
SIM-STEM Lab: Incorporating Compressed Sensing Theory for Fast 

STEM Simulation 

Alex Robinson1, Daniel Nicholls1, Jack Wells2, Amirafshar Moshtaghpour1,3,                   

Angus Kirkland3,4, Nigel D. Browning1,5,6 

1 Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, 

Liverpool, L69 3GH, United Kingdom 

2 Distributed Algorithms Centre for Doctoral Training, University of Liverpool, Liverpool, L69 

3GH, United Kingdom 

3 Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QS, 

United Kingdom 

4 Department of Materials, University of Oxford, Oxford, OX2 6NN, United Kingdom 

5 Physical and Computational Science Directorate, Pacific Northwest National Laboratory, 

Richland, WA 99352, USA 

6 Sivananthan Laboratories, 590 Territorial Drive, Bolingbrook, IL 60440, USA 
  

Abstract 

Recently it has been shown that precise dose control and an increase in the overall acquisition 

speed of atomic resolution scanning transmission electron microscope (STEM) images can 

be achieved by acquiring only a small fraction of the pixels in the image experimentally and 

then reconstructing the full image using an inpainting algorithm.  In this paper, we apply the 

same inpainting approach (a form of compressed sensing) to simulated, sub-sampled atomic 

resolution STEM images.  We find that it is possible to significantly sub-sample the area that 

is simulated, the number of g-vectors contributing the image, and the number of frozen phonon 

configurations contributing to the final image while still producing an acceptable fit to a fully 

sampled simulation.  Here we discuss the parameters that we use and how the resulting 

simulations can be quantifiably compared to the full simulations.  As with any Compressed 

Sensing methodology, care must be taken to ensure that isolated events are not excluded 

from the process, but the observed increase in simulation speed provides significant 

opportunities for real time simulations, image classification and analytics to be performed as 

a supplement to experiments on a microscope to be developed in the future. 
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1. Introduction 

The simulation of atomic resolution scanning transmission electron microscopy (STEM) 

images [1- 4] has advanced significantly in recent years, to the point that the methodology is 

now capable of identifying single atom changes in structure and composition from a direct 

comparison to experimental images [5- 8]. Simulations are now used to help understand the 

structure-property relationships in a wide range of beam tolerant materials, interfaces, grain 

boundaries and defects [9- 18]. These simulations, however, typically involve computationally 

expensive formalisations where the core underlying approach is to include as many possible 

contributions/configurations as possible to ensure the best match to experimental images [19-

39, 53, 54]. In addition to the significant computational power required and run time necessary 

to make sure the simulations have converged to best match the experiment; this approach 

runs into severe limitations when the comparison experimental image quality is poor [40- 44] 

. This means that if a material, interface, or defect is susceptible to electron beam damage, it 

is hard to develop precise simulations of these structures.   

For these damage limited acquisitions, there are currently two approaches to improving the 

inherent low signal-to-noise ratios that are being applied that make use of artificial intelligence: 

one is by using compressive sensing/inpainting [45- 47] and the other is by classifying and 

learning features from a large number of low-quality images [48- 50]. Could something similar 

be applied to simulations?  Rather than performing one perfect simulation, could we run a set 

of smaller less precise (sub-sampled) simulations and use machine learning/artificial 

intelligence to classify and quantify the structure for comparison to experimental results?  Even 

further, if we use machine learning to classify images, is there really a difference between the 

use of a simulated image and an experimental image to solve the structure at hand?   

In this paper we will focus only on one use of artificial intelligence for image/simulation 

reconstruction, sub-sampling and inpainting, i.e., compressive sensing (CS), which has been 

shown to reduce the time and electron dose rate needed to form STEM images [40- 42]. 

Compressive sensing STEM involves forming images that are directly subsampled at the time 

of acquisition (Figure 1). An inpainting algorithm is then used to fill in gaps in the sub-sampled 

data, with missing information inferred from the subsampled data through, e.g., a combination 

of a dictionary learning or a sparsity pursuit algorithm (Figure 2). To estimate a full image from 

simulated subsampled image, we use an unsupervised dictionary learning method. Compared 

to its supervised counterparts, which require a suitable pre-defined dictionary. Dictionary 

learning algorithms produce a dictionary of basic signal patterns, which is learned from the 



data, through a sparse linear combination with a set of corresponding weights. This dictionary 

is then used in conjunction with a sparse pursuit algorithm to inpaint the pixels of each 

overlapping patch which when combined form a full image [51]. In this paper, the Beta-Process 

Factor Analysis via Expectation Maximisation (BPFA-EM) method will be used to inpaint the 

subsampled data, and the reader is referred to [52] for more detail. We do not claim that BPFA 

is the state-of-the-art blind inpainting algorithm, however it is one of the top performing models 

outside of deep-learning methods. BPFA does not require prior knowledge of measurement 

noise, unlike its counterpart, i.e., K-SVD [53]. This is beneficial for real CS-STEM where noise 

level estimation is not always known, but for these simulations, noise is not considered prior 

to inpainting.  

  

 Figure 1. An example of a BPFA-EM 
reconstructed CS-STEM image of heat-treated 
Ceria. The overlayed image is subsampled by 8x 
acquired data (i.e., only 12.5% of scan positions 
acquired) using a ‘line-hop’ sampling scheme. This 
theoretically reduces the total electron counts (and 
equivalently the dose for constant dwell time and 
beam current) by 8x. Given the success of the 
method in real CS-STEM, it is hypothesised that the 
same approach can be applied to STEM simulation.  

 

 

 

 

    To determine whether it is possible to use the same inpainting approaches to the generation 

of image simulations, we first must examine what is involved in simulating atomic resolution 

images.  In this regard, the multislice approach [54, 55] is a common method for simulating 

the projected electron wavefunction, where the three-dimensional atomic potential is divided 

into a series of two-dimensional slices. The weak phase object approximation (WPOA) is 

assumed where only the phase of the incident electron wave is slightly modified [34], but not 

the amplitude. To account for electron-phonon interactions, the frozen phonon model is often 

used [33- 35]. The intensity average of a series of multislice calculations is taken for different 

possible configurations of atomic coordinates (Figure 5), and the number of frozen phonon 

configurations is linear with the run-time. In STEM simulations, this series of calculations must 

be solved at each probe position, which ultimately defines the resolution of the resulting 

simulation. Therefore, the run-time of STEM simulation scales not only with resolution, but the 

theoretical accuracy of the desired calculation, with a 128x128 pixel simulation taking on the 

order of 1x104 seconds with only 10 frozen phonon configurations, and a sample thickness of 



1nm. Typically, the user must compromise between the run-time, accuracy, and size of the 

simulated image or must invest in high-end machines which can speed up the process through 

GPU parallelization [20-25], such as that used by the MULTEM software referenced and used 

in this paper. It is in overcoming this compromise between run-time and accuracy, that 

inpainting can provide the most benefit.  

 

Figure 2. An example of a simulated image of 
ZK-5 zeolite. The simulated image is a HAADF 
STEM simulation with an accelerating voltage of 
300kV on a detector with inner and outer angles 
of 60 mrad and 100 mrad, respectively. The 
simulation used 32 frozen phonon 
configurations, and a maximum reciprocal space 

vector of 10.92 Å−1. The time-to-solution was 
34,154.56 seconds.  

 

 

In this paper, we will discuss how combining inpainting with STEM simulations, it is possible 

to form a new workflow for structural determination which can significantly reduce the run-time 

required for functionally identical results. This development allows real-time simulations to be 

performed, which is the first step in the rapid interpretation, classification, and analysis of 

images and potentially the future development of artificial intelligent (AI) STEM, AISTEM.  

 

2. Methods 

In the following section, three possible methods to reduce the run-time of STEM simulations 

will be presented and explained. The first is based on probe subsampling, the second is 

related to the number of frozen phonon configurations (FPC) used, and the third is based on 

the optimisation of the maximum reciprocal space vector that contributes to the simulated 

image. In all cases, the simulations were performed using MULTEM through MATLAB on a 

remote server equipped with an Intel Xeon Gold 6128 CPU @ 3.40 GHz, and one NVIDIA 

Telsa V100 GPUs running CUDA 11.2. All simulations are performed with the same 

microscope and detector parameters. The simulated images are HAADF STEM simulations 

with an accelerating voltage of 300kV on a detector with inner and outer angles of 60 mrad 

and 100 mrad respectively, and details on the number of frozen phonon configurations used 

can be found in the sections below. 



 

2.1. Subsampled Area Simulations 

It is possible to directly subsample a simulation using the MULTEM scripts in MATLAB by 

a method of discrete patch simulation. A simulated image of size [𝑀 ×  𝑁] pixels is 

constructed from a series of simulated patches of size [𝑎 ×  𝑏] pixels where 𝑎, 𝑏 ∈

[2, 𝑚𝑖𝑛{𝑀, 𝑁}], as is demonstrated in figure 3. The minimum patch size in the current 

implementation of this method is [2 x 2] pixels, hence the lower bound of a, b. The number of 

patches required to be simulated is defined by the desired sampling percentage. There are 

several possible schemes for subsampling those patches, such as ‘random sampling’, ‘line 

hop sampling’, ‘adaptive sampling’, ‘Poisson disk sampling’, ‘spiral sampling’, ‘radial 

sampling’, and so on. Given that this method is not limited by beam damage or other 

acquisition effects, a sampling pattern (or patch selection set) could be designed in such a 

way that reconstruction quality is maximised without any computational cost. As the results 

will all follow approximately the same trajectory of quality vs sampling percentage, here we 

will just focus on a single random scattering sub-sampling pattern. 

 

 Figure 3. A pre-determined image size is 

defined as [M x N] pixels. This space is then 

divided into simulation patches of size 

[a x b] pixels (bounded by thick lines). These 

patches are then indexed, in this case the set 

[1,64]. Depending on the desired sampling 

scheme, a subset of these patches (in yellow) 

is simulated independently, and then 

restored into their respective position on the 

total output image. This then produces a 

subsampled simulation, as seen in figure 4. 

 

MULTEM asks the user to define the scan area in terms of Angstroms, hence when 

simulating a patch, the area of that patch is called, simulated, and then saved into a matrix of 

simulated data. The resulting image is the collection of simulated patches restored in their 

respective position, with patches that have not been simulated set at a value of zero (Figure 

4). Once the subsampled simulation has been generated, it is then reconstructed using the 

BPFA-EM algorithm (figure 4).  



 

  

 

 

             

 

Figure 4. An example of a directly subsampled simulation of ZK-5 zeolite (left). The simulation 

used 5 frozen phonon configurations, and a maximum reciprocal space vector of 5.46 Å−1. 
The time-to-solution was 479.74 seconds, with approximately an extra 16 seconds to 
reconstruct the subsampled data using BPFA-EM (right).  

 

2.2. Optimising the Number of Frozen Phonon Configurations 

The second method to decrease the run-time of STEM simulations (which can be used in 

conjunction with the subsampling method) is to reduce the number of frozen phonon 

configurations. For thicker samples, the variance in the output image is reduced given there 

are more slices to calculate and to average out. There exists a number of configurations 

beyond which the gradient of the image improvement falls below one, i.e., diminishing returns 

for increasing number of configurations. This number is inversely proportional to the thickness 

of the sample. Hence, if the number of configurations is sufficiently large given the thickness 

of the sample, the output image is functionally similar to the output for many more 

configurations. It is important to note that this manipulation is intended to increase speed and 

not accuracy and for complex samples containing defects or dopants, a larger number of 

configurations is generally recommended to account for the larger atomic position uncertainty. 



 

Figure 5. A visual representation of how the frozen phonon approximation is used to 

estimate the thermal-diffuse scattering. For each slice of the multislice, the atomic 

displacement is randomly assigned for n-configurations. The intensity is calculated for each 

configuration, and then averaged to determine the intensity of the final image. 
 

2.3. Optimising the Maximum Reciprocal Space Vector 

Similar to reducing the number of frozen phonon configurations, the maximum reciprocal 

space vector, or the simulation space, which contributes to the final solution in the simulation 

can be reduced (Figure 6). Optimising this number reduces the number of calculations 

required per multislice calculation, and hence reduces the total run-time of the simulation. For 

a radial detector with an outer angle of θ, the maximum reciprocal space vector (g-max) that 

is incident on the detector will be approximately 
𝜃

𝜆
 where λ is the relativistic wavelength of the 

electron. Therefore, we can calculate the maximum simulation box size required to cover the 



entire detector (figure S3), reducing the number of calculations required, and speeding up the 

simulation. 

 

Figure 6. A visual 
representation of how the 
maximum reciprocal space 
vector can be interpreted. If g-
max is less than the 
corresponding outer angle of 
the detector, then incoherent 
signals will be missed for the 
output. However, if g-max is 
too large, the incoherent signal 
outside the detector space is 
negligible and therefore the 
run-time is compromised.  

 

 

3. Results 

The methods above were tested using the ZK-5 zeolite sample shown in figure 2. The patch 

size used for all sampling ratios is [2 ×  2], and the image size is 128 x 128 pixels (8Å x 8Å).  

The metrics used in each of the methods are the structural similarity (SSIM) [56], and peak 

signal-to-noise ratio (PSNR) [57]. The performance of the methods is summarised in figures 

7, 8 and 9. The reference simulation used 32 frozen phonon configurations, and a maximum 

reciprocal space vector of 10.92 Å−1, and the time-to-solution was 34,154.56 seconds. Each 

simulation was performed 10 times for each method parameter (sampling ratio, number of 

configurations, and maximum reciprocal space vector) to get an average image quality metric 

value as shown in the plot. The error bars correspond to one (plus/minus) standard deviation.  

The run-time of the simulation scales linearly with the sampling percentage, however beyond 

approximately 20% sampling, the increase in quality of image output decreases, causing 

diminishing returns in image quality with increased sampling percentage. It is therefore 

proposed that even given this sub-optimised sampling regime and patch size, we can achieve 

a PSNR value greater than 32dB (on average).  Although the patch size used is somewhat 

inefficient during the simulation, given that the time it takes to transfer data between GPU and 

CPU memory versus the run-time per patch is the greatest (see figure S5), the smaller patch 

gives greater sparsity in the acquisition model and therefore greater reconstruction quality, 

implying greater efficiency to final solution given smaller patch sizes.   



 

Figure 7. The effect of sampling percentage on reconstruction quality. In these simulations, a 

maximum reciprocal space vector of 5.46 Å−1 was used, and 5 frozen phonon configurations. 

These parameters were determined sufficient for the specific sample used.  

 

The run-time is linear to the number of frozen phonon configurations (Figure 8), but beyond 

approximately 5 frozen phonon configurations, the increase in simulation reconstruction 

quality (with respect to the reference in figure 2) begins to diminish, and as such is determined 

the optimum for this sample. Of course, for more complex samples containing grain 

boundaries or defects, one would require more configurations to account for the uncertainty 

of atomic displacements. Furthermore, for thinner samples it is expected that more frozen 

phonon configurations are beneficial.  



 

 

Figure 8. (top) The result of increasing the number of frozen phonon configurations upon run-
time and image quality metrics. The maximum reciprocal space vector considered for this 

series is 5.46Å−1, and all simulations were fully sampled. (bottom) Examples of simulations 
performed with varying numbers of FPCs.  

 

 

As seen in figure 9, there exists a certain maximum reciprocal space vector beyond which 

the return in image quality increase becomes negligible, and any calculations beyond this not 

only yield no significant quality increase but take a disproportionally increasing amount of run 



time. The run-time is generally proportionate with the square of the maximum reciprocal space 

vector. The HAADF signal is considered a dominantly incoherent signal, and as a result, the 

electrons on the detector have little phase interference with the electrons that scatter beyond 

the detector. Therefore, it is expected that to sample electrons beyond the size of the HAADF 

detector is computationally inefficient, as demonstrated in figure 9. 

 

 

Figure 9. (top) Demonstration of how the increase in the maximum reciprocal space vector 
used has diminishing returns on the output image. Beyond the length of the simulation box 
being equal to the outer diameter of the detector, the simulations are functionally identical, the 
size of this box being 5.12x5.12 Å¯¹ (also see figure S2). The simulations were run with 5 



frozen phonon configurations, and all were fully sampled. Note the non-linear axes. (bottom) 
Examples of simulations performed with varying maximum reciprocal space vectors. 

 

In the next experiment, all three methods were used in conjunction to simulate a zeolite 

structure (ZK-5). The output simulation has a size of 128 x 128 pixels (8Å x 8Å) and was 

simulated with a sampling percentage of 25% over a random sampling pattern. The number 

of frozen phonon configurations per slice was 4 and the simulation box was limited to the size 

of the detector with a maximum reciprocal space vector of 5.12Å¯¹. The resulting compressed 

simulation (figure 10 (c)) has a structural similarity of 95.59% and a peak signal-to-noise ratio 

value of 29.09dB with respect to the fully sampled simulation. The run-time was approximately 

87x faster than the fully sampled simulation, and reconstruction time was on the order of 10 

seconds, with most of this time spent forming the dictionary as opposed to actual 

reconstruction. One could therefore save time by reconstructing using a pre-learned dictionary 

which is suitably representative of the sub-sampled data.  



 

Figure 10. (a) Subsampled simulation, (b) the full reference simulation, (c) reconstructed 
simulation from subsampled data (a) and (d) structural similarity map of the ZK-5 compressed 
simulation with respect to the reference. In the similarity map, the dark features correspond to 
larger errors between the reference and reconstruction. In a perfect reconstruction (i.e., SSIM 
is 1 or 100% similar), the similarity map would be completely white. 

 

4. Conclusion 

In conclusion, we have shown that it is possible to significantly reduce the run-time of STEM 

simulation by leveraging the theory of compressed sensing. Furthermore, the results of using 

these three methods in combination yield results that are functionally similar, often identical to 

the fully simulated images. It is important to note that these methods are not expected to yield 

greater accuracy but are to be used in conjunction with experimental results, which are 

themselves inherently imperfect. Hence, the simulation itself is not required to be perfect, but 



simply an accurate representation of the electron-specimen interaction. The best simulation is 

arbitrary to some extent, and one could say that the best possible simulation would require an 

infinite number of calculations. By taking advantage of image inpainting and efficient 

parameter selection, it is possible to significantly reduce the number of required calculations 

and allow low-end machines to run higher resolution simulations with respect to the standard 

methods. Also, if it is intended that the user takes advantage of real CS-STEM, then the error 

in their simulation would unlikely be more than that of their real experimental data, given 

equivalent sampling regimes and conditions. This is mainly because noise and human error 

are redundant in a simulation. In addition to this, for those wishing to run real-time simulations 

alongside their experimental work, with further advancements in calculation techniques (such 

as the PRISM method in combination with a compressed model) it could soon be a possibility. 

Future works intend to take advantage of simulations in more ways than traditionally used as 

discussed in the introduction. By combining experiment with theory, it is expected that the 

efficiency of real CS-STEM will improve, and furthermore increase the quality of output through 

dictionary optimisation techniques. Faster simulations could offer a solution for real time 

compressive sensing STEM, and the potential to find optimal sampling strategies by real time 

microscope parameter simulation. SIM-STEM Lab version two is currently being worked on to 

try and further improve performance, and the solutions extended beyond annular dark field 

imaging. 
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Figure S1. An image of size [𝑀 ×  𝑁] pixels can be broken down into a set of patches of 
size [𝑎 ×  𝑏] (Left). Each patch is then indexed and creates a vector of patches which can be 
individually simulated depending on the desired scan pattern and sampling percentage. The 
simulated patches are then restored back into their respective index position (right), and 
those which are not simulated are set to a value of zero. The workflow to form a 
subsampled, simulated image (middle). 

https://uk.mathworks.com/help/images/ref/psnr.html


 

Figure S2. Details of the simulation probe, slicing and detector coverage parameters. The 
figures are provided through MULTEM in MATLAB. The rightmost figure shows the 
maximum reciprocal space vector limited to the edge of the detector. The left-hand side 
figures show details of the simulated STEM probe, atom positions, slices and scan field.  

 

 

Figure S3. A demonstration of how the simulation box, or maximum reciprocal space vector 
changes the outcome of the simulation. When it is too small, the electrons which would have 
scattered to angles incident upon the detector would not contribute, and beyond the limit of 
the detector, the improvement in simulation is diminishing. 



 

Figure S4. The data used in figures 7-9. 

 

Figure S5. Empirical data based on the run-time of increasing patch areas used in the 
subsampling of simulations. Smaller patches are more inefficient due to the time it takes to 
transfer data from GPU to CPU memory. Ideally, we would expect a linear relation between 
the sampling percentage and the time it takes to run the subsampled simulation.  

 

 


