-05 1.49E-04 ± 2.25E-05 BGR 0.3 0.5
Rastrigin 7.27E-01 ± 1.59E-01 5.06E-01 ± 1.06E-01 4.16E-01 ± 9.05E-02 GPM 0.3 0.3

Styb.-Tang 1.13E-03 ± 2.91E-04 7.52E-03 ± 3.95E-03 1.44E-03 ± 2.99E-04 GPM 0.3 0.1

MEDIUM ERROR
Function Rdiscr RGBR Rbest

agument Method T λ/l

Ackley 1.72E-02 ± 1.19E-03 1.77E-02 ± 1.08E-03 1.82E-02 ± 1.25E-03 BGR 0.3 0.5
Griewank 2.98E-03 ± 4.95E-04 3.69E-03 ± 5.13E-04 1.36E-03 ± 3.79E-04 GPM 0.3 0.2

Michalewicz 1.58E-04 ± 2.08E-05 1.59E-04 ± 1.91E-05 1.38E-04 ± 1.55E-05 BGR 0.3 0.2
Rastrigin 8.45E-01 ± 1.65E-01 8.74E-01 ± 1.86E-01 4.45E-01 ± 7.27E-02 BGR 0.3 0.5

Styb.-Tang 1.33E-03 ± 3.28E-04 7.67E-03 ± 3.28E-03 1.70E-03 ± 3.11E-04 GPM 0.5 0.1

HIGH ERROR
Function Rdiscr RGBR Rbest

agument Method T λ/l

Ackley 1.80E-02 ± 1.16E-03 2.00E-02 ± 1.12E-03 1.91E-02 ± 1.10E-03 GPM 0.3 0.1
Griewank 4.08E-03 ± 4.86E-04 3.34E-03 ± 4.79E-04 2.22E-03 ± 4.21E-04 GPM 0.3 0.3

Michalewicz 1.94E-04 ± 3.35E-05 1.88E-04 ± 4.25E-05 2.46E-04 ± 3.93E-05 GPM 0.3 0.4
Rastrigin 1.15E+00 ± 1.10E-01 1.29E+00 ± 1.58E-01 5.78E-01 ± 7.60E-02 BGR 0.3 0.1

Styb.-Tang 2.70E-03 ± 1.48E-03 4.14E-01 ± 2.12E-01 1.83E-03 ± 3.84E-04 GPM 0.3 0.1

Table 4.6: Comparison between the final predicted average regrets obtained with the original discrepancy
prediction method, the discrepancy prediction method with gradient boosting regressor, and the version of the
same method with augmented real data. The regrets for each of these methods are indicated respectively with
Rdiscr, RGBR and Rbest

agument. For this last one, only the best results are displayed, and the corresponding choice
of the surrogate model for the discrepancy is reported in the column Method, where the values GPM or GBR
indicate a Gaussian process or a gradient boosting regressor respectively. The values of the parameters T and
λ/l giving Rbest

agument are also shown in the columns T and λ/l.
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4.5.2 Discrepancy prediction method with augmented real
data: Conclusions

The application of the discrepancy prediction method with augmented real data
proved to be more performant than the original one only in terms of final average
regret, although bar plots in Figure B.10 show that using this method, i.e. applying
the FarNeighbour policy is beneficial in majority of the experiments if a GBR is used
as a model to predict the discrepancy, and if we consider the predicted regrets only.

One possible drawback of this variant is the fact that sampling data in vicinity of
the current best point privileges exploitation over exploration compared to the orig-
inal method, where the policy to query the next point is dictated by the acquisition
function alone. This potentially deteriorates the overall optimisation process.

In order to overcome this issue we decided to skip the sampling of extra points
for the first 10 optimisation step. Additionally we tuned the parameter λ/l which
determines how close to xbest

s (t) the extra points are going to be sampled. However
no discernable trend con be determined for the impact of this parameter on the
performance of the method.
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4.6 Summary and Final Conclusions

In this chapter we described several variants for both the exclusion radius method
and the discrepancy prediction method. Each variant has been designed for the
purpose of improving the way of dealing with the inaccuracy of the predicted data.

The exclusion radius methods For the exclusion radius method the main goal
was to explore better criteria to keep the predicted data as long as it is informative
for the surrogate model and to discard it when it is detrimental. We designed two
heuristic strategies to discard all the predicted data before the end of the optimi-
sation process: the early switch method is a naive strategy were all the remaining
predicted points are discarded at once at a pre-establish step, which is a parameter
of the method. Although this simple approach gives better results than the original
exclusion radius method for some benchmark functions for appropriate values of the
radius r and of the switch iteration tsw, overall it is always possible to find a radius
for which exclusion radius method performs the best. Furthermore, the result we
observe do not allow us to establish a criterion to select r and tsw.

This outcome was not surprising due the simplicity of this approach, which was
meant as an exploratory precursor for the adaptive radius exclusion method. Nev-
ertheless we analysed the behaviour of the surrogate model before and after the
predicted data was completely eliminated, by monitoring the changes in its predic-
tive accuracy. Indeed a sharp decrease in the predictive accuracy of the GP surrogate
model was observed immediately after the switch to standard BO.

As this was ascribed to the abrupt deletion of the predicted points, in the adaptive
radius exclusion method we delete them progressively by increasing the radius by a
constant amount after each iteration, except for the first 10, when few real data is
available yet. Similarly to the early switch method however, we aim to remove all
the predicted data before the budget of iterations is reached: the specific step at
which this happens is an hyper parameter of the adaptive radius exclusion method,
and the increase rate of the radius is set accordingly.

The results summarised in Tables A.10 to A.9 show that the original exclusion
radius method achieves better or comparable final regrets, if an appropriate value r
is selected, with the only exception of the Styblinski-Tang function. An analysis of
the predictive accuracy of the surrogate model before and after the complete deletion
of all the predicted points, similar to the one carried on for the early switch method,
revealed a similar behaviour. The same analysis performed on the results obtained
by keeping r fixed did not reveal any analogous drop in accuracy.

The main difference between the exclusion radius method and the adaptive radius
method is that in the first one it is possible to keep a portion of the predicted points
during all the optimisation process, if it happens that the acquisition function leaves
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large portions of the search space unexplored, while in the second one the radius r
is forced to increase so that at a given step all the predicted data is lost. Potentially
this can leave regions of space completely depleted of data points, which explains the
deterioration of predicted accuracy.

Although we were concerned that the presence of predicted points could hinder
the performance of the adaptive radius exclusion method, the study reported in this
chapter leads to the conclusion that generally forcing their removal is not advisable.

The discrepancy prediction methods In Section 4.4 we explored the perfor-
mance of the discrepancy prediction method using a Gradient boosting regressor as
a predictive method for the discrepancy. This approach is motivated by the fact that
GBR is an ensemble method known for its capacity to model complex data sets. The
hope was that, if the discrepancy between predictor and the actual objective is sig-
nificantly different in different portions of the space, a GBR model can capture this
complexity. The results show that GBR and GPs provide comparable performance
for the functions we investigated. As the main advantage of GBR over GPs is the
capacity to deal with high dimensional data, we hypothesize that the reason why we
cannot discern any significant difference between the two configurations is the low
dimensionality of our data.

In Section 4.5 we introduce an additional criterion to select the training points
for the surrogate model for the discrepancy: a stochastic policy determines if, at the
current optimisation step, a point within a given distance from the best point so far
is added to the data set instead of the point suggested by the acquisition function.
The average frequency at which this happens is given by the threshold parameter T .

The idea is to improve the predictive accuracy for the discrepancy in a region
where we are most likely to find the optimum. A comparison between the experi-
mental results obtained with the discrepancy prediction method with and without
augmented data revealed that, although for majority of the benchmark functions it
is possible to find experimental settings for this last version of the method, generally
the convergence observed with augmented data is poor compared to the original dis-
crepancy method. Furthermore, both simple and predicted regrets showed slightly
higher values when we set T = 0.5 instead of T = 0.3. All these observations lead to
the conclusion that introducing the FarNeighbour sampling method is detrimental
in this configuration.

On the other hand the results obtained with augmented data and with a GBR
as a predictive model for the discrepancy showed lower predicted regrets compared
to the discrepancy prediction method without augmented real data. Simple regrets
however were lower for the original method.

The overall conclusion is that this last version of the discrepancy prediction
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method is better than the original only if a GBR is used and only if the best point
at each step is computed from the predictive mean of the surrogate model of the
objective function, as formalised in Eq. (4.2).

Finally, for all the other methods, we conclude that the original versions proposed
in Chapter 3 perform generally better and are more straightforward to use as they
depend on fewer hyper parameters.
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Chapter 5

Batched Bayesian Optimization for
Molecular Structures

5.1 Introduction

Batch Bayesian optimisation (BBO) is widely employed to accelerate discovery in
the physical sciences [35, 43, 63, 74]. Indeed BBO allows us to benefit from the
acquisition of multiple real observations, which is possible in majority of the modern
experimental setups. When the objective function is evaluated via computations,
multiple function evaluations are achieved via parallel computation.

However, the application of BBO to the design of experiments presents several
challenges. As mentioned in Chapter 2, Section 2.4, the choice of the batching policy
is crucial. Ideally this should maximise the informativeness of the sampled points
while also avoiding redundancy, but the design of batching policies that achieve this
balance is still an active topic of research. Furthermore, in problems arising from the
design of experiments, the objective function is frequently defined in a discrete space:
for example if the objective function is a physical or chemical property resulting
from molecules and their structure, the search space is often discrete, as molecules
are inherently discrete entities. This represents a further challenge for BBO: while
the acquisition functions designed for sequential BO and introduced in Chapter 2
can deal with discrete variables, the acquisition functions proposed in literature for
BBO are mostly designed to work in continuous search space only [37, 94, 116].
The development of batching policies for BBO in a discrete space has been so far
relatively little investigated.

One state-of-the-art batching approach for discrete spaces is the LAW2ORDER
method, proposed by Oh et. al. [79] to solve permutation problems. The batching
policy of this method is based on determinantal point processes [61] (DPPs). As
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we will describe further in Section 5.2.2, batching policies based on DPPs have the
advantage of being suitable for discrete spaces in addition to guaranteeing diversity
among the batch points.

However, these BBO approaches relying on DDPs present the drawback that the
selection of the batch points is driven by the maximisation of diversity only, while
the informativeness of the points, and their utility with respect to the optimisation
problem under consideration are not taken into account.

In order to address this issue, the LAW2ORDER method uses a sampling strategy
that combines DDPs with a sequential acquisition function, which chooses the next
point to evaluate based on its informativeness. Specifically, the batch points are
selected by maximising a quantity, called the acquisition weighted kernel, which is
defined as the product of two terms. One is the posterior variance of the GP surrogate
model, which promotes diversity among the batch points. The other term depends
on the acquisition function, and thus it encourages exploitation. The contribution
of each of these terms to the batching policy can be tuned explicitly by a weighting
function. A more detailed description of LAW2ORDER is provided in Section 5.2.3.

Application of LAW2ORDER to materials design. The work described in
this chapter aims to investigate the applicability of LAW2ORDER to the field of ma-
terials design. This choice is motivated by the consideration that both permutation
problems and optimisation of materials’ properties deal with extensive and discrete
spaces. For this purpose we studied four distinct materials’ properties optimisation
problems on three different data sets of small organic molecules.

Using the LAW2ORDER BBO method on a chemical data set requires us to adapt
the original method in two ways: first an appropriate numerical representation of
the input space must be chosen, secondly a suitable kernel function must be used.
The input space here is the set of molecules composing the whole search domain,
and each single molecule is defined by the set of its atoms and their relative spatial
coordinates.

In order to be usable for BO, this raw data representation must be transformed
into a mathematical representation that can be fed into a Gaussian process. This is
possible using chemical descriptors, which generate a numerical encoding of molecular
properties and which will be introduced in Section 5.3. Molecular descriptors must
be valid input data for the specific similarity kernel used to define the GP. This
means that, in general, the choices of descriptors and kernels are not independent.

Here two combinations of descriptors and similarity kernels have been used: the
same set of experiments has been repeated using Coulomb descriptors [73, 91] com-
bined with an RBF kernel [115] and SOAP kernel descriptors combined with a reg-
ularized entropy match kernel (REMatch) [23] respectively. The REMatch kernel is
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specifically designed to quantify similarities between molecules, described by a SOAP
kernel.

All the experimental results have been compared to the performance achieved
using Thompson Sampling (TS) as a batching policy, as this method has previ-
ously been successfully applied in this area [43, 53]. Our results indicate that
LAW2ORDER is always competitive with Thompson sampling across all of the
domains, with significant advantages observed in some domains. Our results also
indicate that Coulomb descriptors significantly outperform SOAP descriptors across
all of our experimental domains, both in terms of computational cost and in the
performance of BBO.

Structure of the chapter. The content of this chapter is structured as follows:

1. In Section 5.2 we provide a short description of the previous work more closely
related to our work:

(a) In Section 5.2.1 we introduce BBO based on Thompson sampling method.
This approach has been used for optimisation tasks related to Materials
Science and we also use it as a benchmark against which to compare the
performance of the LAW2ORDER.

(b) In Section 5.2.2 we introduce DPPs, explaining why they encourage di-
versity when used to sample points.

(c) Section 5.2.3 provides a description of the LAW2ORDER BBO method,
as originally proposed by Oh et al [79].

2. In Section 5.3 we introduce the concept of chemical descriptors, mathematical
entities that encode chemical and structural properties of molecules, which are
the input variables in our BBO experiments. After giving a general overview,
we describe the two types of descriptors that we use for the experiments,
Coulomb matrices and SOAP kernel descriptors.

(a) Coulomb descriptors are treated in Section 5.3.1.

(b) Section 5.3.2 illustrates the main concepts related to the SOAP descriptors
and the REMatch similarity kernel. This last one is specifically designed
to quantify similarity between molecules when these ones are represented
by SOAP descriptors.

3. In Section 5.4.1 the specific molecular data sets used for the experiments are
described, together with the related optimisation tasks.

4. Results are reported in Section 5.5.
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5.2 Previous work

Here we give a short overview of methods employing batching policies based on
stochastic sampling, which are the most closely related to our work. Specifically, we
focus on Thompson sampling BBO (TS-BBO), which is also used as a benchmark
method, and the BBO based on determinantal point processes, which was the pre-
cursor of the LAW2ORDER method. A more general overview of BBO methods for
discrete spaces is given in Section 2.4.

5.2.1 Thompson sampling BBO: TS-BBO

Thompson sampling (TS) is a randomized algorithm for choosing actions sequentially
under uncertainty, originally designed to solve multi-armed bandit problems [3, 103].
More recently TS has been successfully employed as a batching policy for BBO, in
the fields of Engineering, Medicine and Material Science [43, 53]. This approach,
which will be referred here as TS-BBO, consists in drawing a function g from the
surrogate model.

The function g, which is one of the possible values of the actual objective, is
used to populate the batch, by selecting from the search space the input point that
optimises it. This process is repeated k times, where k is the size of the batch.
Typically the surrogate model is a GP, in which case g ∼ GP (µ, Kpost), where µ
and Kpost are respectively the predictive mean and posterior covariance matrix of the
GP. The objective function is then evaluated at these k points, and BBO proceeds as
for sequential BO (see Algorithm 1). The batching policy based on TS is described
in Algorithm 7.

TS is conceptually simple and computationally inexpensive. Importantly, it can
be applied to both continuous and discrete search spaces. Due to the relatively wide
use of TS-BBO in design of experiments problems [43, 53], we benchmark all our
experimental results against this method.

TS-BBO enforces mainly exploitation, because the function g is sampled from
a distribution which is insensitive to the variance of the observations y = g(x), as
the posterior variance Kpost depends only on the input variables. The process of
sampling g introduces a variance, and by virtue of this exploration is introduced in
TS-BBO . However, sampling methods designed to explicitly promote exploration
and to allow us to control the extent at which the space is explored are generally
more convenient for BBO. As will be shown soon, the approach that we applied
satisfies these requirements.
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Algorithm 7: Thompson Sampling Batching

Input: Available data set of size |N |, D = {xi, yi}i=1,...,N , prior GP
GP(0, K),
batch size k

Output: Batch of k points |B| = k
1 Initialize batch B = ∅
2 Compute the posterior distribution GPpost = GP(µ, Kpost)
3 for j ← 1 to k do
4 Draw a function g(x) ∼ GP(µ, Kpost)
5 g as xj = arg minx∈X g(x)
6 Update the batch B: B := B ∪ {xj}
7 end

5.2.2 BBO based on Determinantal Point Processes (DPP-
BBO)

A more diversity oriented BBO strategy is to use determinantal point processes
(DPPs) to sample batch points. DPPs are stochastic processes giving the probability
of sampling a subset S of the search space Y as proportional to the determinant of
a symmetric, positive definite matrix L that measures pairwise similarities among
the points of the subset itself. The matrix L is called ensemble. The probability
distribution over the possible subsets of Y is given by:

PL(S) =
det(L)

det(L+ I)
=

det(L)∑
S⊂Y det(LS)

. (5.1)

The ensemble L is related to the similarity kernel among the points in S, K, via:

K = (L+ I)−1L. (5.2)

Remarkably, the subsets with higher probability to occur are those that have
higher diversity, as measured by L [61, 62]. Thus DPPs are particularly suitable for
sampling diverse batches. As BBO usually requires that the batches have finite and
constant size k, in order to use DDPs for BBO it is necessary to apply the restriction
that the sampled sets have precisely k points:

P k
L(S) =

det(LS)∑
|S′|=k det(L

′
S)
. (5.3)

The most diverse batch of points is given by:

S∗ = arg max
S⊂Ωk

P k
L(S). (5.4)
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where Ωk is the set of all the subsets with size k in the search space. The process
defined by Eq. (5.3) is called k-DPP [62]. The essential feature of DDP-BBO is the
choice of the similarity kernel K, which determines the ensemble L. Kathuria and
coauthors [54] proposed that we should use the posterior covariance matrix of the
surrogate model, Kpost, as the ensemble for the DPP: this has the advantage that L
can be learned during the optimisation process, and does not need to be defined a
priori. Thus the batch selection criterion becomes:

B = arg max
B⊂Ωk

det(Kpost). (5.5)

In the aforementioned work the authors initialize the batch via a sequential acquisi-
tion function: they compare results obtained with EST, introduced in Section 2.3.2,
and upper confidence bound (UCB) [4, 6], while the following points are selected
by solving Eq. (5.5). As this maximisation problem is NP hard, they proposed two
methods to solve it: a greedy algorithm and a sampling one, and this last one was
shown to give higher performance.

More recently, Wang et al. [112] and Nava et al. [77] proposed respectively Gibbs
sampling and Thompson sampling to solve the maximisation problem (5.3).

5.2.3 LAW2ORDER

The DPP-BBO methods described above have, as a drawback, the fact that they
focus on diversity, at expense of the quality of the batch points. LAW2ORDER aims
to address this issue by defining a novel diversity gauge, called the L-ensemble with
Acquisition Weights (LAW), which combines the posterior variance with a sequential
acquisition function, a, for example expected improvement (EI). The explicit form
of the LAW gauge is:

LAW(x1,x2) = w(a(x1)) ·Kpost(x1,x2) · w(a(x2)). (5.6)

The introduction of the acquisition function in the DPPs process has the advan-
tage of adding local-exploitation in the selection of the batch points, alongside to the
global-exploration promoted by the variance. Thus the determinant of the gauge LS
in Eq. (5.3) becomes

det
([
LAW

]
i,j=1,...,k

)
=

det ([L(xi,xj)]i,j=1,...,k)
k∏
i=1

w(a(xi))
2 =

det ([Kpost(xi,xj)]i,j=1,...,k)
k∏
i=1

w(a(xi))
2 (5.7)
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where k is the batch size, i and j start from 2 because the first batch point is se-
lected simply by maximising the sequential acquisition function a. This shows that
det(LAW) can be maximised increasing either the determinant of the posterior vari-
ance or the product term, or both in a balanced way. The impact of the acquisition
function is regulated by the weight function w(·). The batch point returned at each
iteration of the LAW batching policy is given by [79]:

xb = arg max
x∈X

log((Kpost(x|{xi}i=1,...,k−1) · w(a(x)2). (5.8)

The whole batching method is illustrated in Algorithm 8.

Algorithm 8: LAW batching method

Input: Weight function w, prior similarity kernel K to define the
L ensembles, acquisition function a, batch size k

Output: Batch B of k points, |B| = k
1 Initialize the data set D0.
2 Select the first batch point:
3

x1 = arg max
x∈X

a(x)

4 for b← 2 to k do
5 xb = arg maxx∈X log((Kpost(x|{xi}i=1,...,b−1) · w(a(x))2

6 end

5.3 Molecular descriptors and similarity kernels

Molecular descriptors give a mathematical representations of molecules’ properties:
the chemical information contained in a symbolic representation of a molecule is
transformed into numerical values via algorithms. A formal definition of a molecular
descriptor is provided by Todeschini and Consonni as [105]:

The molecular descriptor is the final result of a logic and mathematical procedure
which transforms chemical information encoded within a symbolic representation of
a molecule into a useful number or the result of some standardized experiment.

Molecular descriptors can be derived from measured physical and chemical prop-
erties, or built based on theoretical values of these properties. In both cases they
must satisfy the following requirements [72]:

1. Being non-degenerate: two different molecules must have different descriptors.
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2. Being invariant to atom labelling and numbering (permutation invariance).
3. Being invariant to spatial rotations and translations.
4. Being defined by an unambiguous algorithm.

In addition to being non degenerate, ideally a descriptor should allow us to distin-
guish between isomers, i.e. molecules with the same atomic composition but different
geometric structure. Furthermore, in order to be useful, it should also have:

5. Structural interpretation.
6. Good correlation with at least one experimental property.

From point 6 it follows that different molecular descriptors can result in different
levels of accuracy in the prediction of the objective function, depending on which
property they are related to, and how relevant this property is to the optimisation
problem at hand.

It is important to notice that the choice of a molecular descriptor partially con-
strains the availability of similarity kernel suitable for that particular descriptor,
although for each descriptor more than one option is usually available. For example
we will use Coulomb and SOAP kernel descriptors, introduced in Section 5.3.1 and
in Section 5.3.2 respectively. For the first ones kernels commonly used for Gaussian
regression like RBF or Matérn, are applicable, while this is not the case for SOAP
descriptors, as these ones are not unidimensional vectors. For SOAP descriptors we
used a custom kernel proposed in previous literature, called the REMatch kernel,
briefly described in Section 5.3.2.

5.3.1 Coulomb descriptors and RBF kernels

A Coulomb matrix is a molecular descriptor which represents the electrostatic in-
teraction between the nuclei of the atoms composing a molecule [73]. It is defined
as:

Mij =

{
0.5Z2.4

i for i = j
ZjZj
|Ri−Rj | for i 6= j

(5.9)

where Zi and Zj are the atomic charges of atoms i and j respectively, while the
vectors Ri and Rj represent the positions of these atoms in the three dimensional
space, and |Ri−Rj| is the distance between the vectors Ri and Rj

1. The off-diagonal
elements of the matrix defined by Eq. (5.9) encode the Coulomb repulsion between
the nuclei of atoms i and j, while diagonal elements can be seen as the interaction of
an atom with itself. The Coulomb matrix is invariant to translations and rotations

1In Eq. (5.9) the distance between two atoms is indicated with the operator | · |, which is a
common notation in physical sciences for the Euclidean norm, and it is equivalent to using ‖ · ‖2
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of the molecule in 3D space, but not invariant to permutations of the index of the
atoms

Permutation invariance can be achieved by choosing the eigenspectrum C of the
Coulomb matrix as a descriptor: C = (λ1, . . . , λd), where λi are the eigenvalues of
the matrix defined in Eq. (5.9), and d is the number of columns, corresponding to
the number of atoms present in the molecule. Another advantage of using the eigen-
spectrum representation is the reduction in the original dimensions. As mentioned
before, Coulomb eigenspectrum descriptors have been used in combination with the
radial basis function similarity kernel (RBF), defined as:

K(Xi,Xj) = exp

(
−‖Xi −Xj‖2

2

2σ2

)
. (5.10)

5.3.2 SOAP descriptors and REMatch kernels

SOAP descriptors [9, 23] represent molecules in terms of local environments : each
atom j in a given molecule M can be associated to a cluster of neighbours in the same
molecule, which are within a predefined distance rcut from j. The region containing
this cluster is a local environment, here indicated as Hj, while rcut is called the
cut-off radius. The density of each atom in the environment Hj is approximated
with a Gaussian function with variance σ2 and centered in j. A local environment
is characterised by the local density of atoms, which is the sum of the densities of all
the atoms it contains, and which is given by:

ρH(r) =
∑
j∈H

(
−(xj − rcut)

2

2σ2

)
. (5.11)

The SOAP descriptor for a molecule M is defined as the pairwise similarity kernel
KSOAP between all the local environments in M . Each element of the matrix KSOAP

is defined as the overlap of two environments, Hi and Hj, over all the 3D rotations,

R̂:

KSOAP
i,j =

∫
dR̂

∣∣∣∣∫ ρHi(r)ρHj(R̂r)dr

∣∣∣∣2 . (5.12)

In order to make KSOAP rotationally invariant, the density of atoms ρH(r) is trans-
formed using orthonormal functions based on by spherical harmonics Ylm(r) and
radial basis functions gn(r). Thus Eq. (5.11) becomes:

ρH(r) =
∑
nlm

cnlmgn(|r|)Ylm(r̂). (5.13)

With this transformation KSOAP can be expressed as a function of the power spec-
trum of the local density of the environment H, p(H). Remarkably, the power
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spectrum is rotationally invariant and, for an environment with only two atoms with
atomic numbers Z1 and Z2 respectively2, it is given by:

pn,n′,l(H) = π

√
8

2l + 1

∑
m

cZ1
nlm(r)cZ2

n′ (r). (5.14)

The coefficients cZinlm are given by:

cZinlm =

∫ ∫ ∫
R3

dV gn(r)Ylm(r)ρZi , (5.15)

where ρZi =
∑Zi

i e−α|r−Ri|2 , Zi and Ri being respectively the atomic number and the
position of a generic atom.

By concatenating elements of the power spectrum into a unit vector p̂(H), it is
possible to express the SOAP kernel as the dot product:

KSOAP
i,j = KSOAP(Hi, Hj) = p̂(Hi) · p̂(Hj) = p̂i · p̂j (5.16)

or, in its normalized form:

KSOAP(p̂i, p̂j) =

(
p̂i · p̂j√

p̂i · p̂i p̂j · p̂j

)ξ

, (5.17)

where ξ can be any positive integer. The vector p̂(H) has the form:

p̂(H) = {pi}i=1,...,N ,

where each pi is given by Eq. (5.14).

The REMatch kernel

Differently from Coulomb descriptors, SOAP descriptors are not suitable to be used
with the more common similarity kernels like RBF or Matérn kernels, because addi-
tional computational steps are needed to define a similarity measure between entire
structures. A kernel specifically designed to compute the similarity between molecu-
lar structures using SOAP kernel descriptors is the regularized entropy match kernel
(REMatch) kernel [23]. For two molecular structures with the same number of atoms
N , the REMatch kernel is defined as:

K
γ

(A,B) = TrPγC(A,B) (5.18a)

Pγ = arg min
P∈U(N,N)

∑
ij

Pij(1− Cij + γ lnPij) (5.18b)

2The atomic number Z is equal to the number of protons in the nucleus of an atom. Z is used
to uniquely identify chemical elements.
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where A and B are two distinct molecular structures, C(A,B) is the covariance
matrix between all the possible pairings of environments between the systems A and
B. Each element of C(A,B) is given by:

Ci,j = KSOAP(HA
i , H

B
j )

P is a N ×N matrix that must satisfy the property that its rows and columns sum
to 1/N , i.e.

∑
i Pij =

∑
j Pij = 1/N . Furthermore, P must fulfil the constraint

expressed by Eq. (5.18b), where U(N,N) is the set of all the N ×N matrices whose
rows and columns sum to 1/N .

It is important to notice that the term E(P) = −
∑

i PijlnPij in Eq. (5.18a)
is an entropy term, which acts also as regularization term. Thus the parameter γ
determines the contribution of information entropy to the kernel: for λ→ 0 the en-
tropic penalty becomes negligible, with the consequence that only the best matching
local environments are taken into account, while for λ → ∞ all the environments
contribute to K(A,B).

KSOAP(Hi ,H j)

rcut
rcut

KSOAP(Hi ,H j)=p̂(H i)⋅p̂(H j)

j

KSOAP =

⇓p⃗χ i
={p1 , p2 , ... , pn}

power spectrum for single atom

pi=π√ 82 l +1∑m cn l m
Z 1 (r )cn ' lm

Z 2 (r )

i

Figure 5.1: Illustration of how a SOAP kernel descriptor is built: on the left side an
element of the KSOAP matrix is built from the local environments of the atoms i and
j, Hi and Hj respectively. On the right side it is shown the whole SOAP kernel as a
matrix where each row corresponds to an atom in the molecule, and it corresponds
to p, introduced in Eq. (5.16). The vector p is given by the concatenation of the
pairwise power spectra defined in Eq. (5.14).
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KSOAP(Hi ,H j)

rcut
rcutrcut

KSOAP(Hi ,H j)=p̂(H i)⋅p̂(H j)

i jk

KSOAP(Hi
A ,Hk

B)
Cik(A ,B)=KSOAP(Hi

A , H j
B)=p̂(Hi

A)⋅p̂(H j
B)

KREMatch(A ,B)=Tr Pγ C(A ,B)

Figure 5.2: REMAtch kernel between two molecular structures, A and B, which is
related to the covariance matrix C(A,B) via Eq. (5.18a). Each element of C(A,B)
is given by the SOAP similarity kernel between a local environment of A and a local
environment of B.

5.4 Experiments

The LAW2ORDER and the Thompson BBO methods have been evaluated on four
optimisation tasks arising from three different publicly available data sets: QM7,
QM7b and QM9. These data sets contain molecules’ composition and geometric
structure, along with their chemical properties.

QM7. This data set contains the atomization energies of 7,165 small organic molecules,
computed via DFT simulations [91]. All the molecules are composed of four different
atomic species: carbon, hydrogen, nitrogen and oxygen. The optimisation task for
this data set consists of finding the molecule with the lowest atomization energy.

QM7b. The QM7b data set includes 14 properties of 7,211 small organic Here
we focus on the energy gaps, defined as the difference between the homo and lumo
energetic levels of the molecules: ∆E = Ehomo − Elumo. The optimisation task is
to find the closest value to a hypothetical optimum value, here arbitrarily set to be
Eopt = 3.5Hartree3. Thus our objective function is f = {abs(∆Eopt −∆E)}.

3Hartree is a unit of energy in the Hartree atomic units system, corresponding to ≈ 2625 kJ
mol−1, or ≈ 27 eV.
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QM9. This data set contains energetic, electronic and thermodynamic properties
for 133, 885 small organic molecules, including polarizability, and homo and lumo
energies [89]. We study two different optimisation problems over this data set:

1. QM9polar: maximize the polarizability of the molecule.

2. QM9gaps: optimisation of the electronic band gap ∆E = Ehomo − Elumo.

Since the QM9 data set is significantly larger than the other two data sets, in order
to have our experiments complete in a reasonable amount of time, reduced data sets
have been generated for both the QM9polar and QM9gap tasks, containing 7,020 and
7,021 molecules respectively. The reduced data sets were constructed by selecting
molecules from the whole QM9 data set in such a way that the distributions of the
values of energy gaps and of polarizability approximate the respective original distri-
butions as closely as possible. More information about this is given in Section 5.4.1.

Data set Points Objective f Task
QM7 7,165 Eatom min
QM7b 7,211 |∆E − 3.5 Hartree| min
QM9gaps 7,021 |∆E − 3.5 Hartree| min
QM9polar 7,021 Epol max

Table 5.1: A summary of our data sets.

5.4.1 Experimental setup

All the experimental results reported in this chapter have been achieved setting
the batch size k = 3. This choice was imposed by the computational cost of the
LAW2ORDER method with SOAP descriptors, and we selected equal values of k for
Coulomb descriptors for fair comparison. Each experiment was initialized with 10
points, randomly selected from the search space according to a uniform distribution,
excluding the 100 best molecules. Input variables have been L2 normalized, i.e. each
input variable has been scaled so that its Euclidean norm is equal to 1.

LAW2ORDER parameters. For the LAW2ORDER method we used the ex-
pected improvement acquisition function, and, in keeping with the original work
[79], we chose a linear weight function, w(a(x)) = c+b ·a(x), where a(x) denotes the
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acquisition function. The batching criterion expressed by Eq. (5.8) thus becomes4:

arg max
x∈X

LAW
t (X) = arg max

x∈X
Kpost(x|{xi}i=1,...,k−1) · (c+ ba(X))2, (5.19)

where the acquisition function a(X) is the expected improvement, defined in
Eq. (2.34) in Chapter 2. The function w has the role of balancing the variance
controlled by the value c, and the acquisition function, controlled by b. To evaluate
the effect of this trade off, different values of the parameter b were tested for each
data set: specifically we set b ∈ {0, 1, 10, 100, 500}. The parameter c was kept fixed
at c = 1 throughout all experiments, since it can be seen from Eq. (5.19) that the
maximum point of LAW(X) depends only on relative sizes of c and b.

Evaluation metrics. We measure the performance of the methods by evaluating
the simple regret, R, defined as:

R = fbest − fopt, (5.20)

where fbest is the best observed value of the objective function, and fopt is the absolute
optimum. All experiments are run independently 30 times over different random
initializations. All of these runs are then averaged to give the average simple regret
R̂.

Construction of SOAP descriptors. The SOAP descriptors for all the data sets
were built before running the experiments and saved to disk. They were computed
starting from the atomic coordinates, using the Python package DScribe [44]. As
mentioned in Section 5.3.2, SOAP descriptors are computed as a function of the
power spectrum of the atomic density p, which in turn requires that the atomic den-
sity is expanded in a basis composed of spherical harmonics and a set of orthogonal
radial basis functions, according to Eq. (5.11). The DScribe software allows different
options for the computation of the radial basis functions, among which we chose the
default option of spherical Gaussian orbitals [49], or GTOs. Thus each function gn(r)
in Eq. (5.11) is calculated as the orthonormal composition of GTOs, as follows5:

gn`(r) =
nmax∑
n′=1

βnn′`r
`e−αn′`r

2

, (5.21)

4The logarithm is a monotonous function, so arg max log(x) = arg maxx.
5A single spherical Gaussian orbitals is defined as g`(r) = A(`, α)r`e−αr

2

, where α ∈ R, and ` is
a parameter of the function.
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where n indicates a specific radial basis function, and ` is a parameter of the GTOs.
The values of n and ` are limited up to nmax and lmax respectively, which are hyper-
parameters of the SOAP descriptors, and which are set a priori. The factors βnn′`
are multiplicative coefficients to make the composition orthogonal and normalised.
For our experiments we set nmax = 5, `max = 8. We set these values as a compromise
between values that have been reported in literature [9, 19] for molecular databases
similar to the ones we studied, and the necessity to contain the dimensionality of the
descriptors, to keep the BBO process computable in a reasonable amount time.

Another important parameter for the SOAP descriptors is α, which is related to
the width of the GTOs used to smooth the atomic coordinates, σ: α = 1

2
σ2. We

set σ = 0.2. For the REMatch kernel, which we used in combination with SOAP
descriptors, the parameter γ in Eq. (5.18a) is set to γ = 0.1.

Selection of molecules for QM9gaps, QM9polar. To reduce the QM9 data set
for the QM9gaps and the QM9polar optimisation tasks, the following procedure
was used:

1. The desired number of points in the reduced data was set to nred = 7, 000.

2. The histogram of the molecules’ properties was computed.

3. From each bin b a number of points was selected, proportionally to the number
norig
b of molecules contained in the bth bin of the original data set:

nred
b =

norig
b

nred
. (5.22)

The actual number of points in the reduced data sets is n =
∑N

b=1 n
red
b . If nred

b < 1,
still one molecule is selected from bin b, and this is the reason why the actual number
of molecules in reduced data sets is slightly higher than 7, 000.

5.5 Results

Experimental results obtained for the two types of descriptors are shown in Fig-
ure 5.3, where simple regrets are plotted for Coulomb descriptors with an RBF kernel,
and for SOAP descriptors with a REMatch kernel. All average regrets are averaged
over 30 runs, for both Thompson and LAW2ORDER BBO. The best average regrets
achieved by each method are also reported in Table 5.2 and Table 5.3. For Coulomb
descriptors, the optimisation process has been performed over 500 steps and since our
batch size k = 3, this means that 1500 queries were made to the objective function.
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Figure 5.3: Comparison of the average regrets curves obtained with Coulomb descrip-
tors and RFB kernel (left) and SOAP descriptors and REMatch kernels. Experimen-
tal results achieved with LAW2ORDER method at different value of the parameter
b are compered with the results given by Thompson method (black line)

Experiments with SOAP descriptors have been restricted to 150 iterations, due
to the much higher computational cost of Gaussian inference in this configuration.
The reason behind this disparity is the different dimensionality of the descriptors:
while Coulomb eigenvalues descriptors have maximum dimensionality d = 29, SOAP
descriptors can easily exceed d = 1000. As a consequence, while 500 optimisation
steps with LAW2ORDER method and Coulomb descriptors require on average 16
hours, around 104 hours are necessary to complete 150 steps with the same method
but using SOAP descriptors and a REMatch kernel.

The regret curves in Figure 5.3 show that LAW2ORDER is always competi-
tive with Thompson sampling, and it can be significantly better. In particular,
LAW2ORDER clearly considerably outperforms Thompson sampling on QM9gaps
and QM9polar with Coulomb descriptors. The only data set for which Thompson
can be seen to outperform LAW2ORDER is QM7b, where it performs better for
both kernel choices.

As mentioned earlier, the parameter b for LAW2ORDER controls how much
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weight is allocated to the acquisition function, and how much is allocated to variance.
It can be seen that in many of the experiments this parameter has little effect, with
the exception of the results obtained for the QM9Gaps optimisation task, using
Coulomb descriptors. However, the poor result for b = 0 (where no weight is put
on the acquisition function) in QM9polar on Coulomb descriptors indicates that this
setting should be avoided.

As a complement to Figure 5.3, Tables 5.2 and 5.3 report the best average regrets
achieved by each method, using Coulomb and SOAP descriptors respectively, showing
how at the late stages of the optimisation process the Thompson method catches up
or even outperforms the LAW2ORDER method. Finally, it is interesting to compare
results across the kernels: BBO with Coulomb descriptors appears to outperform
BBO with SOAP descriptors. Although only a limited number of steps are executed
for SOAP descriptors, due to the high computational cost, it can be seen that the
results for Coulomb descriptors have lower average regret after 150 steps. Tables 5.2
and 5.3 show the best average regrets achieved by our methods.
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Coulomb descriptors
Data set b value LAW Av. Regret Thompson Av.Regret

qm7

0 0.241 ± 0.000

0.005 ± 0.001
1 8.408 ± 0.468

10 4.273 ± 0.242
100 4.278 ± 0.340
500 4.281 ± 0.142

qm7b

0 0.409 ± 0.103

0.315 ± 0.088
1 0.396 ± 0.106

10 0.368 ± 0.083
100 0.330 ± 0.115
500 0.332 ± 0.161

qm9gaps7K

0 0.005 ± 0.009

0.026 ± 0.019
1 0.009 ± 0.014

10 0.005 ± 0.003
100 0.004 ± 0.003
500 0.009 ± 0.011

qm9polar7K

0 14.784 ± 1.342

6.939 ± 1.290
1 3.803 ± 0.438

10 4.548 ± 0.725
100 4.066 ± 0.742
500 3.793 ± 0.587

Table 5.2: Comparison final simple regrets obtained with the LAW2ORDER and
Thompson BBO methods, using Coulomb descriptors and RBF kernel. The best
result for each data set is reported in bold
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SOAP descriptors
Data set b value LAW Av. Regret Thompson Av.Regret

qm7

0 52.068 ± 1.858

77.404 ± 1.884
1 64.789 ± 1.960

10 69.010 ± 1.956
100 60.223 ± 1.914
500 52.299 ± 1.868

qm7b

0 0.464 ± 0.109

0.457 ± 0.119
1 0.511 ± 0.088

10 0.547 ± 0.082
100 0.528 ± 0.091
500 0.561 ± 0.086

qm9gaps7K

0 0.065 ± 0.011

0.058 ± 0.016
1 0.062 ± 0.017

10 0.071 ± 0.011
100 0.062 ± 0.017
500 0.062 ± 0.019

qm9polar7K

0 27.977 ± 2.776

36.753 ± 1.512
1 33.826 ± 2.341

10 31.399 ± 2.328
100 31.399 ± 2.328
500 31.399 ± 2.328

Table 5.3: Comparison final simple regrets obtained with the LAW2ORDER and
Thompson BBO methods, using SOAP descriptors and REMatch kernel. The best
result for each data set is reported in bold

LAW2ORDER combined with Thompson sampling as acquisition function

In this section we report results of preliminary experiments for future work, where we
applied the LAW2ORDER BBO method using Thompson sampling as a sequential
acquisition function. We call this approach Thomp-LAW2ORDER, while here we
will refer to the LAW2ORDER BO method used so far EI-LAW2ORDER.

The purpose of this experiment is to explore possible options for the sequential
acquisition function a(x), which, as can be observed from Eq. (5.6) can strongly influ-
ence the L-ensemble, and thus the performance of the LAW2ORDER BBO method.
Already in the original work, Oh and coauthors [79] tested multiple type of acquisi-
tion functions, like Multi-objective acquisition ensemble (MACE) [67] and EST [111],
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as well as more common ones like upper confidence bound. However some of them can
be remarkably more expensive than expected improvement. As the LAW2ORDER
BBO method has proven to be quite computationally intensive in the space of molec-
ular descriptors, their application might be challenging.

Alternatively, we explored the suitability of replacing EI with Thompson sam-
pling: in this case the acquisition function a(x) is obtained by sampling a function
from the surrogate model, analogously to what is shown in Algorithm 7. Such a
function is evaluated over the search space. The rest of the LAW2ORDER batching
policy the proceeds as described in Algorithm 8. This choice is motivated by the fact
that Thompson is a widely used sampling method, it is computationally inexpensive
and conceptually simple.

The results obtained for Coulomb descriptors with the Thomp-LAW2ORDER
method are compared with those achieved with EI-LAW2ORDER, and the respective
average simple regrets are plotted in linear and logarithmic scale in Figures 5.4 and
5.5 respectively.

The first approach can be seen to be advantageous for QM7 and, to a lower
extent, for QM7b optimisation problems, while using EI is preferable for QM9gaps
and QM9polar problems. In general, the results reveal that the acquisition function
has lower impact when Thomp-LAW2ORDER is applied. In particular no discernible
difference can be observed between different values of the parameter b, for the QM7
data set.

However an important advantage of the Thomp-LAW2ORDER is the lower com-
putational time compared to EI-LAW2ORDER, as shown in Figure 5.6, where the
time necessary to complete 500 iterations is compared for both these two methods
and for the Thompson BO method. We found that time required by the Thomp-
LAW2ORDER BBO method is intermediate between the other two methods. Over-
all the improvements observed with Thomp-LAW2ORDER are not yet sufficient to
comfortably apply the LAW2ORDER BBO method to materials optimisation tasks,
particularly using SOAP descriptors. It can be still worthwhile to employ Thomp-
LAW2ORDER for Coulomb descriptors, as it gives comparable or better performance
than EI-LAW2ORDER in significantly shorter time, but for the SOAP descriptors
other strategies need to be tested.

We suggest that another possible direction for future research is to combine
LAW2ORDER batching policy with BBO methods which have been proven to be
more performant in high dimensional space. As BO is known to have poor scalability
with the dimensionality of the search space [32] a few methods have been proposed
in literature to address this problem [21, 25, 26, 68]. Among these, the TURBO
method [26] is particularly promising, as it is applicable in the discrete space.
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Figure 5.4: Average final regrets for all the optimisation tasks, for Coulomb descrip-
tors, in linear scale. The curves plotted in the left column and in the right refer to
results obtained with EI-LAW2ORDER and Thomp-LAW2ORDER BBO methods
respectively.
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5.6 Conclusions

The results presented in this chapter show that the LAW2ORDER BBO method
outperforms the Thompson based BBO method, for any value of the parameter b,
except for b = 0, if Coulomb descriptors are used. Also, the poor results obtained for
some of the optimisation tasks when b = 0, confirms the hypothesis that taking into
account the acquisition function in the batching policy improves the performance of
BBO.

However, the impact of the acquisition function is not clear, as the relationship
between the parameter b and the average regrets is quite variable among the different
optimisation tasks, and no discernible pattern can be observed. A possible reason
for this is that the parameter b needs to be tuned in a range of values different from
the one we chose.

The results obtained using the LAW2ORDER method with SOAP descriptors and
REMatch kernel are comparable or worse than those achieved with the Thompson
BBO method in the same settings. Also, this choice of descriptors and kernel makes
the LAW2ORDER method computationally expensive, as 150 iterations required on
average 103 hours compared to the 17 hours required to perform 500 iterations with
Coulomb descriptors.

Unfortunately, as described in [23], alternative kernels suitable to use with SOAP
descriptors have lower capacity to measure similarity between molecules, and are
thus unlikely to result in improved convergence of LAW2ORDER BBO. In view of all
these considerations, we conclude that, while the LAW2ORDER method has shown
encouraging results with Coulomb descriptors, and it is worthwhile to be explored
in future work in this configuration, its application to SOAP descriptors presents no
advantages.
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Chapter 6

Conclusions

6.1 Overview

We have presented research focused on the development of Bayesian optimisation
methods, intended to accelerate the design of experiments, particularly in the field
of Materials Discovery. We investigated both sequential and batched BO approaches,
which were designed to deal with different scenarios.

In Chapters 3 and 4 we introduced two main sequential BO methods, i.e. the
exclusion radius and the discrepancy prediction methods and their variants. These
methods have been developed to deal with the scenario where prior knowledge about
the current optimisation task is available, in the form of an approximate model of
the objective function to optimise. Such a model, which we called the predictor,
is exploited to generate a number of starting points to warm start the BO process,
so as to accelerate convergence. All our sequential methods with initial predicted
data have been formulated under the assumption that the predictor has close to no
evaluation cost, but it might present non negligible disparity with respect to the
actual objective, at least locally. The main contribution of this part of our work is
the development of strategies to deal with the inaccuracy of the predictor.

A second approach we explored is the implementation of a batched Bayesian
optimisation method (BBO) applicable to optimisation tasks defined over molecu-
lar spaces, and suitable for discrete input variables. The key advantage of BBO
compared to sequential BO is the acquisition of multiple points at each step of the
optimisation process. This can considerably speed up the convergence, provided that
the objective function can be evaluated at all the batch points in parallel. In the case
where this evaluation is given by the results of physical experiments, the experiments
need to be executed in parallel batches in order to benefit from BBO. Optimisation in
discrete spaces is challenging specifically for BBO, due to the fact that it cannot rely
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on the acquisition functions designed for sequential BO, which are perfectly suitable
to handle discrete as well as categorical variables. Acquisition functions designed to
suggest multiple points at once need to be used instead, and the definition of such
acquisition functions in discrete space is presently still not well established.

To address this issue, we studied the transferability of LAW2ORDER, a state-of-
the-art BBO method originally proposed to solve optimisation tasks over permutation
problems, to the optimisation of chemical and physical properties of small organic
molecules. The goal of this investigation is to find a BBO method for discrete spaces
that outperforms the Thompson-BBO and the DPPs-BBO methods, described in
Chapter 5. These methods have already been successfully applied to accomplish BBO
in discrete space, but they lack an appropriate balance between variety of the batch
points and their informativeness. As mentioned in Chapter 5 the Thompson-BBO
method is mainly exploitative, while the DPPs-BO method enforces only diversity.
The LAW2ORDER method balances diversity and informativeness by combining
determinantal point processes with a sequential acquisition function.

However its transferability to the materials design optimisation tasks poses at
least two challenges:

• The appropriate choice of molecular descriptors.
• The choice of a similarity kernel between molecules, compatible with the se-

lected type of descriptor.

The correct choice of molecular descriptors is essential to ensure that we capture
the features of the molecule that are most relevant to the optimisation task at hand.
The choice of similarity kernel is also crucial as it determines the posterior variance of
the GP surrogate model, Kpost, and thus the batching policy, as shown in Eq. (5.6).

6.2 Summary of experimental results

The outcome of the of all the BO approaches we implemented, both sequential and
batches are summarised below.

6.2.1 Methods for the exploitation of predicted data

Among all the sequential methods we implemented, the most performant is the
exclusion radius method, which outperforms the multi-fidelity method in majority
of cases, especially in terms of early convergence: this means that if we decide to
end the optimisation when we reach a satisfactory, but not-optimal, value for our
objective, the exclusion radius method could reach this target earlier than the multi-
fidelity method in all cases. Experints on benchmark functions, where the value of
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the absolute optimum was known, show that this sub-optimal target can be as close
to the actual optimum as by 5%, as discussed in Section 3.6. Generally, also the
discrepancy prediction method reaches early convergence before multi-fidelity BO,
with few exceptions.

To assess that the advantage of our methods was not due merely to the warm
starting with predicted points, we also performed experiments with the exclusion
radius method, setting the radius r = 0, which implies that no predicted points
were deleted. We observed that, despite the results obtained with this setting are
competitive, the results observed either with the exclusion radius method for higher
values of r or with the discrepancy prediction method were generally better, par-
ticularly in high error regime. This proves that applying a strategy to deal with
the predictor’s inaccuracy contributes to accelerate the convergence of the optimisa-
tion process. From the analysis of the regrets however, we could conclude that the
advantage of both the exclusion radius and of the discrepancy prediction methods
over the multi-fidelity method was maximum at the early optimisation stages, and
it extinguishes later on.

For this reason we developed several variants of both methods, with the intent
to find more efficient criteria to eliminate or to correct the predicted points.

Despite our efforts, the original methods described in Chapter 3 are better or
comparable to the any of the variants illustrated in Chapter 4.

Below we provide a summary of these attempts, and the interpretation of the
results they gave.

Exclusion radius methods

To improve the exclusion radius method we developed two strategies to remove all
predicted points before the end of BO. The first one, called the early switch method, is
a rather naive one, which at a given iteration eliminates all the remaining predicted
points at once. This method was intended as a preliminary study to explore if
there was any benefit in continuing with only real points in the later stages of BO.
Unsurprisingly the early switch method did not outperform the original exclusion
radius and it will not be further discussed here.

The second strategy, i.e. the adaptive radius exclusion method, consists in pro-
gressively increasing the radius r at each optimisation step, so to accelerate the
removal of the predicted points as the BO proceeds and thus their presence is po-
tentially more and more detrimental. Also this method is designed to delete all
predicted points by the end of the optimisation process, but in a gradual way. We
explored a number of different rates for the parameter r, but none of these values
achieved a consistent improvement over the original exclusion radius method. Ret-
rospectively, we discovered that the predictive accuracy of the predictive accuracy of
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the GP surrogate model dropped just after the complete elimination of the predicted
points, as shown in Figures 4.10.

A possible explanation is that after the deletion of all predicted data, some por-
tions of the search space remain with very little data or with no data at all, so
that the GP surrogate model has no longer good information in those regions. This
could happen because while the predicted points are uniformly sampled across all
the space, the real points are selected according to the acquisition function, which
mainly focuses the search in regions that have the highest probability of containing
the optimum.

Discrepancy prediction methods

In order to improve the discrepancy prediction method we focused on improving the
predictive accuracy of the surrogate model for the discrepancy. For this purpose
we developed two strategies: one that relies on Gradient Boosted Regressor (GBR)
to model the discrepancy, while the other one uses a stochastic sampling policy,
called the FarNeighbour, to augment the data set of the surrogate model for the
discrepancy.

The motivation behind the first strategy is the large flexibility GBR models are
known for, which results from the fact that GBR, being an ensemble learning model,
combines multiple learners. Such a flexible model could potentially be very good in
capturing the real structure of the discrepancy, which, in principle, might display
large variability across the search space.

The discrepancy prediction method combined with the FarNeighbour policy in-
stead is designed to selectively increase the accuracy of the surrogate model for the
discrepancy in regions of the space which are useful to solve the current optimisation
task, by randomly sampling extra real points in proximity of the last point suggested
by the acquisition function. FarNeighbour policy has been used in combination with
both GP or BGR models as a surrogate for the discrepancy.

Unfortunately neither of these two approaches has proved to be better than the
original discrepancy prediction method consistently across all the experimental con-
figurations.

A possible pitfall of the FarNeighbour policy is the overall reduction in the ex-
ploration of the space, as discussed in Section 4.5.2.

We point out here that even if the discrepancy prediction method with GBR shows
lower predicted regrets when it is applied in combination with the FarNeighbour
policy, we do not consider this a relevant success, as predicted regrets as a measure
of convergence is typically used only for multi-fidelity BO approaches.

In the case of the discrepancy prediction method with GBR, we ascribed the
lack of improvement with respect to the original method to possible overfitting of
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the model due to the low dimensionality of the benchmark functions to which we
applied it. However we also suggest that this approach could still be successfully
applied to materials design optimisation tasks, which are defined over significantly
higher dimensions: for instance the tasks reported in Chapter 5 had dimensionality
29 when we used Coulomb descriptors.

Final Conclusions

The verdict on all the methods with predicted data we implemented can be sum-
marised as follows:

1. The best of all methods with predicted data is the original version of the
exclusion radius method.

2. The experimental setting we suggest to use for the enumerate is r/l = 0.1,
where r is the radius and l is the length of the dimension of the search space
(assuming that the value of l is the same for all the dimensions): this has
proven to be work for all the benchmark functions we studied, in all the error
regimes.

3. Both the exclusion radius and the discrepancy prediction methods generally
outperform the multi-fidelity BO method in terms of early convergence, but
the first one is more performant, especially if the final regrets after all the 80
real observations are considered.

4. The best discrepancy prediction method is the original version, presented in
Chapter 3, at least for the optimisation problems we investigated. However
we are still considering the application of this method with GBR a possible
approach to explore for problems in the field of materials discovery.

5. An important advantage of our methods with predicted data over the multi-
fidelity approach is the much shorter computational time, which is in the order
of minutes for both exclusion radius and discrepancy prediction methods, while
it varies from about 1 hour to 5 hours for the multi-fidelity method, depending
on the cost assigned to the actual objective function1.

1This comparison holds if all the methods are stopped after the same number of real observations,
which typically implies a significantly higher number of BO iteration for the multi-fidelity method.
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6.2.2 LAW2ORDER BBO method for molecular properties
optimisation

The experimental results we observed for the LAW2ORDER BBO method applied
to molecular properties optimisation led to the following Conclusions:

1. The LAW2ORDER method generally outperforms the Thompson-BBO method
when Coulomb descriptors are used to represent molecules.

2. This same method does not present any advantage over the Thompson-BBO
approach if SOAP descriptors are used. On the contrary, the LAW2ORDER
method would result in much higher computational cost, without reaching any
faster convergence. The LAW2ORDER method with SOAP descriptor is also
much slower than the same method with Coulomb descriptors.

3. Taking into account the acquisition function for the batching policy generally
leads to better performance for the LAW2ORDER method, with respect to
considering the posterior variance only.

4. However we could not establish a straightforward relationship between the
weight given to the acquisition function and the convergence rate of the opti-
misation process, and further investigation is needed in this respect.

The fact that we managed to outperform the Thompson-BBO method at least
with Coulomb descriptors is encouraging, although we need also to notice that the
Thompson based method requires shorter computational time: 500 iterations with
Coulomb descriptors took on average 17 hours with the LAW2ORDER method and
around 4.5 hours with the Thompson-BBO method.

Point 2 proves that, as expected, molecular descriptors and similarity kernels
have a large influence on the performance of the LAW2ORDER method: Coulomb
descriptors could be a better representation for the molecules that we studied. How-
ever the high dimensionality of the SOAP descriptors is also an obstacle, regardless of
which molecules are considered. This issue can be addressed either choosing molec-
ular descriptors with lower dimensionality or combining the LAW2ORDER method
with BBO approaches suitable for high dimension spaces, as shown in Section 6.3.

Present perspective of LAW2ORDER real world applications

To prove that the LAW2ORDER method can be applied to real world problems in
the field materials design, we tested its application to a benchmark chemical reaction,
with potential environemental application.
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This part of the project, which currently is still ongoing, is in collaboration with
the research group directed by Prof A. Cooper at the Department of Chemistry in the
University of Liverpool. The chemical process under study is an aqueous photolysis
reaction between of a pharmaceutical compound dissolved in water and a second
organic molecule, in presence of light. As a result of this reaction the pharmaceutical
compound, in our case cimetidine, is decomposed in smaller molecules, or degraded,
as described in [17].

As the degradation process is typically not complete, and a certain amount of
cimetidine is left after the end of the reaction, we aim to find the molecule which
reacts with the highest amount of cimetidine, leaving us with the smallest amount
of residual cimetidine. Specifically, our task is the selection among a given data set
of candidates, all of which are organic dyes.

To solve this optimisation problem we used the LAW2ORDER method with
Coulomb descriptors and RBF kernel, since this configuration gave the best results
on the tasks studied in Chapter 5. Figure 6.1 represents a scheme of the experiment:
the top of the Figure illustrates the basic steps of the experiment. In particular the
last steps shows how the remaining concentration of cimetidine is quantified, using
an experimental technique called high-pressure liquid chromatography (HPLC). The
bottom of Figure 6.1 represents instead the Bayesian optimisation loop we used in
this context: the input variables are the Coulomb descriptors of the batch of dye
molecules that, at each experiment, have been used to react with cimetidine. The
results of the HPLC measurements are the observations of our objective function,
which is the final concentration of cimetidine. At each BBO step the LAW2ORDER
batching policy generates a batch of 16 new combinations of a particular dye and its
concentration in water, for the next set of experiments. The batch size we choose
corresponds to the maximum number of experiments that can currently be performed
in parallel.

While the software to run LAW2ORDER is currently integrated in the whole
loop for the experimental set up, the experimental results are not yet available at
the time of writing.

However we have achieved a proof of concept application of this BBO method for
discrete molecular space.
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6.3 Future work

At the end of this thesis we propose possible extensions of the research. We identified
possible ways to further develop the work we presented here.

6.3.1 Exclusion radius and discrepancy prediction method
for materials design

First of all we propose to apply the exclusion radius and the discrepancy prediction
methods introduced in Chapter 3 to real world optimisation problems related to
materials design. These methods are developed for sequential Bayesian optimisation,
and thus are applicable to both continuous and discrete search spaces. As previously
mentioned in this chapter, we also consider the discrepancy prediction method with
GBR a potentially interesting approach to test in the molecular space.

Here we suggest to use machine learning models as predictors to approximate the
actual objective function and generate predicted data, in the hypotheses that the
evaluation of such models is cheaper than performing real experiments.

Traditional machine learning methods like kernel ridge regression [24], extreme
boost gradient regression [28, 36, 110], k-means [38] and random forests [65, 106] have
already been employed to predict materials properties, like shear stress, thermal con-
ductivity and dielectric properties. More recently used models however include graph
neural networks [83, 90], recurrent neural networks [93], variational autoencoders [63,
81]. These last approaches are more suitable for large data sets compared with the
ones mentioned before and, generally, are better at capturing complex patterns and
relationships. On the other hand, usually they are also computationally more ex-
pensive and tend to require a larger number of training points. The advantage in
using rather than acquiring real observations depends on the computational resources
available, on the duration and material cost of running a real experiment as well as
the availability of pre-trained models.

6.3.2 Improving the LAW2ORDER method

Despite giving encouraging results when used with the Coulomb descriptors and an
RBF kernel, the LAW2ORDER method still presents slow convergence, and the im-
pact of the sequential acquisition function on the performance of this method needs
further investigation. In Chapter 5 we ascribed slow convergence to the high dimen-
sionality of the molecular descriptors we used, especially for SOAP descriptors, and
for this reason we suggested the combination of the LAW2ORDER batching policy
with the TURBO BBO method [26] which is designed to handle high dimensional
inputs and it is also applicable to discrete spaces.
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The TURBO method deals with high dimensionality by partitioning the search
space in smaller regions, called the trust regions, and a local optimisation in each
trust region is performed using an independent GP. At each BBO step, an acquisition
function selects a batch of candidates. The best point at this iteration is found among
the union of all the batch points across all the thrust regions. We could apply the
TURBO method using a LAW2ORDER to select batches locally in each trust region.

Once we manage to mitigate the problem of high dimensionality, we could start
to explore the use of different sequential acquisition function for the LAW2ORDER
batching policy, according to Eq. (5.6). For example we could test how this method
performs the EST acquisition function [111], which has been used in the original
paper by Oh et al. [79], in lower dimensional space compared to the one we explored
in Chapter 5.

6.3.3 Towards application to biomolecules

The real world applications of our methods so far were restricted to small organic
molecules, but in the last few years the interest in the field of Materials Science and
Drug Discovery has focused on biomolecules, largely on aminoacids and proteins.
Consequently, a number of BO approaches have been developed for optimisation
problems related to this type of molecules [15, 46, 113], and we can also think of
extending the methods described in this thesis to this topic.

However we can already foresee a challenge: indeed the size of biomolecules is
such to make their numerical encoding extremely high dimensional, if we use molecu-
lar descriptors that encode their atomic composition, like the Coulomb or the SOAP
descriptors we used for small molecules. For instance descriptors often used in lit-
erature to represent proteins encode their geometric properties, like tertiary and
secondary structures2, rather then atomic composition. Alternatively, the numeric
value of chemical and physiochemical properties, such as hydrophobicity and charge
of a protein, can be used as input variables for Bayesian optimisation.

Thus, if for example we want to apply the LAW2ORDER method to proteins we
suggest to explore the use of the aforementioned descriptors, which in many cases
can be combined with well known kernels like RBF.

6.3.4 Software considerations

All the experiments reported in this thesis have been implemented using GPyOpt
package, with the exception of the multi-fidelity experiments in Chapter 3, for which

2Proteins have usually a quite complex 3D structure, hierarchically organized at multiple levels,
in primary, secondary and tertiary structures. When multiple proteins aggregate with each other
the form what is called a quaternary structure. More details can be found in [15]
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we used Emukit. Currently GPyOpt is no longer maintained, and can thus be con-
sidered obsolete. For the future we other libraries might be considered, taking into
account their computational speed, their versatility, the support for parallelization
and the potential use of GPUs, and the amount of state of the art methods imple-
mented.

Let us consider here the following libraries: scikit-optimize3, Emukit [84], GPFlowOpt [71],
BOTorch [8]. The scikit-optimize library is a popular library, which is now compara-
ble to GPyOpt in terms of ease of use and amount of methods implemented. However
it does not have built-in support for parallel optimization.

Emukit is more flexible and modular, requiring less effort to include extra compu-
tational steps in the BO loop. Furthermore built-in support for parallel optimization.

GPFlowOpt is built on top of TensorFlow and thus it can exploit parallel compu-
tation resources and it can use GPUs when available. For these reasons it can achieve
higher computational efficiency compared to the Emukit and scikit-optimize. This li-
brary is conceptually structured as GPyOPt, and it has almost all the same methods
implemented, but with the benefit of computational acceleration. Thus it could be
a good choice for the future, but an even more convenient choice could be BOTorch.

BOTorch is built on top of PyTorch and, like GPFlowOpt it can efficiently per-
form parallel computation on GPUs, making it suitable for parallel evaluations. Com-
pared to GPFlowOpt however, it provides the implementation of several state of the
art Bayesian optimisation approaches, including the TURBO BBO method afore-
mentioned.

At the end of these considerations, for the purpose of the future work we outlined
in this Chapter, we would suggest to opt for BOTorch.

3https://github.com/scikit-optimize/scikit-optimize
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APPENDIX A. RESULTS TABLES FOR METHODS TO INTEGRATE
PREDICTED DATA INTO BAYESIAN OPTIMISATION

A.1 The Early Switch Method

A.1.1 Simple regrets at low error regime, for the early switch
method

LOW ERROR
Function r/l Rexclusion RSwitch,best tbestsw

Ackley

0.05 3.282E-02 ± 4.084E-03 3.439E-02 ± 2.556E-02 70
0.1 3.352E-02 ± 3.663E-03 3.363E-02 ± 2.246E-02 70

0.15 4.305E-02 ± 4.743E-03 4.353E-02 ± 2.965E-02 70
0.2 4.606E-02 ± 5.070E-03 4.948E-02 ± 3.411E-02 30
0.3 5.539E-02 ± 6.053E-03 5.274E-02 ± 3.742E-02 30

Griewank

0.05 3.986E-03 ± 5.059E-04 4.629E-03 ± 3.603E-03 70
0.1 5.045E-03 ± 5.035E-04 5.685E-03 ± 3.615E-03 70

0.15 6.127E-03 ± 6.181E-04 5.716E-03 ± 4.313E-03 20
0.2 6.271E-03 ± 5.354E-04 6.258E-03 ± 3.463E-03 60
0.3 6.757E-03 ± 5.284E-04 6.542E-03 ± 3.626E-03 30

michalewicz

0.05 8.460E-04 ± 1.006E-04 8.504E-04 ± 6.941E-04 70
0.1 7.162E-04 ± 1.023E-04 7.127E-04 ± 7.101E-04 60

0.15 9.485E-04 ± 1.244E-04 9.193E-04 ± 7.852E-04 60
0.2 1.190E-03 ± 1.427E-04 1.156E-03 ± 9.941E-04 50
0.3 1.420E-03 ± 1.542E-04 1.332E-03 ± 1.097E-03 40

Rastrigin

0.05 5.209E-01 ± 1.157E-01 6.528E-01 ± 7.985E-01 70
0.1 5.491E-01 ± 1.434E-01 6.916E-01 ± 1.050E+00 70

0.15 6.479E-01 ± 9.089E-02 8.573E-01 ± 8.986E-01 60
0.2 6.770E-01 ± 1.031E-01 7.293E-01 ± 7.159E-01 70
0.3 1.004E+00 ± 1.304E-01 9.386E-01 ± 9.279E-01 40

Styblinsky

0.05 1.555E-01 ± 5.335E-02 1.019E-01 ± 9.541E-02 70
0.1 7.768E-02 ± 1.540E-02 1.034E-01 ± 5.522E-02 50

0.15 6.892E-02 ± 1.523E-02 7.219E-02 ± 7.890E-02 40
0.2 8.250E-02 ± 1.866E-02 7.382E-02 ± 6.636E-02 40
0.3 1.050E-01 ± 1.724E-02 9.681E-02 ± 6.721E-02 10

Table A.1: Final simple average regrets in the low error regime. Results for the
exclusion radius method radius are compared to the best results for the early switch
method, obtained for tbest tbest. Values in bold indicate the lowest regret at each
value of r/l. The absolute best result for each benchmark is underlined.
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A.1.2 Simple regrets at medium error regime, for the early
switch method

MEDIUM ERROR
Function r/l Rexclusion RSwitch,best tbestsw

Ackley

0.05 3.697E-02 ± 3.155E-03 4.084E-02 ± 3.078E-02 70
0.1 3.757E-02 ± 3.145E-03 3.936E-02 ± 2.782E-02 70

0.15 4.189E-02 ± 3.100E-03 4.290E-02 ± 2.882E-02 60
0.2 4.534E-02 ± 3.477E-03 4.590E-02 ± 3.050E-02 60
0.3 4.988E-02 ± 4.095E-03 5.176E-02 ± 3.656E-02 60

Griewank

0.05 3.892E-03 ± 4.972E-04 5.314E-03 ± 3.900E-03 70
0.1 5.357E-03 ± 5.126E-04 6.049E-03 ± 3.728E-03 70

0.15 5.823E-03 ± 4.911E-04 5.883E-03 ± 3.827E-03 60
0.2 7.356E-03 ± 7.075E-04 6.397E-03 ± 4.019E-03 20
0.3 6.075E-03 ± 5.309E-04 6.222E-03 ± 3.812E-03 60

michalewicz

0.05 6.505E-04 ± 7.988E-05 7.198E-04 ± 6.687E-04 60
0.1 7.247E-04 ± 8.407E-05 7.708E-04 ± 7.061E-04 30

0.15 9.158E-04 ± 1.178E-04 8.968E-04 ± 9.685E-04 30
0.2 7.819E-04 ± 8.558E-05 7.949E-04 ± 7.138E-04 50
0.3 1.097E-03 ± 1.109E-04 1.042E-03 ± 9.294E-04 20

Rastrigin

0.05 6.299E-01 ± 1.133E-01 6.667E-01 ± 7.366E-01 60
0.1 6.929E-01 ± 1.093E-01 9.196E-01 ± 1.105E+00 70

0.15 5.244E-01 ± 9.302E-02 6.539E-01 ± 8.485E-01 50
0.2 6.474E-01 ± 7.790E-02 6.841E-01 ± 6.546E-01 60
0.3 1.062E+00 ± 1.670E-01 1.054E+00 ± 1.084E+00 10

Styblinsky

0.05 2.042E-01 ± 9.778E-02 6.806E-02 ± 5.470E-02 70
0.1 6.940E-02 ± 1.349E-02 9.517E-02 ± 8.542E-02 60

0.15 1.139E-01 ± 1.661E-02 1.006E-01 ± 6.881E-02 50
0.2 1.255E-01 ± 1.849E-02 1.288E-01 ± 1.093E-01 10
0.3 1.057E-01 ± 1.561E-02 8.324E-02 ± 6.845E-02 20

Table A.2: Final simple average regrets in the medium error regime. Results for
the exclusion radius method radius are compared to the best results for the early
switch method, obtained for tbest tbest. Values in bold indicate the lowest regret at
each value of r/l. The absolute best result for each benchmark is underlined.
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A.1.3 Simple regrets at high error regime, for the early
switch method

HIGH ERROR
Function r/l Rexclusion RSwitch,best tbestsw

Ackley

0.05 3.273E-02 ± 2.864E-03 3.407E-02 ± 2.496E-02 70
0.1 3.518E-02 ± 2.460E-03 3.644E-02 ± 2.186E-02 70

0.15 4.721E-02 ± 3.418E-03 4.710E-02 ± 3.014E-02 70
0.2 4.347E-02 ± 3.631E-03 4.428E-02 ± 3.220E-02 60
0.3 4.943E-02 ± 4.383E-03 4.346E-02 ± 3.374E-02 30

Griewank

0.05 5.070E-03 ± 4.782E-04 5.654E-03 ± 3.830E-03 70
0.1 5.500E-03 ± 4.590E-04 5.711E-03 ± 3.440E-03 70

0.15 5.127E-03 ± 5.156E-04 5.379E-03 ± 3.898E-03 70
0.2 6.603E-03 ± 4.571E-04 5.991E-03 ± 4.021E-03 30
0.3 6.582E-03 ± 4.843E-04 6.303E-03 ± 3.666E-03 20

michalewicz

0.05 1.254E-03 ± 1.368E-04 1.185E-03 ± 8.698E-04 70
0.1 8.532E-04 ± 1.044E-04 8.484E-04 ± 8.051E-04 60

0.15 8.798E-04 ± 1.121E-04 8.757E-04 ± 8.629E-04 70
0.2 9.606E-04 ± 1.035E-04 9.529E-04 ± 7.588E-04 40
0.3 1.121E-02 ± 9.908E-03 1.092E-03 ± 9.843E-04 10

Rastrigin

0.05 8.379E-01 ± 1.103E-01 9.153E-01 ± 1.034E+00 70
0.1 6.584E-01 ± 7.857E-02 7.521E-01 ± 8.274E-01 70

0.15 9.065E-01 ± 8.898E-02 1.004E+00 ± 8.161E-01 50
0.2 1.018E+00 ± 1.068E-01 1.114E+00 ± 1.045E+00 60
0.3 1.192E+00 ± 1.260E-01 1.152E+00 ± 1.083E+00 40

Styblinsky

0.05 2.143E-01 ± 5.167E-02 6.823E-02 ± 7.255E-02 10
0.1 2.180E-01 ± 1.231E-01 8.769E-02 ± 6.762E-02 70

0.15 7.358E-02 ± 1.210E-02 9.361E-02 ± 8.053E-02 10
0.2 9.177E-02 ± 2.575E-02 1.106E-01 ± 9.397E-02 50
0.3 1.273E-01 ± 3.171E-02 1.226E-01 ± 8.488E-02 10

Table A.3: Final simple average regrets in the high error regime. Results for the
exclusion radius method radius are compared to the best results for the early switch
method, obtained for tbest tbest. Values in bold indicate the lowest regret at each
value of r/l. The absolute best result for each benchmark is underlined.
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A.1.4 Predicted regrets at low error regime, for the early
switch method

LOW ERROR
Function r/l Rexclusion RSwitch,best tbestsw

Ackley

0.05 1.529E-02 ± 1.180E-03 1.529E-02 ± 1.180E-03 70
0.1 1.761E-02 ± 1.308E-03 1.601E-02 ± 1.189E-03 10

0.15 1.674E-02 ± 1.277E-03 1.597E-02 ± 1.271E-03 20
0.2 1.653E-02 ± 1.248E-03 1.601E-02 ± 1.131E-03 30
0.3 1.690E-02 ± 1.289E-03 1.733E-02 ± 1.421E-03 40

Griewank

0.05 2.600E-03 ± 5.145E-04 2.741E-03 ± 5.237E-04 70
0.1 3.583E-03 ± 5.468E-04 3.745E-03 ± 5.650E-04 30

0.15 4.433E-03 ± 5.868E-04 4.104E-03 ± 5.795E-04 20
0.2 4.751E-03 ± 5.421E-04 4.252E-03 ± 5.755E-04 20
0.3 5.074E-03 ± 5.080E-04 4.906E-03 ± 5.257E-04 30

michalewicz

0.05 1.503E-04 ± 2.567E-05 1.629E-04 ± 2.709E-05 30
0.1 1.644E-04 ± 2.760E-05 1.701E-04 ± 2.745E-05 70

0.15 2.062E-04 ± 4.450E-05 2.118E-04 ± 4.430E-05 30
0.2 1.673E-04 ± 2.845E-05 1.730E-04 ± 2.829E-05 50
0.3 2.260E-04 ± 5.153E-05 2.279E-04 ± 4.909E-05 30

Rastrigin

0.05 4.535E-01 ± 1.143E-01 5.504E-01 ± 1.186E-01 70
0.1 5.288E-01 ± 1.309E-01 5.994E-01 ± 1.095E-01 10

0.15 5.853E-01 ± 9.150E-02 6.753E-01 ± 1.312E-01 70
0.2 5.204E-01 ± 9.139E-02 5.229E-01 ± 9.194E-02 70
0.3 7.569E-01 ± 1.144E-01 6.774E-01 ± 1.054E-01 60

Styblinsky

0.05 7.923E-02 ± 5.193E-02 9.074E-04 ± 2.106E-04 20
0.1 9.200E-04 ± 1.523E-04 8.452E-04 ± 1.713E-04 10

0.15 1.059E-03 ± 2.186E-04 8.097E-04 ± 1.644E-04 30
0.2 1.485E-03 ± 3.336E-04 9.336E-04 ± 1.995E-04 30
0.3 1.644E-03 ± 4.116E-04 9.141E-04 ± 1.627E-04 20

Table A.4: Final predicted average regrets in the low error regime. Results for the
exclusion radius method radius are compared to the best results for the early switch
method, obtained for tbest tbest. Values in bold indicate the lowest regret at each
value of r/l. The absolute best result for each benchmark is underlined.
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A.1.5 Predicted regrets at medium error regime, for the
early switch method

MEDIUM ERROR
Function r/l Rexclusion RSwitch,best tbestsw

Ackley

0.05 1.637E-02 ± 1.077E-03 1.662E-02 ± 1.081E-03 70
0.1 1.733E-02 ± 1.140E-03 1.653E-02 ± 1.093E-03 20

0.15 1.727E-02 ± 1.161E-03 1.642E-02 ± 1.149E-03 20
0.2 1.656E-02 ± 1.130E-03 1.595E-02 ± 1.046E-03 60
0.3 1.647E-02 ± 1.088E-03 1.646E-02 ± 1.088E-03 60

Griewank

0.05 2.872E-03 ± 4.911E-04 3.346E-03 ± 5.065E-04 70
0.1 4.265E-03 ± 5.181E-04 4.756E-03 ± 5.188E-04 70

0.15 4.313E-03 ± 5.056E-04 4.816E-03 ± 5.010E-04 70
0.2 6.028E-03 ± 7.072E-04 4.757E-03 ± 5.330E-04 10
0.3 4.685E-03 ± 5.146E-04 4.783E-03 ± 5.268E-04 40

michalewicz

0.05 1.494E-04 ± 2.039E-05 1.545E-04 ± 2.032E-05 40
0.1 1.518E-04 ± 1.854E-05 1.569E-04 ± 1.846E-05 60

0.15 1.563E-04 ± 2.027E-05 1.614E-04 ± 2.018E-05 50
0.2 1.631E-04 ± 2.272E-05 1.682E-04 ± 2.261E-05 50
0.3 1.819E-04 ± 2.933E-05 1.703E-04 ± 2.132E-05 40

Rastrigin

0.05 5.732E-01 ± 1.111E-01 5.183E-01 ± 7.934E-02 20
0.1 6.350E-01 ± 1.082E-01 7.790E-01 ± 1.249E-01 70

0.15 3.728E-01 ± 9.025E-02 4.523E-01 ± 1.011E-01 70
0.2 4.897E-01 ± 8.226E-02 5.033E-01 ± 8.677E-02 60
0.3 6.950E-01 ± 1.417E-01 7.317E-01 ± 1.283E-01 10

Styblinsky

0.05 1.211E-01 ± 8.281E-02 1.209E-03 ± 2.502E-04 10
0.1 1.633E-03 ± 4.786E-04 1.019E-03 ± 2.457E-04 20

0.15 1.073E-03 ± 1.558E-04 1.212E-03 ± 2.586E-04 40
0.2 1.355E-03 ± 2.148E-04 1.178E-03 ± 2.882E-04 40
0.3 1.422E-03 ± 4.017E-04 1.602E-03 ± 4.221E-04 10

Table A.5: Final predicted average regrets in the medium error regime. Results
for the exclusion radius method radius are compared to the best results for the early
switch method, obtained for tbest tbest. Values in bold indicate the lowest regret at
each value of r/l. The absolute best result for each benchmark is underlined.
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A.1.6 Predicted regrets at high error regime, for the early
switch method

HIGH ERROR
Function r/l Rexclusion RSwitch,best tbestsw

Ackley

0.05 1.594E-02 ± 9.688E-04 1.604E-02 ± 9.780E-04 70
0.1 1.620E-02 ± 9.993E-04 1.635E-02 ± 1.044E-03 50

0.15 1.682E-02 ± 1.054E-03 1.617E-02 ± 1.020E-03 40
0.2 1.681E-02 ± 1.114E-03 1.687E-02 ± 1.103E-03 40
0.3 1.695E-02 ± 1.077E-03 1.687E-02 ± 1.049E-03 10

Griewank

0.05 4.059E-03 ± 4.977E-04 4.141E-03 ± 4.941E-04 70
0.1 4.024E-03 ± 4.887E-04 4.166E-03 ± 4.887E-04 70

0.15 3.874E-03 ± 4.856E-04 4.128E-03 ± 4.834E-04 70
0.2 4.472E-03 ± 4.869E-04 4.508E-03 ± 5.611E-04 30
0.3 4.927E-03 ± 4.918E-04 5.117E-03 ± 4.882E-04 20

michalewicz

0.05 2.499E-04 ± 6.124E-05 1.775E-04 ± 2.661E-05 30
0.1 1.726E-04 ± 2.858E-05 1.739E-04 ± 2.855E-05 30

0.15 1.718E-04 ± 2.895E-05 1.731E-04 ± 2.892E-05 40
0.2 1.722E-04 ± 2.614E-05 1.735E-04 ± 2.611E-05 30
0.3 1.015E-02 ± 9.901E-03 1.956E-04 ± 3.123E-05 20

Rastrigin

0.05 7.678E-01 ± 1.072E-01 7.360E-01 ± 9.250E-02 40
0.1 5.782E-01 ± 7.891E-02 6.543E-01 ± 9.224E-02 70

0.15 7.804E-01 ± 8.544E-02 7.146E-01 ± 7.239E-02 10
0.2 8.069E-01 ± 9.987E-02 7.892E-01 ± 8.556E-02 40
0.3 8.857E-01 ± 1.126E-01 7.864E-01 ± 1.014E-01 40

Styblinsky

0.05 9.232E-02 ± 4.819E-02 1.124E-03 ± 2.622E-04 10
0.1 8.896E-02 ± 8.333E-02 1.270E-03 ± 2.567E-04 20

0.15 1.060E-03 ± 1.850E-04 9.303E-04 ± 1.941E-04 10
0.2 1.089E-03 ± 1.875E-04 1.082E-03 ± 2.547E-04 40
0.3 7.434E-04 ± 1.803E-04 9.305E-04 ± 1.880E-04 10

Table A.6: Final predicted average regrets in the high error regime. Results for
the exclusion radius method radius are compared to the best results for the early
switch method, obtained for tbest tbest. Values in bold indicate the lowest regret at
each value of r/l. The absolute best result for each benchmark is underlined.
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APPENDIX A. RESULTS TABLES FOR METHODS TO INTEGRATE
PREDICTED DATA INTO BAYESIAN OPTIMISATION

A.2 The Adaptive Radius Exclusion Method

A.2.1 Simple regrets at low error regime, for adaptive radius
exclusion method

LOW ERROR
Function r/l Rexclusion RAdaptive,best t∗best

Ackley

0.05 3.282E-02 ± 4.084E-03 4.545E-02 ± 5.884E-03 80
0.1 3.352E-02 ± 3.663E-03 - -

0.15 4.305E-02 ± 4.743E-03 - -
0.2 4.606E-02 ± 5.070E-03 - -
0.3 5.539E-02 ± 6.053E-03 - -

Griewank

0.05 3.986E-03 ± 5.059E-04 5.599E-03 ± 5.954E-04 65
0.1 5.045E-03 ± 5.035E-04 - -

0.15 6.127E-03 ± 6.181E-04 - -
0.2 6.271E-03 ± 5.354E-04 - -
0.3 6.757E-03 ± 5.284E-04 - -

Michalewicz

0.05 8.460E-04 ± 1.006E-04 8.645E-04 ± 1.225E-04 65
0.1 7.162E-04 ± 1.023E-04 - -

0.15 9.485E-04 ± 1.244E-04 - -
0.2 1.190E-03 ± 1.427E-04 - -
0.3 1.420E-03 ± 1.542E-04 - -

Rastrigin

0.05 5.209E-01 ± 1.157E-01 6.644E-01 ± 9.768E-02 75
0.1 5.491E-01 ± 1.434E-01 - -

0.15 6.479E-01 ± 9.089E-02 - -
0.2 6.770E-01 ± 1.031E-01 - -
0.3 1.004E+00 ± 1.304E-01 - -

Styblinski-Tang

0.05 1.555E-01 ± 5.335E-02 8.212E-02 ± 1.616E-02 80
0.1 7.768E-02 ± 1.540E-02 - -

0.15 6.892E-02 ± 1.523E-02 - -
0.2 8.250E-02 ± 1.866E-02 - -
0.3 1.050E-01 ± 1.724E-02 - -

Table A.7: Final average simple regrets comparison between exclusion radius
method and the adaptive radius exclusion method in low noise regime. For the
adaptive radius exclusion method only the best results are reported, together with
the value of t∗ at which they have been achieved. The best result for each benchmark
function is in bold.
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A.2. The Adaptive Radius Exclusion Method

A.2.2 Simple regrets at medium error regime, for adaptive
radius exclusion method

MEDIUM ERROR
Function r/l Rexclusion RAdaptive,best t∗best

Ackley

0.05 3.697E-02 ± 3.155E-03 4.838E-02 ± 3.861E-03 80
0.1 3.757E-02 ± 3.145E-03 - -

0.15 4.189E-02 ± 3.100E-03 - -
0.2 4.534E-02 ± 3.477E-03 - -
0.3 4.988E-02 ± 4.095E-03 - -

Griewank

0.05 3.892E-03 ± 4.972E-04 6.486E-03 ± 5.942E-04 25
0.1 5.357E-03 ± 5.126E-04 - -

0.15 5.823E-03 ± 4.911E-04 - -
0.2 7.356E-03 ± 7.075E-04 - -
0.3 6.075E-03 ± 5.309E-04 - -

Michalewicz

0.05 6.505E-04 ± 7.988E-05 7.467E-04 ± 8.124E-05 35
0.1 7.247E-04 ± 8.407E-05 - -

0.15 9.158E-04 ± 1.178E-04 - -
0.2 7.819E-04 ± 8.558E-05 - -
0.3 1.097E-03 ± 1.109E-04 - -

Rastrigin

0.05 6.299E-01 ± 1.133E-01 7.914E-01 ± 9.453E-02 80
0.1 6.929E-01 ± 1.093E-01 - -

0.15 5.244E-01 ± 9.302E-02 - -
0.2 6.474E-01 ± 7.790E-02 - -
0.3 1.062E+00 ± 1.670E-01 - -

Styblinski-Tang

0.05 2.042E-01 ± 9.778E-02 6.710E-02 ± 1.733E-02 65
0.1 6.940E-02 ± 1.349E-02 - -

0.15 1.139E-01 ± 1.661E-02 - -
0.2 1.255E-01 ± 1.849E-02 - -
0.3 1.057E-01 ± 1.561E-02 - -

Table A.8: Final average simple regrets comparison between exclusion radius
method and the adaptive radius exclusion method in medium noise regime. For
the adaptive radius exclusion method only the best results are reported, together
with the value of t∗ at which they have been achieved. The best result for each
benchmark function is in bold.
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APPENDIX A. RESULTS TABLES FOR METHODS TO INTEGRATE
PREDICTED DATA INTO BAYESIAN OPTIMISATION

A.2.3 Simple regrets at high error regime, for adaptive ra-
dius exclusion method

HIGH ERROR
Function r/l Rexclusion RAdaptive,best t∗best

Ackley

0.05 3.273E-02 ± 2.864E-03 4.650E-02 ± 4.011E-03 75
0.1 3.518E-02 ± 2.460E-03 - -

0.15 4.721E-02 ± 3.418E-03 - -
0.2 4.347E-02 ± 3.631E-03 - -
0.3 4.943E-02 ± 4.383E-03 - -

Griewank

0.05 5.070E-03 ± 4.782E-04 5.825E-03 ± 5.581E-04 75
0.1 5.500E-03 ± 4.590E-04 - -

0.15 5.127E-03 ± 5.156E-04 - -
0.2 6.603E-03 ± 4.571E-04 - -
0.3 6.582E-03 ± 4.843E-04 - -

Michalewicz

0.05 1.254E-03 ± 1.368E-04 1.274E-03 ± 1.292E-04 55
0.1 8.532E-04 ± 1.044E-04 - -

0.15 8.798E-04 ± 1.121E-04 - -
0.2 9.606E-04 ± 1.035E-04 - -
0.3 1.121E-02 ± 9.908E-03 - -

Rastrigin

0.05 8.379E-01 ± 1.103E-01 9.599E-01 ± 1.076E-01 80
0.1 6.584E-01 ± 7.857E-02 - -

0.15 9.065E-01 ± 8.898E-02 - -
0.2 1.018E+00 ± 1.068E-01 - -
0.3 1.192E+00 ± 1.260E-01 - -

Styblinski-Tang

0.05 2.143E-01 ± 5.167E-02 9.137E-02 ± 1.664E-02 75
0.1 2.180E-01 ± 1.231E-01 - -

0.15 7.358E-02 ± 1.210E-02 - -
0.2 9.177E-02 ± 2.575E-02 - -
0.3 1.273E-01 ± 3.171E-02 - -

Table A.9: Final average simple regrets comparison between exclusion radius
method and the adaptive radius exclusion method in high noise regime. For the
adaptive radius exclusion method only the best results are reported, together with
the value of t∗ at which they have been achieved. The best result for each benchmark
function is in bold.
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A.2. The Adaptive Radius Exclusion Method

A.2.4 Predicted regrets at low error regime, for adaptive
radius exclusion method

LOW ERROR
Function r/l Rexclusion RAdaptive,best t∗best

Ackley

0.05 1.529E-02 ± 1.180E-03 1.529E-02 ± 1.144E-03 25
0.1 1.761E-02 ± 1.308E-03 - -

0.15 1.674E-02 ± 1.277E-03 - -
0.2 1.653E-02 ± 1.248E-03 - -
0.3 1.690E-02 ± 1.289E-03 - -

Griewank

0.05 2.600E-03 ± 5.145E-04 3.958E-03 ± 5.642E-04 65
0.1 3.583E-03 ± 5.468E-04 - -

0.15 4.433E-03 ± 5.868E-04 - -
0.2 4.751E-03 ± 5.421E-04 - -
0.3 5.074E-03 ± 5.080E-04 - -

Michalewicz

0.05 1.503E-04 ± 2.567E-05 1.847E-04 ± 2.943E-05 65
0.1 1.644E-04 ± 2.760E-05 - -

0.15 2.062E-04 ± 4.450E-05 - -
0.2 1.673E-04 ± 2.845E-05 - -
0.3 2.260E-04 ± 5.153E-05 - -

Rastrigin

0.05 4.535E-01 ± 1.143E-01 4.418E-01 ± 8.848E-02 75
0.1 5.288E-01 ± 1.309E-01 - -

0.15 5.853E-01 ± 9.150E-02 - -
0.2 5.204E-01 ± 9.139E-02 - -
0.3 7.569E-01 ± 1.144E-01 - -

Styblinski-Tang

0.05 7.923E-02 ± 5.193E-02 8.480E-04 ± 1.817E-04 80
0.1 9.200E-04 ± 1.523E-04 - -

0.15 1.059E-03 ± 2.186E-04 - -
0.2 1.485E-03 ± 3.336E-04 - -
0.3 1.644E-03 ± 4.116E-04 - -

Table A.10: Final average predicted regrets comparison between exclusion radius
method and the adaptive radius exclusion method in high noise regime. For the
adaptive radius exclusion method only the best results are reported, together with
the value of t∗ at which they have been achieved. The best result for each benchmark
function is in bold.
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APPENDIX A. RESULTS TABLES FOR METHODS TO INTEGRATE
PREDICTED DATA INTO BAYESIAN OPTIMISATION

A.2.5 Predicted regrets at medium error regime, for adap-
tive radius exclusion method

MEDIUM ERROR
Function r/l Rexclusion RAdaptive,best t∗best

Ackley

0.05 1.637E-02 ± 1.077E-03 1.671E-02 ± 1.144E-03 75
0.1 1.733E-02 ± 1.140E-03 - -

0.15 1.727E-02 ± 1.161E-03 - -
0.2 1.656E-02 ± 1.130E-03 - -
0.3 1.647E-02 ± 1.088E-03 - -

Griewank

0.05 2.872E-03 ± 4.911E-04 4.934E-03 ± 6.005E-04 80
0.1 4.265E-03 ± 5.181E-04 - -

0.15 4.313E-03 ± 5.056E-04 - -
0.2 6.028E-03 ± 7.072E-04 - -
0.3 4.685E-03 ± 5.146E-04 - -

Michalewicz

0.05 1.494E-04 ± 2.039E-05 1.499E-04 ± 1.771E-05 25
0.1 1.518E-04 ± 1.854E-05 - -

0.15 1.563E-04 ± 2.027E-05 - -
0.2 1.631E-04 ± 2.272E-05 - -
0.3 1.819E-04 ± 2.933E-05 - -

Rastrigin

0.05 5.732E-01 ± 1.111E-01 4.973E-01 ± 8.281E-02 25
0.1 6.350E-01 ± 1.082E-01 - -

0.15 3.728E-01 ± 9.025E-02 - -
0.2 4.897E-01 ± 8.226E-02 - -
0.3 6.950E-01 ± 1.417E-01 - -

Styblinski-Tang

0.05 1.211E-01 ± 8.281E-02 1.061E-03 ± 2.826E-04 35
0.1 1.633E-03 ± 4.786E-04 - -

0.15 1.073E-03 ± 1.558E-04 - -
0.2 1.355E-03 ± 2.148E-04 - -
0.3 1.422E-03 ± 4.017E-04 - -

Table A.11: Final average predicted regrets comparison between exclusion radius
method and the adaptive radius exclusion method in medium noise regime. For the
adaptive radius exclusion method only the best results are reported, together with
the value of t∗ at which they have been achieved. The best result for each benchmark
function is in bold.

148



A.2. The Adaptive Radius Exclusion Method

A.2.6 Predicted regrets at high error regime, for adaptive
radius exclusion method

HIGH ERROR
Function r/l Rexclusion RAdaptive,best t∗best

Ackley

0.05 1.594E-02 ± 9.688E-04 1.672E-02 ± 1.025E-03 65
0.1 1.620E-02 ± 9.993E-04 - -

0.15 1.682E-02 ± 1.054E-03 - -
0.2 1.681E-02 ± 1.114E-03 - -
0.3 1.695E-02 ± 1.077E-03 - -

Griewank

0.05 4.059E-03 ± 4.977E-04 4.729E-03 ± 5.270E-04 75
0.1 4.024E-03 ± 4.887E-04 - -

0.15 3.874E-03 ± 4.856E-04 - -
0.2 4.472E-03 ± 4.869E-04 - -
0.3 4.927E-03 ± 4.918E-04 - -

Michalewicz

0.05 2.499E-04 ± 6.124E-05 1.703E-04 ± 2.374E-05 55
0.1 1.726E-04 ± 2.858E-05 - -

0.15 1.718E-04 ± 2.895E-05 - -
0.2 1.722E-04 ± 2.614E-05 - -
0.3 1.015E-02 ± 9.901E-03 - -

Rastrigin

0.05 7.678E-01 ± 1.072E-01 6.948E-01 ± 1.158E-01 55
0.1 5.782E-01 ± 7.891E-02 - -

0.15 7.804E-01 ± 8.544E-02 - -
0.2 8.069E-01 ± 9.987E-02 - -
0.3 8.857E-01 ± 1.126E-01 - -

Styblinski-Tang

0.05 9.232E-02 ± 4.819E-02 1.112E-03 ± 2.280E-04 35
0.1 8.896E-02 ± 8.333E-02 - -

0.15 1.060E-03 ± 1.850E-04 - -
0.2 1.089E-03 ± 1.875E-04 - -
0.3 7.434E-04 ± 1.803E-04 - -

Table A.12: Final average predicted regrets comparison between exclusion radius
method and the adaptive radius exclusion method in high noise regime. For the
adaptive radius exclusion method only the best results are reported, together with
the value of t∗ at which they have been achieved. The best result for each benchmark
function is in bold.
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B.1. Average regrets for discrepancy prediction method with augmented real data

B.1 Average regrets for discrepancy prediction method

with augmented real data
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APPENDIX B. REGRETS FOR THE DISCREPANCY PREDICTION
METHOD WITH AUGMENTED REAL DATA

B.1.1 Simple average regrets using a GP to predict the dis-
crepancy
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Figure B.1: Average simple regrets for all the benchmark functions, using a GP
surrogate model and a sampling threshold T=0.5. Each curve corresponds to a
different value of the ratio λ/l. The black dotted curve refers to the discrepancy
prediction method without any additional real data.
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B.1. Average regrets for discrepancy prediction method with augmented real data

B.1.2 Simple average regrets using a GBR to predict the
discrepancy
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Figure B.2: Average simple regrets for all the benchmark functions, using a GBR
surrogate model and a sampling threshold T=0.5. Each curve corresponds to a
different value of the ratio λ/l. The black dotted curve refers to the discrepancy
prediction method without any additional real data.
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APPENDIX B. REGRETS FOR THE DISCREPANCY PREDICTION
METHOD WITH AUGMENTED REAL DATA

B.1.3 Predicted average regrets using a GP to predict the
discrepancy
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Figure B.3: Average predicted regrets for all the benchmark functions, using a
GP surrogate model and a sampling threshold T=0.3. Each curve corresponds to
a different value of the ratio λ/l. The black dotted curve refers to the discrepancy
prediction method without any additional real data.
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B.1. Average regrets for discrepancy prediction method with augmented real data
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Figure B.4: Average predicted regrets for all the benchmark functions, using a
GP surrogate model and a sampling threshold T=0.5. Each curve corresponds to
a different value of the ratio λ/l. The black dotted curve refers to the discrepancy
prediction method without any additional real data.
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APPENDIX B. REGRETS FOR THE DISCREPANCY PREDICTION
METHOD WITH AUGMENTED REAL DATA

B.1.4 Predicted average regrets using a GBR to predict the
discrepancy
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Figure B.5: Average predicted regrets for all the benchmark functions, using a
GBR surrogate model and a sampling threshold T=0.3. Each curve corresponds to
a different value of the ratio λ/l. The black dotted curve refers to the discrepancy
prediction method without any additional real data.
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B.1. Average regrets for discrepancy prediction method with augmented real data
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Figure B.6: Average predicted regrets for all the benchmark functions, using a
GBR surrogate model and a sampling threshold T=0.5. Each curve corresponds to
a different value of the ratio λ/l. The black dotted curve refers to the discrepancy
prediction method without any additional real data.
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APPENDIX B. REGRETS FOR THE DISCREPANCY PREDICTION
METHOD WITH AUGMENTED REAL DATA

B.2 Final regrets for discrepancy prediction method

with augmented real data
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B.2. Final regrets for discrepancy prediction method with augmented real data

B.2.1 Simple final regrets using a GP to predict the discrep-
ancy
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Figure B.7: Comparison between averaged final simple regrets R̂s achieved with
T = 0.3 or T = 0.5, using a GP surrogate model for the discrepancy. The values
of R̂p are plotted versus the value of λ/l. The black dashed line shows the averaged
final predicted regret observed for the discrepancy prediction method.
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B.2.2 Simple final regrets using a GBR to predict the dis-
crepancy
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Figure B.8: Comparison between averaged final simple regrets R̂s achieved with
T = 0.3 or T = 0.5, using a GBR surrogate model for the discrepancy. The values
of R̂p are plotted versus the value of λ/l. The black dashed line shows the averaged
final predicted regret observed for the discrepancy prediction method.
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B.2.3 Predicted final regrets using a GP to predict the dis-
crepancy

0.000

0.005

0.010

0.015

0.020

0.025

Fi
na

l r
eg

re
ts

Low errorLow errorAckley
threshold = 0.3 threshold = 0.5

0.000

0.005

0.010

0.015

0.020

0.025

Med errorMed error

0.00

0.02

0.04

0.06

0.08

High errorHigh error

0.000

0.001

0.002

0.003

0.004

Fi
na

l r
eg

re
ts

Low errorLow errorGriewank

0.000

0.001

0.002

0.003

0.004

Med errorMed error

0.000

0.001

0.002

0.003

0.004

0.005

High errorHigh error

0.00000

0.00005

0.00010

0.00015

0.00020

Fi
na

l r
eg

re
ts

Low errorLow errorMichalewicz

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Med errorMed error

0.000

0.005

0.010

0.015

0.020

0.025

High errorHigh error

0.0

0.2

0.4

0.6

0.8

Fi
na

l r
eg

re
ts

Low errorLow errorRastrigin

0.0

0.2

0.4

0.6

0.8

1.0
Med errorMed error

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
High errorHigh error

0.1 0.2 0.3 0.4 0.5
/l

0.00

0.05

0.10

0.15

0.20

Fi
na

l r
eg

re
ts

Low errorLow errorStyblinski-Tang

0.1 0.2 0.3 0.4 0.5
/l

0.00

0.05

0.10

0.15

0.20

Med errorMed error

0.1 0.2 0.3 0.4 0.5
/l

0.0

0.1

0.2

0.3

0.4

0.5

High errorHigh error

Figure B.9: Comparison between averaged final predicted regrets R̂p achieved with
T = 0.3 or T = 0.5, using a GP surrogate model for the discrepancy. The values
of R̂p are plotted versus the value of λ/l. The black dashed line shows the averaged
final predicted regret observed for the discrepancy prediction method.
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B.2.4 Predicted final regrets using a GBR to predict the
discrepancy
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Figure B.10: Comparison between averaged final predicted regrets R̂p achieved with
T = 0.3 or T = 0.5, using a GBR surrogate model for the discrepancy. The values
of R̂p are plotted versus the value of λ/l. The black dashed line shows the averaged
final predicted regret observed for the discrepancy prediction method.

162



Bibliography

[1] https://bnaic2021.uni.lu/.

[2] Apoorv Agnihotri and Nipun Batra. “Exploring Bayesian Optimization”. In:
Distill (2020). https://distill.pub/2020/bayesian-optimization. doi: 10.23915/
distill.00026.

[3] Shipra Agrawal and Navin Goyal. “Analysis of thompson sampling for the
multi-armed bandit problem”. In: Conference on learning theory. JMLR Work-
shop and Conference Proceedings. 2012, pp. 39–1.
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